

VIIRS Cloud Mask (VCM) Provisional Status

Dr. Thomas Kopp – VCM Validation Lead Dr. Andrew Heidinger – Cloud Product Lead Dr. William Thomas – VCM JAM

- Fundamentally the VCM is a moderate band pixel-by-pixel determination of cloud cover
- As originally defined in the NPOESS system specification, it is "used in the processing of many EDRs, which classifies pixels as Confidently Clear, Confidently Cloudy, Probably Clear, and Probably Cloudy"
 - The original requirements broke down the VCM performance into various backgrounds (e.g. day/night, ocean/land/desert) and characteristics (e.g. probability of correct typing, leakage, false alarms)
 - Limits on probably conditions were added in 2006
 - The design of the VCM also breaks down the cloud identification process by condition and background
- This logic has continued into the S-NPP and JPSS programs
- The applicable System Specification section, which fell under the Cloud Cover/Layers EDR, is shown on the following slide
 - This is our "target"

VCM Requirements

I. Binary Map HCS	0.8 km @ Nadir
m. Binary Map Horizontal Reporting Interval	Binary Map HCS
n.	Cloudy/Not Cloudy
o. Binary Map Probability of Correct Typing	
2. Ocean, Day, COT > 1.0	94%
4. Day, Land, COT > 1	90%
5. Ocean, Night, COT > 1	85%
p. Cloud Leakage Rate	
1. Ocean, Day, COT > 1.0, outside Sun Glint region	1%
2. Land, Day, COT > 1.0	3%
3. Land, Ocean, Night, COT > 1.0	5%
q. False Alarm Rate	
1. Ocean, Day, COT > 1.0	5%
2. Land, Day, ToC NDVI < 0.2 or ToC NDVI > 0.4, or Desert, COT > 1.0	7%
3. Land, Ocean, Night, COT > 1.0	8%
r. Differentiate heavy aerosols from clouds, Day (0 < OD < 2), dust/sand, smoke, volcanic ash.	85% (SYS-TBR-002)
s. Degraded Measurements Conditions	
2. Cloud Leakage Rate	
a. Land, Ocean outside Sun Glint Region, Day, COT ≤ 1.0	5%
c. Land, 0.2 \leq ToC NDVI \leq 0.4 and COT \leq 1.0	7%
d. Land and Ocean Sun Glint Regions	7%
e. Night, Poleward of 60 deg N or 60 deg S	15%
3. False Alarm Rate	
a. Land, Ocean, Day, COT \leq 1.0	8%
c. Land, 0.2 $\leq~$ ToC NDVI $\leq~$ 0.4 and COT $\leq~$ 1.0	10%
d. Land and Ocean Sun Glint Regions	10%
e. Night, Poleward of 60 deg N or 60 deg S	25%

- Probability of Correct Typing: The percentage of confidently clear or confidently cloudy pixels that are properly identified as such in each background type
- Leakage: The percentage of pixels identified as confidently clear that in reality contain cloud
- False Alarms: The percentage of pixels identified as confidently cloudy that are in reality contain no clouds (they may contain aerosols)
- PCPC: The percentage of pixels identified as Probably Cloudy or Probably Clear (hence PCPC)

- The Cal/Val approach is basically a 3-legged pedestal with assistance from liaisons and program personnel
 - NOAA leads product development and performs large scale analyses such as match-up comparisons
 - Aerospace leads the validation effort and determines when and how threshold updates occur
 - Northrop Grumman leads the development of Golden Granules and provides fundamental software support and development
- Other key contributors are our JPSS Algorithm Manager, Raytheon (COAST) representative, and our liaisons

- NESDIS/StAR A. Heidinger (Product Lead and Cloud Liaison)
- The Aerospace Corporation T. Kopp (Validation Lead)
- UW/CIMSS R. Frey, D. Botambekov
- Northrop Grumman K. Hutchison, B. lisager
- NASA/DPE B. Thomas (JAM)
- Raytheon K. Brueske (COAST)
- AFWA J. Cetola
- NRL, Monterey K. Richardson
- NESDIS/StAR H. Cronk (Aerosol Liaison with L. Remer)
- UMBC E. Vermote (Land Liaison)
- NRL, Stennis D. May (Ocean Liaison with J-F. Cayula)

