

Cal/Val Tasks Status

23 October 12

Kris Robinson Kris.Robinson@sdl.usu.edu (781) 275-8273

SDL ATMS Cal/Val Tasks

- Task #16 Geolocation Verification
- Task #23 Raob Validation

Task 16: Geolocation Verification

OBJECTIVE:

Evaluate pointing tolerance of the ATMS FOVs

DESCRIPTION:

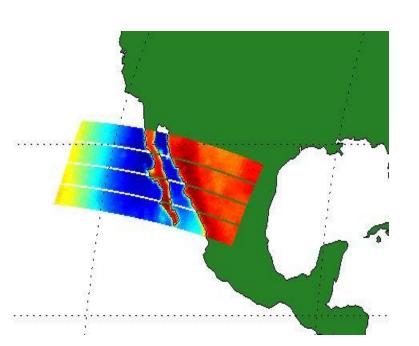
Tools

- SDL tool to plot geolocated data (GeoBrowser)
- SDL tool to determine coastline points and compare to coast truth (GeoLocate)
- Cal/Val Phase(s): Sensor Checkout, ICV, LTM
- Sensor mode: normal mode SDRs

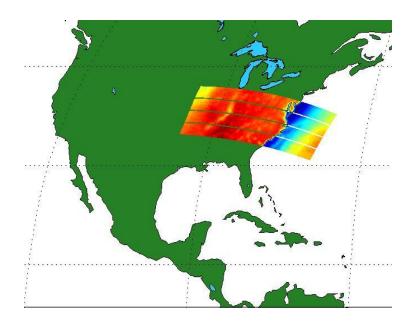
Results:

- 5.2° (channels 1,2) pointing tolerance validated to .3°
- 2.2° (channels 3-16) pointing tolerance validated to .2°
- 1.1° (channels 17-22) pointing tolerance validated to .1°

Geolocation Verification Method


- Pick multiple regions with high coastline contrast and orbits with coastal crossings close to nadir (BP 24-74)
- Calculate the inflection point between every four consecutive points in across-track rows and along-track columns
- Compare points to actual coast (GSHHS fine resolution dataset)
- For each approximate coastline point the intersection of the perpendicular is found on the actual coast. This distance is separated into a North-South and East-West error
- Accumulate error statistics for Channels 1,3,16 & 17

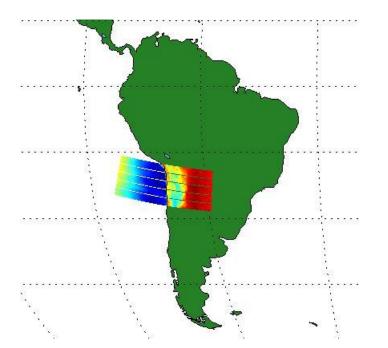
4 Regions

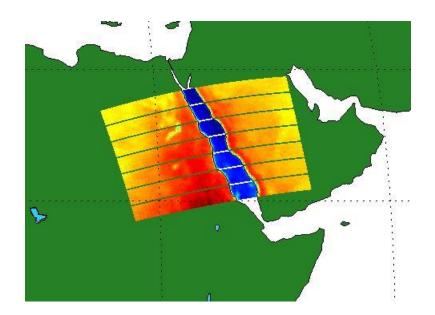

Baja Peninsula

10 Data Sets 10500 Crossing Pts.

US East Coast

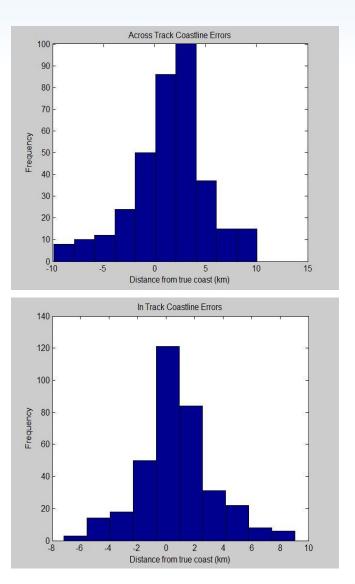
12 Data Sets 7500 Crossing Pts.

