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Chapter 1

Introduction

Launched on board the Joint Polar Satellite System (JPSS) Suomi National Polar-orbiting Part-
nership (NPP) platform on October 28th 2011, the Cross-track Infrared Sounder and the Advanced
Technology Microwave Sounder represent the US next generation of polar-orbiting operational hyper
spectral sounders.

The Cross-track Infrared Sounder (CrIS) is a Fourier transform spectrometer with a total of 1305
infrared sounding channels covering the longwave (655-1095 cm−1), midwave (1210-1750 cm−1),
and shortwave (2155-2550 cm−1) spectral regions. The Advanced Technology Microwave Sounder
(ATMS) is a cross-track scanner with 22 channels in spectral bands from 23 GHz through 183 GHz.
These two instruments together represent the latest addition to a long series of atmospheric satellite
sounders that originated in the late 1970’s (http://www.ipo.noaa.gov). This suite of instruments
has been designed to guarantee continuity to the 1:30am/pm equatorial crossing time orbit, in
replacement of the AIRS/AMSU instruments on board the NASA Aqua satellite and in conjunction
with the European MetOp satellite series operating the mid-morning orbit. Specifically, CrIS has
been designed to continue the advances in atmospheric observations and research that started with
the Atmospheric InfraRed Sounder (AIRS) launched on the Aqua platform in 2002 (Aumann et al.,
2033) and followed by the Infrared Atmospheric Sounding Interferometer (IASI), launched on the
MetOp-A platform in 2006 (http://smsc.cnes.fr/IASI/). ATMS will similarly continue the series of
observations that started with the Advanced Microwave Sounding Unit (AMSU) first launched by
NOAA in 1998 [reference here].

In this document we describe the algorithm theoretical basis of the NOAA Unique CrIS/ATMS
Processing System (NUCAPS). NUCAPS is a heritage algorithm of the AIRS Science Team algo-
rithm (Susskind, Barnet, Blaisdell, 2003), in operations since 2002. The NOAA/NESDIS/STAR
implementation of this algorithm is a modular architecture that was specifically designed to be
compatible with multiple instruments: the same retrieval algorithm and the same underlying spec-
troscopy are currently used to process the AIRS/AMSU suite, the IASI/AMSU/MHS suite (opera-
tionally since 2008) and now the CrIS/ATMS suite (approved for operations in January 2013). The
robustness of this system has allowed first light results to be available at an early stage (6 months
after launch) of the Suomi NPP post launch mission (Gambacorta et al., 2012a, 2012b, 2012).

NUCAPS suite of products includes two different files in NETCDF format: the Standard Prod-
uct and the Cloud-Cleared Radiance Product. The Standard Product consists of retrieved estimates
of hydrological variables such as temperature, water vapor, cloud fraction and cloud top pressure,
along with trace gas retrievals such as ozone, methane, carbon monoxide, carbon dioxide, SO2,
N2O, and HNO3, and a flag indicating the presence of dust and volcano emission. The vertical
sampling of each retrieved atmospheric profile variable consists of 100 points total between 1100 mb
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and 0.016 mb; Intermediate solutions from the microwave only step and the regression first guess are
also part of the delivered standard output. Full spectrum Cloud-Cleared Radiances are produced
along with the Standard Product, as they are the radiances used to retrieve the Standard Product.
Both the Standard Product and the cloud-cleared radiance file are generated at all locations where
the atmospheric soundings are taken.

Each product file encompasses one granule of CrIS/ATMS data. Granules are formally defined
as the smallest cluster of data that is independently managed (i.e., described, inventoried, retriev-
able). A NUCAPS granule has been set as 32 seconds of data, corresponding to 4 scan lines of
CrIS/ATMS data. Each scans contains 32 Fields of Regard (FOR) viewed on the Earth’s surface
with a scan width of 50. Each FOR contains a simultaneously measured 3X3 set of Fields of View
(FOVs). The CrIS FOVs are circular and have a diameter of 14 km at nadir. The UTC start time
of the N-th granule of each data is (146+(N-1)*360)/3600 hours.

Granule products are operationally accessible to the science community in near real time (i.e
only a 3 hour delay from the raw data acquisition) through the CLASS environment. Detailed
information on the NUCAPS product requirements including content, format, latency and quality
can be found in the NUCAPS Requirements Allocation Document (RAD) (NESDIS/STAR, 2011)
which is available in the NUCAPS project artifact repository.

This document is divided into multiple chapters. Chapter 2 describes the attributes of the CrIS
and ATMS sensing system. Chapter 3 introduces a general description of the algorithm. Chapter
4 describes the algorithm inputs. Chapter 5 describes the microwave module component of the
algorithm. Chapter 6 describes the regression module for both the cloud clearing input profile
and the first guess. Chapter 7 is dedicated to cloud clearing. Chapter 8 describes the physical
and mathematical basis of the algorithm, along with the technical characteristics of the algorithm
processing flow.

1.1 References

ATMS (2013), The Advanced technology Microwave Sounder, http://www.ipo.noaa.gov.
CLASS, The Comprehensive Large Array-data Stewardship System , www.class.noaa.gov.
CrIS (2013), The cross-track infrared sounder, http://www.ipo.noaa.gov.
JPSS (2013), The joint polar satellite system, www.jpss.noaa.gov/.
Gambacorta, A. and Barnet, C.D. and Wolf, W.W and King, T.S. and Xiong, X. and Nalli, N.R.
and Maddy, and E.S. and Divakarla, M. and Goldberg, M., 2012, The NOAA Unique CrIS/ATMS
processing System (NUCAPS): first light results, Proceedings of the International TOVS Working
Group Meeting, Toulouse, France.

Gambacorta, A. and Barnet, C.D. and Wolf, W.W and King, T.S. and Xiong, X. and Nalli, N.R.
and Maddy, E.S. and Divakarla, M. and Goldberg, M., 2012, The NOAA Unique CrIS/ATMS
processing System (NUCAPS): 1 year in orbit, Proceedings of the Eumetsat meeting, Sopot,
Poland.

Gambacorta, A. and Barnet, C.D., Methodology and information content of the NOAA NESDIS
operational channel selection for the Cross-Track Infrared Sounder (CrIS), IEEE transactions on
Geoscience and Remote Sensing, 2012, doi = 10.1109/TGRS.2012.2220369.

Susskind, Barnet, and Blaisdell, (2003), Retrieval of atmospheric and surface parameters from
AIRS/AMSU/HSB data in the presence of clouds, IEEE Trans. Geosci. Remote Sensing, 41 (2),
390–409.



Chapter 2

Satellite instrument Description

2.1 The Advanced Technology Microwave Sounder (ATMS)

The Advanced Technology Microwave Sounder (ATMS) is a cross-track scanner which combines all
the channels of the preceding AMSU-A1, AMSU-A2, and AMSU-B sensors into a single package
consisting of 22 channels in spectral bands from 23 GHz through 183 GHz. Channel 3 - 15 fall
within the 50-60 GHz portion of the oxygen band to temperature and precipitation information.
In addition, ATMS contains three window-channels at 23.8, 31.4, and 89 GHz to provide total
precipitable water, cloud liquid water content, and precipitation measurements, respectively. These
channels can also be used to provide information on sea-ice concentration and snow cover. ATMS
also has one window-channel at 166.31 GHz to obtain high-resolution measurements of precipitation,
snow cover, and sea-ice. Three additional channels in the 183 GHz water vapor line are used
to retrieve atmospheric humidity profiles. The 3-dB beam diameter of an ATMS FOV is 1.1,
corresponding to about 16 km at nadir. This beam is co-located with the CrIS field-of-view (FOV).

The scanning geometry and footprint sizes of ATMS are somewhat different for every channel.
Channels 1 and 2 have a beam width of 5.2 degrees, which corresponds to a footprint size of 74.8
km at nadir. Channels 3-16 have a beam width of 2.2 degrees, which corresponds to a footprint
size of 31.6 km at nadir. Channels 17-22 have a beam size of 1.1 degrees, which corresponds to a
footprint size of 15.8 km. The footprints are shown in Figure 8. Because the ATMS scans at a rate
of 8/3 seconds per scan, the scan pattern overlaps, but does not match exactly, the scan pattern
of CrIS. The EDR algorithm assumes that the ATMS data will be re-sampled to match the CrIS
FOR configuration prior to ingestion by the CrIS software.

2.2 The Cross-Track Infrared Sounder (CrIS)

CrIS is one of the most advanced instruments onboard the NPP platform, measuring infrared
radiation emitted from the surface of the Earth. CrIS is a Fourier transform spectrometer with a
total of 1305 infrared sounding channels covering the longwave (655-1095 cm−1), midwave (1210-
1750 cm−1), and shortwave (2155-2550 cm−1) spectral regions. The nominal spectral resolution
is defined as 1/2L, where L is the maximum optical path difference of the interferometer. Each
band has different spectral resolutions. The frequency range adopted in the current design of the
CrIS instrument is listed in Table 1. Figure 2 shows an example of simulated clear-sky radiances
in the CrIS bands. The radiances are expressed in brightness temperature units. The emission
in the spectral region 650-800 cm−1 is mainly from atmospheric CO2 and is used for atmospheric
temperature sounding. The atmospheric window region in LWIR extends from 800 to 950 cm−1

3



Chapter 2: Instrument Description NUCAPS ATBD August 21, 2013 4

and provides sounding channels for the surface properties and the lower troposphere temperatures.
The main emission band of O3 is centered around 1050 cm-1. The main emission in MWIR is due
to atmospheric moisture, although there are some contributions from methane and nitrous oxide
near 1250 cm−1. MWIR contains most of the CrIS atmospheric moisture sounding channels. The
main feature in SWIR is the emission from the 4.18 band of CO2 that is also used for atmospheric
temperature sounding.

2.3 References

CrIS (2013), The cross-track infrared sounder, http://www.ipo.noaa.gov.
ATMS (2013), The Advanced technology Microwave Sounder, http://www.ipo.noaa.gov.
JPSS (2013), The joint polar satellite system, www.jpss.noaa.gov/.



Chapter 3

Algorithm Description

NUCAPS consists of six modules as described below: 1) A preliminary input quality control, look up
tables and ancillary product acquisition 2) A microwave retrieval module which derives cloud liquid
water flags and microwave surface emissivity uncertainty (Rosenkranz, 2000); 3) A fast eigenvector
regression retrieval for temperature and moisture that is trained against ECMWF analysis and
CrIS all sky radiances (Goldberg et al., 2003;). 4) A cloud clearing module that combines a set
of microwave and IR channels (along with, in the future, visible observations provided by the
onboard VIIRS instrument) to produce cloud-cleared IR radiances (Chahine, 1974). 5) A second
fast eigenvector regression retrieval for temperature and moisture that is trained against ECMWF
analysis and CrIS cloud cleared radiances (Goldberg et al., 2003;). 6) The final infrared physical
retrieval, which employs the previous regression retrieval as a first guess (Susskind, Barnet, Blaisdell
(2003) ).

Figure 3.1 describes the complete flow diagram of the algorithm software architecture. The full
description of the attributes of all input data used by the algorithm, including primary sensor data,
ancillary data, forward models and look-up tables is provided in the next chapter.

3.1 References

Goldberg, M., Y. Qu, L. McMillin, W. Wolf, L. Zhou, and M. Divakarla (2003), AIRS 179 Near-
Real-Time products and algorithms in support of operational numerical weather 180 prediction,
IEEE, 41, 379.

Chahine, M. T., Remote sounding of cloudy atmospheres in a single cloud layer, J. Atmos. Sci.,
1974, vol. 31, pages 233 - 243.

Rosenkranz, P. (2000), Retrieval of temperature and moisture pro
les from AMSU-A and 198 AMSU-B measurements, IEEE, 39, 2429.
Susskind, Barnet, and Blaisdell, (2003), Retrieval of atmospheric and surface parameters from
AIRS/AMSU/HSB data in the presence of clouds, IEEE Trans. Geosci. Remote Sensing, 41 (2),
390–409.
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Chapter 4

Algorithm Inputs

4.1 Background Climatology Look Up Tables

A background climatology is available to all retrievals on a 2.5 degree Mercator grid using 100 levels.
Climatological profiles of temperature, water vapor are used extensively in the MW-Only retrieval
step. Climatological profiles of trace gases are also used as first guess in the physical retrieval step.
The climatology is based on two sources: (1) the National Center for Environmental Prediction
(NCEP) temperature and water vapor monthly means derived from the 20 year (1979-1998) re-
analysis on a 2.5 degree Mercator latitude/longitude grid; and (2) the Upper Atmosphere Research
Satellite (UARS) temperature, water vapor and ozone profiles. The climatological temperature
profile is obtained from the NCEP source from the surface up to 100mb, tri-linearly interpolated
by month, latitude and longitude and then log-pressure interpolated onto the 100 levels. A P 4

extrapolation is used for altitudes above 100mb. The climatological water vapor profile is derived
from the NCEP source from the surface up to 300mb, tri-linearly interpolated by month, latitude
and longitude and then log-pressure interpolated onto the 100 levels. Above 300mb the information
comes from the UARS source, linearly interpolated between two latitude zones. The ozone clima-
tology is derived from the UARS source, linearly interpolated between two latitude zones. No time
interpolation is computed.

The CO a priori is a 12 month set of two single CO profiles, for the northern and southern
hemisphere respectively, computed from the Measurements of Pollution In The Troposphere (MO-
PITT) version 4 CO monthly averages. These profiles are temporally and spatially interpolated
during the retrieval.

A first-guess CH4 profile [Xiong, X. et al., 2008] as a function of latitude and altitude was
generated to capture its strong latitudinal and vertical gradients. This CH4 first-guess profile was
generated by using a nonlinear polynomial fitting to different data, including the in situ aircraft
observation data from six sites (the first six sites in Table 1) of the NOAA Earth System Re-
search Laboratory, Global Monitoring Division (ESRL/GMD), some ground-based flask network
data[GLOBALVIEW-CH4, 2005], Matsueda aircraft observation data [Matsueda and Inoue, 1996]
and HALOE satellite observation data [Park et al., 1996](http://haloedata.larc.nasa.gov/download/index.php).
In the fitting only the mean profiles as a representative of its climatology for each location and al-
titude were used. For example, for each NOAA/ESRL/GMD site only the mean of all profiles
observed in the past 3 years from 2003 to early 2006 was used. Matsueda aircraft data from
GLOBALVIEW-CH4[2005] and HALOE data were interpolated to several latitudinal grids first,
and then the mean profiles corresponding to different latitude and altitude were used. Monthly
average of model simulated data using the TM3[Houweling et al., 2006] was used to extrapolate

7
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the in situ aircraft data to higher altitudes. Over the southern hemisphere oceans where in situ
measurements are not available, yearly zonal mean profiles in several latitude grids from the TM3
model are also used.

The N2O climatology is given as a smoothed function of latitude and pressure. The generation
of N2O first-guess profile was from model data only. The model simulations are made by the Center
for Climate System Research/National Institute for Environmental Studies/Frontier Research Cen-
ter for Global Change (CCSR/NIES/FRCGC) using an Atmospheric General Circulation Model
(AGCM)-based chemistry transport model.

4.2 Local Angle Adjustment Coefficients

CrIS makes a 90-degree measurement, cross-track between -49 and +49 degrees. The data analysis,
however, uses the data in 3x3 clusters with 30 scan angles between -49 and +49 degrees. A primary
assumption of cloud clearing is that within a 3x3 array of 9 CrIS FOVs the differences are solely
attributed to differences in clouds. Local angle adjustment removes one potentially confounding
source of intra-FOV variation: differences in observing geometry. In each 3x3 cluster there are 3
observations at each of 3 different scan angles. This step makes small adjustments to the spectra for
the 3 highest- angle and 3 lowest-angle FOVs so all FOVs resemble those which would be observed
at the central angle. No adjustment is applied to the central FOVs. In the AIRS retrieval algorithm,
the actual adjustment is calculated using a PCs approach. Given the rotating scanning geometry
of the CrIS instrument a more complex solution needs to be taken and is the subject of a work
in progress. Unpublished studies have shown though that the local angle correction does not have
significant impact on the retrieval performance and can be neglected with no noticeably detrimental
effects.

4.3 Forecast Surface Pressure

The AVN forecast surface pressure, PSurf, are used by the L2 retrieval. The surface pressure is
available on a one-degree grid. The surface pressure is calculated from the 3-,6-, and 9-hour forecasts
from the same model run, interpolated in space and time to match observed location.

4.4 Surface Emissivity First Guess

The Mazuda emissivity model is employed over ocean. A regression formulation is employed instead
over land.

4.5 Microwave and Infrared Tuning Coefficients

A large category of inversion algorithms relies on least square residual minimizations of observed
brightness temperature and brightness temperatures computed from first guess profiles. In these al-
gorithms, generally referred to as ”physical”, radiative transfer calculations are performed by mean
of theoretical forward models and there is a need for identifying and removing those components of
the residuals arising from modeling, measurement errors and instrumental noise. This process, com-
monly referred to as brightness temperature tuning, is fundamental to achieve retrieval performance



Chapter 4: Algorithm Inputs NUCAPS ATBD August 21, 2013 9

Figure 4.1: ATMS tuning correction for channels 1 - 16, as a function of view angle.

accuracy, in that it removes artificial systematic biases that could be otherwise ascribed to a phys-
ical atmospheric source and, in long term applications, erroneously confused with climate signals.
Specifically, forward model errors may include both systematic and profile-dependent components
ros:2003. Systematic errors may include radiometric calibration, thermal emission from parts of
the space-craft, and, for microwave sensors, antenna side lobe effects mo:1999. These systematic
sources of error can contribute to a large part of the overall bias and in the microwave case show
dependence on view angle and slightly on the temperature profile.

