ESTABLISHING ACTIVE FIRE DATA CONTINUITY BETWEEN AQUA MODIS AND SUOMI NPP VIIRS

Ivan Csiszar¹, Wilfrid Schroeder², Louis Giglio², Christopher O. Justice², Evan Ellicott²

¹NOAA/NESDIS Center for Satellite Applications and Research, Camp Springs, MD

²University of Maryland, College Park, MD

Why do we need MODIS-VIIRS continuity?

- MODIS is the first sensor designed to <u>detect and</u> <u>characterize hot targets</u> (predominantly actively burning fires) on a <u>global and systematic basis</u>
- MODIS fire data have been <u>extensively used</u> for disaster and resource management, air quality applications, ecosystem monitoring, climate studies etc.
- The community expects and <u>society needs</u> the continuation of these high quality observations from VIIRS on NPP (launched on October 28, 2011) and future JPSS satellites

Examples of MODIS fires/thermal anomalies

JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER DECEMBER

Announcements

MODIS – VIIRS fire continuity: fundamental possible scenarios

- 1. <u>Orbital/daily</u> MODIS and VIIRS fire maps are <u>compatible</u>.
- 2. Spatially and temporally <u>aggregated fire statistics</u> from MODIS and VIIRS <u>are compatible</u>.

 Not even spatially and temporally aggregated fire statistics from MODIS and VIIRS are compatible, but MODIS and VIIRS provide <u>compatible general</u> <u>patterns and trends of fire dynamics</u>.

Aqua MODIS vs. NPP VIIRS: fundamental features

- Aqua and NPP have similar overpass times (1:30pm)
 - sampling of the diurnal fire cycle is similar
- Saturation levels of the primary bands allow <u>unsaturated</u> radiance measurements for most fires
 - Band 21/22 for MODIS and M13 for VIIRS
- Some differences in <u>spectral placement</u>
- Processing <u>algorithms are compatible</u>
 - Current VIIRS algorithm is based on MODIS, albeit an earlier version
 - Differences can be resolved and the impact can be minimized
- Primary driver of differences is spatial sampling
 - Pixel size
 - Variations along scanline (aggregation schemes)
 - Variations within pixels (line-spread function, aggregation)
 - Differences in swath width (VIIRS has no gaps at low latitudes)

Will orbital/daily MODIS and VIRS fire maps be compatible?

VIIRS spatial resolution is higher that of MODIS; in general, VIIRS is expected to detect smaller fires at nadir

90% probability of detection; boreal forest; nadir view

(based on modeling using ASTER fire masks)

7 Aug 2004 1405 UTC ~11.7° S 56.6° W (Brazil)

First light NPP VIIRS fire data

M5-M4-M3 RGB + IDPS Active Fire ARP

January 19, 2012 ~11:05 UTC

...followed by Aqua MODIS five minutes later

Band 1-4-3 RGB + MYD14

January 19, 2012 ~11:05 UTC

MODIS vs. VIIRS detections

both near-nadir

32 38 34 36 30 40 0 72/9730/26/50 0/0/0 607 \bigcirc ∞ 52/42/5<mark>6</mark>* 87*/76/137 50/40/63 4/3/5 တ Ø 146/84/105 6/10/30 0/0/0 4/3/5 124/63/63 159/83/114 0/0/0 0/0/0 30/22/17 \sim 41/41/52 1/1/20/0/2 3/0/0 3*/0/1 38 32 30 34 36 40 **VIIRS/overlap/MODIS** VIIRS Scan Angle (deg) 32 36 20 24 28 8 12 16 \bigcirc 4

January 19, 2012 ~11:05 UTC

Angular sampling

MODIS vs. VIIRS fire counts

Jan 19-24

Preliminary, for illustration purposes only!

