

Suomi NPP VIIRS Near Constant Contrast (NCC) Imagery EDR Review - Provisional

Don Hillger¹, Thomas Kopp², and the EDR Imagery and Visualization Team 22 August 2013

> ¹NOAA/NESDIS/StAR ²The Aerospace Corporation

VIIRS EDR Imagery (and Visualization) Team

- NESDIS/StAR (D. Hillger, D. Molenar, D. Lindsey, T. Schmit GOES liaison)
- CIRA/CSU (C. Seaman, S. Miller, S. Kidder, S. Finley, R. Brummer)
- CIMSS/SSEC (T. Jasmin, T. Rink, W. Straka)
- Aerospace (T. Kopp, J. Feeley)
- NOAA/NGDC (C. Elvidge)
- NRL (J. Hawkins, K. Richardson, J. Solbrig, T. Lee)
- AFWA (J. Cetola)
- Northrop Grumman (C. Liang, S. Weiss, R. Mahoney)
- NASA (R. Williams, W. Thomas)
- NOAA/OSPO (S. Qiu)
- COAST/Raytheon (B. Johnson)
- NASA/SPoRT (G. Jedlovec, M. Smith)
- StAR (V. Mikles, M. Tsidulko)

VIIRS Environmental Data Record (EDR)s

VIIRS Band	Central Wavelength (µm)	Bandwidth (µm)	Wavelength Range (µm)	Band Explanation	Spatial Resolution (m) @ nadir
M1	<mark>0.412</mark>	0.02	<mark>0.402 - 0.422</mark>		750 m
M2	0.445	0.018	0.436 - 0.454	Visible	
M3	0.488	0.02	0.478 - 0.488		
M4	<mark>0.555</mark>	0.02	<mark>0.545 - 0.565</mark>		
M5 (B)	0.672	0.02	0.662 - 0.682		
M6	0.746	0.015	0.739 - 0.754	Neor ID	
M7 (G)	0.865	0.039	0.846 - 0.885	Near IR	
M8	1.240	0.020	1.23 - 1.25	Shortwave IR	
<mark>M9</mark>	<mark>1.378</mark>	<mark>0.015</mark>	<mark>1.371 - 1.386</mark>		
M10 (R)	1.61	0.06	1.58 - 1.64		
M11	2.25	0.05	2.23 - 2.28		
M12	3.7	0.18	3.61 - 3.79		
M13	4.05	0.155	3.97 - 4.13	Medium-wave IR	
<mark>M14</mark>	<mark>8.55</mark>	<mark>0.3</mark>	<mark>8.4 - 8.7</mark>		
<mark>M15</mark>	<mark>10.763</mark>	<mark>1.0</mark>	<mark>10.26 - 11.26</mark>	Longwave IR	
<mark>M16</mark>	<mark>12.013</mark>	<mark>0.95</mark>	<mark>11.54 - 12.49</mark>		
DNB	0.7	0.4	0.5 - 0.9	Visible	750 m across full scan
I1 (B)	0.64	0.08	0.6 - 0.68	Visible	
I2 (G)	0.865	0.039	0.85 - 0.88	Near IR]
I3 (R)	1.61	0.06	1.58 - 1.64	Shortwave IR	375 m
I4	3.74	0.38	3.55 - 3.93	Medium-wave IR]
15	11.45	1.9	10.5 - 12.4	Longwave IR	

Notes:

M-bands highlighted in pale yellow are available as EDRs, in addition to SDRs.

True-color component bands are highlighted in red, green, and blue.

Natural-color component bands are noted with R, G, and B.

M6 on Suomi NPP has a high radiance fold-over issue with many saturated pixels.

At the Day/Night Terminator

11:53 UTC 31 July 2013

During a New Moon

06:43 UTC 6 August 2013

NCC Over a Full Lunar Cycle

New moon

NPP/JPSS data sources

- **GRAVITE¹** (Suitland, 7-hour delay)
- NOAA CLASS² (Asheville, 7-hour delay) not actively used
- Atmosphere PEATE³ (Wisconsin, 7-hour delay)
 - ADDE server for McIDAS-X
 - FTP and HTML
- **Direct Readout** (Wisconsin, minimal delay, but provides data <u>only over North America</u>, when the satellite is with sight of Madison)
- **AFWA IDPS**⁴ (Omaha, near real-time)

¹Government Resource for Algorithm Verification, Independent Test, and Evaluation ²Comprehensive Large Array-data Stewardship System ³Product Evaluation and Algorithm Test Elements ⁴Air Force Weather Agency Interface Data Processing Segment

VIIRS display tools

- McIDAS-V (VIIRS capable) SSEC/CIMSS/Wisconsin
- McIDAS-X (VIIRS capabilities still under development) – SSEC/CIMSS/Wisconsin

- CSPP (Community Satellite Processing Package) (CIMSS/Wisconsin) for users of Direct Broadcast VIIRS
- TeraScan / NexSat (web display) NRL
- IDL

Suomi NPP Imagery and Visualization Team web page

http://rammb.cira.colostate.edu/projects/npp/

 NPP Orbital Passes
 Reverse Chronology of NPP VIIRS Imagery Significant Events (Newest information at the top)
 NPP Reference Information/Websites and VIIRS Imagery Documents

Suomi NPP VIIRS Online

http://rammb.cira.colostate.edu/ramsdis/online/npp_viirs.asp

JPSS/Suomi NPP VIIRS Imagery Blog

http://rammb.cira.colostate.edu/projects/npp/blog/

Blog maintained at CIRA to highlight capabilities of VIIRS instrument.

