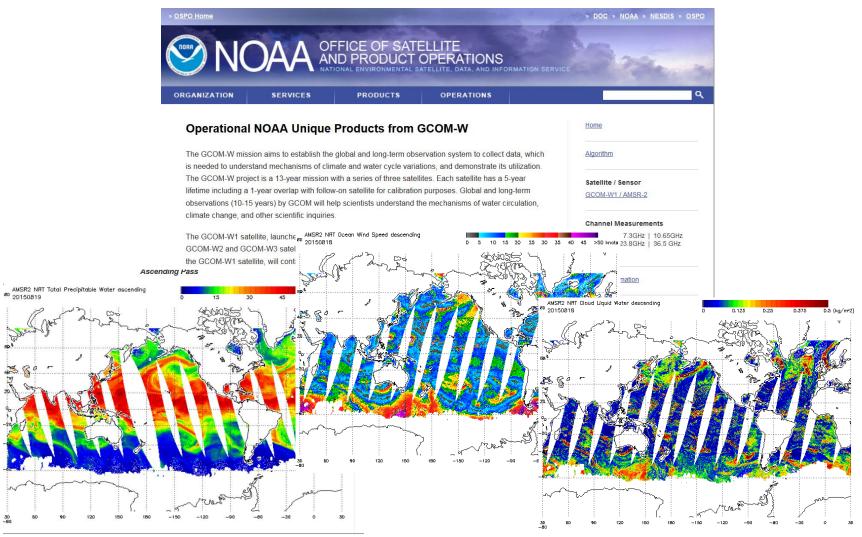


Validated Maturity Science Review For GCOM-W1/AMSR2 Day-1 Products

Presented by STAR GCOM-W1/AMSR2 Project Date: 2016/10/19

- Algorithm Cal/Val Team Members
- Product Requirements
- Evaluation of algorithm performance to specification requirements
 - Evaluation of the effect of required algorithm inputs
 - Quality flag analysis/validation
 - Error Budget
- Identification of Processing Environment
- Users & User Feedback
- Documentations (Science Maturity Check List)
- Conclusion
- Path Forward


Day-1 Algorithm Cal/Val Team Members

Name	Organization	Major Task
Paul Chang	NOAA/STAR	NOAA/STAR project lead,
Ralph Ferraro	NOAA/STAR	NOAA/STAR project deputy, precipitation focal point
Zorana Jelenak	UCAR	Ocean scene product algorithm development, validation, testing and monitoring, TB cal/val
Suleiman Alsweiss*/Joe Sapp	GST	Ocean scene product algorithm development, validation, testing and monitoring, TB cal/val
Patrick Meyers	CICS-MD	Precipitation algorithm development, validation, testing and monitoring
Eileen Maturi	NOAA/STAR	NOAA/STAR Blended SST focal point
Andy Harris	CICS-MD	SST validation
Walter Wolf	NOAA/STAR	Systems integration and algorithm transition focal point
Tom King & Tish Soulliard	IMSG	Systems integration and algorithm transition

http://www.ospo.noaa.gov/Products/atmosphere/gpds/

And at http://manati.star.nesdis.noaa.gov/gcom/

- The GCOM-W1 GAASP Day-1 products have been validated against the JPSS L1RD supplements, and the results were presented at ARR.
 - CLW and TPW are validated with GDAS, TMI, NOAA-19
 - SST is validated with Reynolds, TMI and Buoys
 - SSW is validated with GDAS, TMI and Buoys
 - Precipitation is validated with TMI, TMPA, and GPCP
- Presented here is a summary of validation results allocated to JPSS L1RD Supplement (2.7), which show that all AMSR-2 Day-1 products meet the requirements.

5

Attribute	Requirement	Observed
 Imagery Applicable Conditions: 1. Delivered under "all weather" conditions 2. Each channel shall be provided at its highest native resolution. 3. All channels shall be Vertically and Horizontally polarized. 4. All channels sampled at 10 km except 89 GHz, which is at 5 km. 		
a. Horizontal Sampling Interval (1)	10 km except 89 GHz which is at 5 km (2)	As required
b. Mapping Uncertainty, 3 Sigma	5 km	As required
c. Refresh	At least 90% coverage of the globe about every 20 hours (monthly average) (3)	As required

 "Horizontal Sampling Interval" better reflects the way the data is to be taken rather than specifying "Horizontal Spatial Resolution" which is used for other EDRs. The Sampling Interval does not necessarily equal the HSR.
 All channels are sampled at 10 km except 89 GHz, which is at 5 km. All channels V & H polarization. The native

resolutions for each channel are as follows:

6.925 GHz - 35 x 62 km

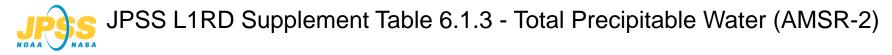
7.3 GHz - 35 x 62 km

- 10.65 GHz 24 x 42 km
- 18.7 GHz 14 x 22 km

23.8 GHz - 15 x 26 km

36.5 GHz - 7 x 12 km

89.0 GHz - 3 x 5 km


3. This Refresh requirement is consistent with the AMSR-2 Cross-track Swath Width design of 1450 km for a single orbit plane.

Attribute	Requirement	Observed
CLW Applicable Conditions: 1. Delivered under "all weather" conditions		
a. Horizontal Cell Size	10 km (37 GHz FOV size); 10 km sampling (1)	As required
b. Vertical Reporting Interval	Total Column	As required
c. Mapping Uncertainty, 3 Sigma	5 km	As required
d. Measurement Uncertainty (1 kg/m ² = 1 mm)	0.05 mm over ocean; Best efforts over land	0.03 ~ 0.09 mm over ocean, not available over land
e. Measurement Accuracy	0.01 mm	0.01mm
f. Coverage	Global Ice-free Oceans	As required
g. Refresh	At least 90% coverage of the globe about every 20 hours (monthly average) (2)	As required
h. Range (1 kg/m ² = 1 mm)	0.005 - 1 mm	0 ~ 1 mm

1. HCS is consistent with 36 GHz SDR product HCS.

2. This Refresh requirement is consistent with the AMSR-2 Cross-track Swath Width design of 1450 km for a single orbit plane.

Attribute	Requirement	Observed
a. Horizontal Cell Size	10 km (21 GHz FOV sampling) (1)	As required
b. Mapping Uncertainty, 3 Sigma	5 km	As required
c. Measurement Range	1 - 75 mm	0 ~ 75 mm
d. Measurement Uncertainty	2 mm or 10%, whichever is greater	1.1 ~ 1.8 mm
e. Measurement Accuracy	1 mm	0.1 ~ 0.7 mm
f. Refresh	At least 90% coverage of the globe every 20 hours (monthly average).	As required
g. Coverage	Ice-free global ocean	As required

1. This HCS consistent with the 23 GHz SDR product HCS.

2. This refresh requirement is consistent with the AMSR-2 cross-track swath width design of 1450 km for a single orbit plane.

3. The spatial distribution of the assessment data is global, encompassing the natural variability of the different geophysical conditions.

4. Refresh, coverage and horizontal size are all dependent on the refresh, coverage and horizontal size of the brightness temperatures

measurements. The MiRS algorithm outputs characteristics will reproduce the TB characteristics of these factors.

8

JPSS L1RD Supplement Table 6.1.4 - Sea Surface Winds - Speed (AMSR-2)

Attribute	Requirement	Observed
SSW Applicable Conditions: 1. Delivered under "all weather" conditions		
a. Horizontal Cell Size (Wind speed)	33 km (10.7 GHz FOV size) (3); 10 km sampling	As required
b. Mapping Uncertainty, 3 Sigma	TBS-11	As required
c. Measurement Range (Speed)	2 – 30 m/sec	0 ~ 30 m/sec
d. Measurement Uncertainty (Speed)	Greater of 2.0 m/sec or 10%	0.9 ~ 1.5 m/sec
e. Measurement Accuracy	0.5 m/sec (4)	0.1 ~ 0.3 m/sec
f. Refresh	At least 90% coverage of the globe about every 20 hours (monthly average) (5)	As required
g. Geographic Coverage	Global Ice-free Oceans	As required

Notes:

1. There is no SSW capability on JPSS.

2. There is no SSW - Direction capability on GCOM (AMSR-2).

3. This HCS is consistent with the 10 GHz SDR product HCS.

4. Accuracy requirements apply for Cloud Liquid Water up to 2mm.

5. This Refresh requirement is consistent with the AMSR-2 Cross-track Swath Width design of 1450 km for a single orbit plane.

9

Attribute	Requirement	Observed
SST Applicable Conditions: 1. Delivered under "all weather"		
a. Horizontal Cell Size	40 km (1)	As required
b. Mapping Uncertainty, 3 Sigma	5 km	As required
c. Measurement Range	271 K to 313 K (2)	
d. Measurement Accuracy, Skin & Bulk	0.5 K	0.1 K
e. Measurement Uncertainty	1.0 K	0.8 ~ 0.9 K
f. Refresh	At least 90% coverage of the globe about every 20 hours (monthly average) (3)	As required
g. Geographic Coverage	Global Oceans (4)	As required

1. This HCS requirement is consistent with the 6 GHz SDR product HCS.

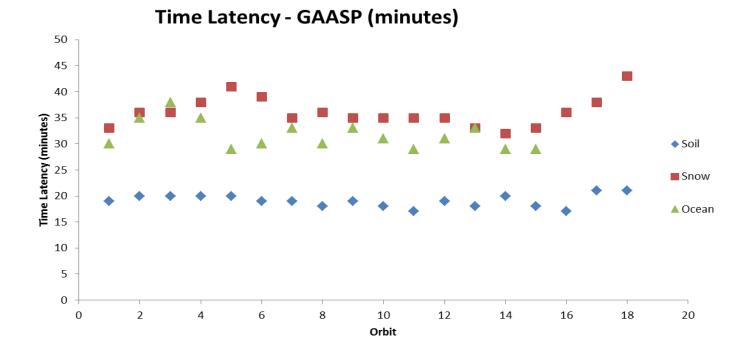
2. For all weather, 301 K is the AMSR-E limit. 307 K is the realistic upper limit (Objective) per the MOAT.