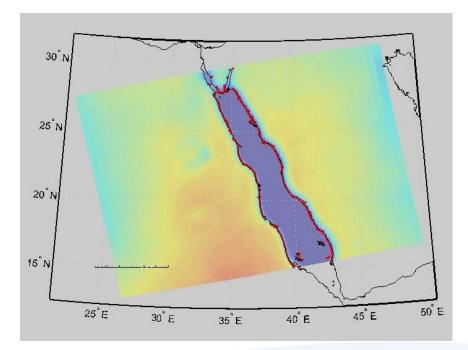



4 Regions

South America West Coast

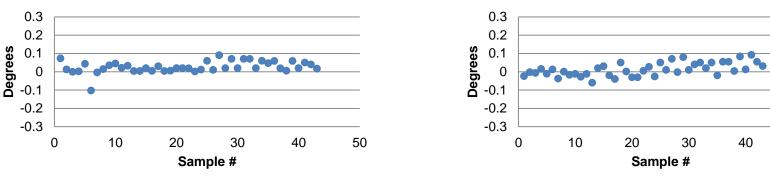
12 Data sets 4500 Crossing Pts.

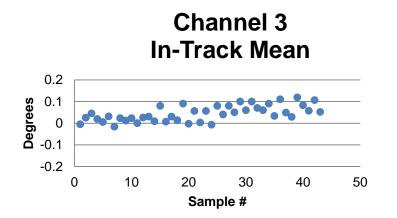


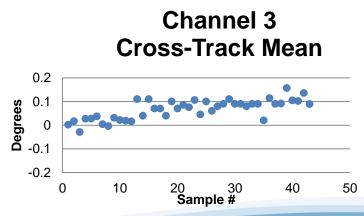


Red Sea Example Data Set

Orbit 668 14 Dec 11 7 Granules 271 Crossing Pts. (Channel 1)

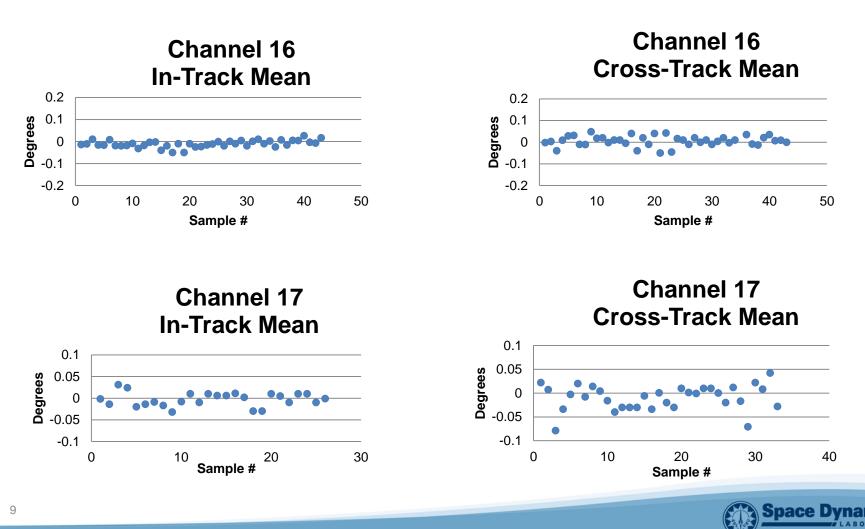





Channels 1, 3 Mean Errors

Specification Channel 1: \pm .3 °; Channel 3: \pm .2°

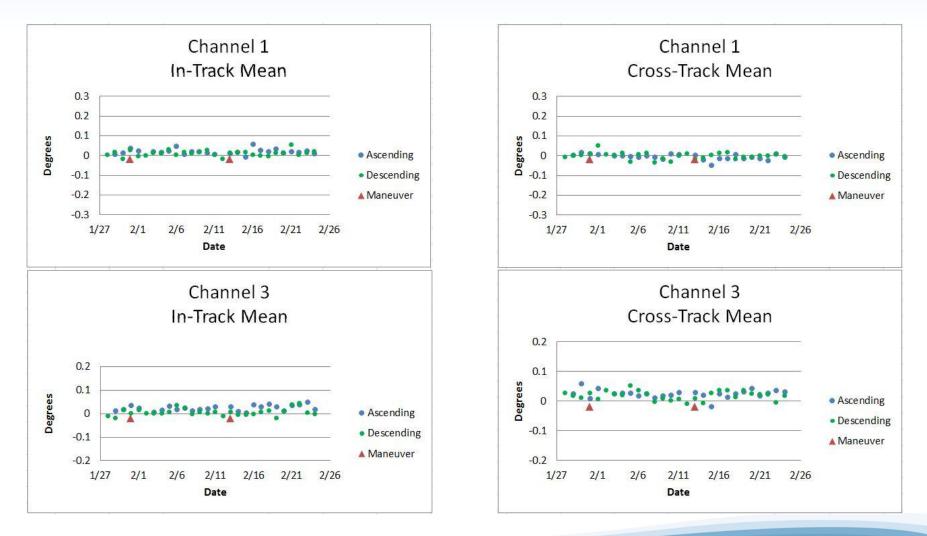
Channel 1 In-Track Mean Channel 1 Cross-Track Mean