Using forward model computations, a tuning coefficient set is computed as an average bias
difference of a global sample of observed minus computations (OBS - CALC), for each channel and
in the microwave case, scan angle position (for ATMS there are 96 consecutive acquisitions per scan
line). In reality, we limit the collection of OBS-CALC samples over a restricted area of the globe,
which only includes open ocean, clear sky, day-time and non-high latitude areas, where the collection
of correlative ”truth” profiles is relatively more reliable. Specifically, the sub-field of view variability
is usually higher over land, coastal and broken cloud scenarios, as opposed to the more uniform open
ocean and clear sky conditions, hence our choice to restrict the tuning training sample to the more
uniform ocean-only and clear-sky areas of the globe. The selection of non precipitating cases is
also dictated by the fact that microwave forward modes, in general, do not handle precipitation.
Besides sampling errors, measurement errors can also represent a significant source of uncertainty
in the truth. This is the case for high latitude and daytime atmospheric measurements, whether
performed by mean of in situ acquisitions (radiosondes) or independent retrievals and re-analyses.
Specifically, truth profiles collected over high latitude regimes by mean of Vaisala radiosondes tend
to suffer from temperature dependent errors (the colder the temperature, the larger the error)
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Figure 4.2: ATMS tuning correction for channels 17 - 22, as a function of view angle.

in the form of a significant dry bias in the relative humidity measurements wang:02. Furthermore,
radiosonde daytime measurements suffer from so called solar arm heating (SAH) errors, originated by
radiational heating of the temperature and humidity sensor prior to launch, and resulting in a higher
temperature and drier humidity measurements. It has been observed that a temperature difference
of 1 degree Celsius between the ambient and the sensor arm corresponds to 4% SAH error in relative
humidity wang:02. Alternative measurements, such as independent infrared retrievals or re-analyses,
suffer from high latitude law signal to noise temperature gradients, besides being subject to large
uncertainties in snow/ice infrared emissivity, daytime non local thermodynamic equilibrium and
solar reflectivity parameterization. These measurement uncertainties in daytime and cold conditions
dictate the necessity to further limit our sampling selection to nighttime and tropical to mid latitude
regions only. More details on the microwave and infrared tuning methodology employed in the
NUCAPS algorithm can be found in [Gambacorta et al., 2013a] and Gambacorta et al., 2013b].
The ATMS tuning file is shown in Figure-4.5, Figure-4.5 as a function of view angle. Figure-??
shows the CrIS tuning file. A comparison with respect to the AIRS and IASI operational tuning
file is also shown. Both instruments tuning were performed foillowing the same methodology as in
NUCAPS.

4.6 The Radiative Transfer Model

The physical retrieval methodology utilized by the NUCAPS depends on the ability to accurately
and rapidly calculate the outgoing radiance based on the state of the surface and the atmosphere.
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Figure 4.3: IR bias tuning comparison: CrIS (green), IASI (black) and AIRS (red).

The radiative transfer model consists of a parameterized algorithm to compute atmospheric trans-
mittance, a model for surface brightness temperature, and a model for the reflected downwelling
atmospheric emission. The following sections discuss the microwave and infrared radiative transfer
models and error estimates.

4.6.1 Radiative Transfer Model of the Atmosphere in the Microwave

At the frequencies measured by ATMS, the most important absorbing gases in the atmosphere are
oxygen and water vapor. The oxygen molecule has only a magnetic dipole moment, and its lines are
intrinsically much weaker than those which result from the electric dipole of water vapor; however,
the much greater abundance of oxygen in the atmosphere more than compensates for this difference.
When clouds are present, liquid water also plays a role in radiative transfer. However, fair-weather
cirrus composed of ice particles small compared to the wavelength are generally transparent to the
ATMS frequencies.

Oxygen

O2 spin-rotation transitions comprise approximately 30 lines between 50 and 70 GHz and an isolated
line at 118.75 GHz (which is not observed by AMSU or HSB). Several groups have measured the
pressure-broadened widths of the lines in the 50-70 GHz band. The line parameters used for the
forward model are from the Millimeter-wave Propagation Model (MPM92) (Liebe, et al., 1992).
The characteristic of oxygen’s microwave spectrum that introduces difficulty for construction of
models is the significant degree of line mixing. In MPM92, line mixing was treated by a first-order
expansion in pressure. The coefficients for this expansion were determined by a constrained linear
fit to laboratory measurements made on an O2 - N2 mixture over the frequency range of 49-67 GHz
and the temperature range 279-327 K, with a noise level of approximately 0.06 dB/km. Within that
range, the model represents the measurements to 0.2 dB/km (see for example, Figure 4.1.1). It is
possible that extrapolation to colder temperatures introduces larger errors. Measurements from the
NASA ER-2 at 52-56 GHz (Schwartz, 1997) seem to be in agreement with the model, however.

Water Vapor

Water has a weak rotational line at 22.23 GHz that is semi-transparent at normal atmospheric
humidity, and a much stronger, opaque line at 183.31 GHz. Intensities of these lines have been
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calculated and tabulated by Poynter and Pickett (1996 version of JPL line catalog) and Rothman
et al., (1998) (HITRAN), among others. The HITRAN intensities are used here. For the 22-GHz
line, the JPL intensity is higher than the HITRAN value by 0.3%. There is a measurement by Liebe
et al., (1969) (estimated error 0.3%) which is 3.5% lower than the HITRAN value. At 183 GHz,
the JPL line intensity is 0.1% higher than HITRAN. Widths have been measured by Liebe et al.,
(1969) and Liebe and Dillon (1969) at 22 GHz with estimated uncertainty of 1% for both self and
foreign-gas broadening; and by Bauer et al., (1989) and Tretyakov et al. (2003) at 183GHz, with
uncertainties of 0.5% for self-broadening and 1.0% for foreign-gas broadening, respectively. However,
Gamache et al. (1994) concluded from a survey of measurements of many H2O lines that, in general,
measured line widths should be considered to have uncertainties of 10-15%. The line at 183 GHz is
a case in which published measurements of width differ significantly, but the value of Tretyakov et
al. (2003), which is used here, lies near the centroid of the measurements. At frequencies away from
these two lines, microwave absorption by water vapor is predominantly from the continuum, which
is attributed to the low-frequency wing of the intense infrared and submillimeter rotational band
lines. In the microwave part of the spectrum, the foreign-broadened component of the continuum
is stronger than the self- broadened component, for atmospheric mixing ratios. Measurements of
continuum absorption as a function of temperature have been made at various frequencies by Liebe
and Layton (1987), Godon, et al. (1992) and Bauer et al. (1993, 1995). There are also numerous
measurements at single temperatures and frequencies in the laboratory, and in the atmosphere
where temperature and mixing ratio are variable. The measurements do not present an entirely
consistent picture. Rosenkranz (1998) proposed that the most satisfactory overall agreement with
laboratory and atmospheric measurements of the water continuum was obtained with a combination
of the foreign-broadened component from MPM87 (Liebe and Layton, 1987) with the self-broadened
component from MPM93 (Liebe et al., 1993). The combined model is used here.

Liquid Water

It is useful to distinguish between precipitating and non-precipitating clouds with respect to their
interactions with microwaves. Over the range of wavelengths measured by ATMS, non-precipitating
droplets (with diameters of 50 m or less) can be treated using the Rayleigh small-droplet approxima-
tion. In this regime, absorption is proportional to the liquid water content of the air, and scattering
can be neglected. The model for the dielectric constant limits the accuracy of these calculations.
The double- Debye model of Liebe et al., (1991) is used here; for temperatures ¿ 0 C, it has an
estimated maximum prediction error of 3% between 5 and 100 GHz, and 10% up to 1THz. Al-
though some measurements of static dielectric constant at temperatures as low as -20 C were used
by Liebe et al. to develop their model, its use for supercooled water must be considered to be an
extrapolation, with uncertain accuracy. (The model is implemented using the alternate eq. 2b in
Liebe et al.) Precipitation, on the other hand, requires Mie theory to calculate both absorption and
scattering. The latter is generally not negligible, and is the dominant term at some wavelengths.
In the case of convective storms, scattering from ice at high altitudes is often the most important
process. The rapid transmittance algorithm uses only the small- droplet approximation for cloud
liquid water, and scattering is not included. For this reason, retrieved profiles with more than 0.5
kg/m2 cloud liquid water are rejected, as probably rain-contaminated.
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The microwave rapid transmittance algorithm

The modeled brightness temperature Tb received by a space born microwave radiometer over a
smooth surface of emissivity ε can be expressed as:

TB = ω−1
∫∞
0 dνH(ν)

x {
∫ Ps
0 dP [−dτν(0, P )/dP ]T (P )

+ ετν(0, Ps)Ts

+ (1-ε)τν(0, Ps)
∫ Ps
0 dP [−dτν(Ps, P )/dP ]T (P )

+ (1− ε)τν(0, Ps)
2Tcb

(4.1)

where H(ν) represents the passband of the radiometer channel of frequency ν, ω is the spectral total
width of the passband, τν(P1, P2) is the transmittance at frequency ν between the pressure levels
P1 and P2, T (P ) is the atmospheric temperature at level P, Ts and Ps are surface temperature and
pressure, and Tbc is the cosmic background brightness temperature.

Near real time operations require rapid data processing which precludes the use of a line-by-
line transmittance model. The rapid algorithm employed in this study and operationally used at
NOAA/NESDIS to process the ATMS, AMSU-A and MHS instruments is the microwave rapid
transmittance algorithm developed by ros:1995 and ros:2003 and later validated by ros:2006. In
this rapid algorithm, the integration over frequency in (1) is replaced by a passband-averaged
transmittance < τ(0, P ) >. The average transmittance between two adjacent pressure levels, P1

and P2, is computed as:

< τ(P1, P2) >= exp−[α+ βV + γL] (4.2)

where V is the vertical column density integral of water vapor between the two levels and L is
the cloud liquid vertical column density integral; α represents the opacity of fixed gases (oxygen and
nitrogen) in the layer. The coefficient α, β and γ are computed for each layer and channel, given
the inputs of V, temperature, pressure and secant of observation angle. Window channels, water
vapor channels and oxygen-band channels are considered separately. Each band employs tabular
or polynomial approximations to line-wing or near-line absorption from water vapor or oxygen.
Absorption by cloud liquid water and ozone is also included. For a complete description of the
derivation of α, γ and β the reader can refer to ros:1995 and ros:2003.

For oxygen-band channels sounding the atmosphere above 40km, Zeeman splitting produced by
the terrestrial magnetific field becomes important. For those channels, transmittance is parametrized
as a function of the magnetic field strength B and the angle ΘB between the direction of propaga-
tion and the magnetic field. References ros:1995 and ros:2003 also provide an in depth description
of the transmittance parametrization in presence of Zeeman splitting.

Transmittances are computed for 101 layers between 0.5 and 1100 hPa, chosen with approxi-
mately even spacing on P 2/7. The total transmittance is derived as the product of transmittances
(2) for each of those layers. This total transmittance, < τ(0, Ps) >, is then used in a simplified form
of the radiative transfer equation expressed by:
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TB = T direct
B + < τ(0, Ps) > [T surface

B + T sky
B (1− T surface

B /Ts]
(4.3)

where T direct
B is the simplified version of the first term in Equation 2.2.1 representing the direct path

from surface footprint to satellite:

T direct
B =

∫ 0

Ps

T (P )d < τ(0, P ) > (4.4)

T surface
B is the surface brightness temperature given by the product between the surface emissiv-

ity and the skin temperature Ts, and T sky
B is the downward propagating sky brightness temperature

(including the cosmic background contribution, Tcb) as it would be observed from the surface and
represented by:

Tsky
B =

∫ Ps
0 T (P )d < τ(P, Ps) > +Tcb < τ(0, Ps) >

(4.5)

Planck’s equation for radiant intensity is a nonlinear function of temperature. For microwave
frequencies, however, the physical temperatures encountered in the earth’s atmosphere lie at the
high-temperature asymptote of this function. Hence, as discussed by Janssen (1993), brightness
temperature can be used as a surrogate for radiance in the equation of radiative transfer with an
accuracy of a few hundredths of a Kelvin, provided that the cosmic background is assigned an
effective brightness temperature at frequency of

Tcb =
hν

2K
x
exp[hν/KTc] + 1

exp[hν/KTc]− 1

(4.6)

instead of its actual temperature Tc = 2.73K, in order to linearize the Planck’s function.
It has been shown that this rapid transmittance model requires thirty times less computation

than a line-by-line algorithm with an accuracy comparable to or better than the channel sensitivities
ros:1995.

Surface emissivity model for open ocean

The ocean surface emissivity for frequency ν, ε(ν) for a flat surface at local thermodynamical
equilibrium is defined by:
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ε(ν) = 1−Rp

(4.7)

where p is the polarization of the signal, horizontal (H) or vertical (V), and Rp is the square of the
Fresnel reflection coefficient for polarization p, defined as:

RH =

∣∣∣∣∣cos θza −
√
e− sin2 θza

cos θza +
√
e− sin2 θza

∣∣∣∣∣
2

(4.8)

RV =

∣∣∣∣∣e cos θza −
√
e− sin2 θza

e cos θza +
√
e− sin2 θza

∣∣∣∣∣
2

(4.9)

In these equations, e is the dielectric permittivity of saline water. We employ a revised Debye
model, the Double Debye model, developed and validated by ell:03 which is obtained as a linear fit
of experimental data for synthetic seawater and at seven different temperatures representative of
the world’s oceans, in the frequency range 3 -105 GHz. An extrapolation is being used for higher
frequencies.

The ATMS radiometer front-end scanning optics are of a rotating reflector and fixed feedhorn
type design. With this configuration, the polarization vector rotates with the cross-track scanning
reflector. As a result, at any beam position making an angle θ with respect to nadir, the received
polarization is a linear combination of the vertical and horizontal polarization vectors.

ATMS channels 1 (23.8 GHz), 2 (31.4GHz) and 16 (88.2GHz) are vertically polarized (perpen-
dicular to the ground track) at nadir and generally quasi-vertically polarized at any other viewing
angle θva. All other ATMS channels are quasi-horizontally polarized and fully horizontally polarized
at nadir (polarization vector parallel to the ground track). The surface emissivity for quasi-vertical
and quasi-horizontal polarized channels can be expressed rispectively as:

εV (ν) = (1−RV ) cos
2 θva

+ (1−RH) sin2 θva

(4.10)

εH(ν) = (1−RV ) sin
2 θva

+ (1−RH) cos2 θva

(4.11)
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4.6.2 Radiative Transfer Model of the Atmosphere in the Infrared

The total monochromatic radiance, R(ν, θ,X), at frequency ν, zenith angle θ, for an atmosphere
with geophysical state, X, emerging from the top of the atmosphere can be broken into the following
components

R(ν, θ,X) = Rs(ν, θ,X) Surface

+ Ra(ν, θ,X) Atmospheric Column

+ Rd(ν, θ, θ
′, X) Down− welling

+ R⊙(ν, θ, θ⊙, X) Reflected Solar (4.12)

Specifically, Rs(ν, θ,X) is the contribution due to the surface radiance, averaged over the foot-

print, attenuated by the atmospheric column of the observation. Ra(ν, θ,X) =
NL∑
L=1

RL(ν, θ) is the

sum of all the contributions RL(ν, θ) from all the layers within the IFOV. Rd(ν, θ,X) is the con-
tribution due to the down-welling radiation from the entire atmospheric volume reflected by the
surface and transmitted through the observed atmospheric column. R⊙(ν, θ, θ⊙, ρ⊙, X) accounts for
the transmission of sunlight from the TOA through the atmosphere at angle θ⊙, reflected from the
surface, and transmitted out of the atmosphere at angle θ to the spacecraft.

Since the Planck function is linear in the microwave region (see Eqn. ??) then Eqn. 4.12 can
be written in terms of brightness temperatures as well

Θ(ν, θ) = Θs(ν, θ) + Θa(ν, θ) + Θd(ν, θ) + Θb(ν, θ) (4.13)

Radiance contribution from the surface

The radiance emerging at the top of the atmosphere is given by the contributions from the surface
and attenuated by the atmospheric transmittance. We will begin by considering only the radiation
upwelling from the surface emission.

The component of out-going radiance from the surface is given by a black-body radiance at the
surface skin temperature, Ts, multiplied by the surface emissivity, ϵν .

The surface radiance must pass through the entire atmosphere and is, therefore, multiplied
by the column transmittance from the surface to the top of the atmosphere. The monochromatic
out-going surface radiance is given by

Rs(ν, θ) = ϵν ·Bν(Ts) · τ↑ν (Ps, θ) (4.14)

where we employ a short hand notation for the surface to space transmittance

τ↑ν (Ps, θ) ≡ τν(Ps → 0, θ) (4.15)

The monochromatic brightness temperature equation for the surface contribution is given by

Θs(ν, θ) = ϵν · Ts · τ↑ν (Ps, θ) (4.16)

and, as discussed in Section ??, the channel averaged equation for the surface contribution is given
by
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Θs(n, θ) = ϵn · Ts · τ↑n(Ps, θ) (4.17)

The surface component, Rs, is given as

Rs(ν, θ) = ϵν ·Bν(Ts) · τ↑ν (Ps, X, θ) (4.18)

• ϵν is the spectral surface emissivity, and

• Bν(T ) is the Planck function, Bν(T ), which is the specific intensity (brightness) of a black-
body emitter, usually written as

Bν(T ) =
α1 · ν3

exp(α2·ν
T )− 1

(4.19)

• τ↑ν (Ps, X, θ) is the transmittance of the atmosphere from the surface, at pressure Ps to the
instrument.

Radiance contribution from the atmosphere

For a thin layer of the atmosphere, defined between pressure layers at p(L) and p(L − 1), the
monochromatic radiance contribution at the top of the atmosphere from the atmospheric layer is
analogous to the surface radiance and is given by

RL(ν) = ϵeff (L) ·Bν(T (L)) · τν(p(L− 1) → 0, θ) (4.20)

= [1− τν(p(L) → p(L− 1), θ)] ·Bν(T (L)) · τν(p(L− 1) → 0, θ) (4.21)

= Bν(T (L)) · [τν(p(L− 1) → 0, θ)− τν(p(L) → 0, θ)] (4.22)

= Bν(T (L)) ·∆τ↑ν (L, θ) (4.23)

∆τ↑ν (L, θ) ≡ τν(p(L− 1) → 0, θ)− τν(p(L) → 0, θ) (4.24)

The term (1 − τν(p(L) → p(L − 1), θ) in Eqn. 4.20 can be thought of as a effective emissivity
of the layer. When the layer is opaque the gas emits as a black-body; however, when completely
transmissive we do not see any contribution from that layer.