3. This Refresh requirement is consistent with the AMSR-2 Cross-track Swath Width design of 1450 km for a single orbit plane.

4. Note that MW instruments cannot retrieve within ~50-100 km of land due to contamination of the side-lobe, so coastal waters are problematic.

5. The characterization of errors for each retrieval is a MW SST user community requirement ((e.g.) GHRSST L2P format). Although not defined in this document, such error characteristic will be defined for the AMSR-2 SST product as an objective requirement

JPSS L1RD Supplement Table 6.1.6 - Precipitation Type/Rate (AMSR-2)


Attribute	Requirement	Observed
PT/R Applicable Conditions: 1. Delivered under "all weather" conditions		
a. Horizontal Cell Size	5 km land (89 GHz FOV) (1); 5 km ocean (37 GHz FOV size); 5 - 10 km sampling	As required
b. Mapping Uncertainty, 3 Sigma	< 5 km	As required
c. Measurement Range	0 - 50 mm/hr	0 ~ 75 mm/hr
d. Measurement Precision	0.05 mm/hr	0.01 mm/hr
e. Measurement Uncertainty	2 mm/hr ocean; 5 mm/hr over land	1.2 ~ 1.4 mm/hr over ocean; 3.1 ~ 3.6 mm/hr over land
f. Refresh	At least 90% coverage of the globe about every 20 hours (monthly average) (2)	As required
g. Precipitation Type	Stratiform or Convective	Convective rain available

1. The HCS is consistent with the 89 GHz SDR product HCS.

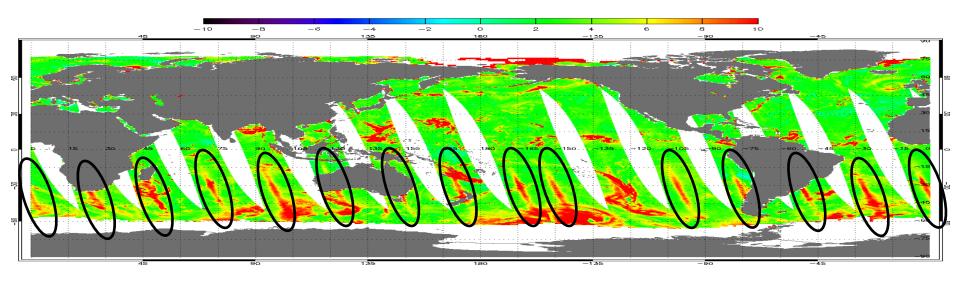
2. This Refresh requirement is consistent with the AMSR-2 Cross-track Swath Width design of 1450 km for a single orbit plane.

- The GAASP products are generated whenever a AMSR-2 L1B orbital data is available
- The product time latency here counts the time from the last observation received to the product generated, including data transfer time from JAXA -> NASA -> DDS -> NDE, but not the delay in the product distribution.
- The time latency requirement is currently TBD in JPSS L1RD for orbital processing

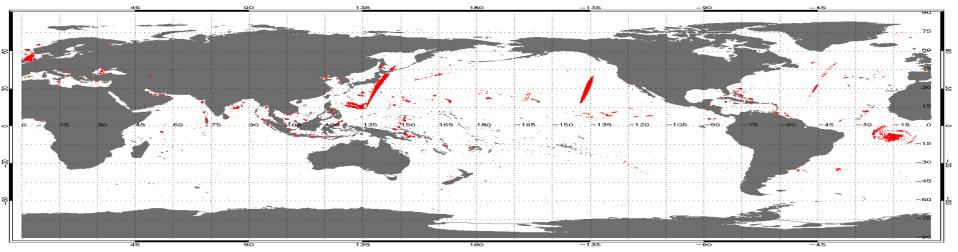
- AMSR2 observed brightness temperatures (Tbs) will be used to infer several geophysical parameters over land and ocean
- Calibrated AMSR2 Tbs significantly improve performance and accuracy of geophysical retrieval algorithms
 - Identifying and correcting residual calibration biases in AMSR2 Tbs reduce retrievals errors

Calibration Strategy

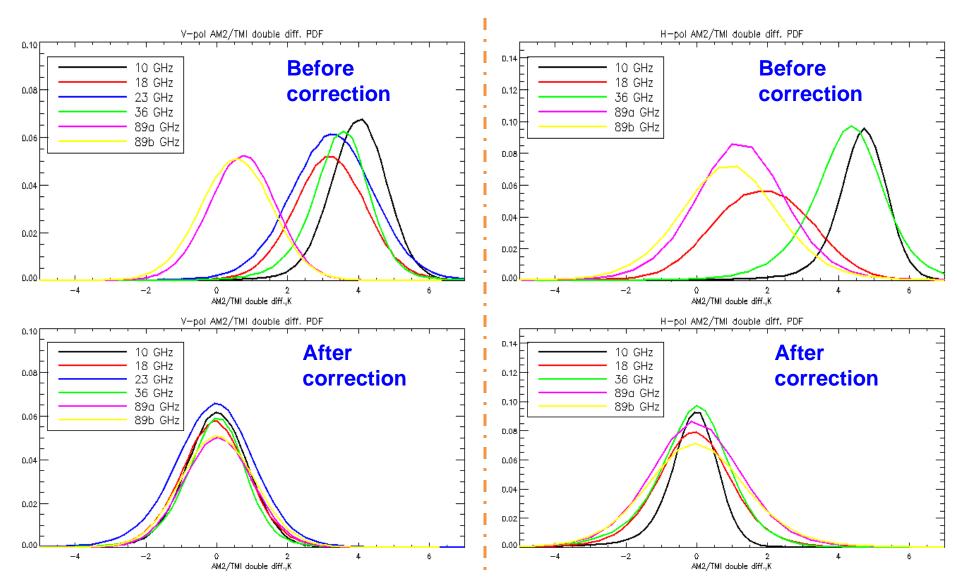
- The double difference (DD) approach was used to inter-calibrate AMSR2 Tbs
 - Two instruments are needed (A & B) with one being the reference sensor


$$DD_{AB} = SD_A - SD_B$$

SD= Tb_obs. – Tb_sim.