50

Channels 16, 17 Mean Errors

Specification: Channel 16 \pm .2°; Channel 17 \pm .1°


Summary

- 12 days of data
- 4 geographic regions
- 40+ data sets per channel
- 100 300 crossing pts. each data set
- 28K total crossing points
- Slight mean bias on some channels
- **Bias well below OPSCON limits**

Spacecraft maneuver Geolocation

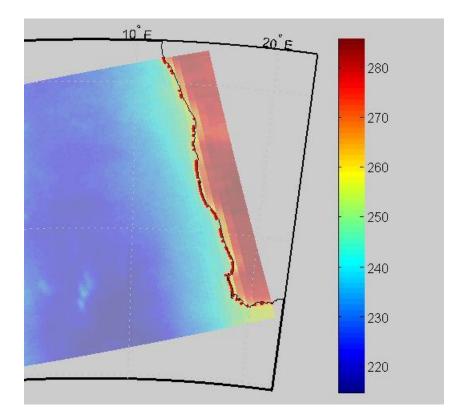
COLA – 31 Jan OMPS Limb Pitch – 13 Feb

Summary

30 continuous days of Geolocation error analysis

Overlapping 2 Spacecraft maneuver events

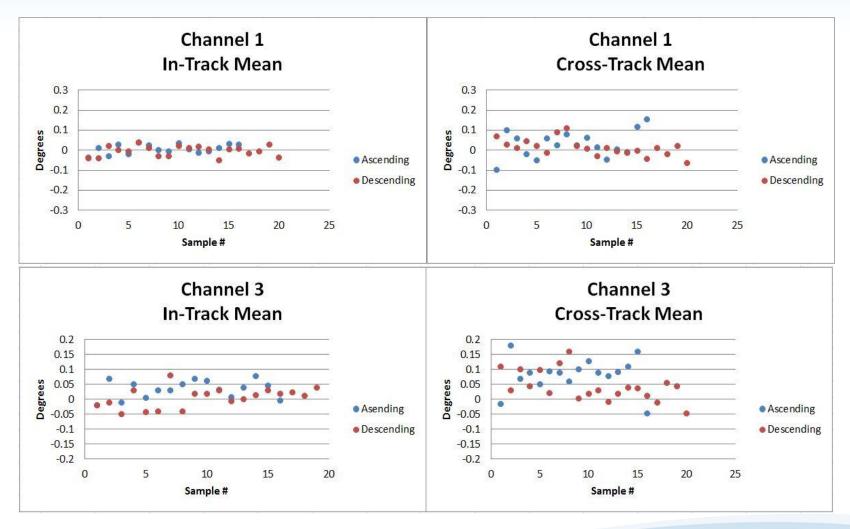
No shift in mean error detected


Edge of Scan Geolocation Error Analysis

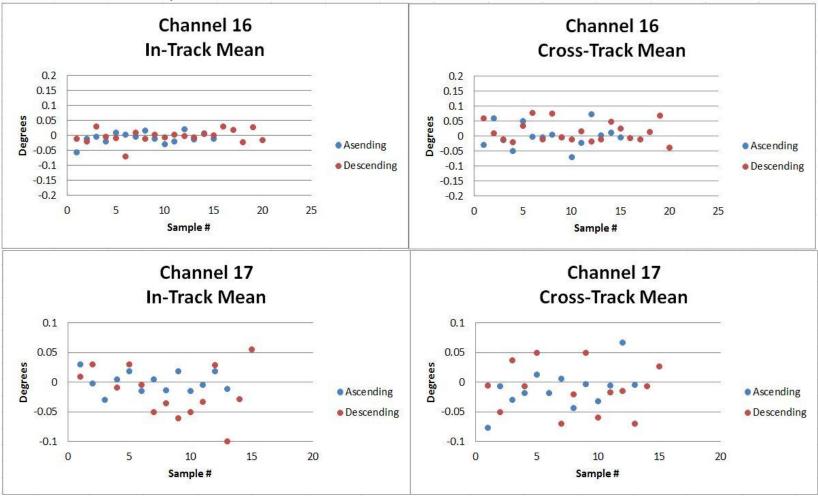
Use BPs 1-10, 86-96

5 Geographic Regions

30 Data sets


16K Total crossing pts.