- The VCM relies upon 13 of the 16 M-bands and 4 of the 5 I-bands for all of its computations
 - The VCM can be tuned for known biases and noise
- It also depends upon ancillary data critical for accurate cloud identification
 - Background surface temperatures at night (GFS)
 - Water vapor content (GFS)
 - Snow and ice
 - NDVI

VIIRS Bands Used in the VCM

VIIRS Band	Central Wavelength (μm)	Bandwidth (µm)	Wavelength Range (µm)	Band Explanation	Spatial Resolution (m) @ nadir
M1	<mark>0.412</mark>	<mark>0.02</mark>	<mark>0.402 -0.422</mark>		
M2	0.445	0.018	0.436 - 0.454		
M3 (blue)	0.488	0.02	0.478 - 0.488	Visible	
<mark>M4 (green)</mark>	<mark>0.555</mark>	<mark>0.02</mark>	<mark>0.545 -0.565</mark>		
<mark>M5 (red)</mark>	<mark>0.672</mark>	<mark>0.02</mark>	<mark>0.662 -0.682</mark>		
M6	0.746	0.015	0.739 - 0.754	Near IR	
M7	<mark>0.865</mark>	<mark>0.039</mark>	<mark>0.846 -0.885</mark>	Nedi IK	
<mark>M8</mark>	<mark>1.240</mark>	<mark>0.02</mark>	<mark>1.23 –1.25</mark>		750 m
M9	<mark>1.378</mark>	<mark>0.015</mark>	<mark>1.371 -1.386</mark>	Shortwave IR	750 m
<mark>M10</mark>	<mark>1.61</mark>	<mark>0.06</mark>	<mark>1.58 –1.64</mark>	Shortwave ik	
<mark>M1</mark> 1	<mark>2.25</mark>	<mark>0.05</mark>	<mark>2.23-2.28</mark>		
<mark>M12</mark>	<mark>3.7</mark>	<mark>0.0155</mark>	<mark>3.61 –3.79</mark>	Medium-wave IR	
M13	<mark>4.05</mark>	<mark>0.02</mark>	<mark>3.97 –4.13</mark>	Wedium-wave in	
M14	<mark>8.55</mark>	<mark>0.3</mark>	<mark>8.4 -8.7</mark>		
M15	<mark>10.763</mark>	<mark>1.0</mark>	<mark>10.26 -11.26</mark>	Longwave IR	
M16	<mark>12.013</mark>	<mark>0.95</mark>	<mark>11.54 -12.49</mark>		
DNB	0.7	0.4	0.5 - 0.9	Visible	750 m across full scan
<mark> 1</mark>	<mark>0.64</mark>	<mark>0.08</mark>	<mark>0.6 -0.68</mark>	Visible	
<mark>12</mark>	<mark>0.865</mark>	<mark>0.039</mark>	<mark>0.85 –0.88</mark>	Near IR	
13	1.61	0.06	1.58 - 1.64	Shortwave IR	375 m
<mark> 4</mark>	<mark>3.74</mark>	<mark>0.38</mark>	<mark>3.55-3.93</mark>	Medium-wave IR	
<mark>15</mark>	<mark>11.45</mark>	<mark>1.9</mark>	<mark>10.5 –12.4</mark>	Longwave IR	

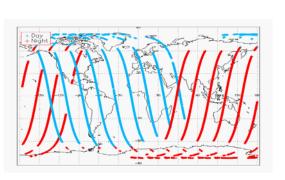
Bands highlighted in pale yellow are used within the VCM

- Beta was declared after the 30-day spin-up set of threshold adjustments were implemented on the IDPS
 - 74 thresholds were adjusted during the 30 day spin up
- This implementation also opened up the VCM to analysis and critique by the other VIIRS EDR teams
- 1012 granules of VCM/MODIS/CALIPSO match-ups were produced for beta – April 2012
 - Quantitative analysis shown on the next slide

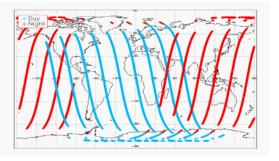
Global results (Beta stage)