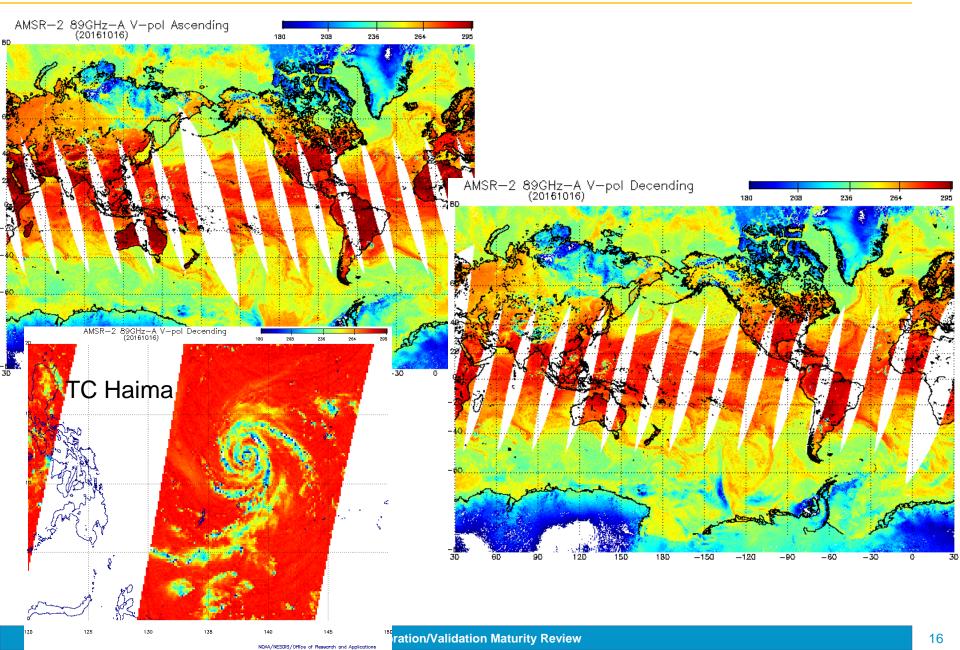

• TRMM microwave imager (TMI) was chosen as reference radiometer

Sun Glint: [Tbh6_L1B – Tbh6_sim.], 08/02/2012

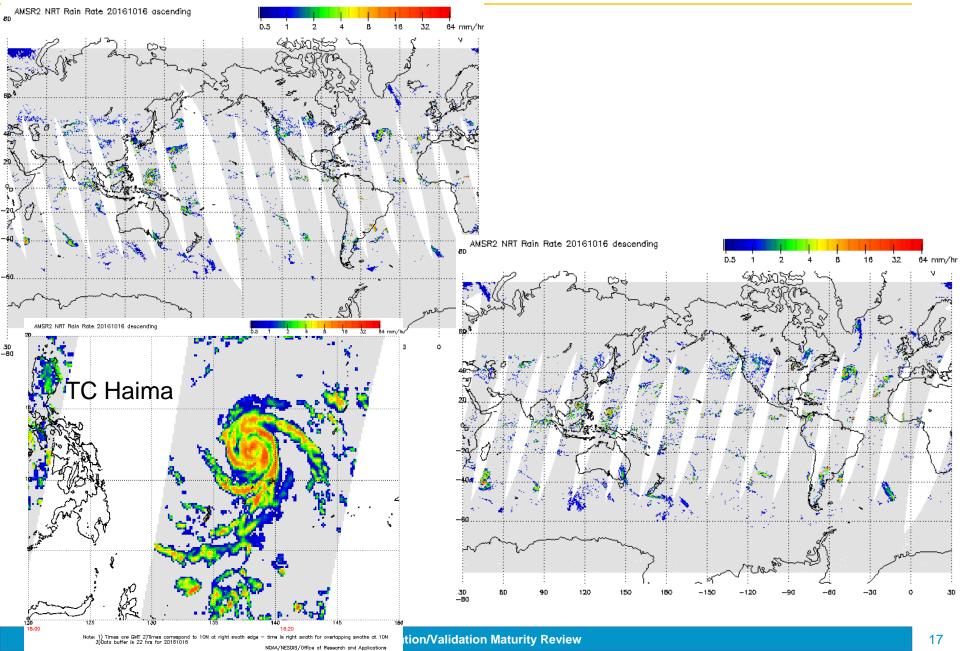


C-band RFI: Abs(Tbv6_L1B – Tbv7_L1B.) > 3, 08/02/2012

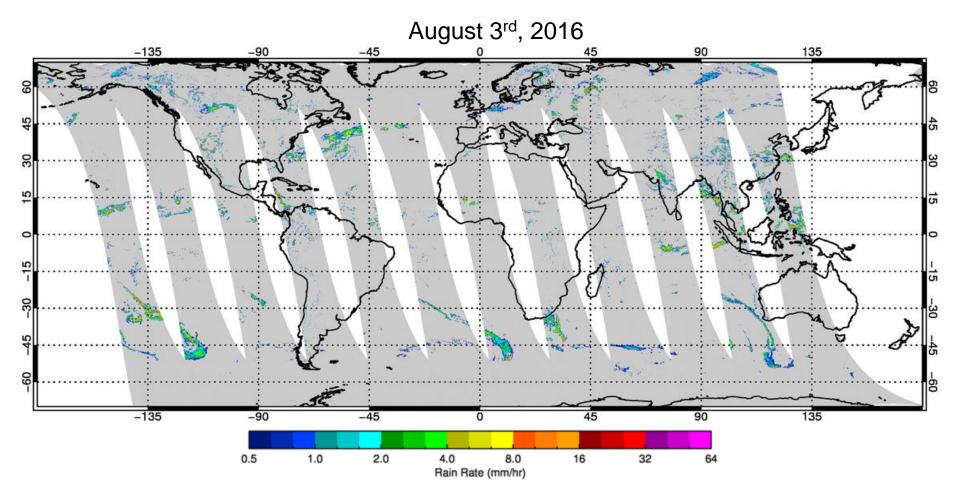
Double Difference PDFs of Brightness Temperatures


H-Pol

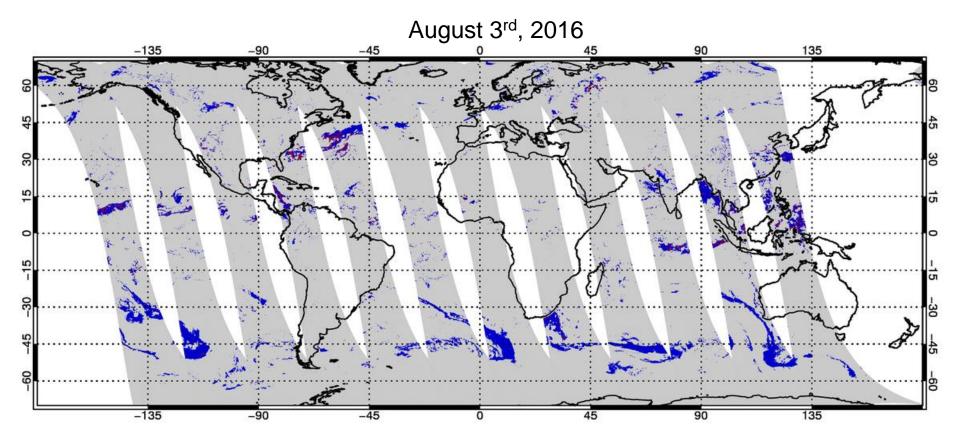
V-Pol



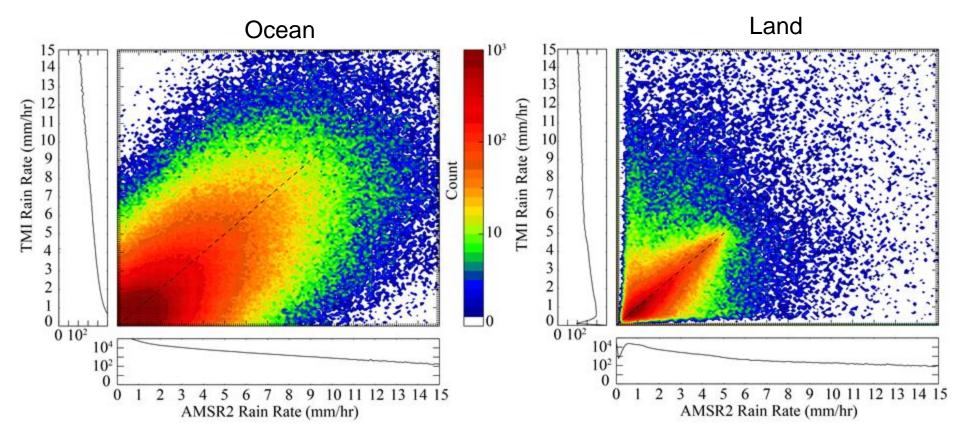
NOAA 85 GHz V-pol Tb Example (10/16/2016)

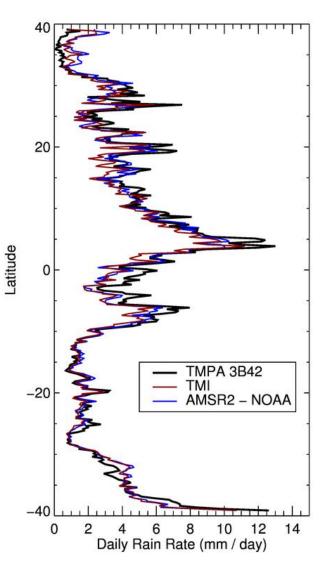

NOAA Precipitation Example (10/16/2016)

