

JPSS DPA Program Planning Meeting OMPS SDR Team

September 18, 2012

- Team Membership
- FY-12 Accomplishments
- Scientific Advancements
- Issues, Challenges, Setbacks
- Changes in Strategy due to funding constraints
- FY-13 Schedule and Milestones
- Path Forward (FY-13 thru FY-17)
- Summary

Team Members' Roles & Responsibilities

Name	Organization	Funding Agency	Task
X. Wu	NOAA/NESDIS/STAR	NOAA STAR	SDR Team Lead
L. Flynn	NOAA/NESDIS/STAR	NOAA STAR	EDR Team Lead
G. Jaross	SSAI	JPSS Program	Technical Lead/senor scientist
S. Janz	NASA/GSFC	JPSS Program	Instrumentation
M. Caponi	Aerospace	JPSS Program	Algorithm manager
C. Pan	UMD	JPSS Program	SDR Team lead support/calval
R. Buss	RTN/O&S	JPSS Program	Data quality
T. Beck	NOAA/NESDIS/STAR	NOAA STAR	Calval
R.mundakkara, M. Haken	SSAI	JPSS Program	Calval
N. Baker, M. Denning, T. Kashita, W. Thomas	DPA/DPE	JPSS Program	DPA/DPE
B. Sen, M. Novicki, W. Li	NGAS	JPSS Program	Calval
S. Miller, W. Johnsen, J. Cram, W. Ibrahim, M. Montgomery-Seaman, P. Smit, D. Stuhmer, N. Anderson, D. Cumpton, N. Emmert	RTN/CGS	JPSS Program	Algorithm

- Management Support for JPSS
 - SOWs, OPSCON, Weekly and Monthly Reports.
 - Weekly OMPS SDR Team Meeting
- Technical Support for NPP OMPS
 - Launch and Activation, Early Orbit Checkout and Intensive Calval.
 - Independent verification of contractual compliance
 - Updates of sensor operations.
- Delivered Beta EV/GEO SDR Products and towards the provisional via
 - Established sensor initial settings and parameters and on-orbit calibration measurements.
 - Provided satellite Telemetry monitoring and trending.
 - Investigated and resolved data anomalies.
 - Deployed ADL and GADA tools for LUTS validation.
- Outreach to Community
 - AMS, IGARSS, and CALCON.

- Evaluation of entire sensor chain dependencies (SDRs, GEO, IPs and EDRs) with nominal and non-nominal conditions with major build releases (Mx5, Mx6) and interim builds (Mx6.A, Mx6.B) to ensure data quality
- Extensive analysis of quality flag and FILL value behavior with nominal and non-nominal conditions including:
 - Spacecraft Maneuvers
 - Eclipse, Lunar contamination
 - Sun Glint
 - SSA
 - Removal of packets (e.g., missing band(s))
 - Failed detectors
 - Packet modifications
 - LUT/PCT modification to trigger out-of-bound conditions (e.g., exclusions, out of range)
 - GTM Imagery

FY12 Accomplishments: DRs

Closed DRs Open DRs

There is a total of 34 of which 18 are closed and the rest have been open and assigned.

DR #	Short Description
4879	NP and TC Darks need to be updated
4861	OMPS Effectivity time table update FT
4823	NP straylight straylight needs to be corrected.
4818	Smears in error - Smears show negative and unexpected values
4800	Cal SDR generation of Darks inconsistent with EV SDR
4799	Inconsistent structure between OAD and EV SDR
4797	NP solar day 1 need to be updated with on orbit results.
4792	OMPS wavelength and cf-earth update . Needed every 29th days
4757	OMPS wavelength and cf-earth update . Needed every 29th days
4751	Unableto access NP Aps
4750	Dark tables updated from Aps to GND-Pis
4749	OMPS darks have negative values
4725	CDFCB has incorrect GND-PI wavelength
4722	OMPS wavelength and cf-earth update
4694	CDFCB Vol VIII had incorrect dark dimensions
4693	CalSDR stratgy study
4676	Radiance error associated with aggregation
4673	Correction for different linearit slope Tup for CCD2
4672	Linearity correction update for xml file
4671	OMPS Data quality threshold tables non existend for SDR
4650	OMPS wavelength and cf-earth update . Needed every 29th days
4627	Quantization introduced by linearity correction error - Cal SDR
4617	wavelength and cf-earth update . Needed every 29th days updates
4616	TC Solar flux update for day 1
4615	Transient filter issue
4564	Assign beta maturity to OMPS SDR
4562	Solar flux in TC SDR is missing and products are fill
4559	OMPS wavelength and cf-earth update . Needed every 29th days
4536	Sample table update to include extra pixel to monitor straylight
4516	NewGND-PIs Wavlength and cf-earth need to be updated every 29 days