Cloud Mask	Sample Size		Cloud f	raction	Probability of			
CIOUCIVIASK	Sample Size	Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
IDPS	88240	0.7513	0.6915	0.0920	0.0515	0.9012	0.0195	0.0793
SSEC Pre-tuned	85650	0.7555	0.7006	0.0971	0.0490	0.8994	0.0228	0.0777
SSEC Phase 2	85650	0.7555	0.6915	0.0638	0.0238	0.9063	0.0148	0.0789
NOAA PATMOS-x VIIRS	90358	0.7507	0.7122	0.0343	0.0348	0.9257	0.0179	0.0564
MODIS C6	272635	0.7217	0.7151	0.0808	0.0333	0.9407	0.0264	0.0329
NOAA PATMOS-x MODIS	272635	0.7217	0.6793	0.0321	0.0254	0.9446	0.0065	0.0489

- Product quality may not be optimal
 - Optimal would be VCM attains all of its requirements
- Incremental product improvements still occurring
 DR history and future planned efforts will be shown
- Version control is in effect
- General research community is encouraged to participate
 VCM team set up liaisons even before launch
- Users urged to consult the EDR product status
- May be replaced in the archive
- Ready for operational evaluation
 - This has already begun, hence the upcoming feedback from other VIIRS EDR teams

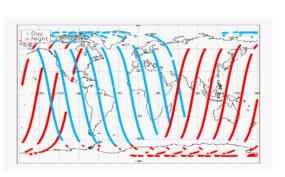


- Product quality was evaluated using two days of match-ups data between CALIPSO and the VCM over the month of November, and compared to results from May
 - The latest threshold update was implemented early November
 - Only one partial day was used for beta
 - Results for the first of the two November days are shown (the two November days contain similar results)
- Results were executed twice, one for all clouds observed by CALIPSO and one with thin clouds removed
 - Thin was defined as high cloud with an optical depth less than 0.3
- Current analysis tool assumes a binary cloud mask
 - Probably clear is counted as confidently clear, same for cloudy
 - This penalizes the VCM, recall actual definitions of leakage/false alarms is based on confident results only

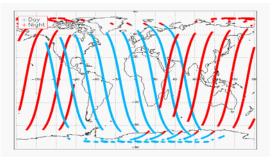


90N – 90S, Ocean/Land, Day/Night, No Snow/Snow/Ice

CALIOP - VIIRS Matchup Pixels, 05/10/2012

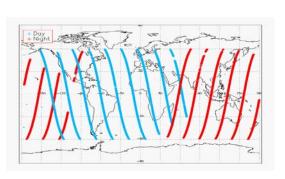


VIIRS Cloud Mask Sample Size			Cloud f	raction	Probability of			
VIIRS CIOUD WASK	Sample Size	Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	257266	0.661	0.567	0.080	0.032	0.857	0.024	0.119
11/10/2012	304681	0.732	0.654	0.068	0.029	0.881	0.021	0.099

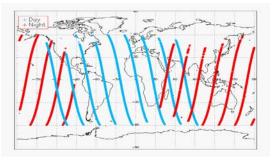


90N – 90S, Ocean/Land, Day/Night, No Snow/Snow/Ice

CALIOP - VIIRS Matchup Pixels, 05/10/2012

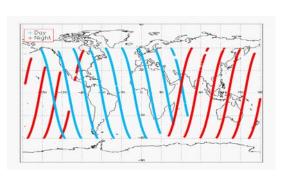


VIIRS Cloud Mask			Cloud f	raction	Probability of			
	Sample Size	Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	206367	0.618	0.586	0.087	0.028	0.892	0.038	0.070
11/10/2012	258832	0.698	0.667	0.069	0.025	0.906	0.032	0.063

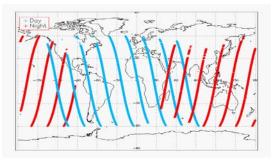


60N – 60S, Ocean/Land, Day/Night, No Snow/No Ice

CALIOP - VIIRS Matchup Pixels, 05/10/2012

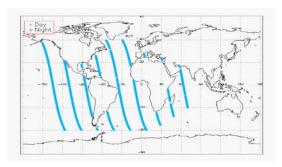


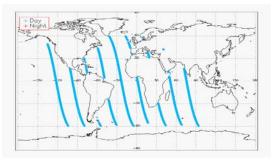
VIIRS Cloud Mask	Comple Size		Cloud f	raction	Probability of			
	Sample Size	Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	218263	0.662	0.585	0.078	0.031	0.888	0.018	0.094
11/10/2012	237476	0.729	0.674	0.065	0.028	0.913	0.016	0.071