AMSR2 Precipitation Output


GPROF2010 Rain Rates for GCOM/AMSR2

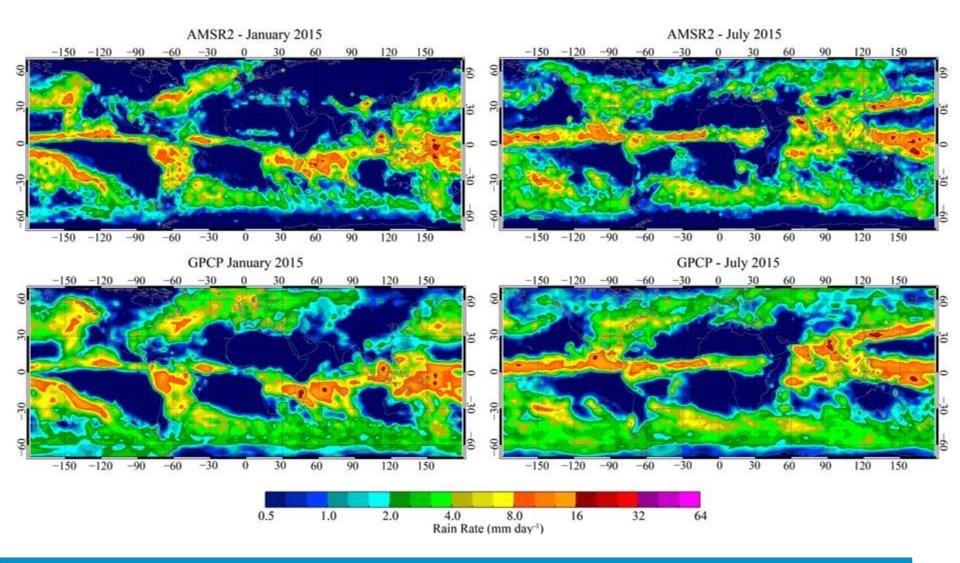
AMSR2 Precipitation Output


Convective/Stratiform Precipitation Separation


Validation - Instantaneous

GCOM-W vs. TMI Collocated Observations

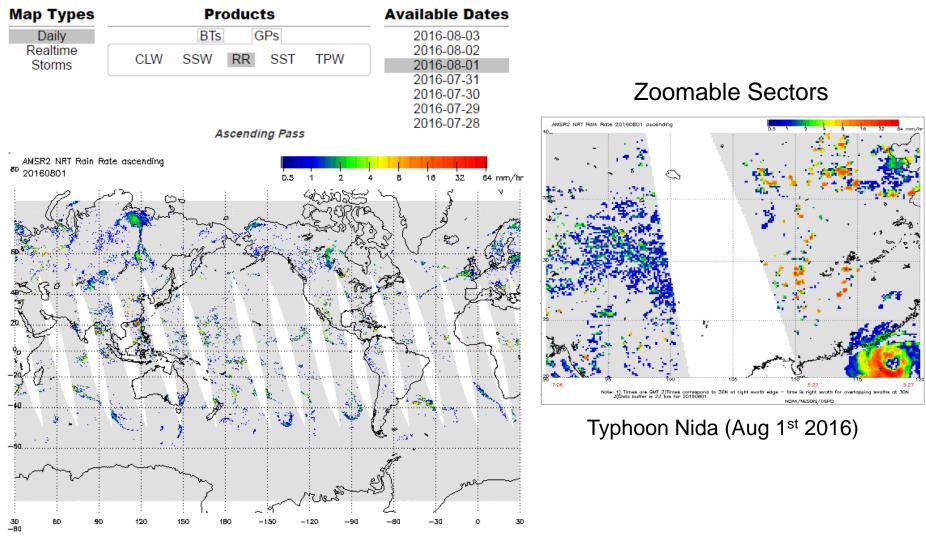
Validation - Instantaneous



Instantaneous Rain Rate RMSD relative to TRMM Products

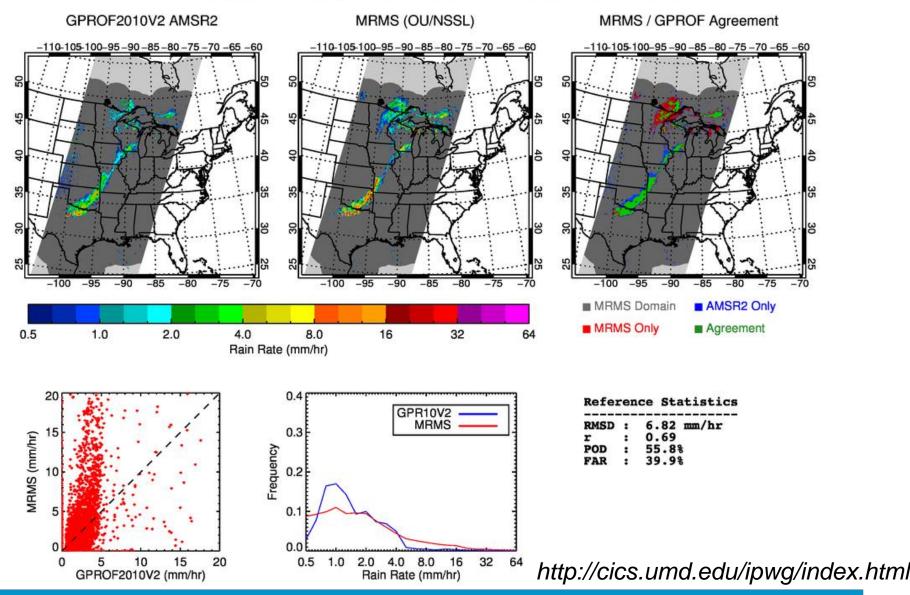
RMSD (mm/hr)	Land	Ocean	Overall
Requirements	5.0	2.0	_
TMI & TMPA	3.1	1.2	1.6
AMSR2 & TMI	3.6	1.2	1.8
AMSR2 &TMPA	3.1	1.4	1.9

Validation - Seasonal

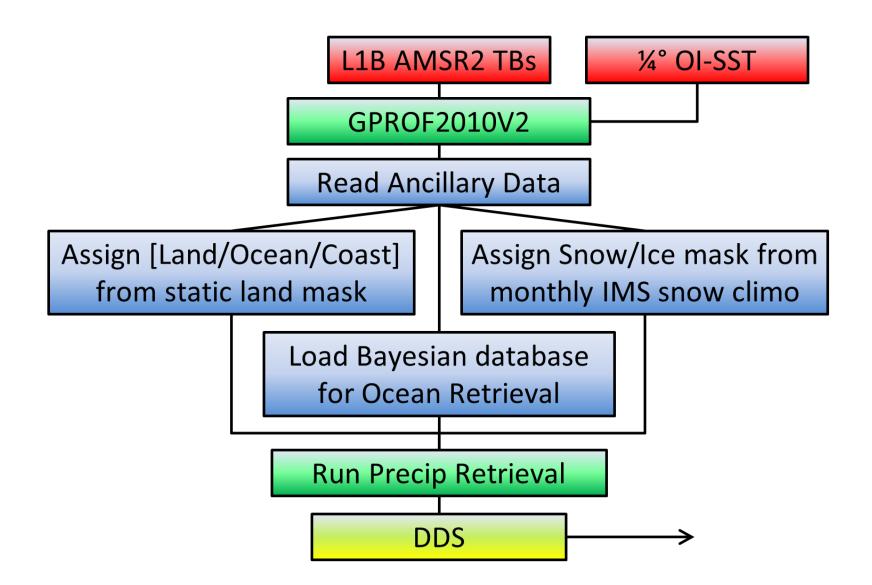

GCOM-W vs. GPCP Monthly Precipitation

OSPO Product Monitoring

NOAA Operational GCOM-W1 AMSR-2 Products Maps 1



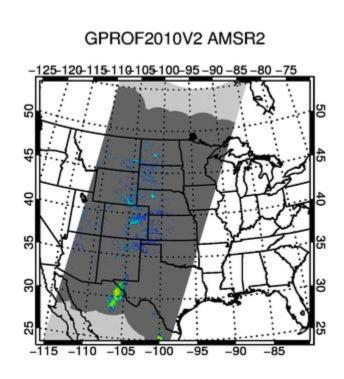
http://www.ospo.noaa.gov/Products/atmosphere/gpds/



Routine Swath Validation

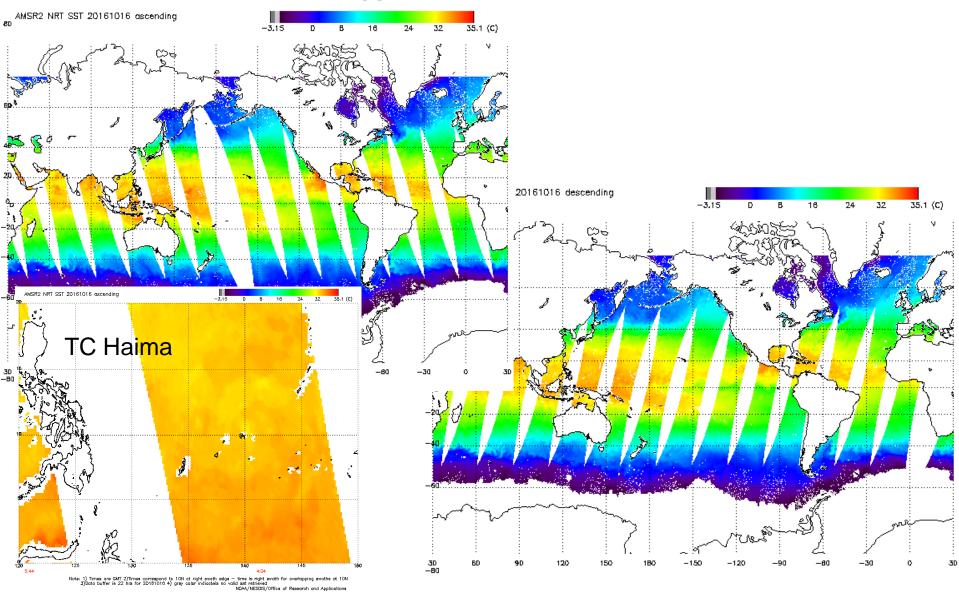
AMSR2 & MRMS Precipitation Rate - GPROF2010_20161007-0804UTC





- 0
 - No quality issues
- 1
 - Ambiguous cold Tbs; may be precip or cold surface
- 2
 - Climatological snow/ice/desert
 - Screening for cold surface, arid land, or snow

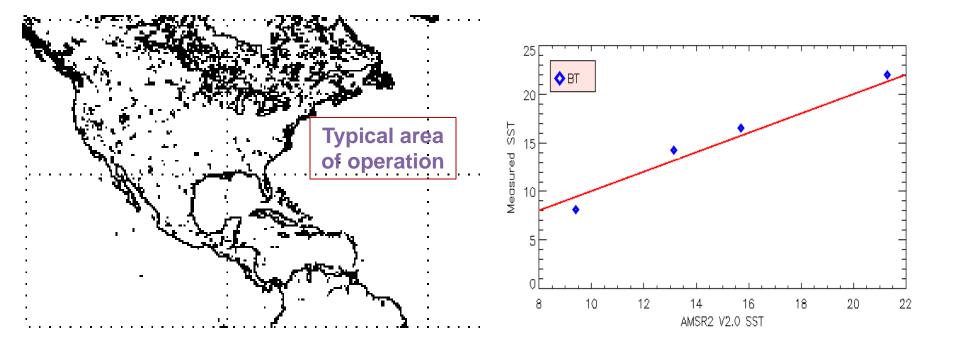
 Cold surface screening for descending node often fails, and low scattering index (T24 - T89) falsely identifies precip


- 0
 - No quality issues
- 1
 - Extended bin search during Bayesian inversion
 - Typically at higher latitudes
- 2
 - Sea ice likely
- Potential improvement: Using GPM-derived database will improve the representation within the database at higher latitudes.