Courtesy Aerospace

On-orbit Observed Solar Flux

Observed solar irradiance is within an average of 2% of predicted synthetic solar spectra:

- NM is on average $\pm 4\%$ with small scale variations
- NP is less than 2% on average with several percent variations

On-orbit Linearity Performance

On-orbit Dark Current Performance

Dark measurement is established by optimizing various diagnostic dark cal. activities Courtesy of UMD/CICS

Ozone Channel Wavelength Shift

								Wavelength (nm)	averaged_shift (nm)
spectral index	-	0.16	-0.14	-0.12	-0.10	-0.08	-0.06	253.092	-0.058
	200							272.835	-0.092
								283.021	-0.114
	150							288.140	-0.092
	-							291.989	-0.086
	100	-						297.992	-0.094
								301.862	-0.109
	50	50						306.171	-0.136
	50							312.838	-0.114
	~							317.855	-0.117
	U							330.795	-0.118
	C	0 5	5 1	10 15	20	25	30	339.967	-0.115
				spati	al index			380.024	-0.093

• Wavelength changed less than 0.16 nm from ground to orbit. Courtesy of UMD/CICS

Courtesy of UMD/CICS

NOAR

RTMENT O

Sensor SNR Verification

Solar measurement SNR meets the system requirement of 1000

Courtesy of UMD/CICS

ND ATMOSP

ARTMENT OF

OMPS Geolocation

This image shows the effective reflectivity for the 380-nm Channel for part of an orbit of small Fieldof-View (5 KM X 10 KM at Nadir) made by the OMPS Nadir Mapper in a special diagnostic mode. The Qatar peninsula sticking into the Persian Gulf in the middle of the picture lies along the nadir view of the orbital track and gives a preliminary assurance of the geolocation at better the 5 KM.

Stable OMPS Products

- Dark calibration has been evaluated via. SAA and hot pixels impact
 - SAA impact is not negligible for short wavelength channels.
 - Hot pixels cause a constant increase in the dark signal in stead of weekly calibration, daily calibration will be on schedule.
- On-orbit calibration sequences have been modified to meet system requirement.
 - Newly established dark calibration captures and removes transients.
 - Solar calibration now is with multiple orbits measurements, solar observation accuracy is improved by several percent.
- Flexibility in sensor EV observation allows the sensor to achieve an attainable level of products
 - Additional sampling of smear pixels will improve EV radiance calibration.
 - Smaller spatial IFOV allows the sensor to provide higher resolution products.

OMPS Beta SDR/EDR Products

Courtesy of UMD/CICS

Daily Zonal Mean Residual

- Calibration SDR
 - Status: Disabled at IDPS. Provided by PEATE
 - Reliability: Complete data at regular interval in stable format
 - Sustainability: Status quo was not meant for the mission life
- Impacts
 - Incomplete calibration databases at STAR
 - Difficult for cal/val work
 - Uncertain future
 - Many DR's are dependent on the CAL SDR Strategy

Changes in Strategy (due to funding constraints)

- Not to change, but rather to complete the CAL SDR strategy
- One option is to permanently disable IDPS CAL SDR and rely on external supply of CAL SDR
- Another is to resume and revise the automatic generation of CAL SDR at IDPS, with human-in-the-loop to decide when to update
- Both options have variants of who, how, ...