The proper derivation begins with the equation of radiation transfer (e.g., see Chandrasekar,
1960 or Mihalis, 1978),

∂Rν

∂ϕν
=

1

µ
(Sν −Rν) (4.25)

∂Rν =
1

µ
(Sν −Rν) · ∂ϕν (4.26)

For an atmosphere in local thermal equilibrium with no scattering the radiation source function,
Sν = Bν(T ), can be described by the Planck function. The radiative transfer equation (e.g., see
Mihalis 1978 pg. 38) is a function of the optical depth, ϕν , and the cosine of the zenith angle, µ,
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∂Rν

∂ϕν
=

1

µ
(Bν −Rν) (4.27)

We can find an integration factor to obtain

∂Rν

∂ϕν
· e−ϕν/µ =

Bν(T )

µ
· e−ϕν/µ − Rν

µ
· e−ϕν/µ (4.28)

∂
(
Rν · e−ϕν/µ

)
∂ϕν

=
Bν(T )

µ
· e−ϕν/µ (4.29)

And then we can integrate the equation directly. The integration constant is the boundary condition,
which is the surface term we discussed earlier.

Rν =

∫ 0

∞
Bν(T (z)) · e−ϕν/µdϕ/µ (4.30)

We can change the integration parameter from optical depth, ϕ, to either altitude, z, or pressure,
p and obtain:

e−ϕν/µ · dϕ
µ

=
∂τν
∂z

dz =
∂τν
∂p

dp (4.31)

so that

Rν =

∫ ∞

z=0
Bν(T (z))

∂τν
∂z

∂z (4.32)

The atmospheric radiance component, Ra, is the vertical integral of the Planck radiance as seen
through the level to space transmittance

Ra(ν, θ) =

0∫
p=Ps

Bν(T (p)) ·
dτ↑ν (p,X, θ)

dp
· dp (4.33)

This equation is the most important one for atmospheric sounding. In remote sounding the
contribution of a single channel usually comes from a narrow vertical region in which τ ≃ 1

2 . For
discrete radiative transfer algorithms the total contribution from the atmosphere is given by the
sum of the individual layer contributions over the entire isobaric grid

Ra(ν) =
NL∑
L=1

RL(n) =
NL∑
L=1

Bν(T (L)) ·∆τ↑ν (L, θ) (4.34)

In the microwave we can utilize the Rayleigh-Jeans approximation for write the total contribution
from the atmospheric column in terms of microwave brightness temperature, Θ,

Θa(ν) =
NL∑
L=1

ΘL(ν) =
NL∑
L=1

T (L) ·∆τ↑ν (L, θ) (4.35)

In the microwave spectrum used for remote sounding we can utilize the channel averaged trans-
mittance because the spectral characteristics of the species used for sounding (O2 and H2) do not
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interact with inferring species such as water. This simplifies the atmospheric radiance computation
and makes the radiative transfer equation much more linear.

Θa(n) =
NL∑
L=1

ΘL(n) =
NL∑
L=1

T (L) ·∆τ↑n(L, θ) (4.36)

Solar Reflected Component

In a non-scattering atmosphere sunlight is absorbed by the atmospheric particles. We utilize the
radiative transfer equation (Eqn. 4.25) with the boundary condition (integration constant) equal to
the solar radiance at the top of the atmosphere. The solar energy propagates down to the surface
at which point it is reflected into the view of the satellite.

R⊙ = ρ⊙(ν, θ, θ⊙) · τ↓↑ν (ps, X, θ, θ⊙) · Ω(t) ·H⊙(ν) · cos(θ) (4.37)

• The reflected solar component requires computation of the transmittance along the bi-directional
path from the sun to the surface, ps, and back to the spacecraft. For channel radiances the
bi-directional transmittance is NOT equal to the product of the down-welling and up-welling
transmittances.∫

τ↓↑ν (ps, X, θ, θ⊙)dν ̸=
∫

τ↓ν (ps, X, θ⊙)dν ·
∫

τ↑ν (ps, X, θ)dν (4.38)

• H⊙ is the solar radiance outside the Earth’s atmosphere. .

• Ω is the solid angle, given in terms of the Sun’s radius and distance. It varies by ± 3.4% over

the year. Ω(t) = π ·
(
0.6951·109
D⊙(t)

)2
≃ 6.79 · 10−5 − 0.23 · 10−5 · cos(2π(t− t0)/ty) where, t is the

time of year, ty is the time the Earth takes to complete 1 orbit (365.25 days), and t0 is the
perihelion date (Jan. 4 or t0=4).

• The solar surface reflectivity, ρ⊙, is a function of surface type, zenith angle, solar zenith angle,
azimuth angle, and wavenumber.

Monochromatic down-welling thermal component

The radiation from an atmospheric layer at p(L) emits radiation in all directions. Some of that
radiation reflects off the surface and into the solid angle of observation. The down-welling term
requires integration over all zenith angles, θ′, and azimuthal angles, α, and all levels.

Rd(ν, θ) = τ↑ν (Ps, X, θ) ·
2π∫

α=0

π
2∫

θ′=0

ρν(θ, θ
′, α) · sin(θ′) · cos(θ′) · dθ′ · dα

·
0∫

p=Ps

Bν(T (p)) ·
dτ↓ν (p,X, θ′)

dp
· dp (4.39)
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• The thermal reflectivity, ρν(θ, θ
′, α), is usually a small number ≃ 1

π (1− ϵν) (except over ocean
in SWIR and the microwave).

• Effectively, there is a product of up-welling and down-welling transmittance so that this term
is only important in channels in which the transmittance is ≈ 1

2 .

where we employ the short hand notation for the surface to space transmittance (Eqn. 4.15) and a
short hand notation for the down-welling layer transmittance

∆τ↓ν (L, θ
′) ≡ τν(p(L− 1) → p(L), θ′) (4.40)

= τν(p(L− 1) → Ps, θ
′)− τν(p(L) → Ps, θ

′) (4.41)

But the monochromatic down-welling transmissivity is related to the upwelling transmissivity
by

τν(p(L) → Ps, θ
′
ν) =

τν(Ps → 0, θ′ν)

τν(p(L) → 0, θ′ν)
(4.42)

so that

∆τ↓ν (L, θ
′
ν) =

τν(Ps → 0, θ′ν)

τν(p(L) → 0, θ′ν)
− τν(Ps → 0, θ′ν)

τν(p(L− 1) → 0, θ′ν)
(4.43)

Also, since the lines are resolved and not overlapping the channel averaged down-welling transmit-
tance can be written in terms of the upwelling level-to-space channel averaged transmittances in
the form shown in Eqn. 4.43

The order of integration can be changed in Eqn. 4.39

Rd(ν, θ) = τ↑ν (Ps, X, θ) ·
0∫

p=Ps

Bν(T (p))

·
2π∫

α=0

π
2∫

θ′=0

ρν(θ, θ
′, α) · sin(θ′) · cos(θ′) · dθ′ · dα · dτ

↓
ν (p,X, θ′)

dp
· dp (4.44)

Infrared Down-welling Term

The infrared down-welling term has felt by anyone who has stood out on a warm humid day. The
warmth of the hot atmosphere can be larger than the direct solar radiation in the mid- to far-
infrared. For an upwelling instrument or in-situ instrument the thermal down-welling integral must
be computed properly.

In this section, we will show that for a space-borne measurement only certain channels will have
a measurable thermal down-welling radiation and even those channels the effect is still small. We
can employ many approximations, including

• because the surface reflectivity, ρ, is a small number, usually only a few %
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• τ↑ ·
∫
τ↓ is important only when τ ≃ 1

2 because when the atmosphere is opaque (τ → 0)
the surface term vanishes can we cannot “see” the down-welling and when the atmosphere is
transmissive (τ → 1) there is little down-welling radiance.

• α and θ′ can be approximated by an effective diffusive angle by the mean value theorem.

• Usually the dependence on azimuthal angle is small the integral w.r.t.
2π∫
0
dα can be replaced

by 2 · π.

We will begin by assuming that we can represent the thermal reflectivity by a mean value so
that Eqn. 4.39 can be written as

Rd(ν, θ) ≃ τ↑ν (Ps, X, θ) · ρ(ν, θ) · π ·R↓
ν (4.45)

The factor of π arises by assuming azimuthal symmetry,
∫
dα = 2π and assuming we can

represent the integral of zenith angle by a diffusive term
∫
cos(θ)sin(θ)dθ = 1

2 . In Kornfield and
Susskind (Mon. Wea. Review 105, 1977, p. 1605) the down-welling term is shown to be simplified
as follows. First, we can insert the surface radiance into the integral

R↓
ν =

1∫
τ(Ps)

Bν(T ) · dτ↓ =
1∫

τ(Ps)

Bν(Ts) · dτ↓ +
1∫

τ(Ps)

(Bν(T )−Bν(Ts)) · dτ↓ (4.46)

the left hand integral can be written exactly

R↓
ν = Bν(Ts)

(
1− τ↓ν (Ps)

)
+

1∫
τ(Ps)

(Bν(T )−Bν(Ts)) · dτ↓ (4.47)

Most of the absorption takes place very low in the atmosphere, say in the lowest 150 mb (i.e.,
between 1000 and 850 mb) and Bν(τ)−Bν(Ts) is a slowly varying function, therefore, the integral
is adequately represented by the mean value theorem

R↓
ν ≃ Bν(Ts)

(
1− τ↓ν (Ps)

)
+Bν(T )−Bν(Ts)

(
1− τ↓ν (Ps)

)
(4.48)

where Bν −Bν(Ts) is the mean difference between atmospheric Planck function and the surface
Planck function over the range of most absorption. This equation can be re-written in the form of

R↓
ν ≃ Fν ·Bν(Ts)

(
1− τ↓ν (Ps)

)
Fν ≡ 1 +

Bν −Bν(Ts)

Bν(Ts)
(4.49)

Fν differs from unity to the extent that the mean value of the atmospheric Planck function
differs from the surface Planck function. Notice that a similar derivation is done in Section ??
resulting in Eqn. ??.

Now we can see that monochromatic down-welling radiance is a function of the product of
τ · (1 − τ). The maximum thermal down-welling radiation will occur when τ ≈ 1

2 . For channel
averaged transmittances this is not necessarily true as illustrated in the Fig. ??. In the top example
the transmittance is constant across the channel integration whereas in the bottom example the
channel is a mixture of opaque and transmissive components. In the top case, τ · (1− τ) is simply



Chapter 4: Algorithm Inputs NUCAPS ATBD August 21, 2013 22

equal to 1
4 , as expected. But in the bottom case τ is zero everywhere where 1 − τ is unity and

vice-a-versa. Therefore, the product is zero.
Therefore, the calculation of τ · (1− τ) needs to be done in a channel averaged sense; however,

we will show shortly that this usually introduces a small error. Given that the entire down-welling
radiance is small at the spacecraft the error is tolerable. We can assume that the integral of the
monochromatic product of τ is related to the channel averaged product with a correlation factor,
and this will be absorbed into the Fν factor. Inserting Eqn. 4.49 into Eqn. 4.45 yields

Rd(ν, θ) = πρν(θ, θ̄i) ·Bν(Ts)Fν · τν(ps, θ)
(
1− τν(ps, θ̄)

)
(4.50)

Using the derivation in Section ?? a better fitting equation for channel averaged radiances might be

Rd(i, θ) = πρi(θ, θ̄i) ·Bνi(T (p̄i))Fi · τi(ps, θ)
(
1− τi(ps, θ̄i)

)
(4.51)

Where pi is an effective pressure of down-welling for channel i. Each channel could have an effective
diffusive angle or the effective diffusive angle, θi, could be defined w.r.t. the angle of observation, θ.
We can also assume that the bi-directional reflectance is given by either

• ρi(θ, θ̄i) =
1−ϵi
π for nighttime and long-wave (i.e., νi < 2300 cm−1)

• ρi(θ, θ̄i) = ρi(θ, θ⊙) for daytime short wave channels.

To estimate the thermal down-welling term we can calculate an approximate form of the down-
welling term using the nadir rapid algorithm

Rd(ν, θ) =
1

2
· (1− ϵ(ν)) · τ(ps) · (1− τ(ps)) ·Bν(T (p̄ = 700) (4.52)

To first order, if we ignored the effect entirely, a larger ϵi would be determined and radiance residuals
would be smaller.

The Rapid Transmittance Algorithm

This fast transmittance model is based on methods developed and used by Larry McMillan, Joel
Susskind, and others. An introduction to the theoretical development of the approximations em-
ployed can be found in: McMillin and Fleming (1976), McMillin et al. 1995b, Hannon et al. 1996,
Strow et al. 1998, and Strow et al. 1998.

a. Select the Regression Profiles:

48 regression profiles were chosen that cover the realistic range of profile variability. Each
profile consists of temperature and gas amounts of 4 variable gases: water, ozone, carbon
monoxide, and methane. All other gases are ”fixed” (do not vary in amount with profile).

b. Calculate Monochromatic Transmittances:

Monochromatic layer-to-space transmittances for the regression profiles are computed. This
was done using our KCARTA package. The layer-to-space transmittances are grouped into
sets of ”mixed” gases. For this production, there were 4 different ways in which the gases were
grouped, depending upon the frequency region:

FOW : 3 groups of transmittances: F, FO, FOW
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FOWp : 4 groups of transmittances: F, FO, FOW, FOWp

FMW : 3 groups of transmittances: F, FM, FMW

FCOWp: 5 groups of transmittances: F, FC, FCO, FCOW, FCOWp

where F refers to ”fixed” gases, W to water, O to ozone, C to carbon monoxide, and M to
methane. The ”p” refers to perturbed CO2, in which the CO2 amount has been increased by
+5”FM” refers to the transmittance of the ”fixed” gases and methane together.

For channels under 1620 cm-1, 6 angles were computed with the secant angles equal to 1.00
1.19 1.41 1.68 1.99 2.37. For the shortwave channels 6 additional angles were added to extend
out to the larger angles need for the for reflected solar radiance: 2.84 3.47 4.30 5.42 6.94 9.02

c. Convolve the Transmittances:

The monochromatic transmittances are convolved with the appropriate Spectral Response
Functions (SRF). For this production run, there was a separate SRF for each channels. The
SRFs are based upon laboratory measurements of the SRFs. In particular, we used interpola-
tions of measurements for test 261, with the wings added on using a model. The channels in
module 11 which are based on test 266 due to noise problems with test 261 for that module.

d. Calculate Effective Layer Transmittances:

For each layer, the convolved layer-to-space transmittances are ratio-ed with transmittances
in the layer above to form effective layer transmittances for fixed, water, ozone, CO, methane,
and perturbed CO2 are:

For FOW:

Feff(L) = F(L)/F(L-1)

Oeff(L) = ( FO(L)/F(L) )/( FO(L-1)/F(L-1) )

Weff(L) = ( FOW(L)/FO(L) )/( FOW(L-1)/FO(L-1) )

For FOWp:

Feff(L) = F(L)/F(L-1)

Oeff(L) = ( FO(L)/F(L) )/( FO(L-1)/F(L-1) )

Weff(L) = ( FOW(L)/FO(L) )/( FOW(L-1)/FO(L-1) )

peff(L) = ( FOWp(L)/FOW(L) )/( FOWp(L-1)/FOW(L-1) )

For FMW:

Feff(L) = F(L)/F(L-1)

Meff(L) = ( FM(L)/F(L) )/( FM(L-1)/F(L-1) )

Weff(L) = ( FMW(L)/FM(L) )/( FMW(L-1)/FM(L-1) )

For FCOWp:

Feff(L) = F(L)/F(L-1)

Ceff(L) = ( FC(L)/F(L) )/( FC(L-1)/F(L-1) )

Oeff(L) = ( FCO(L)/FC(L) )/( FCO(L-1)/FC(L-1) )

Weff(L) = ( FCOW(L)/FCO(L) )/( FCOW(L-1)/FCO(L-1) )

peff(L) = ( FCOWp(L)/FCOW(L) )/( FCOWp(L-1)/FCOW(L-1) )

The zeroeth layer transmittance (ie when L-1=0) is taken to be exactly 1.0.

e. Regress the Effective Layer Transmittances and Predictors:
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The effective layer transmittances are converted to optical depth (by taking the negative
of the logarithm ), and then weighted according to some estimated relative importance. A
regression is done on this data with a set of profile dependent predictors (see note below) as
the independent variables. The regression, which is of the form A*X=B, where A is a matrix
of predictors and B is the data, calculates X, the fast transmittance coefficients.

Note: The predictors are generally various combinations of the main profile variables such
as the temperature and gas amount, as well as the satellite viewing angle. One of the most
time consuming and tiring aspects in developing a fast model using this method is in select-
ing/inventing the optimum set of predictors. It is essentially a trial and error exercise; try
somthing and see how it works.

The fast transmittance coefficients may be used to quickly compute effective layer transmit-
tances for almost any desired profile simply by calculating the appropriate predictor values for
the profile and multiplying them by the coefficients. The individual component gases (”fixed”,
water, ozone, CO, methane, and the far-wing water continuum) are calculated separately. The
total layer transmittance is the product of the individual component transmittances.
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Chapter 5

Description of the Core Retrieval
Algorithm
Step I: Microwave Retrieval
Algorithm

5.1 Introduction

The NUCAPS microwave module is a heritage algorithm of the AIRS Science Team microwave
retrieval algorithm [Rosenkranz, 2000, 2006]. The reader is referred to the AIRS ATBD for an in
depth description of the subject of this chapter.