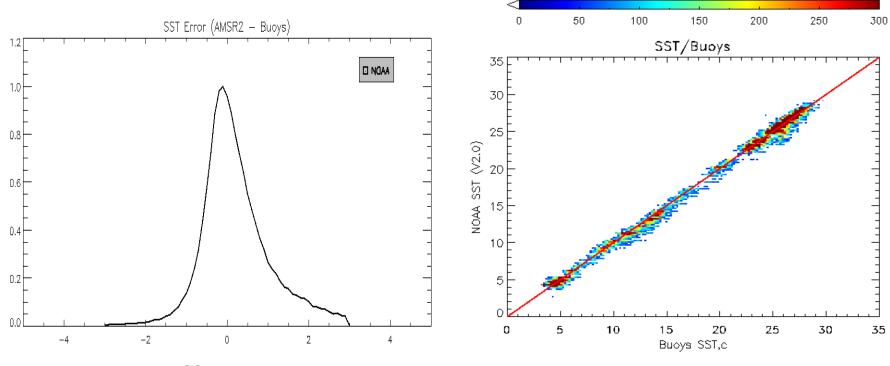
Attribute Analyzed	L1RD Threshold	Validation Result	Error Summary	Support Artifacts
Rain Rate	5.0 mm/hr (Land) 2.0 mm/hr (Ocean)	3.6 mm/hr 1.2 mm/hr	Sensor calibration RT Model Random Error	Relative to TMI [See Slide 6]
Measurement Range	0-50 mm/hr	0-75 mm/hr		L2 EDR
Measurement Precision	0.01 mm/hr	<0.01 mm/hr		L2 EDR
Rain Type	Convective/ Stratiform	Convective Rain Rate	Convective: 40% Stratiform: 95%	Accuracy relative to MRMS precip type

NOAA SST Example (10/16/2016)

% of flagged points (NOAA): ~ 27%


- Ancillary data for AMSR2 SST validation
 - Models : Reynolds
 - Measurements : TMI, Buoys

GCOM Sea Surface Temperature Requirements					
EDR Attribute	Doquiromont	5	Status		
	Requirement	Reynolds TMI	Buoys		
Measurement range	271 – 313 k				
Measurement uncertainty	1.0 k	0.5	0.6	0.7	
Measurement accuracy	0.5 k	0.0	-0.2	0.2	


31

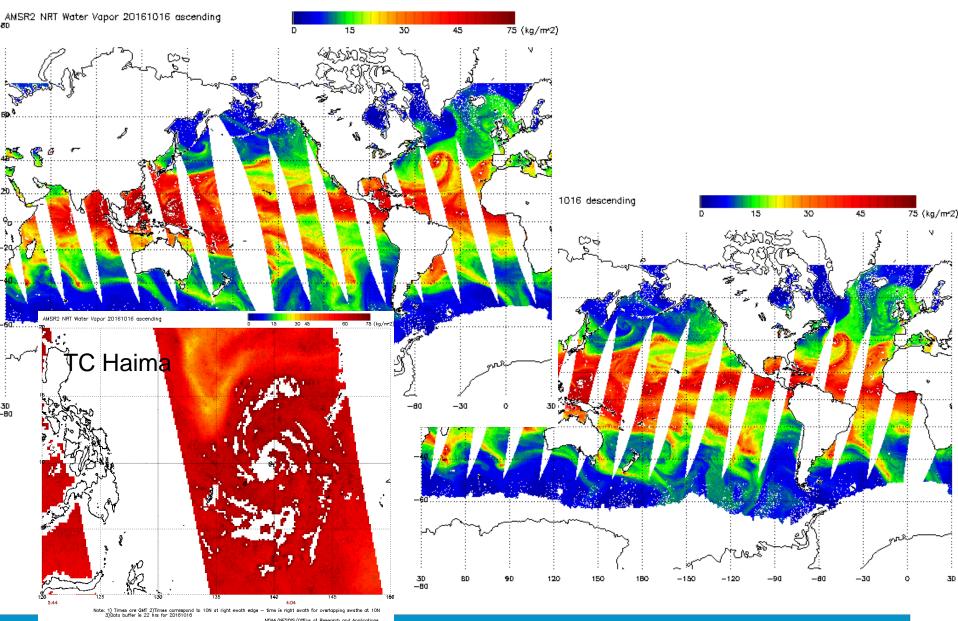
SST Validation/Field Experiments

- During 2016 winter season field experiments we dropped several Airborne expendable Bathy Thermograph (AXBT) to measure SST
 - Collocated with AMSR2 overpass

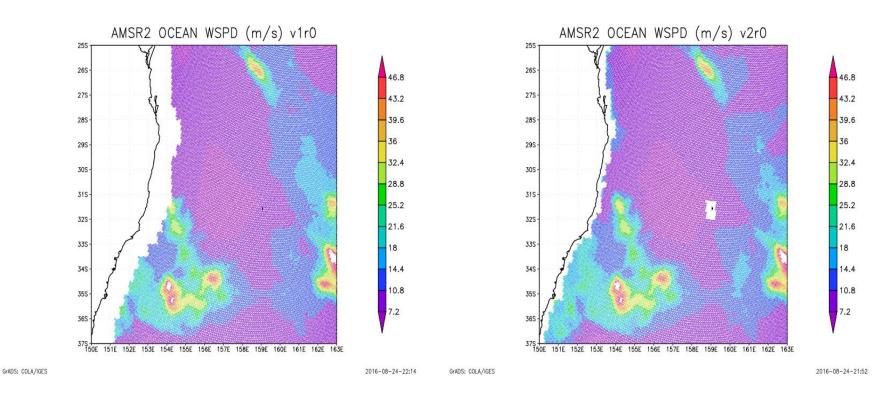
SST Error, °c

Attribute Analyzed	L1RD Threshold	Validation Result	Error Summary	Support Artifacts
SST	1.0K	0.5-0.7K	Sensor calibration Measurement variability Random Error	Relative to Reynolds, TMI, and Buoys
Measurement Range	271-313 K	271-313K		L2 EDR
Measurement Precision	0.5K	0.2K		L2 EDR

- Ancillary data for AMSR2 TPW validation
 - TMI & AMSR2 EDRs from RSS
 - NOAA-19 EDRs from NOAA's Microwave Integrated Retrieval System (MIRS)


GCOM Total Precipitable Water Requirements					
EDR Attribute Requirement			Status		
Measurement range	1 – 75 mm	ТМІ	GDAS	NOAA19	
Measurement uncertainty	2mm or 10% whichever is greater	1.1	1.8	1.4	
Measurement accuracy	1 mm	0.0	0.1	0.7	

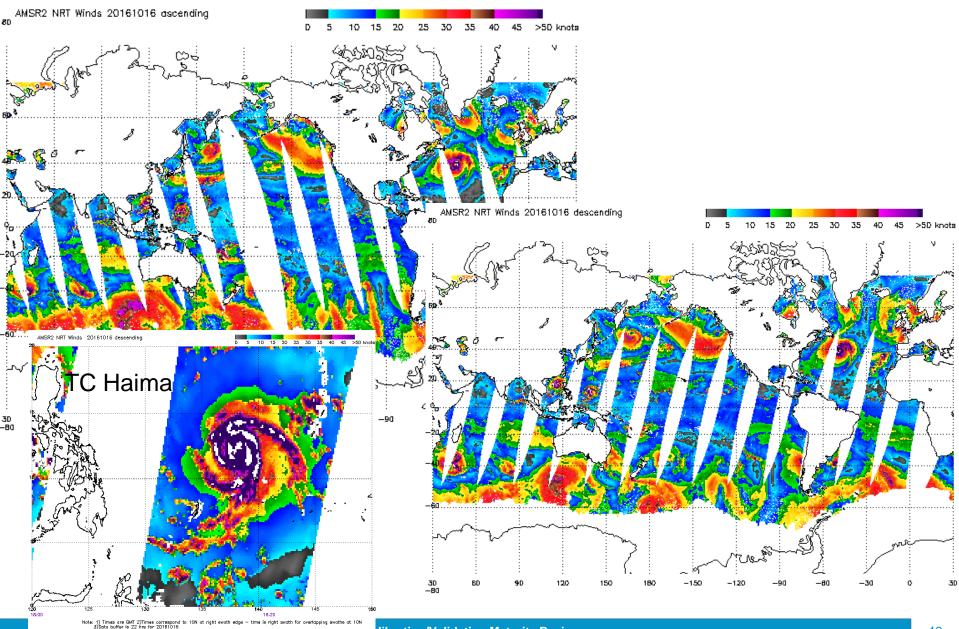
*TPW & CLW changes are fastest of all other parameters. Interpolated 6H models are not expected to agree well with instantaneous measurements from AMSR2



Attribute Analyzed	L1RD Threshold	Validation Result	Error Summary	Support Artifacts
Wind Speed	2 m/sec or 10%	0.9-1.5 m/s	Sensor calibration Measurement variability Random Error	Relative to GDAS, TMI, and Buoys
Measurement Range	2-30 m/sec	0-30 m/sec		L2 EDR
Measurement Precision	0.5 m/sec	0.1-0.3 m/sec		L2 EDR

NOAA TPW Example (10/16/2016)

Improved TPW near Coast Line

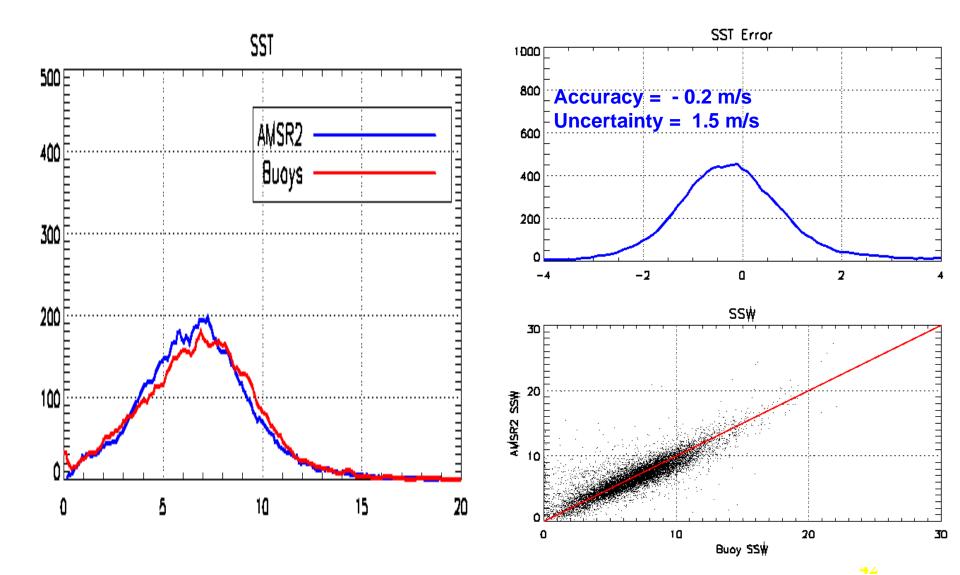


Significant improvement in the coverage along the coastlines (images credited to NWS/AWIPS, Lee Byerle and Mike Johnson)