Task	Task Description
1	OMPS SDR Team Management and Coordination
2	Update OMPS SDR Algorithm Theoretical Basis Algorithm Document (ATBD)
3	Transition Calibration Support to STAR (subject to CAL SDR Strategy)
4	OMPS Instrument Calibration (details to follow)
5	OMPS SDR Validation (monitoring, comparison, EDR)
6	J1 Calibration

FY-13 Milestones

Task #	Priority	Task Description	
824	1	OMPS SDR Wavelength Calibration	
825	1	OMPS Cross-check NP & NM Solar Irradiances	
825.1	1	OMPS Cross-check NP & NM EV Radiances	
817	1	OMPS SDR Flat Field Database Verification	
829.2	3	OMPS Earth No Linearity Check	
829.3	3	OMPS Earth No Flat-Field Gain Check	
1248	3	OMPS Nadir Solar Irradiances Compared to SORCE Data	
1421	1	OMPS Bias Check – Earth	
832	3	OMPS Attitude Check - Equatorial Ozone	
827	3	OMPS NP Solar Magnesium II Index	
819.2	3	OMPS Working Diffuser Fine Features	
822	3	OMPS Solar Diffuser Characterization	
833	2	OMPS Make SDR Maps	
840	1	OMPS Earth SDR Radiometric Noise Analysis	
841	3	OMPS Smear/Scene Motion	
835.1	1	OMPS Geo-location Verification with VIIRS Radiances	
835	1	OMPS Geo-location Verification with Glacial Coasts	
839	4	OMPS Earth Fraunhofer Wavelength Registration	
844.1	3	OMPS NP Empirical Characterization of Earth Stray Light	

- Mar. 2013: Complete update of OMPS SDR ATBD for provisional products.
- June 2013: Release initially validated and calibrated EV SDRs.
 - All calibration tables are expected to be applied to the IDPS EV SDRs by May, 2013.
- Aug. 2013: Establish senor on-orbit performance monitoring (LTM) in accordance with the finalized operation and routine calval activities.
 - Routinize operation and calval measurements to provide stable cal. SDRs by June, 2013.
- Sept. 2013: Release initially validated and calibrated cal. SDRs.
- Dec. 2013: Evaluate the established calibration through intercomparisons.
- Mar. 2014: Complete transition of cal. SDR generation from NASA to NOAA/STAR with fully operated Human-In-The-Loop processing (subject to CAL SDR Strategy).

Path Forward (FY-13 thru FY-15) (assume "FY13" runs from April 1, 2013 to March 31, 2014)

- Evaluate Product Maturity
 - OMPS SDR needs validation in FY13 and further validation in FY14-17 to characterize, for example, seasonal variation (if any) and maintain long term stability sensor attainable levels.
- Provide Calibration Support for OMPS Operation
 - Transition cal. SDR processing to NOAA in FY13 (subject to CAL SDR Strategy)
 - Provide technical support for NPP OMPS on-orbit calval
 - Provide continues cal. SDR products to the NPP/JPSS users
- Provide Technical Support for J1
 - Support to apply lessons learned from NPP OMPS
 - Improve J1 IDPS SDR data processing algorithms
 - Add critical fields in the J1 SDR products
- Implement Technical Improvements:
 - Update IDPS EV SDR processing algorithm with a flexibility to suite changes in EV observation and calibration

Summary

- OMPS SDR team contributed to the JPSS overall success
 - EOC and ICV
 - Independent verification and instrument calibration
 - Improved calibration procedure
 - Worked with EDR team, NPP/JPSS users, and broader community
 - Participated in and contributed to all post-launch activities.
- Transitions present challenges:
 - FY13: transition product maturity to Provisional
 - FY14: transition calibration SDRs to NOAA (subject to CAL SDR Strategy)
 - FY15 and beyond: transition from NPP to J1
- Will continue to support for NPP and J1 calval