5.2 Precipitation Flags, Rate Retrieval and ATMS Corrections

The precipitation algorithm produces the following: (1) flags indicating possible precipitation-
induced perturbations impacting ATMS channels 5, 6, 7, 8, and 9, (2) estimates of corrections
that may, at the user’s option, be applied to ATMS brightness temperatures for channels 5, 6, 7, 8
and 9, to compensate for precipitation, if present, and (3) a precipitation-rate retrieval (mm/h) for
each 50-km ATMS spot which was tuned for mid-latitudes using all-season NEXRAD data.

5.2.1 Precipitation Flags

The objective of the flags for each of ATMS channels 5-9 is to alert users of this data to the possibil-
ity that retrievals based on these microwave channels might be impacted by precipitation. The four
possible flag states are the following. Flag = 0: The magnitude of the detected precipitation pertur-
bations (if any) are less than 0.5 K; Flag = 1: Small perturbations are present (nominally between
0.5 and 2 K), which are approximately correctable; Flag = 2: Estimated ATMS precipitation-
induced brightness temperature perturbations for this channel may exceed 2 K in magnitude, so
perturbation corrections are less reliable; Flag = -1 It is unknown whether perturbations due to pre-
cipitation are present (e.g., surface elevation greater than 2 km). These perturbations are discussed
further later in this chapter.

26
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5.2.2 Perturbation Corrections

Perturbation corrections are entirely based on the methodology employed for the AMSU instrument.
The reader is referred to the AIRS ATBD and the reference therein for a complete description of
the methodology.

Perturbation corrections are estimated for ATMS Channels 5, 6, 7, 8 and 9. In addition, for each
ATMS beam position a precipitation-rate estimate (mm/h) is provided when flag states 0, 1, or 2
exist for ATMS channel 5 (52.8 GHz). Users of ATMS data for temperature profile retrievals should
use brightness temperatures flagged with 2 or -1 with caution, even if the suggested perturbation
corrections are employed. These perturbations are computed for ATMS channels 5-9 at 50-km
resolution using the algorithm discussed further down. It should be noted that 52.8-GHz brightness
temperatures can suffer warm perturbations over ocean due to low altitude absorption and emission
by clouds or precipitation. Such warm perturbations could be flagged and corrected as are the
cold perturbations. The 23.8/31.4 GHz combination could be used to validate the locations of such
excess absorption and perturbations over ocean.

5.2.3 Rain Rate Retrieval Algorithm

The rain rate retrieval algorithm is an adaptation of the AQUA AMSU-A AMSU-B algorithm. The
reader is referred to the AIRS ATBD for an in depth description of this methodology.

Accurate remote sensing of precipitation rate is challenging because the radiometric signatures of
irregularly formed hydrometeors can depend strongly on their distributions in size, temperature, ice
content and structure. As a result, all active and passive microwave remote sensing methods rely on
the statistical regularity of precipitation characteristics. Experimental validation typically involves
comparisons with rain gauges, radar, and other sensors, each of which has its own limitations. The
primary precipitation-rate retrieval products of ATMS are 15- and 50-km resolution contiguous
retrievals over the viewing positions of ATMS within 43 of nadir. The two outermost 50-km viewing
positions (six outermost for 15-km) on each side of the swath are currently omitted due to their
grazing angles. The algorithm architectures for these two retrieval methods are presented below.

The 15-km resolution precipitation-rate retrieval algorithm begins with identification of poten-
tially precipitating pixels. All 15-km pixels with brightness temperatures at 183 7 GHz that are
below a threshold T7 are flagged as potentially precipitating, where:

T7 = 0.667(T53.6 − 248) + 252 + 6 · cos(Θ) (5.1)

and where Θ is the satellite zenith angle. If, however, the spatially filtered brightness tempera-
ture T53.6 at 53.6 GHz is below 249 K, then the brightness temperature at 183 3 GHz is compared
instead to a different threshold T3, where:

T3 = 242.5 + 5 · cos(Θ) (5.2)

This spatial filter picks the warmest spot within an array of ATMS pixels. The 1833-GHz
band is used to flag potential precipitation when the 1837-GHz flag could be erroneously set by low
surface emissivity in very cold dry atmospheres, as indicated by T53.6. These thresholds T7 and T3

are slightly colder than a saturated atmosphere would be, therefore lower brightness temperatures
imply the presence of a microwave-absorbing cloud. If the locally filtered T53.6 is less than 242 K,
then the pixel is assumed not to be precipitating. Within these flagged regions strong precipitation is
generally characterized by cold cloud-induced perturbations of the ATMS tropospheric temperature
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sounding channels in the range 52.5-55.6 GHz. Examples of 1837-GHz data and the corresponding
cold perturbations at 52.8 GHz are illustrated in Figures 5.3(a) and (c), respectively, of the AIRS
ATBD (see reference). These 50-km resolution 52.8-GHz perturbations ∆T50,52.8 are then used to
infer the perturbations ∆T15,52.8 (see Figure 5.3(d) of AIRS ATBD) that might have been observed
at 52.8 GHz with 15-km resolution had those perturbations been distributed spatially in the same
way as the cold perturbations observed at either 183 7 GHz or 183 3 GHz, the choice between these
two channels being the same as described above. This requires the bi-linearly interpolated 50-km
AMSU data to be resampled at the HSB beam positions. These inferred 15-km perturbations are
computed for five ATMS channels using:

∆T15,54 = (T15,183/∆T50,183)∆T50,54 (5.3)

The perturbation ∆T15,183 near 183 GHz is defined to be the difference between the observed
brightness temperature and the appropriate threshold given above. The perturbation ∆T50,54 near
54 GHz is defined to be the difference between the limband- surface-corrected brightness temperature
and its Laplacian-interpolated brightness temperature based on those pixels surrounding the flagged
region (Staelin and Chen, IEEE Trans. Geosci. Remote Sensing, vol. 38, pp. 2232-2332, Sept.
2000). Limb and surface-emissivity corrections to nadir for the five 54-GHz channels are produced
by neural networks for each channel; they operate on nine AMSU-A channels above 52 GHz, the
cosine of the viewing angle Φ from nadir, and a land-sea flag (see Figure 5.2 of AIRS ATBD).
They were trained on 7 orbits spaced over one year for latitudes up to 55o. Inferred 50- and 15-km
precipitation-induced perturbations at 52.8-GHz are shown in Figures 5.3 (c) and (d), respectively,
of AIRS ATBD, for a frontal system. Such estimates of 15-km perturbations near 54 GHz help
characterize heavily precipitating small cells.

Such inferred 15-km resolution perturbations at 52.8, 53.6, 54.4, 54.9, and 55.5 GHz are then
combined with 1) the 1831-, 3-, and 7-GHz 15-km ATMS data, 2) the leading three principal
components characterizing the original five corrected 50-km ATMS temperature brightness temper-
atures, and 3) two surface-insensitive principal components that characterize the window channels
at 23.8, 31.4, 50.3, and 89 GHz, plus the 166.31 and the five 183 GHz channels. channels. All
13 of these variables, plus the secant of the satellite zenith angle Θ, are input to the neural net
used for 15-km precipitation rate retrievals, as shown in Figure 5.2 of AIRS ATBD. This network
was trained to minimize the rms value of the difference between the logarithms of the ATMS and
NEXRAD retrievals; use of logarithms prevented undue emphasis on the heaviest rain rates, which
were roughly three orders of magnitude greater than the lightest rates. Adding 1 mm/h prevented
undue emphasis on the lightest rates. NEXRAD precipitation retrievals with 2-km resolution were
smoothed to approximate Gaussian spatial averages that were centered on and approximated the
view-angle distorted 15- or 50-km antenna beam patterns. The accuracy of NEXRAD precipitation
observations are known to vary with distance, so only points beyond 30 km but within 110 km of
each NEXRAD radar site were included in the data used to train and test the neural nets. Eighty
different networks were trained using the Levenberg-Marquardt algorithm, each with different num-
bers of nodes and water vapor principal components. A network with nearly the best performance
over the testing data set was chosen; it used two surface-blind water vapor principal components,
and only slightly better performance was achieved with five water vapor principal components with
increased surface sensitivity. The final network had one hidden layer with 5 nodes that used the
tanh sigmoid function. These neural networks are similar to those described by Staelin and Chen
(IEEE TGARS, vol. 38, no. 5, pp. 2232-2332, 2000). The resulting 15-km resolution precipitation
retrievals are then smoothed to yield 50-km retrievals. The 15-km retrieval neural network was
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trained using precipitation data from the 38 orbits listed in Table 5.1.1. Each 15-km pixel flagged
as potentially precipitating using 183 7 GHz or 183 3 GHz brightness temperatures was used either
for training, validation, or testing of the neural network. For these 38 orbits over the United States
15,160 15-km pixels were flagged and considered suitable for training, validation, and testing; half
were used for training, and one-quarter were used for each of validation and testing, where the val-
idation pixels were used to determine when the training of the neural network should cease. Based
on the final ATMS and NEXRAD 15-km retrievals, approximately 14 and 38 percent, respectively,
of the flagged 15-km pixels appear to have been precipitating less than 0.1 mm/h for the test set.

5.3 Profile Retrieval Algorithm

The microwave initial guess profile retrieval algorithm derives temperature, water vapor and non-
precipitating cloud liquid water profiles from ATMS brightness temperatures. This module was
originally intended to provide the starting point for the cloud clearing and retrieval algorithm but
has been later replaced by a cloudy regression solution. Nonetheless, ATMS has improved spectral
resolution and coverage with respect to previous AMSU/HSB and AMSU/MHS instruments. Since
the ATMS retrieval performance is still under exam, it has been decided to leave it as part of the
NUCAPS processing flow.

The microwave retrieval algorithm is an iterative algorithm in which the profile increments are
obtained by the minimum-variance method, using weighting functions computed for the current
temperature and moisture profiles with the rapid transmittance algorithm described later in this
document. The input vector of measured brightness temperatures is accompanied by an input
validity vector whose elements are either one or zero. This provides a way of handling missing or
bad data.

5.3.1 Preliminary Surface Type Classification

The surface classification algorithm is diagrammed in Figure 5.4 of AIRS ATBD. The classification
rules are from Grody et al. (2000), and make use of discriminant functions that are linear combina-
tions of ATMS channels 1, 2, 3, and 16. If sea ice is indicated by the classification algorithm, then
its concentration fraction is estimated from a linear operation on channels 1, 2, and 3. If the surface
type is glacier or snow-covered land, then the snow or ice fraction is estimated using channels 3 and
16. Parameters of the surface brightness model are assigned according to surface type as in Table
5.1. A priori emissivities for the ice and snow types were estimated from NOAA-15 and Aqua data.
For land ϵo = 0.95 at all frequencies; for seawater, the dielectric constant model of Ellison et al.
(2003) was used to compute the emissivity of a flat surface viewed in the polarization of the ATMS
radiometer.

5.3.2 Atmospheric Moisture and Condensation Model

Brightness temperatures at the ATMS channel 16 -22 depend on the vertical profile of atmospheric
opacity relative to temperature, but do not by themselves distinguish, at any given altitude, between
opacity due to water vapor and opacity due to liquid water. However, the physics of water vapor
condensation add some a priori information or constraints. Cloud coverage is parameterized as
in a stratiform condensation model, where a relative humidity threshold determines the onset of
condensation. Although the water vapor profile is saturated within the cloudy part of the field of
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view, it is assumed that the condensation process is not spatially resolved, hence the threshold is
less than 100% relative humidity. Currently, the threshold is set to 85%.

In the condensation model, the vapor and cloud liquid water density profiles are both linked
to a single parameterH. When H is <= 85%, H is equal to relative humidity; in the range 85%
to 115%, changes from a water-vapor variable to liquid-water, and values of H greater than 115%
increase liquid water while the vapor remains at saturation. Because convergence, to be discussed
later, is determined from the brightness temperature residuals, which in turn are computed using
the vapor and liquid column densities, the role of H in this algorithm is only to introduce the textita
priori statistics and constraints. The average vapor density in the field of view is related to H by

ρν = ρs · [ramp(H, 10)− f(H)]/10
(5.4)

where ρs is the saturation value of mixing ratio and:

ramp(x, c) = x;x ≥ c (5.5)

ramp(x, c) = c · exp(x/c− 1);x < c (5.6)

and

f(H) = ramp(H −HL, 6) (5.7)

Thus, the value of ρν/ρs lies between zero and HL/100. the liquid water mixing ratio averaged
over the field of view is assumed to be given by:

ρL = c1 · f(H) (5.8)

where c1 is a coefficient equivalent to a liquid/air mass mixing ratio of 10−5 %.
The saturation vapor mixing ratio is computed from the temperature profile by the formula of

Liebe (1981). Saturation is calculated with respect to liquid water (by extrapolation) even when
the temperature is below 273 K. This model therefore allows supercooled liquid water and water
vapor greater than the saturation value with respect to ice.

5.3.3 Estimation of surface brightness and atmospheric moisture

This section is taken from the AIRS ATBD, chapter 5 and describes an algorithm based on re-
trieval methods described by Wilheit (1990), Kuo et al. (1994), Wilheit and Hutchison (1997), and
Rosenkranz (2006).

It uses ATMS channels 1, 2, 3, 16 - 22. The measurements are weighted averages over 3x3
spatial arrays which approximate the AMSU-A field of view. The H profile, HL, and four surface
parameters T0, T1, T2, and pg are concatenated into a vector Y. The parameter pg when the surface
type is either water or coastline, determines the secant ratio ρ by:

ρ = sec(Θref )/sec(Θ) = 1 + ramp(pρ, 0.02) (5.9)
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The cost function to be minimized is given by:

(Yest − Yo)
TS−1

Y (Yest − Yo) + (Θobs −Θ−Θ′)T (Se = Sf )
−1(Θobs −Θ−Θ′)

in which Yest is the estimate of Y, Yo is its a priori value and SY is its covariance matrix
with respect to To. Θobs is a vector of the eight measured sntenna temperatures, Se is their error
covariance matrix (assumed diagonal), Θ′ is the tuning correction for sidelobe effects and possible
transmittance error, and Θ is a brightness temperature vector computed from the current values
of temperature, moisture and surface brightness. Sf is a diagonal covariance matrix which ap-
proximately represents errors in Θ resulting from errors in the temperature profile retrieval and
tuning.

The estimate of Y is obtained by Newtonian iteration (see Rodgers, 1976), except that Eyres
(1989) method of damping is used to avoid large relative humidity increments, because of the
nonlinearity of the problem.

5.3.4 iteration procedure and convergence tests

Convergence is tested separately for the temperature channels and for the moisture/surface channels.
Iteration of either part of the algorithm is suspended when one of the following conditions is met :
(1) the computed brightness temperature vector Θ meets the closure criterion; or (2) when successive
computations of the residuals change by less than 1% for temperature channels and 2% for water
vapor channels of a given threshold; or (3) when the number of iterations exceeds a preset limit,
which is 12 for the temperature channels and 16 for the moisture/surface channels. Typically,
iteration of the temperature profile ceases after one or two iterations, but the moisture profile often
requires six or more iterations.
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Chapter 6

Description of the Core Retrieval
Algorithm
Step II: Regression Retrieval

6.1 Post-Launch First Guess Regression Procedure

NOAA/NESDIS uses an eigenvector global regression procedure to provide fast and accurate initial
guesses for temperature and moisture profiles as well as surface emissivity and reflectivity using
simulated CrIS data. Eigenvector regression for atmospheric sounding was first demonstrated by
Smith and Woolf (1976). It is assumed that all independent CrIS radiances have been preprocessed
by the cloud clearing module described in the last section. Eigenvectors are computed from a
training dataset of radiances that have been normalized by the CrIS expected noise and are used as
basis functions to represent the CrIS radiometric information. Eigenvectors are commonly referred
to as Empirical Orthogonal Functions (EOF’s) in the literature, a convention that will be adopted
throughout the remainder of this section. Because of the large number of channels measured by
CrIS, the eigenvector form of regression is crucial for exploiting the information content of all
channels in a computationally efficient form. By representing radiometric information in terms of
a reduced set of EOF’s (much fewer in number than the total number of instrument channels) the
dimension of the regression problem is reduced by approximately one order of magnitude. Another
advantage of using a reduced set of EOF’s is that the influence of random noise is reduced by
elimination of higher order EOF’s which are dominated by noise structure. It should be noted that
if all EOF’s are retained as basis functions the eigenvector regression reduces to the ordinary least
squares regression solution in which satellite measurements are used directly as predictors. The
mathematical derivation of the EOF regression coefficients is detailed in the following sub-sections.

6.1.1 Generating the Covariance Matrix and Regression Predictors

A training ensemble of temperature, humidity, and ozone profile data are used to generate radiances
for all CrIS channels that meet specified instrument performance. Expected instrumental noise is
added to the simulated radiances. Note that real observations will be used after launch to generate
the eigenvectors. Computed radiances are only used for prelaunch coefficients. The deviations of the
radiance scaled by noise from their sample mean are stored in the matrix ∆Θ̃n(m),j (see Eqn. 6.1),
a matrix of dimensions [m = 1,M j = 1, J ], where M is the total number of instrument channels
and J is the sample size of the training data set. We begin by normalizing the measured radiances,

33
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R(n(m), for a subset of channels n(m), by the measured instrument noise, NE∆N(n(m)). The noise
scaled radiance covariance matrix from which the EOF’s are derived is then generated as follows:

∆Θ̃n(m),j ≡
Rn(m),j

NE∆Nn(m)
−

< Rn(m),j >j

NE∆Nn(m)
≡

Rn(m),j

NE∆Nn(m)
− < Θ̃ >n(m) (6.1)

We compute the eigenvectors of the signal to noise covariance of ∆Θ̃n(m),j . For the CrIS v1.0
regression two days were determined to be adequate to describe the entire variance of radiances:
may 15th, 2012 and September 20th, 2012.

