NOAA Logo

NWS Logo

Organizations

Space Weather Prediction Center

National Oceanic and Atmospheric Administration

Saturday, January 21, 2017 15:51:19

Main menu

NOAA Scales mini

minimize icon
Space Weather Conditions
24-Hour Observed Maximums
R
no data
S
no data
G
no data
Latest Observed
R
no data
S
no data
G
no data
R1-R2 --
R3-R5 --
S1 or greater --
G
no data
R1-R2 --
R3-R5 --
S1 or greater --
G
no data
R1-R2 --
R3-R5 --
S1 or greater --
G
no data
maximize icon
R
no data
S
no data
G
no data
Current Space Weather Conditions
R1 (Minor) Radio Blackout Impacts
close
HF Radio: Weak or minor degradation of HF radio communication on sunlit side, occasional loss of radio contact.
Navigation: Low-frequency navigation signals degraded for brief intervals.
More about the NOAA Space Weather Scales

Geospace Ground Magnetic Perturbation Maps

Geospace 2d Mag Grid North America

The Geospace model magnetic delta B (nT) data on a global 5 x 5 degree grid mapped as a color contour plot over North America

Geospace 2d Mag Grid Over The Globe

The Geospace model magnetic delta B (nT) data on a global 5 x 5 degree grid mapped as a color contour plot over the globe

Geospace 2d Mag Grid Over The Poles

The Geospace model magnetic delta B (nT) data on a global 5 x 5 degree grid mapped as a color contour plot over the poles at fixed local time

The Geospace Ground Magnetic Perturbation Maps display the gridded magnetic delta B (nT) output from the University of Michigan’s Geospace model, which provides regional magnetic variations on a five-by-five degree global grid. Using these data, colored contour plots of the predicted delta B are generated for three different views: delta B over North America (top panel), a global view of delta B (middle panel), and a dual polar view of the north and southern hemispheres oriented in fixed local time (bottom panel). The animations show the model forecast, where the lead time depends on the solar wind speed, as well as the previous two hours for context.

Ground magnetic perturbation maps such as those displayed here are useful for providing regional disturbance model forecasts that can be used by power grid operators to determine if disturbances are likely to have impacts at their general location.

For additional space weather products generated using output from the Geospace model, see the following pages:

 

This product uses output generated by the University of Michigan’s Geospace model that consists of several components in their Space Weather Modeling Framework (SWMF). The Geospace model is a first-principles physics based model which includes three components: the University of Michigan’s BATS-R-US magnetohydrodynamic (MHD) model of the magnetosphere; the Ridley Ionosphere electrodynamics Model (RIM) developed at Michigan; and the Rice Convection Model (RCM), an inner magnetosphere ring-current model developed at Rice University.

For local magnetic perturbations, the magnetic field on the ground is not directly modeled; instead the magnetic disturbances are derived from currents in the MHD domain, the field aligned currents (FACs) in the gap region between the MHD domain and the ionosphere, and the ionospheric Hall and Pedersen currents. The gap region is located between the inner boundary of the MHD model at 2.5 Re and the ionosphere model at ~1 Re. In the gap region the field aligned currents are assumed to flow roughly along the dipole field.

 

 

The Geospace Ground Magnetic Perturbation Maps represent the first generation of operational space weather products derived from the Geospace model, a model which includes both global and regional short-term predictions of geomagnetic activity. Other operational space weather products generated using output from the Geospace model include the Geospace Global Geomagnetic Activity Plot and the Geospace Equatorial and Meridional Magnetospheric Views.

During the course of FY 17, efforts will be taken to develop new and improved products, to conduct additional model validation, and to make model outputs more generally accessible.

 

 

Access to the data will be coming soon. We are currently seeking input on how customers would like to access the data.