Edge of Scan Results Channels 1, 3


Specification: Channel 1 \pm .3°; Channel 3 \pm .2°

Edge of Scan Error Results Channels 16, 17

Specification: Channel 16 \pm .2°; Channel 17 \pm .1°

Summary

Error analysis using first and last 10 beam positions

Approximately 16K data points

Some slight biases detected

Biases well within the OPSCON limits

Results consistent with previous error analyses

Common Code Geolocation Tool Set

Goal: Produce a stand alone Geolocation error analysis tool for use by NOAA STAR during LTM.

Investigate the Land/Sea fraction method of Geolocation error analysis.("Bennartz, '98")

Define mean & standard deviation of brightness temperatures as a function of Land/Sea fraction for a large data set.

Generate a theoretical data set of mean & std deviation for a number of navigation errors.

Compare theoretical curves to actual curves to define the error.

Integrate the Land/Sea fraction method into our existing tool set and compare.

Utilize data sets from heritage sensors in comparisons

Generate standalone tool kit for NOAA STAR use and provide annual support and updates

Task 23: Raob Validation

OBJECTIVE:

Validate ATMS radiance calibration through independent observations

DESCRIPTION:

- Tools
 - SDL GeoBrowser Toolkit
 - NPROVS Profile Display
 - NOAA STAR CRTM
- Cal/Val Phase(s): ICV, LTM
- Sensor mode: normal mode SDR

Results:

Database of coincident radiosonde and ATMS observations.

Comparison of observed and calibrated response (radiance and brightness temperature).

Method

Generate a database of coincident Raobs and ATMS observations.

"Good" Matchup

90 min or less time differential

Less than 50% cloud cover

Over water trajectory

Use sounding data as input to the CRTM

Compare calculated radiances with observed

Matchup Summary

Contains Raob matchup dates, release times, overpass times, orbit numbers, etc. organized by location.

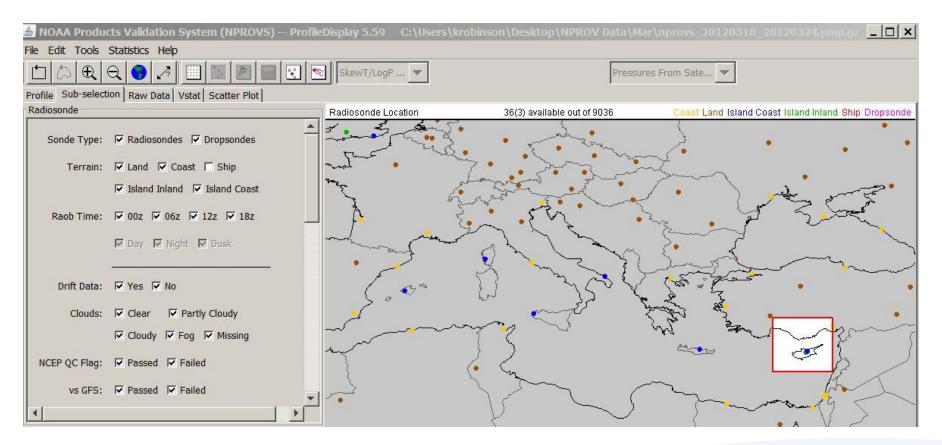
А	С	D	E	F	G	Η	J	K	L	M	0
Location	Station ID	Lat,Lon	OZ Release	Overpass T	Delta Time		12Z Release	Overpass T	Delta Time	Mat	tchup
			(Average)	(Average)	(Average)		(Average)	(Average)	(Average)		
Hilo	91285	19.72 N, 155.07W	23:00	23:30	31min		11:00	11:45	47min	45	
Lihue	91165	21.98 N, 159.35 W	23:00	23:30	35min		11:00	11:45	52min	71	
Athalassa	17607	35.15N 33.40E	None	0:45	N/A		11:00	11:30	29min	41	
Casale Brindisi	16320	40.65N 17.95E	23:00	0:45	81min		11:00	11:34	34min	54	
Lerwick	3005	60.13N 1.18W	23:15	1:25	2hrs 30min		11:15	11:40	41min	22	
Cagliari	16560	39.25N 9.05E	22:45	1:00	2Hrs 15min		10:50	12:00	70min	16	
Kuwait Int	40582	29.22N 47.98E	23:30	22:30	60min		11:30	10:20	70min	49	
King Fahd	40417	26.45N 49.82E	23:00	22:15	45min		11:05	10:00	65min	46	
									Total	<u>344</u>	