Θcov ≡ 1

J

J∑
j=1

∆Θ̃n(m),j ·∆Θ̃j,n(m)(θ) = ET
n(m)),k · Λk,k′ · Ek′,n(m) (6.2)

The diagonal elements of represent the variance of the respective channel noise scaled radiance
while the off diagonal elements represent the covariance between pairs of channels. An eigenvector
decomposition is performed on the matrix giving:

The eigenvectors of the normalized signal-to-noise covariance are orthogonal and Λk,k′ is a
diagonal matrix with elements equal to λk. We normalize ∆Θ∆ΘT by the number of observations
J so that the magnitude of the eigenvalues does not change with the size of the training ensemble.

6.1.2 Replacing BAD CrIS Channels using Principal Components

For training of eigenvectors or regression coefficients spectra containing bad channels should be
removed from the training ensemble. When applying the regression operationally the use of a bad
channel can be quite detrimental, therefore, we need a dynamic ability to remove BAD channels
from our algorithm. In the physical algorithm, the channel is simply removed from consideration;
however, in regression algorithms a bad channel can seriously degrade the results.

If channel n0 is BAD in radiance set Rn,j for case j it be crudely estimated by the average value
of the neighboring radiances.

∆Θ̃n0,j = ∆Θ̃n1,j +∆Θ̃n2,j (6.3)

where n1 is the closest valid radiance on the low wavenumber side of n0 and n2 is the the closest
valid radiance on the high wavenumber side. We begin by using this estimate of the bad radiance
to compute an initial guess for the principal component score, P 0

k,j

P 0
k,j =

1√
λ(k)

· Ek,n ·∆Θ̃n,j (6.4)

Once P 0
k,j is computed the BAD radiance for channel n0 can be estimated from all the remain-

ing good radiances and our estimate of the bad radiance. This approach can only work if there is
redundant information contained within the spectrum. For CrIS the 1305 channels can be repre-
sented by approximately 85 principal components, therefore, the is ≈ 20:1 redundancy in the CrIS
spectrum.

∆Θ̃n0,j =
√
λ(k) · ET

n0,k · P
0
k,j , where, n0 is the index of the BAD channel (6.5)

Then the principal components can be recomputed from the improved estimate of the bad
radiance along with the good radiances.
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P 1
k,j =

1√
λ(k)

· Ek,n ·∆Θ̃n,j (6.6)

This process can be iterated until P i
k,j converges; however, the first iteration appears to be

adequate in operation.

6.1.3 NOAA eigenvector file format

The eigenvector file is written out with the following components

• A header block with

– the number of channels in the subset, M = 1688,

– and the eigenvectors, Kstore = 200

– A flag if radiances are used (set to T)

– A flag is the mean is subtracted (set to T)

• The average of Θ̃ for the M channels

< Θ̃ >≡
< Rn(m),j >j

NE∆Nn(m)
(6.7)

• Each eigenvector, Ek,n(m), is written out a single record for each value of k = 1,Kstore.

• The value of λ(k) for k = 1,M .

• The value of NE∆N(nm)) for m = 1,M .

• The value of f(n(m)) for m = 1,M .

• The value of n(m) for m = 1,M .

6.1.4 Post-launch regression computation

The radiances can be represented by their principal component scores. In this algorithm we normal-
ize by the square root of the eigen-value to normalize the principal component scores so that they are
numerically significant. Otherwise, the first principal component would have values approximately
1000 times the signal as P (Kmax).

Pk,j =
1√
λk

Ek,n(m) ·∆Θ̃n(m),j (6.8)

an estimate of the propagated error in the principal components for case j, δP̂k,j , can be given by
the root-sum-square (RSS) of the linear combination and an estimate of the error in the radiance
for case j, δRn(m),j . This results in an error in the argument of δΘ̃n(m),j ≡ δRn(m),j/NE∆Nn(m)

and
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δP̂k,j =

√
1√
λk

(
Ek,n(m) · δΘ̃n(m),j

)2
(6.9)

Only k = 1,Kmax principal components are kept, where Kmax is the number of significant eigen-
values. The regression is trained using ensembles at similar view angles. Currently, there are four
view angle regimes as defined in Table 6.1. A predictor array is constructed using the principal
component scores for those cases, j(v) with α1(v) < |α| ≤ α2(v), where α is the instrument view
angle. For AIRS this angle varies from −48.95◦ ≤ α ≤ 48.95◦. The predictor argument for the
sub-set of cases is assembled with the first Kmax elements being set equal to Pk,j . The element
i = Kmax + 1 is set equal to one if α < 0 or zero if α ≥ 0.

Pk,j(v) =



P1,j(v)

P2,j(v)

. . .
PKmax,j(v)
1−sign(v)

2
1− cos( π·v180)

 i = 1,Kmax + 2 (6.10)

Table 6.1: View-angle regimes in post-launch regression
v α1(v) α2(v)

1 53.130 42.269
2 42.269 31.788
3 31.788 19.948
4 19.948 0.000

Another issue for the regression is that topography limits the available training ensemble for
some altitude layers. For each case, j, there is a maximum number of vertical levels defined by the
surface pressure (that is, some of the 100 layer grid is below the surface). If this lower level is given
as Lbot then the number of cases in the training ensemble is a function of how many cases have
surface pressure above that level, therefore, the number of cases, J , in the training ensemble is a
function of both view angle and Lbot and will can write that index as j(v, Lbot) which is the subset of
cases that satisfy the criteria in Table 6.1 and have valid geophysical parameters in the layer under
consideration in Xi. See Table 6.2 for a translation from Xi to layer index L. We can compute the
average predictor argument for this subset ensemble and subtract that from the training ensemble

∆Pk,j(v,Lbot) = Pk,j(v,Lbot)− < Pk,j(v,Lbot) >J(v,Lbot) (6.11)

The equation we will solve is given by

Xi,j(v,Lbot) =< Xi,j(v,Lbot) >j(v,Lbot) +Av
i,k ·∆Pk,j(v,Lbot) (6.12)

where we can write,

∆Xi,j(v,Lbot) = Xi,j(v,Lbot)− < Xi,j(v,Lbot) >j(v,Lbot) (6.13)

The geophysical parameters in the NOAA regression are defined in Table 6.2. For moisture the
regression is trained on both the loge(r(L)) and r(L), where r is the mass mixing ratio in grams/kilo-
gram (g/kg).
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q =
w ·∆Cw(L)

t ·∆Ct(L)
=

w ·∆Cw(L)

t

d
·NA · 1000 · ∆p(L)

g

(6.14)

If we assume t ≃ 0.98 ·d +0.02·w ≃ 1 and g = 980.64 ≈ 1000 then we obtain the form used in
the code (mx2mr.F), which is

q(L) =
w ·∆Cw(L)

NA ·∆p(L)
(6.15)

and the mass mixing ratio is then given by

rw(L) =
q(L)

1− q(L)
(6.16)

Table 6.2: Geophysical parameters, Xi, solved in NOAA real-time regression (NOTE: rw = mass
mixing ratio of water, ro = mass mixing ratio of ozone). The index i is used in the data file and
the index L = 1 + (i− 1)/4 is used in a storage vector in the retrieval code.

i L interpretation

1 1 T (1)
2 1 rw(1)
3 1 loge(rw(1))
4 1 loge(ro(1))
5 2 T (2)
6 2 rw(2)
7 2 loge(rw(2))
8 2 loge(ro(2))
. . . . . .
385 97 T (97)
386 97 rw(97)
387 97 loge(rw(97))
388 97 loge(ro(97))
393 99 T (Ps)
394 99 rw(Ps)
395 99 loge(rw(Ps))
396 99 loge(ro(Ps))
397 100 Ts

and the least square solution is given by

Av
i,k = ∆Xi,j(v,Lbot) ·∆P T

j(v,Lbot),k
·
[
∆Pk,j(v,Lbot) ·∆P T

j(v,Lbot),k

]−1
(6.17)

No regularization is needed since the principal components have been essentially regularized by
selecting only 85 of the principal components. Note that the regression coefficients can be related
to empirical Kernel functions, K̃n(L), for channel n and pressure level L

In the eigenvector regression the empirical Kernel functions can be computed by

K̃n(L) = Ai(L),k · Ek,n (6.18)
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where, i(L), is the subset of indices for the selection of the geophysical parameter group (e.g., T(L),
is given for L = 1, 2, 3, . . ., which is given by i = 1, 5, 9, . . . in Table 6.2)

Once Av
i,k is determined we can combine the average of the geophysical parameter given in

Eqn. 6.13, Xj ≡< Xi,j(v,Lbot) >j(v,Lbot), and the average of the predictor given in Eqn. 6.11,

P k ≡< Pk,j(v,Lbot) >J(v,Lbot) into a single value, called Ai = Xi + Ai,k · P k, so that our regression
equation can utilize the un-normalized predictors

Xi,j(v,Lbot) = Av
i +Av

i,k · Pk,j(v,Lbot) (6.19)

where Av
i is defined as

Av
i ≡< Xi,j(v,Lbot) >j(v,Lbot) − Av

i,k· < Pk,j(v,Lbot) >J(v,Lbot) (6.20)

A propagated error estimate can be computed from the linear combination of principal compo-
nents

δX̂i,j(v,Lbot) =

√∑
i

(
Av

i,k · δPk,j(v,Lbot)

)2
(6.21)

Once the regression matrix is known it is useful to compute the mean and standard deviation of
the real error between the regression, applied to the training ensemble radiances, and the geophysical
value in the training ensemble. Each case has an error, δX, given by

δXi,j(v,Lbot) = Xi,j(v,Lbot) −
[
Av

i +Av
i,k · Pk,j(v,Lbot)

]
(6.22)

For each geophysical parameter we can compute a mean and standard deviation of the regression
error (difference of regression from the training values). The mean is given by

δXi ≡
1

J(v, Lbot)

∑
j

δXi,j(v,Lbot) (6.23)

and a standard deviation is given by

σ(δXi) ≡

 1

J(v, Lbot)

∑
j

(
δXi,j(v,Lbot) − δXi

)2 1
2

(6.24)

The standard deviation can be compared to the standard deviation of the training ensemble’s
departure from its mean, given in Eqn. 6.13.

σ(Xi) ≡

 1

J(v, Lbot)

∑
j

(
∆Xi,j(v,Lbot)

)2 1
2

(6.25)

6.1.5 Applying the NOAA regression

When applying the regression the total precipitable water, TPW, is used to determine which re-
gression to use for the answer. The equation used in the code does not adjust the TPW for dry gas
(the equation uses mass mixing ratio instead of specific humidity)
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TPW ≃
∑
L=1

rw
1000

· ∆p(L) · 1000
g

(6.26)

For water If TPW, by this definition, is less 1 or if the mass mixing ratio, rw(L) is less than zero
for any layer then the logarithmic form, rw(L) = loge(rw(L)), of the regression is used. In addition,
if the mass mixing ratio exceeds saturation then the saturation value for that layer is used.

A routine from Flatau, Walko, and Cotton (1982) is used within the
where x is for water or ozone. The conversion to layer column density is done by the routine
colden.F, which uses the same approximations as done in the training

∆Cx(L) =
rx(L) ·NA

mww · 1000 ·∆p(L)
(6.27)

NOTE that presently the conversion from mass mixing ratio to specific humidity is NOT done.
I believe this is an error and needs to be fixed (May 2004).

In a system that has performed a microwave physical retrieval of water vapor we can improve
the regression solution over ocean if we adjust the regression water vapor to the total column water
vapor from the microwave. This is done by summing the layer column densities from the microwave
retrieval, CMIT

w =
∑

∆CMIT
w (L), which is the total column density in molecules/cm2. The same

calculation is done for the regression retrieval resulting in CREG
w . We then multiply the layer column

density by the ratio of the total column densities from the regression and microwave retrieval,

∆CADJ
w (L) = ∆CREG

w (L) ·


∑
L=1

∆CMIT
w (L)∑

L=1
∆CREG

w (L)

 (6.28)

This is done in the routine amsu adj.F.

6.1.6 NOAA regression file format

In the NOAA regression file each set of geophysical parameters is written for a view angle block.
The index number system for the geophysical parameters is given in Table 6.2 or 6.5. In the
profile regression, the 393 parameters (1-388,393-397) are written out in 4 sequential blocks in the
regression file. In the surface regression the 39 emissivity regressions are written out first for land
and then for ocean.

• A header line for each parameter block contains

– parameter number (see Table 6.2 or Table 6.5)

– number of predictors

– pressure at level L or frequency at emissivity L

– number of cases in training ensemble, J(v, Lbot) or J(l).

– the mean of the training ensemble, < Xj(v,Lbot(L)) >j(v,Lbot)

– the standard deviation of the training ensemble, σ(X(L))

– the standard deviation of the error in the training ensemble, σ(δX(L))

• A block of I + 1 coefficients, starting with Av
i and then the I values of Ai(L).
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6.1.7 Post-launch Surface Emissivity Regression

In the case of surface emissivity there is no truth file to train against with real radiance data. In
this case, we simulated J cases where the infrared radiances were computed from the ECMWF
forecast and a surface emissivity model (Fishbein et al., 2003). The eigenvector approach was not
used. In this case, AIRS radiances for window channels, R(n(m), j), were selected for the channels
and frequencies given in Table 6.3. The emissivities, ϵ(L, j), were provided by a model at the
39 frequencies specified in Table 6.4. Notice that short-wave observations are not used to predict
short-wave emissivity. This regression relies on statistical correlations between the short-wave and
long-wave to solve for these parameters.

In this case, the predictors consisted of the M radiances, written as signal-to-noise (see Eqn.
6.1), and the side of the scan and cosine of the view angle were used as additional predictors. In
this case, all J cases see the surface, so there is no subset for topography. Also, window channels
require only a minor adjustment for view angle, so the complete ensemble was used. The ocean
emissivity is a well modeled function (ı.e. the AIRS science team uses the Masuda et al. (1988)
model as modified by Wu and Smith (1997). and the regression was performed on land and ocean
separately. We will indicate the land/ocean by a superscript l. Therefore, the predictors are given
by

P l
k,j =



R1,j(l)

R2,j(l)

. . .
RM,j(l))

1−sign(vj(l))

2

1− cos(
π·vj(l)
180 )


i = 1,M + 2 (6.29)

where we can write,

∆Xi,j(l) = Xi,j(l)− < Xj(l) >j(l) (6.30)

with the Xi’s defined in Table 6.3
and the least square solution is given by

Al
i,k = ∆Xi,j(l) ·∆P T

j(l),k ·
[
∆Pk,j(l) ·∆P T

j(l),k

]−1
(6.31)

Again, once Al
i,k is determined we can combine the average of the geophysical emissivity param-

eter and the average of the predictor into a single value, called Ai, so that our regression equation
becomes

Xj(v,Lbot(L)) = Al
i +Al

i,k · Pk,j(v,Lbot) (6.32)

where Al
i is defined as

Al
i ≡ Al

i,k· < Pk,j(v,Lbot) >J(v,Lbot) (6.33)

These regression coefficients have the same format as the ones described in Sub-section 6.1.4
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Table 6.3: AIRS channels used in surface emissivity regression
v7, prior to 4/10/04 v8, after to 4/10/04

n f(n), cm−1 n f(n), cm−1

475 801.00 475 801.0990
484 804.29 484 804.3860
497 809.08 497 809.1800
528 820.73 528 820.8340
587 843.81 587 843.9130
787 917.21 787 917.3060
791 918.65 791 918.7470
843 937.81 843 937.9080
914 965.32 870 948.1840
950 979.02 914 965.4310
1138 1072.38 950 979.1280
1178 1092.31 1119 1063.285
1199 1103.06 1123 1065.216
1221 1114.53 1178 1092.451
1237 1123.02 1199 1103.199
1252 1131.08 1221 1114.675
1263 1216.84 1237 1123.162
1285 1228.09 1252 1131.229

1263 1216.974
1285 1228.225

Table 6.4: Frequencies for the 39 point model for emissivity regression
649.35 666.67 684.93 704.22 724.64
746.27 769.23 793.65 819.67 847.46
877.19 909.09 943.40 980.39 1020.4
1063.8 1111.1 1162.8 1204.8 1234.6
1265.8 1298.7 1333.3 1369.9 1408.4
1449.3 1492.5 1538.5 1587.3 1639.3
2173.9 2222.2 2272.7 2325.6 2380.9
2439.0 2500.0 2564.1 2631.6

Table 6.5: Geophysical parameters, Xi, solved in NOAA real-time synthetic regression of surface
emissivity.

L interpretation

401 ϵ(1)
402 ϵ(2)
. . . . . .
439 ϵ(39)
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Chapter 7

Description of the Core Retrieval
Algorithm
Step III: Cloud Clearing

Cloud clearing is the process of computing the clear column radiance for a given channel n, and
represents what the channel would have observed if the entire scene were cloud free. The entire
scene is defined as the ATMS field of regard (FOR) which includes and array of 3x3 CrIS filed of
views (FOV).

The cloud clearing approach is based upon the following reasoning. For simplicity of argument,
we momentarily consider using only K=2 adjacent FOVs and one cloud formation. The observed
radiances in FOV j = 1 and 2, corresponding to channel n are given by:

R1(n, ϕ0) = (1− α1(ϕ0)) ·Rclr(n, ϕ0) + α1(ϕ0) ·Rcld(n, ϕ0) (7.1)

R2(n, ϕ0) = (1− α2(ϕ0)) ·Rclr(n, ϕ0) + α2(ϕ0) ·Rcld(n, ϕ0) (7.2)

where α1(ϕ0) and α2(ϕ0) are the zenith angle dependent effective cloud fractions for each field of
view, Rclr(n, ϕ0) is the radiance which would be observed if the entire field of view were clear, and
Rclr(n, ϕ0) is the radiance which would be observed if the entire field of view were covered by the
cloud. The basic assumption of cloud-clearing is that if the observed radiances in each field-of-view
are different, the differences in the observed radiances are solely attributed to the differences in the
fractional cloudiness in each field of view while everything else (surface properties and atmospheric
state) is uniform across the field of regard. A process referred to as local angle adjustment is applied
to these observed radiances, channel by channel, to generate angle adjusted radiances, Rj(n, ϕ0),
representative of the radiance that CrIS channel n would have observed in FOV j if the observation
were taken at the satellite zenith angle of the center FOV, ϕ0 rather than at its actual satellite
zenith angle. Based on this assumption, both Rclr(n, ϕ0) and Rcld(n, ϕ0) are assumed to have the
same respective values in each field of view. For simplicity, from now on we will omit the central
satellite zenith angle term, ϕ0.