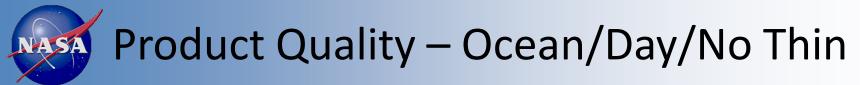


60N – 60S, Ocean/Land, Day/Night, No Snow/No Ice

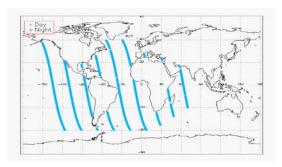
CALIOP - VIIRS Matchup Pixels, 05/10/2012


VIIRS Cloud Mask Sample Size		Cloud f	raction	Probability of				
	Sample Size	Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	178835	0.602	0.597	0.085	0.026	0.923	0.036	0.041
11/10/2012	203390	0.674	0.674	0.067	0.024	0.936	0.032	0.032



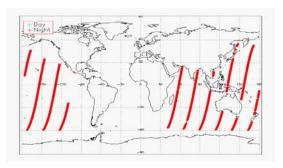

60N – 60S, Ocean, Day, No Snow/No Ice

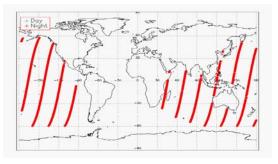
CALIOP - VIIRS Matchup Pixels, 05/10/2012


VIIRS Cloud Mask Sample			Cloud f	raction	Probability of			
	Sample Size	Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	71854	0.673	0.63	0.083	0.029	0.914	0.022	0.065
11/10/2012	79192	0.792	0.761	0.054	0.024	0.943	0.013	0.044

60N – 60S, Ocean, Day, No Snow/No Ice

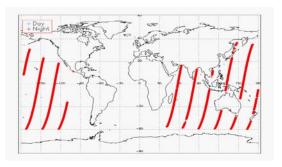
CALIOP - VIIRS Matchup Pixels, 05/10/2012

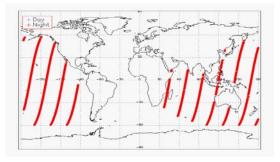

VIIRS Cloud Mask	Sampla Siza		Cloud f	raction	Probability of			
	Sample Size	Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	63078	0.581	0.606	0.110	0.026	0.930	0.048	0.023
11/10/2012	68544	0.732	0.750	0.068	0.020	0.953	0.032	0.014



60N – 60S, Ocean, Night, No Snow/No Ice

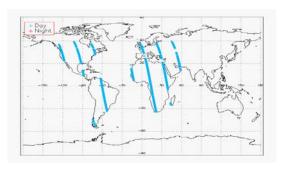
CALIOP - VIIRS Matchup Pixels, 05/10/2012

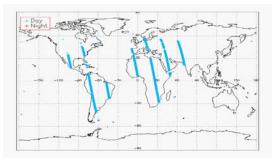



VIIRS Cloud Mask			Cloud f	raction	Probability of			
	Sample Size	Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	74826	0.801	0.719	0.087	0.043	0.887	0.016	0.098
11/10/2012	91334	0.815	0.743	0.073	0.042	0.906	0.011	0.083

60N – 60S, Ocean, Night, No Snow/No Ice

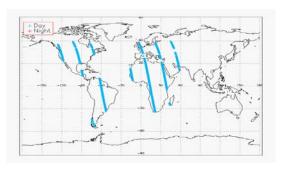
CALIOP - VIIRS Matchup Pixels, 05/10/2012

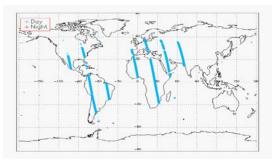

VIIRS Cloud Mask	Comula Ciro		Cloud f	raction	Probability of			
	Sample Size	Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	61716	0.701	0.716	0.085	0.034	0.932	0.041	0.027
11/10/2012	80132	0.713	0.722	0.074	0.036	0.938	0.036	0.026



60N – 60S, Land, Day, No Snow/No Ice

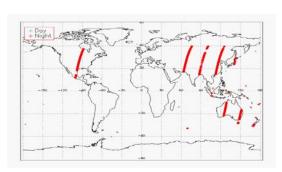
CALIOP - VIIRS Matchup Pixels, 05/10/2012

