

S-NPP Ozone Mapping Profiler Suite (OMPS) Nadir System Calibration

*C. Pan¹, L. Flynn², X. Wu², J. Niu³, Z. Zhang³, M. Grotenhuis⁴, T. Beck² and E. Beach³

* 1 ESSIC, University of Maryland, College Park, MD 20740; 2 NOAA NESDIS/STAR, College Park, MD 20740; 3 IMSG, College Park, MD 20740; 4 ERT, Laurel MD 20707

> *The 2014 EUMETSAT Meteorological Satellite Conference 22 – 26 September 2014 Geneva, Switzerland*

Introduction

- OMPS, as a part of the US (Joint Polar Satellite System) JPSS mission, is flying on the Suomi National Polar-Orbiting Partnership (SNPP) satellite.
- OMPS carries on a long tradition of space borne measurements of O3.
- OMPS consists of advanced hyper-spectral instruments that continue the heritage of the Solar Backscatter Ultraviolet (SBUV and SBUV/2) and Total Ozone Mapping Spectrometer (TOMS).
- OMPS provides improved vertical resolution of O3 data products. OMPS also helps produce better ultraviolet index forecasts.
- The scope of this presentation is limited to the in-flight performance of the OMPS Nadir sensors.

STAR Center for Satellite Applications and Research

Instrument Overview

- Resolution
 - Provides Total Column ozone data w/ 50x50 km FOV at nadir
 - Provides ozone profiles in a single ground pixel of 250x250 km at nadir
- Configuration
 - Push-broom 110 deg. cross-track
 FOV telescope
 - Two grating spectrometers
 - » NM covers 300 nm to 380 nm
 - » NP covers 250 nm to 310 nm
 - CCD optical detector for each spectrometer

Onboard Calibrators

- Light-emitting diode provides linearity calibration
- Reflective solar diffuser maintains calibration stability
- Products
 - Provide globe maps every 24 hours of amount of ozone and volumetric concentration in a vertical column of atmosphere with a 4- days revisit

Spatial resolution can be altered to provide a smaller ground FOV that has a higher spatial resolution.

Change in Dark Current, as Expected

Dark current results from thermally generated electrons that adds a systematic bias.
Weekly increase in mean: ~0.6% for NM and 0.8% for NP, resulting in uncertainties ~0.03% for NM and 0.1-0.5 % for NP.

System linearity is stable

It is a linear relationship between the incident photon number and the analog/digital converter (ADC) output.

The nonlinearity is about 0.39 for the NM and is 0.32 for the NP.

$$\eta = \frac{(Q_m - Q_i)}{Q_{\max}}$$

where Q_m is the measured response to a LED measurement input, Q_i is the ideal response to the Q_m , and Q_{max} is the full well response.

Stray light correction improves EV radiance

10.000

1.000

0.100

0.010

0.001

ad (W cm⁻³ ster

Solar irradiance measurements

Wavelength changed ~ 0.1 nm from ground to orbit

Orbital wavelength changes from solar view

Intra-orbital wavelength changes from Earth view

Cross-track position pattern from Solar data

Optical throughput change < 1%

Comparisons of zonal mean total O3 in time-series

Comparisons of residuals as daily zonal mean time-series

Summary

- Sensors are performing well
 - The sensor orbital performance is stable and generally meets the system requirements and agrees with the prelaunch results.
 - Optical degradation is less than 1% in the nearly 3-year operation.
- Wavelength calibration is under adjustment
 - Determine wavelength shift as a function of temperature.
 - Determine cross-track difference and apply a soft calibration.