Combining ccronefov and ccrtwofov and eliminating Rcld(n) one can solve for the cloud-cleared
radiance term as a linear extrapolation of the radiances from the two cloudy fields of view as follows:

43
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Definition of cloud clearing symbols used in this chapter

symbol description
s superscript s refers to the step
i FOV index
j η index
J number of ηj
k ζ index
n channel index
NF the number of FOV’s within an AMSU footprint
NA the number of FOV’s within Rn

δn,n′ Kronecker delta function
ηj extrapolation parameters, determined w/o damping
η̃j extrapolation parameters, determined w/ damping
δη̃j error in η with damping
As

n noise amplification factor
Rn,j observed radiance in FOV j
Xs

L geophysical state (T (p), q(p), O3(p), ϵ(n), . . .)

Rn(X
s,i−1
L ) Radiance Computed from a geophysical state

R(n)CCR clear column radiance
R(n)EST clear radiance estimate
Rn average of observed cloudy FOV’s
In,n′ instrument noise covariance
NE∆N standard deviation of instrumental noise
Nn,n′ error covariance of (R(n)EST −Rn)
Wn,n′ inverse of error covariance of (R(n)EST −Rn)
Sn,j FOV contrast, Rn −Rn,j

Uj,k eigenvectors of [(Sj,n)
T W s

n,n′Sn,j ]

Λk,k eigenvalue matrix of [(Sj,n)
T W s

n,n′Sn,j ]

λk diagonal elements of Λk,k

ζsk transformed extrapolation parameters(
δζ̃kδζ̃

T
k

)s
error covariance of solved components of ζ(

δζ̂kδζ̂
T
k

)s
error covariance of components of ζ not solved for(

δζk · δζTk
)s

total error covariance of ζ

Rclr(n) = R1(n) +
α1

α2 − α1
· (R1(n)−R2(n)) (7.3)

This is done in two steps. We first use an estimate of the cloud clear radiance,Rclr(n)
EST , to

obtain the so called cloud-clearing parameter η, defined as:

η =
α1

α2 − α1
=

Rclr(n)
EST −R1(n)

R1(n)−R2(n)
(7.4)

The cloud-clearing term η is channel independent and is used then in ccrtwofoveqn to solve for
Rclr(n) and cloud clear the entire spectrum.

While it is true that a single channel and 2 fields of view can be used to cloud clear the full
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spectrum in the presence of one cloud, forthe case of K clouds a totla of K+1 fields of view and many
channels must be used in a least squares sense to discriminate the clouds at different levels. Using
the uniform scene assumption described above, Chahine (1977) showed that the reconstructed field
of regard clear-column radiance for channel n, RCCR(n), can be written as a linear combination of
the measured radiances in K+1 fields of view, according to:

Rclr(n) = R1(n)+η1 ·[R1(n)−RK+1(n)]++...+ηl ·[R1(n)−R(K+2)−l(n)]+ηK ·[R1(n)−R2(n)] (7.5)

where ηK are unknown channel independent constants and K+1 fields of view are needed to solve
for K cloud formations.

ccrmulfoveqn has been later replaced by a similar but more stable equation of the form:

Rclr(n) ≡ Rn +
K∑
j=1

(
Rn −Rn,j

)
· ηj (7.6)

where Rn is called the extrapolation point and is an average of K FOV’s defined by

Rn ≡ 1

K

K∑
j=1

Rn,j (7.7)

Where Rn is the average radiance of all K fields of view. The expression in radclr, Rn −Rn,j is
defined as radiance contrast.

As in Susskind et al. (1998), we determine the ηjvalues from observations in a selected set of Nc

cloud filtering channels which are primarily selected in between lines of the 15 micron CO2 band.
If, for each channel n, one substitutes an estimated value,Rclr(n)

EST , of the expected cloud-clear
radiance for channel n, Rclr(n) in radclr, this gives Nc equations for K unknowns, of which only K-1
are linearly independent. Therefore, the solution for the K ηj is given by a least square minimization
whose parametrization is derived below. We can re-write the radiance contrast in matrix form as:

Sn,j ≡ Rn −Rn,j (7.8)

For nine FOVs the components of this matrix are given by:

Sn,j =


R1 −R1,9 R1 −R1,8 . . . R1 −R1,1

R2 −R2,9 R2 −R2,8 . . . R2 −R2,1

. . . . . . . . . . . .
RN −RN,9 RN −RN,8 . . . RN −RN,1

 (7.9)

The equation we need to solve can be written as:

R(n)EST −Rn = Sn,j · ηj (7.10)

The estimate of the clear radiances can be derived from

1. infrared radiances computed from an estimate of the clear atmosphere from a microwave
physical retrieval, Rn(X

s,i−1
L )
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2. infrared radiances computed from an estimate of the clear atmosphere from a infrared/microwave
physical retrieval which agrees with the microwave radiances,

3. infrared radiances computed from regression with microwave radiances.

We will apply a weight to the channels used in the least squares fit of this equation, Wn,n′,
which is the inverse of an estimate of the covariance of R(n)EST − Rn. The error covariance is
given by computational error estimates associated with R(n)EST derived from error estimates in
the geophysical parameters, Cn, n′ (see Eqn. ??) and instrumental noise, In,n′ , associated with Rn.

Wn,n′ =

(
In,n′

NA
+ Cn,n′

)−1

(7.11)

The computational covariance matrix, Cn,n′ , is composed of a summation of all the radiance
error estimates, Es,i

n,g, for all geophysical parameters held constant during a retrieval:

Cn,n′ ≡
∑
g

Es,i
n,g ·

(
ET

g,n

)s,i
(7.12)

The radiance error estimate, Es,i
n,g, due to uncertainties in geophysical quantities is computed

from error estimates in geophysical groups Xs,i
L,g (e.g., an entire temperature profile). As with the

sensitivity functions, this can be thought of as an error estimate of a parameter, δAg, and an
associated function, F s

g (L). The partial derivatives are calculated from the current estimate of the

geophysical state, Xs,i
L , and an estimate of the uncertainty in each geophysical group to be held

constant in this stage of the retrieval, δXs,i
L,g, and is calculated by a finite difference

for infrared channels (with additive functions)

Es,i
n,g ≡ δAs,i

j ·
∂Rn

(
Xs,i

L + Fj ⊗ Âj

)
∂Aj

∣∣∣∣∣
Xs,i

L

(7.13)

≃
(
Rn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
−Rn

(
Xs,i

L

))
(7.14)

and for microwave channels

Es,i
n,g ≃ Θn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
−Θn

(
Xs,i

L

)
(7.15)

Since δXL,g is an RSS error estimate it can be correlated vertically and spectrally and correlated
with respect to other parameters (e.g., surface spectral emissivity error can be correlated with skin
temperature). We use Qg as a scaling to compensate for assumed anti-correlation in these error
estimated. Currently we set Qg to 0.5 for T (p) and q(p) error estimates and 1.0 for all other error
estimates.

The instrument noise correlation matrix, In,n′ , is given by

In,n′ = NE∆Nn · δn,n′ ·NE∆Nn′ (7.16)

where, the Kronecker delta function, δn,n′

δn,n′ = 1 if n = n′

= 0 if n ̸= n′ (7.17)
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For an apodized interferometer the correlation matrix and noise reduction factor for the apodization
function would replace the Kronecker delta function (see Barnet et. al, 2000).

The iterative methodology to determine clear column radiances consists of four passes to de-
termine ηs (s = 1, 2, 3, 4), using four sets of conditions, described later, to compute Rclr(n). At
each iteration, both Rclr(n) and ηs become increasingly more accurate. Each set of conditions has
its own covariance matrix , reflecting expected errors in Rclr(n) and Rj(n). The diagonal term of
the noise covariance matrix is modeled according to:

(W s
n,n)

−1 = (In,n)
2 + [

∂Rn

∂Tsurf
δT s

surf ]
2 + [

∂Rn

∂ϵn
δϵsn]

2

+[
∂Rn

∂ρn
δρsn]

2 + [
∂Rn

∂T (p)
δT (p)s]2

+[
∂Rn

∂q(p)
q

δq(p)s

q
]2 + 0.12 · (dB

dT
)2Θn,clr

+N ′
n,n

2(
dB

dT
)2Thetan,CLR

(7.18)

where In,n′ is the channel i instrumental noise and the next 5 terms are contributions to errors
in the computed value Rclr(n) resulting from errors in estimated surface skin temperature, surface
spectral emissivity, surface spectral bi-directional reflectance of solar radiation, and temperature
and moisture profile respectively. Two additional sources of radiance uncertainty are included in
the equation, representative of the physics error estimate, N ′

n,n′ (see ahead), and an additional
radiance uncertainty term. Both terms are in brightness temperature units. The off diagonal term
of the noise covariance matrix is given by:

(W s
n,n′)−1 = [

∂Rn

∂Tsurf

∂R′
n

∂Tsurf
δT s

surf ]
2 + [

∂Rn

∂ϵn

∂R′
n

∂ϵn′
δϵnδϵn′ ] + ... (7.19)

Multiplying both sides of Eqn. 7.10 with Eqn. 7.11 yields

W s
n,n ·

(
R(n)EST −Rn

)
= W s

n,n · Sn,j · ηsj (7.20)

then multiplying both sides by the transpose of the S-matrix yields

(Sj,n)
T ·W s

n,n ·
(
R(n)EST −Rn

)
= (Sj,n)

T ·W s
n,n · Sn,j · ηsj (7.21)

and the least squares determination of the extrapolation parameters would be

ηsj =
[
(Sj,n)

T ·W s
n,n · Sn,j

]−1
· (Sj,n)

T ·W s
n,n ·

(
R(n)EST −Rn

)
(7.22)

In low signal-to-noise or clear scenes the signal-to-noise matrix,
[
(Sj,n)

T ·W s
n,n · Sn,j

]
, can vanish

and the solution would become unstable. In addition, we would like to determine the error covariance
of the cloud clearing parameters, δη′δη, which, we will discover, is equal to the inverse of the signal-
to-noise matrix. The error covariance is highly non-diagonal which makes both damping and noise
determination difficult.
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7.1 Selection of optimal fields of view

The effects of instrumental noise on the clear column radiances will generate in general be amplified
from single spot noise because the clear column radiance are expressed as a linear combination of
the observations in different fields of view. We can compute the amplification of the random noise
that results from computing cloud cleared using Eqn. 7.3. let’s take again the case of two FOVs.
First we rewrite Eqn. 7.3 as

Rclr(n) = R1(n) (1 + η)−R2(n) · η (7.23)

and note that the standard deviation of the error in R1(n) and R2(n) are both given by NE∆N.
The error in Rclr is given by

δR2
clr(n) = NE∆N2 · (1 + η)2 +NE∆N2 · η2 (7.24)

= NE∆N2 ·
[
(1 + η)2 + η2

]
(7.25)

therefore, the error has been “amplified” by

A =
√
(1 + η)2 + η2 (7.26)

Analogously, for the case of nine field of view, we have:

A ≡ [
9∑

j=1

(
1

9
· (1 +

9∑
j′=1

ηj′)− ηj)
2]1/2 (7.27)

A is approximately equal to[
9∑

j=1
η2j ]

1/2 because the first term, containing the factor 1/9, is

small. It is desirable to find an accurate expression for clear column radiance which minimizes the
amplification factor. We can do this by expressing equation 7.6 in terms of radiances in an optimal
set of fields of view, given by linear combination of the original set. The matrix to be inverted
can be transformed to a vector of eigenvalues, λk, with a unitary transformation matrix, Uj,k. The
index j denotes the parameters in transformed space versus k for the untransformed parameters.
This is equivalent to transforming the original Sn,j matrix to an optimum linear combination of the
original radiance differences, Sn,j · Uj,k.

Λk,k ≡ (Uk,j)
T · (Sj,n)

T ·W s
n,n · Sn,j · Uj,k (7.28)

when λk are the diagonal elements of Λk,k.
Eigenvalues where λk < λc, where λc is determined empirically, are NOT used in the solution.
Removing low eigenvalues has the effect of reducing noise in the solution. The number of non-zero
eigenvalues is an estimate of the number of cloud formations determined by the observed radiances
and the signal-to-noise analysis. The linear combination associated with each eigenvalue represents
is uncorrelated with the other eigenvalues. The total number of cloud formations, Nζ can be
computed from the total number of significant eigen-functions, defined by

ϕs
k = 1 if λk ≥ λc

= 0 if λk < λc (7.29)
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Nzeta =
K∑
k=1

ϕs
k (7.30)

Eqn. 7.10 can then be written in transformed ζ space or un-transformed η space as follows.

R(n)CCR = Rn + (Sn,j · Uj,k) · ζsk (7.31)

= Rn + Sn,j · (Uj,k · ζsk) = Rn + Sn,j · η̃sj (7.32)

Multiplying both sides of Eqn. 7.31 with Eqn. 7.11 yields

W s
n,n ·

(
R(n)EST −Rn

)
= W s

n,n · (Sn,j · Uj,k) · ζsk (7.33)

then multiplying both sides by the transpose of the transformed S-matrix yields

(Uk,j)
T (Sj,n)

T ·W s
n,n ·

(
R(n)EST −Rn

)
= (Uk,j)

T (Sj,n)
T ·W s

n,n · Uj,kSn,j · ζsk (7.34)

and the least squares determination of the extrapolation parameters would be

ζsk =
[
(Uk,j)

T (Sj,n)
T ·W s

n,n · Sn,jUj,k

]−1
· (Uk,j)

T (Sj,n)
T ·W s

n,n ·
(
R(n)EST −Rn

)
(7.35)

however, the inverse can be replaced with Eqn. 7.28

ζsk = [Λk,k]
−1 · (Uk,j)

T (Sj,n)
T ·W s

n,n ·
(
R(n)EST −Rn

)
(7.36)

=

[
1

λk

]
· (Uk,j)

T (Sj,n)
T ·W s

n,n ·
(
R(n)EST −Rn

)
(7.37)

Eqn. 7.36 is exactly equal to the transform of Eqn. 7.22

ηsj = Uj,kζ
s
k (7.38)

however, we can now remove the ζ’s associated with low eigenvectors.

ζ̃sk =
ϕs
k

λk
· (Uk,j)

T · (Sj,n)
T ·W s

n,n ·
(
R(n)EST −Rn

)
(7.39)

η̃sj ≡ Uj,k · ζ̃sk = Uj,k ·
ϕs
k

λk
· (Uk,j)

T · (Sj,n)
T ·W s

n,n ·
(
R(n)EST −Rn

)
(7.40)

where η̃sj is the extrapolation parameters from the damped least squares solution.
Discarding low eigenvalues reduces the noise amplification factor by suppressing noise in the

solution for η, resulting in lower values of η. the values of ηsj are used in equation 7.6 to determine
the cloud cleared radiance.
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Chapter 8

Description of the Core Retrieval
Algorithm
Step V: The physical retrieval
algorithm

8.1 Introduction to the inverse problem

The retrieval of geophysical quantities, such as the atmospheric water, from satellite radiances is
highly non-linear, requiring inversion of the equations of the form

Rn(X) ≃
∫
ν

Φν

∫
p

B(T (p)) ·
∂ exp

(
−

z(p)∫
z′=∞

∑
i
κi(X, . . .)dz′

)
∂p

· dp · dν (8.1)

One should always remember that Eqn. 8.1 is an approximation and that the real radiative
transfer equation has non-linear components resulting from

a) the temperature dependence of the transmittance,

b) the non-linearity of the Planck function,

c) the down-welling component of the radiative transfer equation.

Brightness temperature, Θn, is usually more linear with temperature (our core product), provides
improved numerically stability, and is a convenient way to display multi-spectral radiance informa-
tion.

Θn ≡ B−1
ν0 (Rn) =

α2 · ν0
loge

[
1 +

α1ν30
Rn

] (8.2)
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Usually, only radiance differences, e.g. observations minus computed, are needed in remote
sounding so that a radiance difference, ∆Rn, can be converted to a brightness temperature difference,
∆Θn, as follows

∆Θn ≃ ∆Rn ·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(X
s,i−1
L ))

−1

(8.3)

The first step to retrieving the atmospheric state is the linearization of the radiative transfer
equation.

8.2 Linearization of the radiative transfer equation

The idea is to do a Taylor expansion integrand about a reference state, X0.
For a temperature retrieval this is accomplished by first linearizing the Planck function a the

reference temperature profile as follows:

T (z) ≡ T 0(z) + ∆T (z) (8.4)

so that

Bν(T (z)) = Bν(T
0(z)) +

∂Bν(T
0(z))

∂T

∣∣∣
T 0(z)

∆T (z) (8.5)

In general, the radiance of the reference state, X0, can be computed. In our example, we will
consider only the atmospheric component of the radiative transfer equation:

R0
ν =

∫ ∞

z=0
Bν(T

0(z)) · ∂τν(X0)

∂z
∂z (8.6)

Everything is known within this equation except the temperature profile correction, ∆T (z). If we
insert Eqn. 8.5 into Eqn. 8.6 we get

∆Rν = Rν −R0
ν =

∫ ∞

z=0

(
Bν(T

0(z)) +
∂Bν(T

0(z))

∂T

∣∣∣
T 0(z)

∆T (z)

)
· ∂τν
∂z

∂z − R0
ν (8.7)

which can be simplified

∆Rν =

∫ ∞

z=0

(
∂Bν(T

0(z))

∂T

∣∣∣
T 0(z)

· ∂τν
∂z

)
∆T (z)∂z (8.8)

If we define a kernel function as

K(z, ν) ≡ ∂Bν(T
0(z))

∂T

∣∣∣
T 0(z)

∂τν
∂z

(8.9)

then we can write the linearized radiance transfer equation as

∆Rν =

∫ ∞

z=0
K(z, ν) ·∆T (z)∂z (8.10)

Thus, we will ignore the frequency dependence of the Planck function and we will ignore the
temperature dependence of the transmittance. Note that for un-apodized interferometers and broad
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band instruments this expansion is not justified. For broad band channels (e.g., 10’s of cm−1, like
MODIS, HIRS, etc.) an effective Planck function can be computed by integration over the band pass.
For an un-apodized interferometer the side-lobes are significant for 100’s of cm−1. The linearization
of the integrand is one of the principal reasons for use of apodized interferometer spectra.