Archived Data

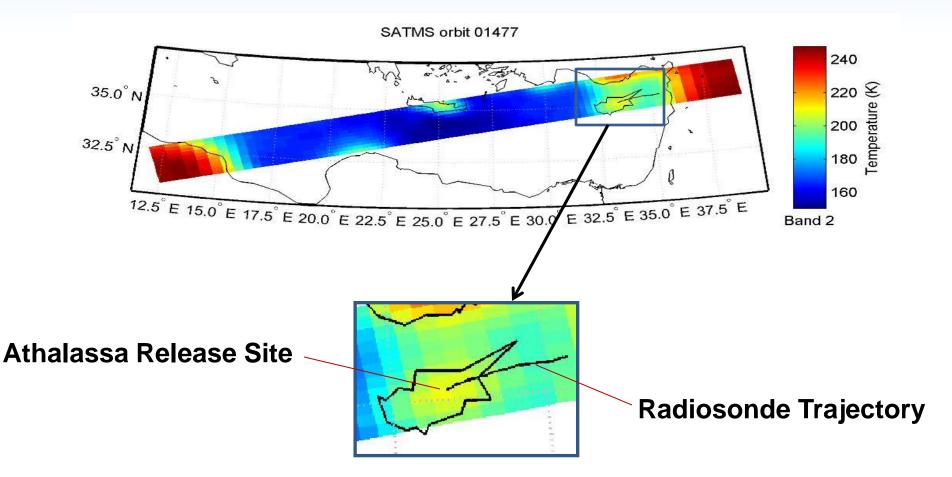
Available on CasaNosa

Data files are organized by release location then date

Example Athalassa Feb 9Feb1108 Included Files .txt .png .mat


Example: 9Feb1108.txt 9Feb1108.png 9Feb1108.mat

day month release time


NPROVS Profile Display

Used for matchup identification and sounding data .txt file generation

Example 9Feb1108

9Feb1108.mat (48 Levels)

		mpiele matchup							
WMO Station ID	data								
	Field 4 Value	Min Max							
Matchup date and time	stationId 17607	17607 17607							
	ab stationDate '02/09/201	2'							
Observed radiosonde Parameters	ab stationTime '11:08'	and the second second							
Observed radiosonide Farameters	raobPressure <1x48 dou	2. · · · · · · · · · · · · · · · · · · ·							
	🔜 🛗 raobFcstTemp 🛛 <1x48 dou	ble> 206.7500 286.0400							
Radiosonde position	💾 raobTemp 🛛 <1x48 dou	ble> 206.0400 287.5400							
	💾 raobDwpt 🛛 <1x48 dou	ble> NaN NaN							
	🛨 raobLats 🛛 <1x48 dou	ble> 35.1400 35.4300							
ATMS pointing, scan #, FOV	🕂 raobLons 🛛 <1x48 dou	ble> 33.3900 35.3900							
	🖸 filenames 🛛 <1x1 cell>								
Land fractions for each EOV/ (2 Danda)	raobFilename '9Feb1108.1	txt'							
Land fractions for each FOV (3 Bands)	Ept <1x48 stru	ct>							
	landFraction <48x3 dou	ble> 0 0.9966							
SDR brightness temps (22 Channels)	temperature <48x22 do	uble> 191.9658 273.1727							

mat file contains complete matchup

Compare Calculated to Observed

Use Raob pressure, Temperature, and water vapor profiles as inputs to the CRTM Atm. structure

Compare the calculated radiance to the observed values to assess SDR calibration accuracy

Trend statistics for a significant data set

Questions