Designed to provide education/outreach of VIIRS imagery applications.

Blog covers wide range of topics: tropical cyclones, severe weather, fire detection, auroras, volcanic eruptions, flooding, snow and ice detection, DNB applications, RGB composites and other interesting high-resolution imagery from VIIRS

Journal articles from the Imagery Team

- Hillger, D., T. Kopp, T. Lee, D. Lindsey, C. Seaman, S. Miller, J. Solbrig, S. Kidder, S. Bachmeier, T. Jasmin, and T. Rink, 2013: First-Light Imagery from Suomi NPP VIRS. Bull. Amer. Meteor. Soc., 94(7), 1019-1029, plus cover images. doi:10.1175/BAMS-D-12-00097.1
- Hillger, D., C. Seaman, C. Liang, S. Miller, D. Lindsey, and T. Kopp, 2013: Suomi NPP VIIRS Imagery Calibration and Validation. Submitted to Journal of Geophysical Research-Atmospheres (JGR) for publication in a "Special Issue of AGU JGR-Atmospheres on Suomi NPP Cal/Val Science Results". Invited to submit a cover figure.

Sensor Data Record (SDR) to Environmental Data Record (EDR)

- Ground Track Mercator (GTM) remapping software.
 - GTM is a remapping of the data, but the same radiances/reflectances/temperatures for Non-NCC bands only.
- For NCC imagery, which is derived from the Day Night Band (DNB), there is additional radiance (reflectance) processing

Near Constant Contrast Process Adjusts for Solar/Lunar Effects

- Process uses large <u>Look-Up Tables</u>, referred to as GVVSSE (pronounced "goosey") tables, to mitigate variations in the scene caused solely by solar or lunar differences in illumination across the granule
 - These Gain Value Versus Scene Source Elevation tables use curves of solar and lunar radiances based on solar/lunar angles (and for the moon, its phase) to <u>remove variations caused only</u> by sensor/solar/lunar angle variations
 - The <u>greatest impact</u> from these computations is in the <u>terminator region</u>
- These tables only require <u>updating</u> when major characteristics of the DNB are altered (such as stray light, Build 7.2)

NCC Algorithm Itself is a Straightforward Process

- The NCC algorithm first reads in the necessary <u>GVVSSE tables</u> and <u>radiances</u> from the Day Night Band (DNB)
- Using the DNB geolocation, determine the <u>latitude</u>, <u>longitude</u>, <u>solar and lunar viewing angles</u>, <u>sensor</u> <u>viewing angle</u>, and the <u>phase of the moon</u>

Each of these is employed within the GVVSSE table

- Compute a pseudo-albedo based on the adjustments determined from the LUT
- Map these albedos to the GTM grid

Unique features of VIIRS/NCC, as compared with its predecessors

- The only <u>predecessor</u> to NCC (DNB) is the DMSP <u>Operational</u> <u>Line Scanner (OLS)</u>
- The OLS is an Imager, and not a Radiometer
 - Hence OLS did not provide radiances and was not intended for any quantitative use
- NCC Imagery is able to produce useful imagery at <u>lower lunar</u> reflectances than the OLS
- Because the NCC Imagery is created on the <u>same projection as</u> <u>the M-bands</u>, it is straightforward to use NCC in a multispectral image (OLS has only a single IR with its' day-night band)
- Examples follow (used alone, and combined with other VIIRS M band imagery)

VIIRS NCC imagery issues so far:

- Many issues were the same as with non-NCC Imagery, and these were covered in the non-NCC provisional brief
 - Server (GRAVITE) issues
 - Missing geo-location values in granules
 - Missing data "triangles" in granules
 - Padding stripes (fill values) from the use of GTM and a constant array size
- Each of these has been resolved
- <u>Non-NCC Imagery EDR</u> was declared <u>provisional</u> in January 2013

VIIRS NCC imagery issues so far:

- NCC had <u>two major issues</u> that delayed movement to provisional, both tied to the lack of NCC Imagery at night outside of the full moon phase
 - The first was an <u>artificial limit discovered in a LUT</u>, that in turn impacted the application of the GVVSSE tables and resulted in unnecessary FILL
 - This was resolved by an adjustment to the GVVSSE tables and a small change to the appropriate LUT that improved results to near the half-moon phase
 - The second issue was related to the <u>inability of the original NCC</u> <u>algorithm to deal with very small radiances</u> as the lunar reflectance decreased
 - This was resolved via a software update implemented with Build 7.1 that allows an increased range of albedo values, which in turn permitted consideration of very small radiances that previously had led to FILL values inside NCC
- Both are now resolved