Equation 8.10 can be approximated by a numerical integral which has the advantage of being
solved by matrix inversion.

∆Rn ≈
NL∑
L=1

(∆z(L) ·K(n,L)) ·∆T (L) = K̃n,L ·∆T (L) (8.11)

The thickness of the layer for the finite difference form is usually absorbed into the definition of K,
written as K̃ above.

As an example, For Nν = 3 and Nz = 4 the matrix would look like:

∆R(ν(1))
∆R(ν(2))
∆R(ν(3))

 = ∆z ·

K(z(1), ν(1)) K(z(2), ν(1)) K(z(3), ν(1)) K(z(4), ν(1))
K(z(1), ν(2)) K(z(2), ν(2)) K(z(3), ν(2)) K(z(4), ν(2))
K(z(1), ν(3)) K(z(2), ν(3)) K(z(3), ν(3)) K(z(4), ν(3))

 ·


∆T (z(1))
∆T (z(2))
∆T (z(3))
∆T (z(4))


(8.12)

which can be written in matrix form as (we include the ∆z component in the matrix Kn,L:

∆Rn = Kn,L ·∆TL (8.13)

If Nν is greater than Nz then there are more equations than unknowns and an inverse for Kn,L

exists, K−1
L,n, then the correction to the initial temperature profile can be found as follows:

K−1
L,n ·∆Rn = K−1

L,n ·Kn,L∆TL = ∆TL (8.14)

∆TL = K−1
L,n ·∆Rn =

[
KT

L,n ·Kn,L

]−1
·KT

L,n ·∆Rn (8.15)

where we employ the definition of a an inverse of a non-square matrix to find the expression for
K−1 as follows

Kn,L ·K−1
L,n = In,n (8.16)

KT
L,n ·

(
Kn,L ·K−1

L,n

)
= KT

L,n · In,n (8.17)(
KT

L,n ·Kn,L

)
·K−1

L,n = KT
L,n (8.18)

K−1
L,n =

(
KT

L,n ·Kn,L

)−1
·KT

L,n (8.19)

Unfortunately, Nν is usually much smaller than Nz. This is because the kernel functions tend to
overlap and, therefore, are not independent. This is a condition generally referred to as information
redundancy which makes the inversion equation ill-posed. Least squares techniques need to be
applied and the solution for ∆T can be found by iterative techniques.

before going any further let’s generalize the above expression as it follows. Using the notation
of the generalized sensitivity matrix, Sn,L, in place of the traditional kernel function, Kn,L the
unconstrained expression we wish to solve has the form of
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∆Rn = Rn − f(XL) = Sn,L ·∆XL (8.20)

The inverse solution is given by:

∆XL = S−1
L,n ·∆Rn (8.21)

Again, from the definition of an inverse

Sn,L · S−1
L,n = In,n (8.22)

ST
L,n ·

(
Sn,L · S−1

L,n

)
= ST

L,n · In,n (8.23)(
ST
L,n · Sn,L

)
· S−1

L,n = ST
L,n (8.24)

therefore, for a non-square matrix, Sn,L, the inverse is given by

S−1
j,n =

[
ST
L,n · Sn,L

]−1
ST
L,n (8.25)

So that Eqn. 8.21 becomes

∆XL =
[
ST
L,n · Sn,L

]−1
· ST

L,n ·∆Rn (8.26)

In addition to the redundancy problem, n has a large fraction of noise (due to low signal-to-noise
related to the low temperatures) which makes the solution unstable. Careful attention must be given
to the select channels containing the maximum amount of unique information fromthe spectra and
with the lowest instrumental noise. See ahead the section on the channel selection methodology. To
take into account the noise problem, we can compute a weighted least squares solution:

∆XL =
[
ST
L,n ·Wn,n · Sn,L

]−1
· ST

L,n ·Wn,n ·∆Rn (8.27)

Another critical problem is represented by the fact that the kernel functions Sn,L are very
broad functions and, therefore, are insensitive to high frequency oscillations in ∆XL. As a result,
the inversion process usually converges with unrealistic vertical profiles.

In the most crude sense, regularization is the stabilization of the inverse by adding something
to the matrix to avoid an in-determinant solution (i.e., a zero divided by zero). This, in effect, will
dampen the solution, ∆XL, and make it “stick” to the previous iteration. This results in a need for
a background term, Ψn, if we are going to iterate the solution.

∆XL =
[
ST
L,n ·Wn,n · Sn,L + HL,L

]−1
· ST

L,n ·Wn,n · (∆Rn − Φn) (8.28)

8.3 The physical retrieval algorithm

The atmospheric state, Xs
L, and the error estimate of that state, δXs

L, are used to minimize the
residuals in observed minus computed radiances in each retrieval step=s.

The current AIRS/AMSU-A/HSB retrieval system is a modular set of retrieval steps. Each
retrieval step solves for certain parameters while holding all others constant. The geophysical state
of the clear atmosphere, Xs,i

L , at a given retrieval step, s, and iteration, i, is given in Table 8.1.
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Table 8.1: Definition of the geophysical state, Xs,i
L , in the AIRS science team physical algorithm

T (p) vertical temperature profile
q(p) vertical water vapor profile (7.7 g/kg @ surface)
L(p) vertical liquid water profile
O3(p) vertical ozone profile (0.4 ppmv, 8ppmv @ 6 mb))
Ts surface temperature
ϵ(ν) spectral surface emissivity
ρ⊙(ν) spectral surface reflectivity of solar radiation
CO2(p) carbon dioxide profile
CH4(p) methane profile
CO(p) carbon monoxide profile
N2O(p) nitrogen oxide profile
SO2(p) sulfur dioxide profile
HNO3 nitric acid profile

Each step solves for specific geophysical parameters while holding others constant. The pa-
rameters considered as error sources in the error covariance matrix are shown in the table. Some
parameters are not accurately known and, therefore, they are only considered on the diagonal of
the error covariance matrix. These are shown with a dagger symbol, †.

Each step uses its own subset of channels. If the error covariance matrix is large for a given
channel or it has large spectroscopic uncertainties then it is permanently removed from the compu-
tation. This has obvious improvements for execution time and it also improves results, since error
estimates and damping are the least accurate components of the retrieval process.

The clear column radiance is calculated from the NF FOV’s using the equation:

R(n)CCR = Rn +
NF∑
j=1

(
Rn −Rn,NF+1−j

)
· η̃s,ij (8.29)

It is possible for the cloud cleared radiance observations to be close to zero or even negative due
to instrumental noise and cloud clearing errors. Therefore, we never attempt to compute a clear
column brightness temperature from these radiances.

The retrieval algorithm minimizes the weighted difference between the clear column radiance

observations, R(n)CCR, and radiances computed using a forward model, Rn

(
Xs,i

N

)
, by varying the

geophysical state, Xs,i
L , where i is the iteration number within the current retrieval step, s. The

forward model at iteration i = 1 uses the previous iteration’s retrieved geophysical state, Xs,i
L . For

s = 1, i = 1, X1,1
L comes from a first guess (climatology) and for s > 1, i = 1 the retrieval uses the

result from the last iteration, I + 1, from the previous step as a first guess, Xs,1
L = Xs−1,I+1

L .
For multi-spectral retrievals the radiances can vary many orders of magnitude over the spectral

regions (e.g., microwave, long-wave infrared, and short-wave infrared). To maintain numerical
precision it is desirable to normalize the “obs-calc” (O-C). We would like to mimic a brightness
temperature difference and we can approximate this by

For infrared channels we compute O-C as given by8.30:
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Table 8.2: Retrieval Steps in NUCAPS v1.0 Algorithm
solve step computational error sources channels used

s for: name in error covariance AIRS ATMS

1 T (p), ϵ(ν), Ts MIT q(p), L(p) 12
2 q(p), L(p) MIT T †(p), Ts, ϵ(ν), ρ⊙(ν) 3

3 T (p), ϵ(50.3), Ts AMSU(Ts) q(p), L(p) 11
4 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ϵ(ν), ρ⊙(ν) ≤ 58
5 Rccr ETA T †(p), q†(p), Ts, ϵ(ν), ρ⊙(ν) ≤ 58
6 T (p), q(p), O3(p) RT NOAA 1680
7 Ts, ϵ(ν), ρ⊙(ν) RT NOAA 1680
8 T (p), ϵ(50.3), Ts AMSU(Ts) Rccr(ν), q(p), L(p) 11

9 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ϵ(ν), ρ⊙(ν) ≤ 58
10 Rccr ETA T †(p), q†(p), Ts, ϵ(ν), ρ⊙(ν) ≤ 58
11 Ts, ϵ(ν).ρ⊙(ν), q SURFACE T †(p) 25
12 T (p) TEMP Rccr(ν), q(p), O3(p), L(p), Ts, 108 7

ϵ(ν), ρ⊙(ν), CO2

13 q(p) WATER Rccr(ν), T
†(p), L(p), Ts, 44 3

ϵmw(f), ρ⊙(ν), CH4(p)
14 O3(p) OZONE Rccr(ν), q(p), Ts, ϵ(ν) 34
15 ((T (p), ϵ(50.3))) AMSU(RJ) Rccr(ν), q(p), L(p), Ts 11

16 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ϵ(ν), ρ⊙(ν) ≤ 58
17 Rccr ETA T †(p), q†(p), Ts, ϵ(ν), ρ⊙(ν) ≤ 58
18 Ts, ϵ(ν), ρ⊙(ν) SURFACE Rccr(ν), T

†(p), q†(p) 25
19 T (p) TEMP Rccr(ν), q(p), O3(p), L(p), Ts, 124 7

ϵ(ν), ρ⊙(ν), CO2

20 CO(p) CO Rccr(ν), T (p), q(p), Ts 36
21 CH4(p) CH4 Rccr(ν), T (p), q(p), Ts 71
22 CO2 CO2 Rccr(ν), T (p), q(p), Ts 70

O3, ρ⊙(ν)

23 HNO3(p) HNO3 Rccr(ν), T (p), q(p), Ts 8
24 N2O(p) N2O Rccr(ν), T (p), q(p), Ts 52
25 SO2(p) SO2 Rccr(ν), T (p), q(p), Ts 63

† indicated that off-diagonal elements are not used

∆Θs,i
n ≡

(
R(n)CCR −Rn

(
Xs,i

N

))
·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

−1

(8.30)

while for microwave channels, where the data is given in brightness temperature, we compute a
brightness temperature difference

∆Θs,i
n ≡

(
Θn,CCR −Θn

(
Xs,i

L

))
(8.31)

where Θn,CCR is either the observed microwave brightness temperatures or the average of the 9
brightness temperatures within the ATMS field of regard.



Chapter 8: The physical retrieval algorithm NUCAPS ATBD Version 1.0 August 21, 2013 57

8.4 Specification of Geophysical Functions

A change to a group of the geophysical state are represented by a geophysical perturbation pa-
rameters, ∆As,i

j , and an associated perturbation function, F s
L,j . This is the generalized sensitivity

matrix. For vertical profiles, such as T (p), q(p), O3(p), the perturbation function, F s
L,j = F s

j (p), is a
trapezoid (with dimensionless maximum value of 1.0) covering a vertical range of layers. For spectral
parameters such as ϵ(n) and ρ(n), F s

L,j = F s
j (ν) is a wedge or triangle covering a range of frequencies

with a dimensionless peak value of 1.0. For surface temperature and microwave emissivity F s
L,j is a

value equal to unity. These are summarized in the following table:.

Table 8.3: Scale size of perturbation functions in v5.0

retrieval ∆Âs
j

step Ts ϵ(ν) ρ(ν) T (p) q(p) trace

RETAMSU 1K 1% 1K
RETSURF 3K 1% 0.5% 3K 20%
RETTMP 1K
RETWATR 10%
RETOZON 10%

RET CO 10%
RET CH4 2%
RET CO2 1%

RET HNO3 20%
RET N2O 5%
RET SO2 50%

• Temperature functions are additive vertical trapezoids.

T s,i+1(p) = T s,i(p) +
∑
j

F s
j (p) ·∆As,i+1

j (8.32)

T s,i+1
s = T s,i

s + F s
j ·∆As,i+1

j (8.33)

• Composition functions are multiplicative vertical trapezoids.

– Radiance kernel is ∝ exp(κ(Xs,i
L )),

– κ(Xs,i
L ), is the optical depth ∝ Xs,i

L .

– Therefore, composition variables are more linear in ln
(
Xs,i

L

)
– ∂ ln(Xs,i

L ) ∝ ∂Xs,i
L

Xs,i
L

which is a % change in Xs,i
L .

qs,i+1(p) = qs,i(p) ·

1 +∑
j

F s
j (p) ·∆As,i+1

j

 (8.34)
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• Emissivity functions are additive spectral triangles.

ϵs,i+1(n) = ϵs,i(n) +
∑
j

F s
j (ν) ·∆As,i+1

j (8.35)

• A scaling parameter Âs
j is used to create dimensionless parameters and adjust scale between

different functional groups (e.g., when mixing T(p), q(p), and emissivity in one retrieval).

• The Jacobian, Ks,i
n,L, becomes a set of new derivatives, Ss,i

n,j , in which groups of parameters in
L space are grouped together in J space.

• Sub-sets (e.g., temperature) of vertical and spectral functions must sum to unity:
∑
j

(
F s
L,j

)
=

1 for a group of functions.

We will write the entire geophysical state as a vector XL, with associated geophysical perturba-
tion functions ∆XL,j = F s

L,j⊗∆Âs
j and perturbation parameters ∆As,i

j . The ⊗ symbol represents a
scale factor for F s

L,j and not a matrix multiply and is equivalent to an identity matrix multiplication,

F s
L,j ⊗ ∆Âs

j ≡ F s
L,j · Ij,j · ∆Âs

j . For vertical functions the index L will specify pressure intervals
while for spectral parameters the functions will represent frequency intervals and L will specify the
channel numbers, n. For other functions, such as skin temperature the function is a value that is,
the index L is single valued, and there is only one value of j.

Xs,i+1
L = Xs,i

L +
∑
j

(
F s
L,j ⊗∆Âs

j

)
·∆As,i+1

j (8.36)

The sensitivity matrix, Ss,i
n,j , is calculated for each channel n and each geophysical parameter,

denoted by index j, to be solved for in the current retrieval step, s, and iteration, i. The sensitivity
matrix is computed for a pre-set perturbation functions, F s

L,j ⊗∆Âs
j as follows

• For additive functions the S-matrix is given by

for infrared channels

Ss,i
n,j ≡ ∆Âs

j ·
∂Rn

(
X + F s

L,j ·Aj

)
∂Aj

∣∣∣∣∣
Xs,i

L

·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

−1

(8.37)

≃
(
Rn

(
Xs,i

L + F s
L,j ·∆Âs

j

)
−Rn

(
Xs,i

N

))
·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

−1

(8.38)

and for microwave channels

Ss,i
n,j ≃ Θn

(
Xs,i

L + F s
L,j ·∆Âs

j

)
−Θn

(
Xs,i

L

)
(8.39)

• For multiplicative functions the S-matrix is given by
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Ss,i
n,j ≡ ∆Âs

j ·
∂Rn

(
X ·

(
1 + F s

L,j ·Aj

))
∂Aj

∣∣∣∣∣
Xs,i

L

·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

−1

(8.40)

≃
(
Rn

(
Xs,i

L ·
(
1 + F s

L,j ·∆Âs
j

))
−Rn

(
Xs,i

N

))
·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

−1

(8.41)

and for microwave channels

Ss,i
n,j ≃ Θn

(
Xs,i

L ·
(
1 + F s

L,j ·∆Âs
j

))
−Θn

(
Xs,i

L

)
(8.42)

• Analytic derivatives on the RT grid do not help our algorithm, δ function perturbations are
sub-optimal (Backus+Gilbert).

• Single sided finite difference is currently used, we will explore the benefit of double-sided and
dynamically scaled derivatives someday. This is not our biggest error source!!!

8.5 Retrieval Error Covariance Matrix

The error covariance matrix, N s
n,n′ , is computed in the first iteration of every step and is the estimate

of the uncertainty in the observed minus computed effective brightness temperature difference,
∆Θs,i

n . It consists of the clear column radiance error estimate, discussed earlier (Eqn. ??) and

computation uncertainties in the forward calculation of Rn

(
Xs,i

N

)
. The computational uncertainty

is calculated for all geophysical parameters, X, not modified by the retrieval and, therefore, assumed
known in a given step of the retrieval process.

