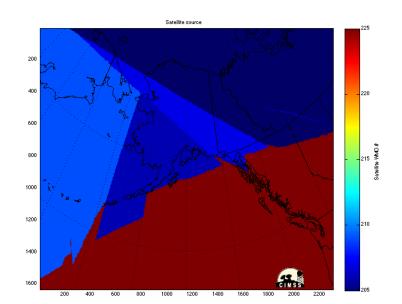


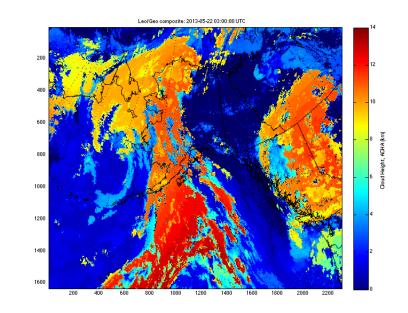
Cloud User Feedback

Andrew Heidinger, NOAA/NESDIS/STAR, Team Lead

January 7, 2013

- U.S. Users
 - AFWA Air Force Weather Agency (Jeff Cetola)
 - NOAA NWP (GFS, RAP)
 - FNMOC
 - NWS through JPSS PG
- User Community
 - Navigation, Transportation
 - Operational Weather Prediction
 - Climate Research through NOAA CLASS.
 - DOD

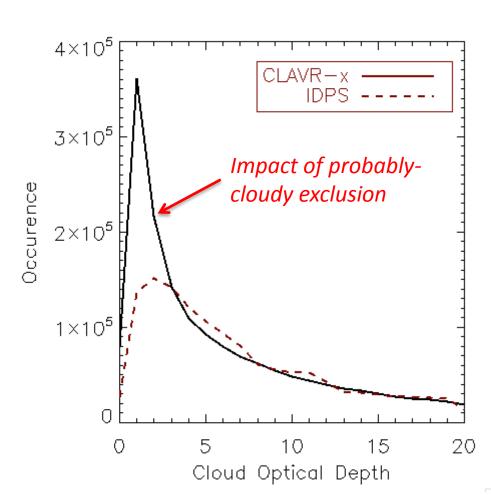




- User Applications
- User Specific Issues with the VIIRS Cloud Properties
 - Cloud Product Coverage
 - Cloud Product Quality Flags

- One immediate application of VIIRS CTH would be the inclusion in the PSDI funded project to "morph" AVHRR CLAVR-x CTH over Alaska.
- CLAVR-x is the legacy NOAA Operational AVHRR system which also processes VIIRS.
- Wide Swath of VIIRS is ideal.
- Current biases between IDPS and CLAVR-x would need to be addressed.

NOAA


- Information has not changed from Beta Briefing.
- POES Cloud Products (CLAVR-x) used for there verification database for GFS and NAM.
- CLAVR-x output being reformatted to GRIB to increase ease of use by NCEP. No plan to do same to VIIRS.
- IDPS cloud amounts lower than CLAVR-x and MODIS

 may cause difficulty in Monitoring.

- The IDPS does not generate cloud products for Probably-Cloud Pixels.
- This differs from CLAVR-x and MODIS.
- Roughly 5-10% of Globe is Probably-Cloudy by the VCM.
- Also, VCM tends to detect less cloud (right or wrong) than CLAVR-x or MODIS.
- These two effects cause a shift in the distribution of IDPS cloud products. (thin cloud disappear)
- Image shows distributions of daytime cloud optical depth (COD) for September 21, 2013 for IDPS and CLAVR-x.

- IDPS Cloud Product Quality Flags are geared towards CAL/VAL activities.
- Recommend having a user-lead discussion on enhancing the Quality Flags for user applications.
- Making flags similar to GOES-R format would be a definite benefit.

Suggestion for a COP Quality Flag Specification

QF1	Bit	Description		
COP_PRCS_FLAG	0	0 not processed 1 processor	Process Flags	
COP_QF_OVERALL	1	0 –Valid retrieval 1- not valid		
COP_QF_COT_OUT_BOUNDS	2	0 – Inside 1 - outside	Quality Flags	
COP_QF_EPS_OUT_BOUNDS	2	O locido 1 outoido	(Fail or Pass)	
COP_QF_CONVERGENCY	4	0 – convergent 1- not		
COP_QF_GLINT	5	0- outside glint 1- in sup glipt	Degraded	
COP_DEGRADED_ICE_COT	6	0 – not 1 – COT > 10		

QF2	Bit	Description	When to apply
COP_INFO_ICE_WAT	0	0- Ice, 1- Water	
COP_INFO_DAY_NG1	1		Information
COP_INFO_TYPE	2-4	0-5 Cloud Types	IT Q1/BU EQ 1

Thank You!

• Missing information in quality definitions:

- It is not clear which pixels are used for ice and water phase tables
- Information of terminator criteria is missing.
- Some Quality flags are relied on these information; it is not possible to use them without terminator or ice/water separation definition.
- It is not clear if a quality flag is a warning or a failure.
- Quality flags have contradictory lower bounds for COT

Physical concerns

- COT is defined as valid only from 0 to 30 (Much higher values are possible without quality limitations at daytime)
- Effective Particle Size range is defined between 0 and 50 micron also for water clouds (Cloud liquid droplets bigger than 40 micron are physically unlikely)
- Nighttime has identical bounds, even the sensitivity for the given algorithm approach is not given for clouds thicker than COT equal 8 (but, there are different informmation in the tables in the ATBD and the OAD)

•Summarize: It should be considered to revise the present quality flag definition

- For the following evaluation we assumed the following:
 - Water phase: (COP_PHASE_WATER , COP_PHASE_MIXED)
 - Ice Phase (COP_PHASE_CIRRUS, COP_PHASE_OPQ_ICE, COP_PHASE_MUL_LYR)
 - Day : solar zenith below 70
 - Night: solar zenith above 100
- Result: Daytime success rates (out of all cloudy pixels) (NOAA-AWG values)
 - Considering all quality flags: 58.1%
 - Considering all, but not out of bounds: 69.1%
 - Have any COT value, don't consider any QF; Using QF1/B0 as cloud mask: 94.1% (99.4%)
 - Using VCM Cloud mask : 99.6%
 - QF Out of bound rate: 21.7%
- Success rate improved since last version if not considering any QF.