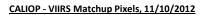

			Cloud f	raction	Probability of			
VIIRS Cloud Mask	Sample Size	Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	34669	0.408	0.338	0.054	0.011	0.893	0.019	0.089
11/10/2012	36049	0.534	0.498	0.077	0.008	0.886	0.039	0.075

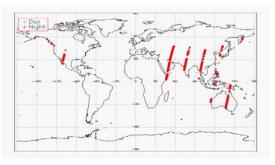


60N – 60S, Land, Day, No Snow/No Ice

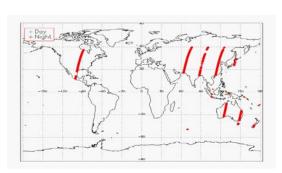
CALIOP - VIIRS Matchup Pixels, 05/10/2012

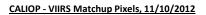


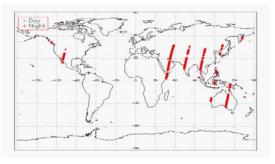

VIIRS Cloud Mask	Sample Size	Cloud fraction				Probability of		
		Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	28423	0.413	0.356	0.053	0.010	0.903	0.021	0.077
11/10/2012	29945	0.562	0.531	0.061	0.007	0.894	0.038	0.068



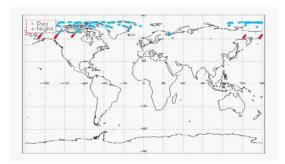
60N – 60S, Land, Night, No Snow/No Ice

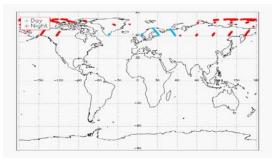



VIIRS Cloud Mask	Sample Size	Cloud fraction				Probability of		
		Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	23315	0.558	0.392	0.063	0.021	0.818	0.008	0.174
11/10/2012	17040	0.422	0.326	0.050	0.014	0.881	0.012	0.108



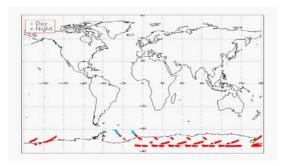
60N – 60S, Land, Night, No Snow/No Ice

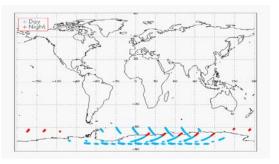

VIIRS Cloud Mask	Sample Size	Cloud fraction				Probability of		
		Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	15464	0.597	0.507	0.055	0.020	0.903	0.004	0.093
11/10/2012	13429	0.412	0.345	0.051	0.012	0.925	0.004	0.071



60N – 90N, All

CALIOP - VIIRS Matchup Pixels, 05/10/2012


VIIRS Cloud Mask	Sample Size	Cloud fraction				Probability of		
		Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	13438	0.643	0.388	0.073	0.037	0.724	0.010	0.265
11/10/2012	13693	0.788	0.420	0.164	0.066	0.604	0.014	0.382



60S – 90S, All

CALIOP - VIIRS Matchup Pixels, 05/10/2012

VIIRS Cloud Mask	Sample Size	Cloud fraction				Probability of		
		Active	Passive	Pr. Clear	Pr. Cloudy	Detection	False D.	Leakage
5/10/2012	12564	0.537	0.360	0.121	0.051	0.503	0.160	0.334
11/10/2012	22061	0.549	0.558	0.039	0.021	0.795	0.092	0.113

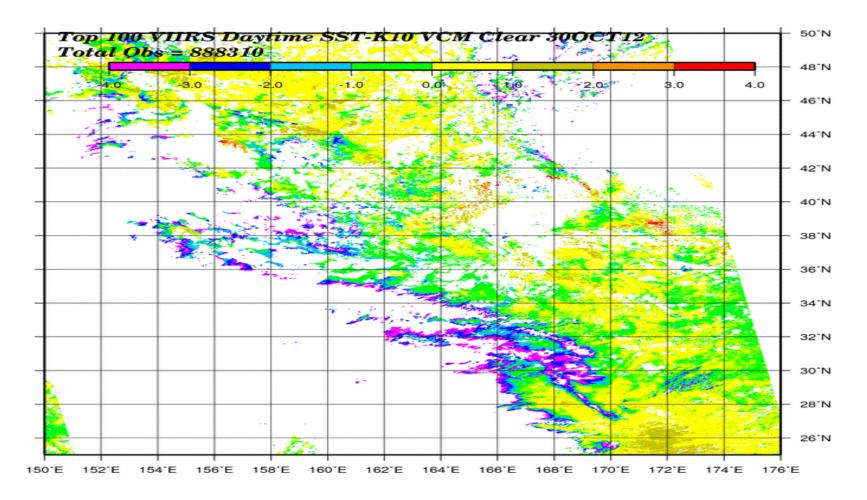
- Global results show improvement for all evaluation criteria for the VCM
- Outside of the polar regions, both probability of detection and false alarms appear to be near requirements
- Leakage percentages are down 25-50% from May
 - However values still exceed requirements across the board
- Serious concerns exist to the results in polar locations
 - Daytime shows improvement but unquestionably short of requirements
 - Polar night is missing too many clouds
 - Note the requirements expected this