Attribute Analyzed	L1RD Threshold	Validation Result	Error Summary	Support Artifacts
TPW	2 mm or 10%	1.1-1.8 mm	Sensor calibration Measurement variability Random Error	Relative to GDAS, TMI, and NOAA19
Measurement Range	1-75 mm	0.75 mm		L2 EDR
Measurement Precision	1 mm	0.1 -0.7 mm		L2 EDR

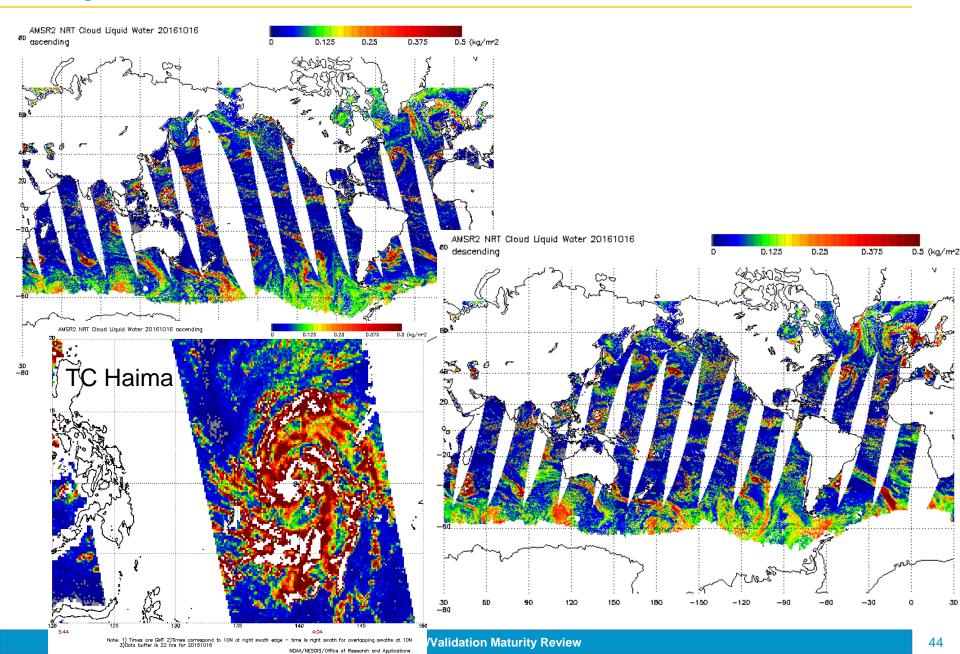
NOAA Wind Speed Example (10/16/2016)

SSW Validation


- Ancillary data for AMSR2 SSW validation
 - » Models : GDAS
 - » Measurements : TMI, Buoys

GCOM Sea Surface Wind Speed Requirements					
EDR Attribute	Requirement		Status		
	Nequirement	GDAS	ТМІ	Buoys	
Measurement range	2 – 30 m/s				
Measurement uncertainty	2 m/s or 10 % whichever is greater	1.3	0.9	1.5	
Measurement accuracy	0.5 m/s	0.1	0.3	0.2	

41


SSW Validation / Buoys

Attribute Analyzed	L1RD Threshold	Validation Result	Error Summary	Support Artifacts
Wind Speed	2 m/sec or 10%	0.9-1.5 m/s	Sensor calibration Measurement variability Random Error	Relative to GDAS, TMI, and Buoys
Measurement Range	2-30 m/sec	0-30 m/sec		L2 EDR
Measurement Precision	0.5 m/sec	0.1-0.3 m/sec		L2 EDR

NOAA CLW Speed Example (10/16/2016)

CLW Validation

- Ancillary data for AMSR2 CLW validation
 - » Models : GDAS
 - » Measurements : TMI, NOAA-19

GCOM Cloud Liquid Water Requirements

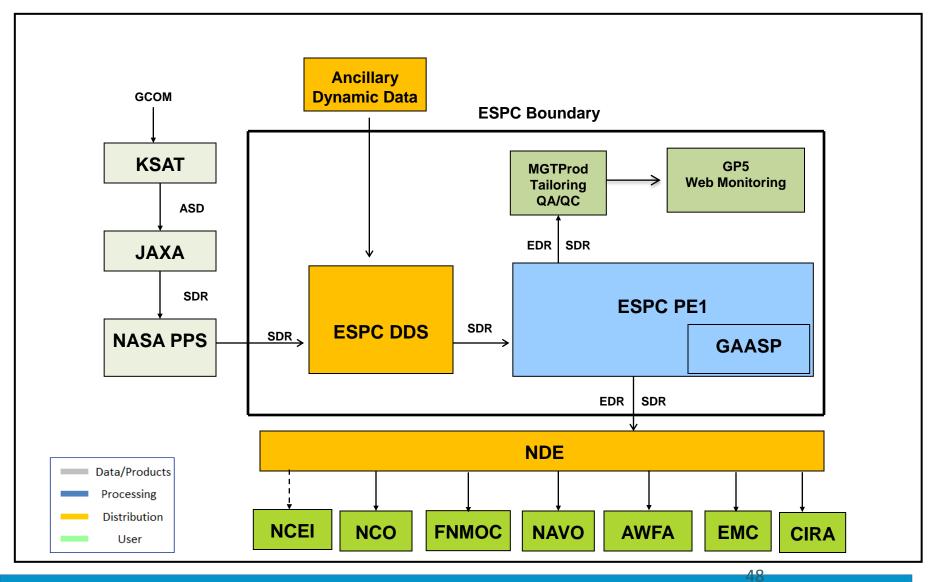
EDR Attribute	Requirement	Status			
	Nequirement	GDAS	ТМІ	NOAA-19	
Measurement range	0.005 – 1 mm				
Measurement uncertainty	0.05 mm over ocean	0.09*	0.04	0.03	
Measurement accuracy	0.01 mm	0.01	0.01	0.01	

* CLW changes fastest of all other parameters. Interpolated 6H models are not expected to agree well with instantaneous measurements from AMSR2

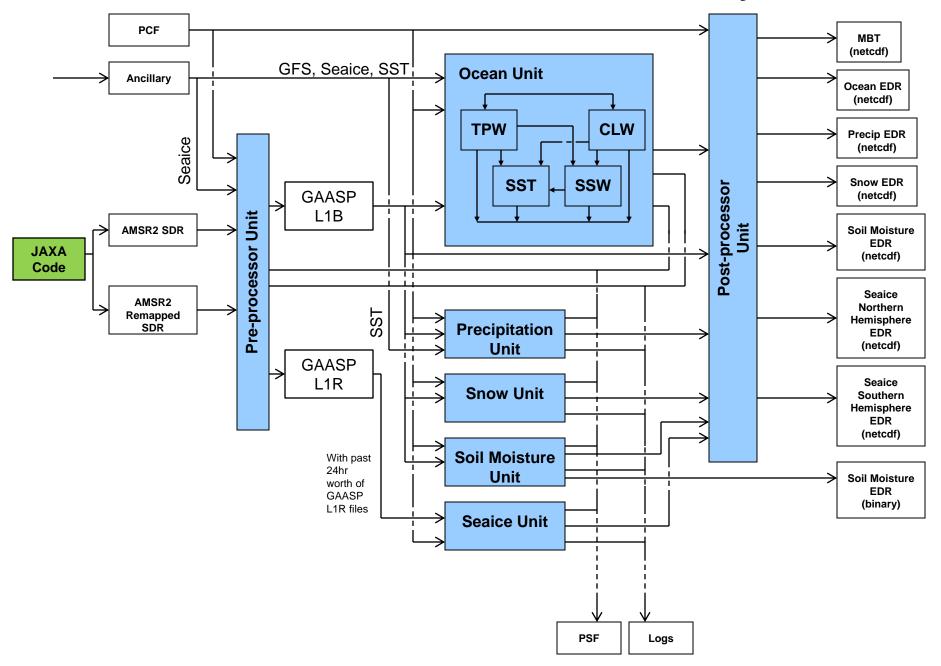
Attribute Analyzed	L1RD Threshold	Validation Result	Error Summary	Support Artifacts
CLW	0.05 mm	0.03 – 0.09 mm	Sensor calibration Measurement variability Random Error	Relative to GDAS, TMI, and NOAA19
Measurement Range	0.005 – 1.0mm	0 – 1 mm		L2 EDR
Measurement Precision	0.01 mm	0.01 mm		L2 EDR

EDR Quality Control

16-bit QC flag included in AMSR2 EDR files


- Bit0: RFI >> Bit1: 0 < SSW < 30 **>>** Bit2:-2.5 < SST < 35 >> Bit3:0 < CLW < 1 >> Bit4:0 < TPW < 75 **>>** Bit5:0 < RR < 70 **>>** Bit6:SSW > 20**>>** Bit7:CLW > 0.18 **>>** Bit8:TPW > 60**>>** Bit9: RR > 1 >>
- » Bit10: SSW quality
- » Bit11: SST quality
- » Bit12: CLW quality
- » Bit13: TPW quality
- » Bit14: RR quality
- » Bit15: Spare

Check if value within boundaries


Check if value in upper range

Cross check parameters (e.g. if SSW > 17 and CLW > 0.3 then Bit11 will be set)

System Architecture and Data Flow (NDE 1.0 version)