VIIRS NCC vs. DMSP OLS

10:54 UTC 29 July 2013

12:20 UTC 29 July 2013

VIIRS NCC vs. DMSP OLS

11:20 UTC 22 July 2013

14:13 UTC 22 July 2013

VIIRS NCC vs. DMSP OLS

11:20 UTC 22 July 2013

14:13 UTC 22 July 2013

RGB Composite Using NCC

M-15 EDR, NCC, NCC

06:15 UTC 13 August 2013

EDR Provisional Criteria – Imagery

Provisional Definition	Artifacts (Deliverables)	Imagery EDR
Product quality may not be	Product accuracy is determined for a broader (but still limited) set of	Clouds and sea ice edge at a
optimal	conditions. No requirement to demonstrate compliance with	minimum, but many others are
	specifications.	possible
Incremental product	Narrative, listing and discussing known errors. All DRs are	No known performance issues .
improvements are still	identified and prioritized (1-5). Provisional readiness will address	
occurring	priorities 1-2. Pathway towards algorithm improvements to meet	DRs (mostly resolved for non-NCC
	specifications is demonstrated.	imagery)
Version control is in affect	Description of the development environment, algorithm version	ATBD is up-to-date, as is all other
	(IDPS build number), and LUTs/PCTs versions used to generate the	documentation
	product validation materials. ATBDs are accurate, up-to-date and	
	consistent with the product running.	
General research community is	ADP STAR will request feedback from appropriate users for the	Some feedback from users already
encouraged to participate in	product. The notification letter will include a Provisional Maturity	exists (NRL/McIDAS):
the QA and validation of the	disclaimer. DPA will send request to Project Science to post	- Minor near-noise-level striping
product, but need to be aware	Provisional Maturity disclaimer on CLASS. DPA will submit readme	has been noticed. Multi-spectral
that product validation and QA	document (#3 below) to CLASS.	analysis is common
are ongoing		- Comparison to (improvements
		over) other satellites
Users are urged to consult the	Warning of potential non-reproducibility of results due to	Non-reproducibility is irrelevant,
EDR product status document	continuing calibration and code changes. Identify known	because imagery is not a climate
prior to use of the data in	deficiencies regarding product quality.	product
publications		
May be replaced in the archive	Technical evaluation of limited data reprocessing is presented.	Not directly relevant
when the validated product		
becomes available		
Ready for operational	Key NOAA and non-NOAA end users are identified and feedback	Users are already involved (as
evaluation	requested	seen by Imagery Team makeup)

NCC Imagery DRs

- DR 4470 No NCC imagery for nighttime granules
 Resolved in Build 7.1, July 10, 2013
- DR 4484 NCC Imagery needs to match OLS Coverage (useful imagery to near half-moon phase)
 - Resolved in LUT update in November 2012
- DR 4718 Update GVVSSE LUTs
 - Resolved in LUT update in July 2012
- DR 4902 Too many FILL values in very dark pixels
 - Resolved in Build 7.1, July 10, 2013
- DR 4867 Discontinuity at the 105 solar angle
 - Resolved in Build 7.1, July 10, 2013

NCC Imagery DRs

- DR 4653 Request for all 16 M-bands as Imagery EDRs in S-NPP. This was written in April 2012 when two users disagreed on which 6 bands should be the default bands
- DR 7257 Written in June 2013, this DR is essentially the same request for JPSS-1, but adds our identification of inconsistent requirements in the various JPSS Level 1 documents
 - The JPSS requirements added specific M-bands not noted in earlier NPOESS specifications, but does not specify the precise number of M-band Imagery EDRs expected

Beta and Provisional ReadMe Caveats

- Imagery **detector-to-detector striping**:
 - Currently significant where stray light exists in the DNB
 - Expected to be sharply mitigated in Build 7.2
 - Striping may also appear depending on the enhancement used on NCC Imagery, especially when the initial radiances are low

• Data latency:

- Not improved yet!
- Hoping for improvement within NDE

Carryovers to Provisional ReadMe

Continue data availability/latency issue

Path Forward to Validation Stage 1

- Continued feedback from users:
 - Expand to additional users
 - NIC
 - Navy
 - NWS
- Quantitative analysis of EDR imagery **geolocation**, details in discussion with DPA
- Limited quantitative analysis of EDR **striping**, details in discussion with the SDR team and DPA

Summary

- We've made excellent progress with VIIRS Imagery after 18 months!
- NCC Imagery now non-FILL even under new moon conditions
- NCC Imagery now exceeds the only similar capability in existence today (DMSP OLS)
- NCC has now reached **provisional status**
 - Date this was achieved is 10 July 2013, with the implementation of Build 7.1