- The VCM has had three software updates and three threshold updates since the declaration of beta
 - Software upgrades targeted shortfalls in the visual cloud detection test and consideration of scattering angles
 - Threshold updates aimed primarily at reducing leakage
- Seven Discrepancy Reports related to the VCM have been closed since the declaration of beta
- Longer term fixes for aerosol/cloud differentiation and high cloud identification over snow/desert in work for a February delivery

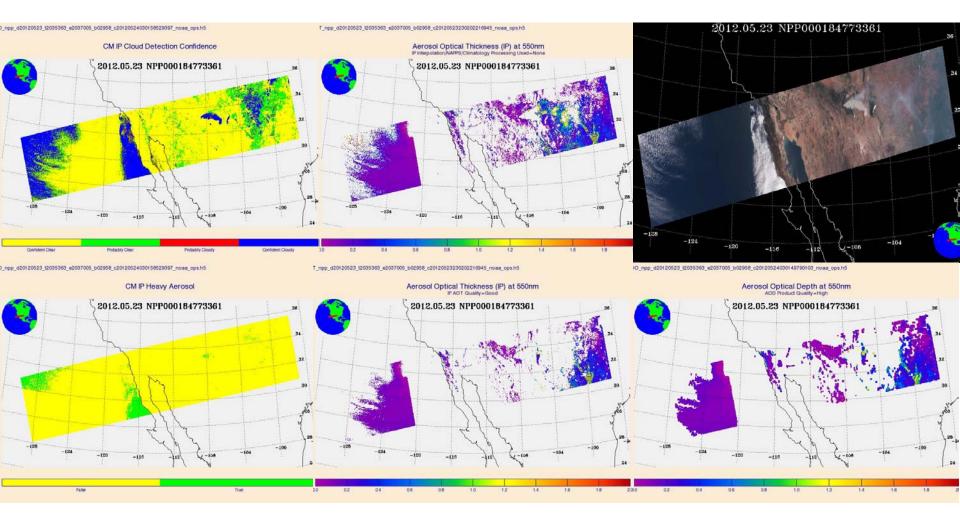
- DRs considered critical at this time are:
 - DR 5039 Water vapor consideration for M9
 - Software delivery scheduled for late February
 - DR 5038 Cloud/Dust discrimination
 - Software delivery scheduled for late February
 - DR 4998 Leakage feedback from Cal/Val teams
 - Ongoing but first threshold update directly addressing this DR approved by the AERB January 9
 - DR 4734 Correct volcanic ash threshold
 - Feedback from aerosol and cloud teams indicate logic should be updated
 - DR 4577 Cloud/snow discrimination in the VCM
 - Resolved over non-polar open water backgrounds but work continues on land and polar regions
- Ongoing efforts involving snow/ice and NDVI (gridding) will also improve the quality of the VCM

- The VCM team has developed a list of activities either in progress or to be worked as priorities and resources allow
 - Threshold updates
 - NDVI impacts after gridding implementation, cloud phase, additional leakage issues, aerosol parameters
 - Software/code improvements
 - Low-light specific algorithms, cirrus logic expansion, snow/ice/cloud differentiation, Antarctica
 - Ongoing validation efforts
 - Additional Golden Granules, continued match-up analysis, ADA/ADL upgrades, continual presentation needs (AERB, conferences, TIMs)
- This list is updated monthly

- All key documents are up-to-date
- ATBD, OAD, CDFCB-X all match operational VCM as of today
 - Note the VCM team uses configuration management of the associated Processing Coefficient Tables' XML files to maintain an up-to-date historical record of threshold changes
 - No document is expected to contain current operational values for all PCT thresholds
- Upcoming code deliveries will require updates to all three documents noted above