The radiance error estimate, Es,i
n,g, due to uncertainties in geophysical quantities is computed

from error estimates in geophysical groups Xs,i
L,g (e.g., an entire temperature profile). As with the

sensitivity functions, this can be thought of as an error estimate of a parameter, δAg, and an
associated function, F s

g (L). The partial derivatives are calculated from the current estimate of the

geophysical state, Xs,i
L , and an estimate of the uncertainty in each geophysical group to be held

constant in this stage of the retrieval, δXs,i
L,g, and is calculated by a finite difference

For infrared channels the error estimate is converted to effective brightness temperature units
using

Es,i
n,g ≡ δAs,i

j ·
∂Rn

(
Xs,i

L

)
∂Aj

∣∣∣∣∣
Xs,i

L

·
(
∂Bν

∂T

∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

)−1

(8.43)

≃
(
Rn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
−Rn

(
Xs,i

L

))
·
(
∂Bν

∂T

∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

)−1

(8.44)
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and for microwave channels the computation is

Es,i
n,g ≃ Θn

(
Xs,i

L + δXs,i
L,g ⊗Qg

)
−Θn

(
Xs,i

L

)
(8.45)

Since δXL,g is an RSS error estimate it can be correlated vertically and spectrally and correlated
with respect to other parameters (e.g., surface spectral emissivity error can be correlated with skin
temperature). We use Qg as a scaling to compensate for assumed anti-correlation in these error
estimated. Currently we set Qg to 0.5 for T (p) and q(p) error estimates and 1.0 for all other error
estimates.

The computational covariance matrix, Cs,i
n,n′ , is composed of a summation of all the radiance

error estimate for all geophysical parameters held constant during a retrieval

Cs,i
n,n′ ≡

∑
g

Es,i
n,g ·

(
ET

g,n

)s,i
(8.46)

The retrieval error covariance matrix is a combination of the cloud cleared radiance error co-
variance and the computational error covariance terms.

N s,i
n,n′ = Cs

n,n′ +

[
δR(n)CCR ·

(
δRn′,OBS

)T
+ δRU

n · δn,n′ ·
(
δRU

n′

)T ]
(

∂Bν
∂T

∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

)
·
(

∂Bν
∂T

∣∣∣∣
B−1

ν (Rn′ (X
s,i
L ))

) (8.47)

Where δRU
n is a small term for additional unknown sources of error which is presently computed

from

δRU
n ≡ 0.1◦ ·

∂Bν

∂T

∣∣∣∣∣
B−1

ν (Rn(Xs,i
N ))

−1

(8.48)

In retrieval code the cloud cleared radiance error estimates are computed in the routine noisecv.F
and the computation terms are computed and added to the noise covariance matrix in the individual
retrieval routines (e.g., rettmpc.F, retwatr.F, etc.)

8.6 The retrieval of the geophysical state

The brightness temperature difference residuals can be written in terms of a linear Taylor expansion
change to the geophysical parameters, ∆As,i

j , which is dimensionless due to ∆Âs
j in Eqn. 8.37 or

Eqn. 8.40. In any given retrieval step, we separate the parameters we are solving for into the matrix
Ss,i
n,j and the parameters we are not solving for into the matrix Es,i

n,g. If we assume for the moment

that the value of the parameters we are not solving for are known, such that Es,i
n,g could be known

we could write

∆Θs,i
n = Ss,i

n,j ·∆As,i+1
j +

∑
g

±Es,i
n,g (8.49)

But we do not know the sign of the errors in the parameters we are not solving for, if we did we
could eliminate that uncertainty. At best we only have an estimate for the covariance and spectral
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correlation of these uncertainties, therefore,
∑
g
±Es,i

n,g enters into the error covariance matrix via

Eqn. 8.46 and Eqn. 8.47 so that the radiance residuals, ∆Θs,i
n , can be related to the parameters we

are solving for via

(
N s

n,n

)−1
Ss,i
n,j ·∆As,i+1

j =
(
N s

n,n

)−1
∆Θs,i

n (8.50)(
ST
j,n

)s,i (
N s

n,n

)−1
Ss,i
n,j ·∆As,i+1

j =
(
ST
j,n

)s,i (
N s

n,n

)−1
∆Θs,i

n (8.51)

The assumption that is implicit here is that properly weighted geophysical parameter errors,(
N s

n,n

)−1
·
∑
g
±Es,i

n,g, are uncorrelated with the parameters we are trying to solve for. That is, the

properly weighted equation is one that has the smallest standard deviation.
The change required to the parameters can be solved in a weighted least-squares sense. If there

were no damping then the solution would be given by

∆As,i+1
j (0) =

[(
ST
j,n

)s,i (
N s

n,n

)−1
Ss,i
n,j

]−1

·
(
ST
j,n

)s,i
·
(
N s

n,n

)−1
·∆Θs,i

n (8.52)

however, this solution would be highly unstable, given the under-determined nature of atmospheric
retrievals. As shown in Section ??, the adjustment to the parameters is found by solving for the

eigenvalues, λs,i
k , and eigenvector transformation matrix, U s,i

j,k, of
(
ST
j,n

)s,i (
N s

n,n

)−1
Ss,i
n,j , such that

Λs,i
k,k ≡

(
UT
k,j

)s,i (
ST
j,n

)s,i (
N s

n,n

)−1
Ss,i
n,jU

s,i
j,k (8.53)

See Press et. al 1986, pgs. 350-363 for FORTRAN routines to compute λs,i
k and U s,i

j,k. The

2-d matrix Λs,i
k,k has only diagonal elements equal to λs,i

k . The transformation matrix, U s,i
j,k, can be

thought of as a transformed sensitivity matrix given by Ss,i
n,j ·U

s,i
j,k. At this point in the derivation we

have not changed anything except how we are computing the inverse. Note that when computing[
Λs,i
k,k

]−1
any components of λk < (0.05)2 · λs

c are set to zero, that is we remove the singular

values. When λk is approaching zero both the numerator and denominator are tending toward zero.
Therefore, setting those components of ∆As,i+1

k (0) to zero is most logical.

∆As,i+1
j (0) = U s,i

j,k ·
1

λs,i
k

·
(
UT
k,j

)s,i
·
(
ST
j,n

)s,i
·
(
N s

n,n

)−1
·∆Θs,i

n (8.54)

We can utilize these new optimal functions to compute a change made in transformed parameter
space, is given by ∆Bs,i+1

k (0). Solving Eqn. 8.61

∆Θs,i
n = Ss,i

n,j · U
s,i
j,k ·∆Bs,i+1

k (0) (8.55)(
N s

n,n

)−1
·∆Θs,i

n =
(
N s

n,n

)−1
· Ss,i

n,j · U
s,i
j,k ·∆Bs,i+1

k (0) (8.56)(
UT
k,j · ST

j,n

)s,i
·
(
N s

n,n

)−1
·∆Θs,i

n =
(
UT
k,j · ST

j,n

)s,i
·
(
N s

n,n

)−1
· Ss,i

n,j · U
s,i
j,k ·∆Bs,i+1

k (0)(8.57)(
UT
k,j

)s,i
·
(
ST
j,n

)s,i
·
(
N s

n,n

)−1
·∆Θs,i

n = Λs,i
k,k ·∆Bs,i+1

k (0) (8.58)



Chapter 8: The physical retrieval algorithm NUCAPS ATBD Version 1.0 August 21, 2013 62

∆Bs,i+1
k (0) =

[
Λs,i
k,k

]−1
·
(
UT
k,j

)s,i
·
(
ST
j,n

)s,i
·
(
N s

n,n

)−1
·∆Θs,i

n (8.59)

∆Bs,i+1
k (0) =

1

λs,i
k

·
(
UT
k,j

)s,i
·
(
ST
j,n

)s,i
·
(
N s

n,n

)−1
·∆Θs,i

n (8.60)

Again, note that when computing
[
Λs,i
k,k

]−1
any values of ∆Bs,i+1

k (0) are set to zero when λk <

(0.05)2 · λs
c. When λk is approaching zero both the numerator and denominator are tending toward

zero, therefore, setting ∆Bs,i+1
k (0) to zero is most logical.

And we note that the transformed parameters are related to the original parameters by the
eigenvectors.

∆Θs,i
n = Ss,i

n,j ·∆As,i+1
j = Ss,i

n,j · U
s,i
j,k ·∆Bs,i+1

k (8.61)

Eqn. 8.61, that is, that ∆As,i+1
j = U s,i

j,k ·∆Bs,i+1
k , is also a statement that the original functions

Eqn. 8.36 have been transformed to new optimal functions

Xs,i+1
L = Xs,i

L +
∑
j

(
F s
L,j ⊗∆Âs

j

)
·∆As,i+1

j =
∑
j

(
F s
L,j ⊗∆Âs

j

)
· U s,i

j,k ·∆Bs,i+1
j (8.62)

If no damping is required the change made in transformed parameter space, is given by ∆Bs,i+1
k (0).

Combining Eqn. 8.52 and Eqn. 8.61 yields

∆As,i+1
j (0) = U s,i

j,k ·∆Bs,i+1
k (0) = U s,i

j,k ·
1

λs,i
k

·
(
UT
k,j

)s,i
·
(
ST
j,n

)s,i
·
(
N s

n,n

)−1
·∆Θs,i

n (8.63)

The changes can be damped by adding a value of ∆λs,i
k to the λs,i

k such that λs,i
k ≥ λs

c. This limits
the noise in ∆B to a maximum value,

δBs
max ≡ 1√

λs
c

or (8.64)

λs
c ≡

(
1

δBs
max

)2

(8.65)

The damping parameter, δBs
max is determined empirically for each step and will be discussed in

more detail in the next section (see Eqn. ??).
Therefore, the fraction of the transformed function solved for is defined as

ϕs,i
k ≡

λs,i
k

λs,i
k +∆λs,i

k

(8.66)

which is a diagonal matrix and where ϕs,i
k = 0 represents a parameter which is completely damped

and ϕs,i
k = 1 is completely solved for. For completely damped eigenvalues, the change to the

geophysical parameters is set to zero and the first guess is unchanged for that component of the
solution.

The size of λs,i
k and, therefore, λs

c will be proportional to the size of the perturbation functions,

∆
(
Âs

j

)2
(see Eqn. 8.37 or Eqn. 8.40).
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The degrees of freedom (d.o.f.) is given by the sum of the significant eigenvalues. Given that
we are employing damping, the d.o.f. is given by

d.o.f. =
K∑
k=1

ϕs,i
k =

K∑
k=1

λs,i
k

λs,i
k +∆λs,i

k

(8.67)

The damped change made to the transformed parameters is given by ∆Bs,i+1
k ≡ ϕs,i

k ·∆Bs,i+1
k (0)

which makes the damped change equal to

∆As,i+1
j = U s,i

j,k ·∆Bs,i+1
k = U s,i

j,k · ϕ
s,i
k · 1

λs,i
k

·
(
UT
k,j

)s,i
·
(
ST
j,n

)s,i
·
(
N s

n,n

)−1
·∆Θs,i

n (8.68)

Therefore, the difference between ∆As,i+1
j and ∆As,i+1

j (0) is the amount of the solution we did not

believe. If Eqn. 8.68 is to be iterated we will ultimately believe all of ∆As,i+1
j (0). Therefore, we

need to adjust the radiances. First, we will discuss how to compute the damping, ∆λs,i
k .

8.7 Rejection Criteria

A profile is rejected if any of the conditions itemized below is true. The # refers to the step # in
Table 8.2.

• a row of Ss,i
n,j is zero. That is all Ss,i

n,j for a given j are zero in any step.

• determined cloud fraction within AMSU footprint exceeds 80% (step # 18).

• cloud clearing quality indicator (etarej in previous chapter) exceeds 1.75 on the cloud clearing
after the NOAA regression (step # 12).

• Effective amplification factor exceeds 10.

• the final temperature profile (step # 21) and the temperature profile from the preceding
AMSU temperature retrieval (step # 17) disagree in the RMS of the bottom two 1-km layers
by 2◦.

[
1

2

2∑
k=1

(
F s
L,k ⊗ T s=21

L − F s
L,k ⊗ T s=17

L

)2] 1
2

≥ 2◦ (8.69)

where F s
L,k are two functions that averages the lower ≈ 1 km layers.

• the RMS of O-C brightness temperatures exceed 1.75 for a sub-set of AMSU channels (cur-
rently AMSU channels 3, 4, 5, 6, 7, 8, 9, 10, 11 are used after step # 21)


L∑

n=1

(
1

NE∆T

)2 (
Θn,CCR −Θn(X

s=21
L )

)2
∑
n=1

(
1

NE∆T

)2


1
2

≥ 1.75◦ (8.70)
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• if the amplification factor exceeds 2.0 and the retrieval cloud fraction is between 65% and
80% and there is more than 10% of the cloudiness with cloud top pressure exceeding 500 mb
after step # 19.

• quality indicator from final surface retrieval exceeds 1.25 (step # 20)

• quality indicator from final temperature retrieval exceeds 1.25 (step # 21)
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Chapter 9

Preliminary Validation Results

In this chapter we perform a thorough validation analysis on the performance of the temperature,
water vapor, cloud clearing and trace gas products. We will first concentrate on a global focus day
test bed of NUCAPS data acquired on May 15th 2012. For this analysis we will use co-located
model analysis (ECMWF and GFS) as a reference truth. At this stage of the NPP mission we
have just started collecting dedicated radiosondes that allow for an independent measurement of
the atmospheric state which also provides a superior spatial and temporal collocation with respect
to the model analysis.

9.1 Validation results from focus day May 15 2012

For this analysis we will use co-located ECMWF analysis profiles as a reference truth for temperature
and water vapor. Due to a temporary unavailability of ECMWF ozone profiles, we will use GFS
data for the validation of ozone.

ECMWF analysis profiles are available with a frequency of 6 hours per day. Although a tem-
poral interpolation among two consecutive analyses that will match the satellite overpass would be
preferable, we simply acquire the temporally closest analysis profile because computationally less
compelling. For an accurate analysis, it is important then to understand the impact of the temporal
mismatch between the retrieval and model on the validation statistics. We begin then by differ-
encing two ECMWF analysis times (0 and 6Z) to effectively get the atmospheric change occurring
over a time span of 6 hours at each grid cell. This is shown in figure 1a for 850mb temperature and
in figure 1c for 850mb moisture (units are expressed as percentage change in 6 hours). These two
figures illustrate that while globally many regions of the Earth do not see significant change over
6 hours (light green regions), some cases have significant changes that will significantly affect the
statistics (blue and red regions).

We then computed the amount of time required, , to exceed a given threshold. The thresholds
were set to 0.5K for temperature and 5% for moisture change. These thresholds are approximately
the level at which the statistics would be noticeably affected. We then look at the distribution of
the number cases in Fig. 1a and 1c as a function of . In Fig. 1b and 1c we show the cumulative
distribution as a function of time and a expanded view near zero. We see that for 850 mbar
temperature 20% of the global cases exceed this threshold when is about 12 minutes (0.2 hour in
the plot). For moisture, 20% of the global cases exceed the threshold in equal to about 2 minutes
(0.03 hour in the plot). These results should be kept in mind when interpreting the statistical
results that we are about to present. In other words, this analysis should also be a reminder that
significant changes in the atmospheric fields can occur in short time frames and use of forecasts
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Figure 9.1: Difference of the 6Z and 0Z ECMWF analysis is shown for 850 mbar temperature
(Fig. 1a, Kelvin) and 850 mbar moisture (Fig. 1c, % change) for May 15, 2012. The cumulative
distribution of the number of cases exceeding a threshold (see text) is shown for temperature (Fig.
1b) and moisture (Fig. 1c) as a function of the time required to exceed that threshold. Lines
indicate where 20% of the cases would be exceeding this threshold ( approximately equal to 0.2
hour for temperature and approximately equal to 0.03 hour for moisture).

or other in-situ data for performance characterization is best determined by dedicated radiosondes
launched near satellite overpass times.

9.1.1 RMS and BIAS statistics results over different geophysical regimes

In the following, we provide an overview of RMS and BIAS validation results using the full focus
day of NUCAPS retrieval data over the global (figure 2), tropical (figure 3), mid latitude (figure 4)
and polar region (figure 5). Each group of figures is separated into RMS (top) and BIAS (bottom)
statistics. Left figure is for temperature, center figure is for water vapor (both respect to ECMWF
used as truth). The right figure is for ozone statistics (using the GFS model as truth).

NUCAPS results are shown in red. Solid lines are for the final physical retrieval, while dash lines
are for the first guess. For completeness, we are plotting AIRS results using both the operational
version 6 (blue curves, from now on referred to as ”v6”) and the off-line research code equivalent to
NUCAPS (cyan curves, from now on referred to as ”v5.9”).

The vertical red bars in figure 2 (top part) indicate the specification requirements of the CrIMSS
JPSS program. The first and most important observation that can be made is that NUCAPS
global RMS and BIAS temperature, water vapor and ozone statistics generally meet the required
specifications. After only one year in orbit, NUCAPS RMS and BIAS performance is comparable to
the AIRS products (both AIRS v5.9 and v6) which have more than 10 year of maturity. NUCAPS
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global acceptance yield (top left side on the temperature figure) is about 60%, while AIRS v5.9 is
75%. They both use the same rejection criteria. AIRS v6 yield is based on a different criterion and
amounts to 86%. Possible sources of difference in the acceptance yield and retrieval performance are:
AIRS v6 has improved surface emissivity first guess; AIRS v5.9 has a multi-year temperature and
water vapor first guess regression training; AIRS radiance tuning uses a dedicated RAOB training
ensemble; AIRS retrieval quality controls are fully optimized. These aspects are element of work in
progress for NUCAPS.

We also separate ocean and land (figure 6) and day night ensembles (figure 7). The results we
find are consistent with what observed above and are in support of the stability of the NUCAPS
product.
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Figure 9.2: RMS (top) and BIAS(bottom) global statistics for temperature (left) , water vapor
(center) and ozone (right). Solid curves are for the final physical retrieval, dash lines are for the
first guess. Red curve is for NUCAPS, blue is for AIRS v6 and cyan is for AIRS v5.9. See text for
details.
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Figure 9.3: Same as figure 2, but for tropical regimes.
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Figure 9.4: Same as figure 2, but for mid-latitude regimes.
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Figure 9.5: Same as figure 2, but for polar regimes.
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Figure 9.6: Same as figure 2, solid is global, dash is night and dash-dot is day regimes.
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Figure 9.7: Same as figure 2, solid is global, dash is land and dash-dot is ocean regimes.