GAASP Software Unit Data Flow: Day 2

GAASP External Dynamic Input Data

	Exter	rnal Dy	namic In	put Dat	a			
Input File	Name Pattern	Source	Update Frequency	When	EDR	Туре	Format	Size
AMSR2 SDR Native Res	GW1AM2_?????????????_???_L1SGBT BR_1110110.h5	IDPS via NDE	~100 minutes	Day 1	MBT, SST, SSW, TPW, CLW, PR, SM, ST, SC, SD, SWE	Input	HDF5	9.2 MB
AMSR2 SDR Remapped	GW1AM2_?????????????_???_L1SGRT BR_1110110.h5	IDPS via NDE	~100 minutes	Day 1	SST, SSW, TPW, CLW, SIC	Input	HDF5	12.7 MB
GFS Forecast (0.5 degree)	gfs.t??z.pgrb2f?????????	DDS	6 hours	Day 1	SST, SSW, TPW, CLW	Ancillary	GRIB2	18.5 MB
Daily OI SST	avhrr-only-v2.???????preliminary	DDS	Daily	Day 1	PR, SST, SSW, TPW, CLW	Ancillary	Binary	1.8 MB
Sea Ice	seaice.t00z.5min.grb.grib2.???????	DDS	Daily	Day 1	RFI	Ancillary	GRIB2	0.5 MB

Output Data

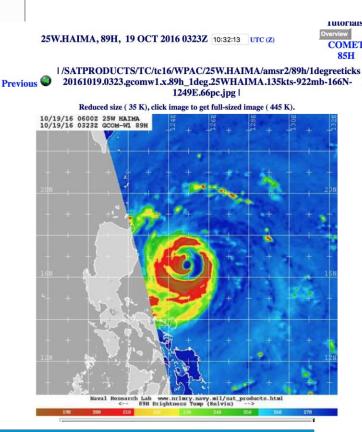
External Output Data (Day1)

Output File	Name Pattern	Update Frequency	When	Format	Size
AMSR2 SDR Native Res	AMSR2-MBT_v2r0_GW1_sYYYYMMDDhhmmsss_eYYYYMMDDhhmmsss_cYYYYMMDDhhmmsss.nc	~100 minutes	Day 1	netCDF4	244 MB
Ocean (CLW, TPW, SST, SSW)	AMSR2-OCEAN_v2r0_GW1_sYYYYMMDDhhmmsss_eYYYYMMDDhhmmsss_cYYYYMMDDhhmmsss.nc	~100 minutes	Day 1	netCDF4	160 MB
Precip (PT/R)	AMSR2-PRECIP_v2r0_GW1_sYYYYMMDDhhmmsss_eYYYYMMDDhhmmsss_cYYYYMMDDhhmmsss.nc	~100 minutes	Day 1	netCDF4	60 MB
SST	AMSR2-GHRSST_v2r0_GW1_sYYYYMMDDhhmmsss_eYYYYMMDDhhmmsss_cYYYYMMDDhhmmsss.nc	~100 minutes	Day 1	netCDF4	TBD MB
Land (SM & ST)	AMSR2-SOIL_v2r0_GW1_sYYYYMMDDhhmmsss_eYYYYMMDDhhmmsss_cYYYYMMDDhhmmsss.nc	~100 minutes	Day 2	netCDF4	31 MB
Land (SM & ST)	AMSR2-SOIL_v2r0_GW1_sYYYYMMDDhhmmsss_eYYYYMMDDhhmmsss_cYYYYMMDDhhmmsss.bin	~100 minutes	Day 2	Binary	4.9 MB
Snow (SC/D & SWE)	AMSR2-SNOW_v2r0_GW1_sYYYYMMDDhhmmsss_eYYYYMMDDhhmmsss_cYYYYMMDDhhmmsss.nc	~100 minutes	Day 2	netCDF4	37 MB
Sea Ice (SIC) – Northern Hemisphere	AMSR2-SEAICE-NH_v2r0_GW1_sYYYYMMDDhhmmsss_eYYYYMMDDhhmmsss_cYYYYMMDDhhmmsss.nc	~100 minutes	Day 2	netCDF4	64 MB
Sea Ice (SIC) – Southern Hemisphere	AMSR2-SEAICE-SH_v2r0_GW1_sYYYYMMDDhhmmsss_eYYYYMMDDhhmmsss_cYYYYMMDDhhmmsss.nc	~100 minutes	Day 2	netCDF4	24 MB

- Tasks:
 - Defined in JPSS Technical Task Agreement (TTA) "GCOM-W1 Implementation"
- Key Milestones:
 - Project Milestones
 - Preliminary Design Review Nov 8, 2012
 - Critical Design Review May 1, 2013
 - Software Code Review Sept 18, 2013
 - Day-1 Algorithm Readiness Review for Day-1 Dec 19, 2014
 - Day-1 Operational Readiness Review for Day-1– Aug 21, 2015
 - Day-1 SPSRB Decision Briefing for Day-1 Sept 23, 2015
 - Day-1 Operations Commence for Day-1 Nov 4, 2015
 - Day-2 Algorithm Readiness Review for Day-2 May 9, 2016
 - Day-2 Software Code Review Jun 20, 2016
 - Day-2 Operational Readiness Review for Day-2– Aug 26, 2016
 - Day-2 SPSRB Decision Briefing for Day-2 Sept 21, 2016
 - Day-2 Operations Commence for Day-2 Sept 30, 2016
 - NWS User Milestones
 - May 9: Test data available
 - Sept 30: Operational data available

- NWS
 - AWIPS, NAWIPS, web pages
- DoD
- R&D community
- Others
- Downstream product list
 - Blended SST
 - Blended Rainrate
 - Blended TPW

NHC Hurricane Matthew Discussion Hurricane MATTHEW

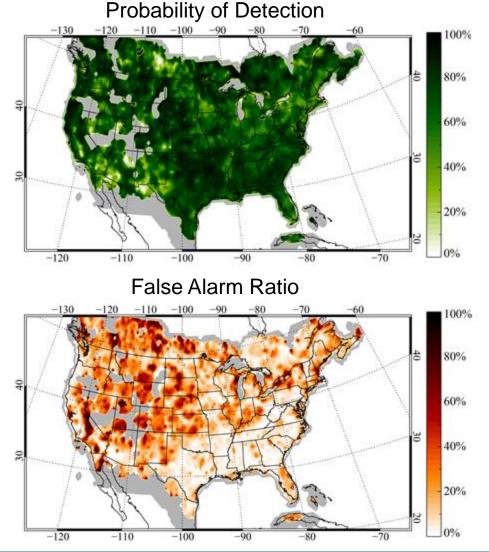

ZCZC MIATCDAT4 ALL TTAA00 KNHC DDHHMM

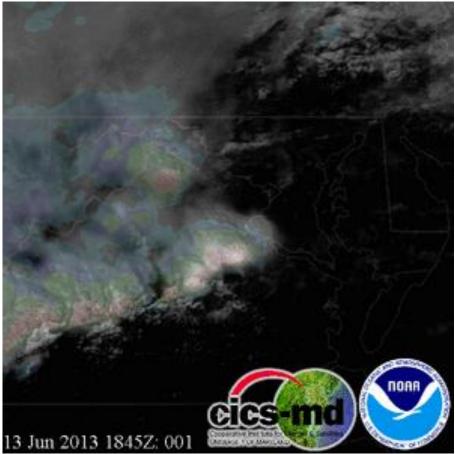
HURRICANE MATTHEW DISCUSSION NUMBER17NWS NATIONAL HURRICANE CENTER MIAMI FLAL142016500 AM EDT SUN OCT 02 2016AL142016

The overall organization of the hurricane has changed little overnight, with the small eye remaining distinct in infrared satellite pictures. A very recent AMSR2 microwave overpass showed no indication of an eyewall replacement, but there was a notable dr slot between the inner core and the outer bands over the southern portion of the circulation. Although Dvorak data T-numbers decreased slightly at 0600 UTC, the objective and subjective CI numbers are about the same as before, so the initial intensity will remain 130 kt for this advisory. Another Air Force Reserve Hurricane Hunter aircraft is scheduled to investigate Matthew this morning, which should provide a better assessment of the hurricane' current strength and structure. Although some weakening is predicte during the next couple of days, Matthew is expected to remain a powerful hurricane when it approaches the islands of the Greater Antilles in a couple of days. The upper-level wind environment is expected to remain favorable over the Bahamas, and warm waters in that area should allow Matthew to maintain much of its intensity while it moves over that area later in the forecast period.

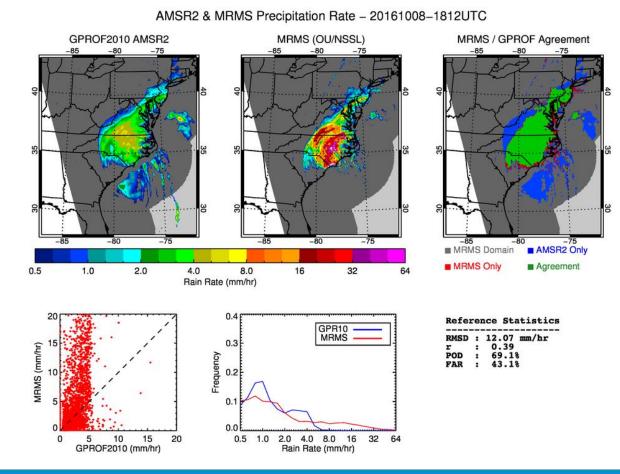
Matthew has been moving slowly west-northwestward during the past few hours, but the longer-term motion estimate is northwest or 320 degrees at 4 kt. The forecast track reasoning remains unchanged from before. Matthew should move slowly northwestward today, and then turn northward tonight as a mid- to upper-level trough develops over the eastern Gulf of Mexico. This motion will take Matthew towards Jamaica, western Haiti, and eastern Cuba over the next couple of days. After that time, the global models bend

AMSR-2 pass over Typhoon Haima (Navy/NRL Tropical Cyclone Page)