- Many items, be they threshold or software updates, are now driven by feedback from other Cal/Val teams
- Consistent contact is maintained with all liaisons and others who have the capability to observe VCM impacts on their products
 - All threshold updates are now initiated either after specific feedback from a VIIRS Cal/Val team or after we have analyzed granules where issues have been identified
 - Two examples follow
- We will continue to use liaisons to communicate across the different Cal/Val teams
 - The VCM telecom, which generally meets bi-weekly, is open to anyone interested


• Regional SST biases from NAVO

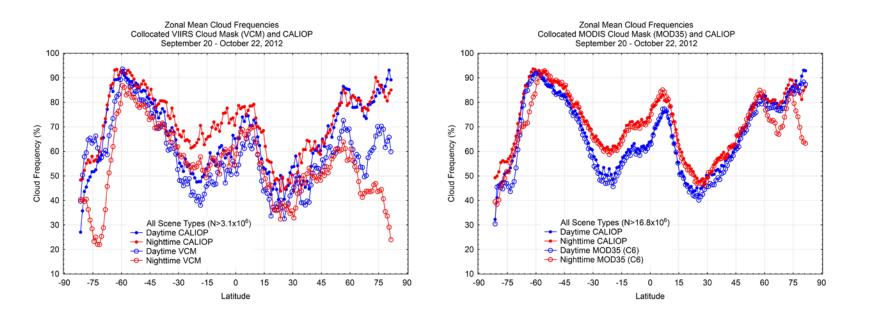
IOAA

Aerosol/VCM displays from the aerosol team

- Bi-weekly telecoms are used, in part, to maintain open communication for both internal and external (liaison) VCM members with ongoing work and implementation dates
- Actual dates when thresholds are updated could be communicated better
 - No one on the VCM team receives notices when thresholds are actually placed on the system
 - Added member from Raytheon has improved this

- Five caveats may be found in the VCM "Read Me" file at the time beta was declared
 - Dependency on two external fields (snow and NDVI) that were fixed values from 2002
 - Snow now being updated monthly
 - NDVI no longer a fixed field, updates occurring but no known schedule as to how often
 - Difficulties differentiating low clouds from snow/ice
 - Resolved over open water away from polar regions, otherwise still present, as already discussed
 - Leakage, also already discussed
 - Results near edge-of-scan
 - Resolved with implementation of scattering angle curves
 - VCM performance at night over land/snow/ice
 - Improving over land, an open issue over snow/ice

- The VCM, although it is considered an Intermediate Product (IP), is archived by CLASS
- There are no plans the VCM team is aware of to reproduce and replace what is in the archive
- Most downstream users, when reproducing products on a large scale, include the VCM as part of the software executed and not as an input
- The VCM team does not currently have any plans to reproduce the VCM in the archive



- The VCM, as indicated by the feedback already received, has been evaluated by users for the past few months
- It had always been the intent, which has been met, that the VCM would be ready for outside evaluation after the 30-day spin-up (beta stage)
- The fact that this TIM includes presentations from downstream EDRs indicates this analysis has already been ongoing for months
- Even the climate community has already started to look at the VCM output

• Chart showing VCM output with CALIOP over all latitude bands alongside MODIS results

- Proposed caveats for the VCM at the provisional stage are:
 - External fields of snow and NDVI not updating at expected frequencies, older backgrounds will introduce additional errors
 - Nighttime performance above snow/ice backgrounds suspect
 - Leakage should be monitored and we ask significant areas be reported (widespread occurrences should be isolated)
 - All users should exploit available quality flags present in the VCM but not being used as they should
 - Snow/ice bit, thin cirrus bit, quality bit

- Primary function of the validation team in the next few months is twofold
 - Reduce leakage further
 - Address the cloud mask over snow/ice
- Evaluate additional Golden Granules to cover relevant scenes and backgrounds
- Pursue quantitative validation of cloud phase and aerosol quality flags
- Continue to interact and be responsive to other VIIRS EDR team needs

- VCM has shown marked improvement over the last few months
 - Probability of Correct Typing and False Alarms at or better than requirements
 - Leakage numbers are down but trend must continue
 - Polar regions need work
- The VCM has met all provisional criteria
 - Feedback from other VIIRS EDR teams and liaisons has been occurring since beta
 - And you will see some of this shortly
 - Documentation up-to-date