Jan 19 2012

Aqua

NPP

Western Australia

Jan 19 2012 06:00 UTC

Western Australia

Jan 19 2012 05:45 UTC

South-East Asia

Jan 19 2012 06:15 UTC

South-East Asia

Jan 19 2012 05:57 UTC

Aqua

Jan 20 2012

NPP

Florida

VIIRS Scan Angle (deg)

35

Jan 20 2012 18:33 UTC

³⁹ 41 43 46 48 50 52 54 VIIRS/overlap/MODIS 37

29

27

25

Florida

35

Jan 20 2012 19:15 UTC

³⁷ ³⁹ ⁴¹ ⁴³ ⁴⁶ ⁴⁸ ⁵⁰ ⁵² ⁵⁴ **VIIRS/overlap/MODIS**

Truly compatible spatial sampling for MODIS-VIIRS comparison

- Simultaneous, compatible spatial sampling
 - SNO/SNOx type method for intercalibration
 - primarily driven by sample size
 - angular effects secondary, but potentially nonnegligible, especially for off-nadir looks
- Matching swath segments with similar spatial sampling
- Advantage: allows for direct comparison of fire data
- Disadvantage: angular effects are not accounted for

Compatible swath segments

In principle, it is possible to select swath segments with compatible sampling for direct intercomparison

Compatible cloud masks are crucial

(Need for spatially explicit land/water/cloud/fire mask in the VIIRS product!)

Possible scenarios - practicalities

- Orbital/daily MODIS and VIIRS fire maps are compatible.
 - Not crucial for operational users as long as VIIRS is comparable or superior to MODIS
- 2. Spatially and temporally <u>aggregated fire statistics</u> from MODIS and VIIRS <u>are compatible</u>.
 - Useful for evaluating algorithm consistency, data continuity
- MODIS and VIIRS provide <u>compatible general</u> <u>patterns and trends of fire dynamics</u>.
 - Contingent upon the statistical population of fires
 - Statistics can be derived from Landsat-class data
 - Fire of interest what is the desired lower limit?

Explicit validation

<u>Near-nadir</u> pixels (using ~2,500 coincident ASTER scenes)

17K MOD14 pixels sampled

120K MODIS pixels with 1+ ASTER fire pixel

<u>Off-nadir</u> pixels (using ~3,700 near-coincident TM scenes)

12K MOD14 pixels sampled

270K MODIS pixels with 1+ TM fire pixel

Explicit validation

Near-nadir pixels

(using ~2,500 coincident ASTER scenes) ASTER 2001-2006 SWIR detector problem > May 2007

Kilometers

MODIS/ASTER 19 Jan 2006 0852UTC (near nadir)

<u>Off-nadir</u> pixels (using ~3,700 near-coincident TM scenes)

Landsat5 TM 2001-2010

Fire-related artifacts – saturation/bleeding

MODIS/TM 04 Aug 2007 1533UTC (52° scan angle)

Explicit validation

Near-nadir pixels

(using ~2,500 coincident ASTER scenes) ASTER 2001-2006

SWIR detector problem > May 2007

MODIS/ASTER 19 Jan 2006 0852UTC (near nadir)

<u>Off-nadir</u> pixels (using ~3,700 near-coincident TM scenes)

Landsat5 TM 2001-2010

Fire-related artifacts – saturation/bleeding

MODIS/TM 04 Aug 2007 1533UTC (52° scan angle)

Algorithm continuity: MODIS Collection 6 updates

- Adaptive assignment of potential fire thresholds to <u>better capture small, cool fires</u> and <u>reduce false</u> <u>alarms</u> occurring in hot, arid environments;
- A new rejection test to <u>eliminate persistent false</u> <u>alarms</u> caused by <u>small clearings</u> within Amazonian rainforest
- Extended processing to <u>water pixels</u> to facilitate monitoring of offshore gas flaring
- Improvements to the <u>internal cloud mask</u> to eliminate occasional misclassification of snow and desert as cloud.

Algorithm continuity: MODIS Collection 6 updates

MODIS Collection 5 (and 4)

MODIS Collection 6

True fire detections and false alarms from Terra MODIS over a small-scale cleared area in the Amazon on August 27, 2001, as detected by the MODIS Collection 5 and 6 algorithms. The MODIS Collection 6 algorithm removed the false alarms.

Summary and conclusions

- Initial assessment of the NPP VIIRS fire product is encouraging
- True statistical <u>comparison is possible</u> using proper matching of similar sampling conditions
- Implementation of <u>new MODIS algorithm</u> <u>components</u> and sensor-specific tuning are necessary
- Need for spatially explicit <u>fire mask</u> and <u>Fire</u>
 <u>Radiative Power</u> in the VIIRS product
- Explicit validation is crucial
- Continuity of the MODIS <u>Climate Modeling Grid</u> (CMG) product is necessary for <u>long-term and large-</u> <u>scale monitoring</u>