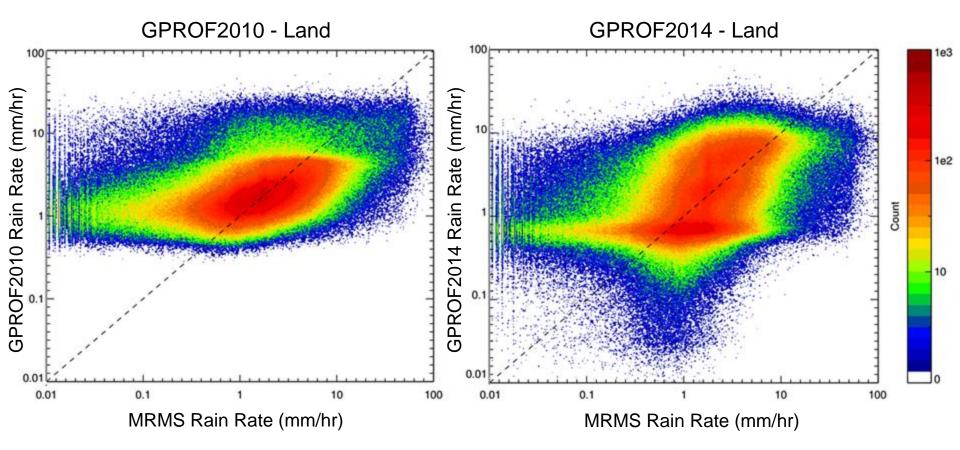



Science Maturity Check List	Yes ?
ReadMe for Data Product Users	\checkmark^*
Algorithm Theoretical Basis Document (ATBD)	\checkmark
Algorithm Calibration/Validation Plan	✓*
(External/Internal) Users Manual	\checkmark
System Maintenance Manual (for ESPC products)	\checkmark
Peer Reviewed Publications (Demonstrates algorithm is independently reviewed)	\checkmark
Regular Validation Reports (at least. annually) (Demonstrates long-term performance of the algorithm)	\checkmark

Issues to Address / Future Improvements



Incorporate Multi-Sensor Inputs


Issues to Address / Future Improvements

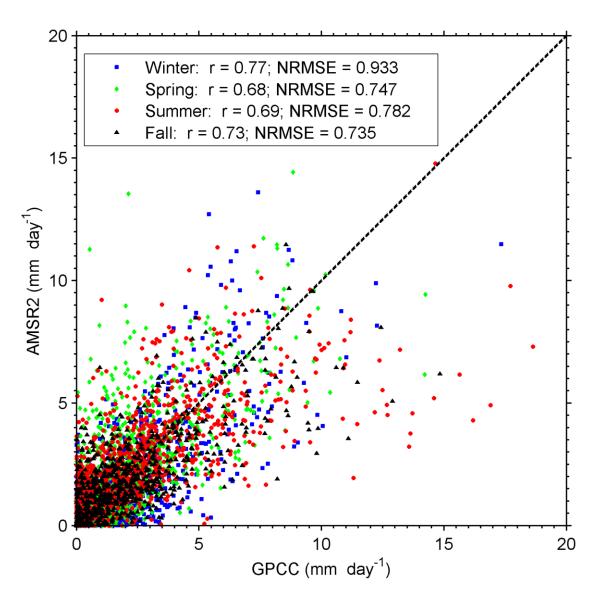
- Global algorithm updates, (i.e., diurnal sensitivity, geographic biases, JAXA L1 processing updates etc.)
- Region/Regime-specific algorithm (i.e. OCONUS / Tropical Cyclones / Coastal)
- Rain rate relationships are not always valid for special cases

JPSS Calibration/Validation Maturity Review

Path Forward – Evaluating GPROF2014

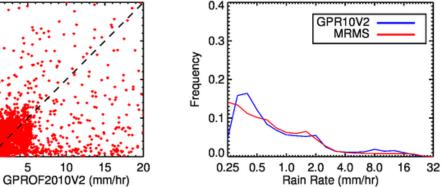
- Empirical Retrieval
- Continuation from AMSR-E algorithm
- Fully Bayesian Scheme
- Collaboration with NASA/GPM
- Still under development/testing

- GCOM-W/AMSR2 Project Team recommends algorithm validated maturity
 - Meet all JPSS L1RD requirements
 - Updated documentation needed
 - Routine monitoring by OSPO and STAR


Meyers, P. C. and R. R. Ferraro: Precipitation from the Advanced Microwave Scanning Radiometer 2. *J. of Sel. Top. Earth Obs. Remote Sens.*, **9**, 2611-2618, doi: 10.1109/JSTARS.2015.2513666.

Suleiman, S. O., Z. Jelenak, P. S. Chang, J. D. Park, and P. Meyers: Inter- Calibration Results of the Advanced Microwave Scanning Radiometer – 2 Over Ocean. IEEE J of Sel. *Top. Earth Obs. Remote Sens.*, 9, 4230-4238, doi:10.1109/JSTARS.2014.2330980

BACKUP MATERIAL



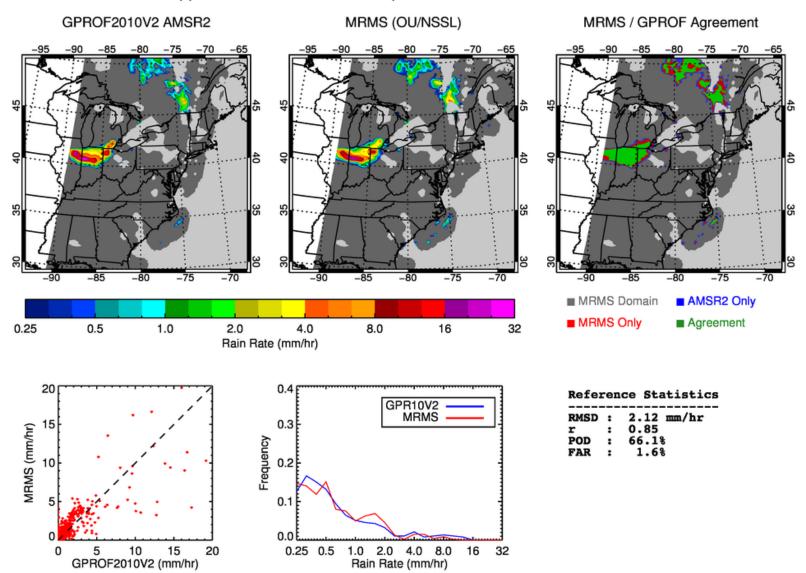
MRMS (OU/NSSL) MRMS / GPROF Agreement GPROF2010V2 AMSR2 -85 -80 -75 -70 -90 -85 -80 -75 -70 -90 -85 -80 -75 -70 -95 -90 -95 -65 5 읖 8 8 8 35 35 33 35 β ß -80 -80 -70 -80 MRMS Domain AMSR2 Only MRMS Only Agreement 8.0 0.25 0.5 1.0 2.0 4.0 16 32 Rain Rate (mm/hr) 20 0.4 GPR10V2 MRMS 0.3 15 MRMS (mm/hr)

AMSR2 & MRMS Precipitation Rate - 20160718.072200UTC

0

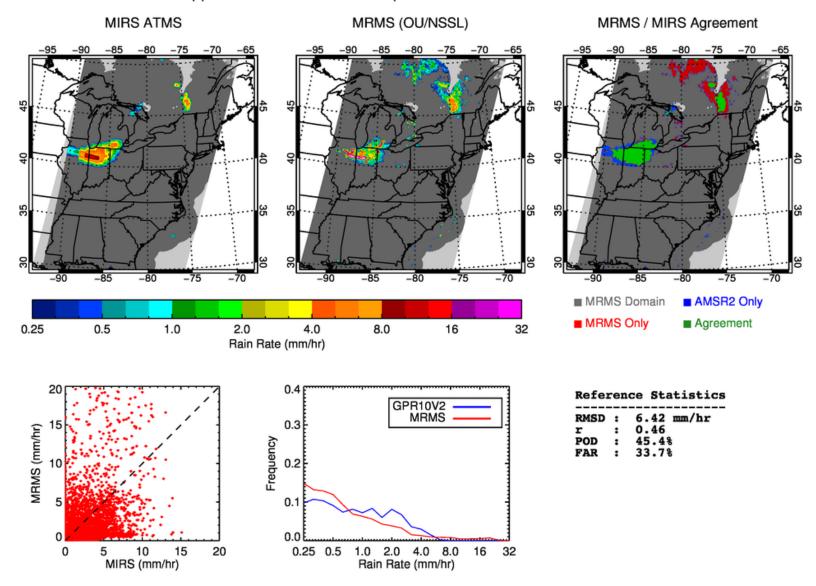
0

5


Reference Statistics			
RMSD	;	5.81 mm/hr	
r POD	:	0.66 61.9%	
FAR	:	10.9%	

IPSE ATMS (MIRS) – Native Resolution

MIRS ATMS & MRMS Precipitation Rate - 20160718.065200UTC MIRS ATMS MRMS (OU/NSSL) MRMS / MIRS Agreement -85 -80 -75 -70 -85 -80 -75 -70 -85 -80 -75 -90 -90 -95 -90 -70 -95 -65 -95 -65 -65 45 珨 8 8 ð 35 35 33 g ß β 80 30 -80 -70 -80 -85 -70 -90 -85 -90 -85 -80 -70 MRMS Domain ATMS Only MRMS Only Agreement 0.25 0.5 1.0 2.0 8.0 16 4.0 32 Rain Rate (mm/hr) 20 0.4 **Reference Statistics** MIRS MRMS 2.06 mm/hr RMSD 15 0.3 MRMS (mm/hr) 0.77 Frequency POD 31.0% FAR 2. .0% 10 0.2 0.1 0.0 10 15 20 0.25 0.5 1.0 2.0 4.0 8.0 16 0 5 32 MIRS (mm/hr) Rain Rate (mm/hr)



Remapped AMSR2 & MRMS Precipitation Rate - 20160718.072200UTC

Remapped ATMS & MRMS Precipitation Rate – 20160718.065200UTC

