# 6. Assessment of the arrowtooth flounder stock in the Eastern Bering Sea and Aleutian Islands 

Ingrid Spies, Thomas K. Wilderbuer, Daniel G. Nichol, Jerry Hoff, and Wayne Palsson
Alaska Fisheries Science Center
National Marine Fisheries Service

## Executive Summary

## Summary of Changes in Assessment Inputs

Changes in the input data:

1. Survey size compositions from the 2015 and 2016 Eastern Bering Sea shelf survey, 2016 Eastern Bering Sea slope survey, and 2016 Aleutian Islands survey.
2. Biomass point-estimates and standard errors from the 2015 and 2016 Eastern Bering Sea shelf surveys, 2016 Eastern Bering Sea slope survey, and 2016 Aleutian Islands survey.
3. Fishery size compositions for 2015 and 2016.
4. Estimates of catch through October 26, 2016.
5. Age data from the 1993, 1994, 2012, 2014, and 2015 Bering Sea shelf and 2014 Aleutian Islands surveys, as well as the 2012 Eastern Bering Sea slope survey.

Changes in the assessment methodology:
The age-structured assessment model is similar to the model used for the 2014 and 2015 assessments, and was developed using AD Model Builder (a C++ software language extension and automatic differentiation library). The 2016 model implemented the following changes based on Plan Team and SSC comments:

1. Multiplicative weights were set on an ad hoc basis for the survey index data and fixed at 1.0 for the size composition data.
2. A likelihood component was added to incorporate the 2012 slope survey age data.
3. The model uses an improved length-age conversion matrix that corrects for stratified sampling.

## Summary of Results

1. The projected age $1+$ total biomass for 2017 is $779,195 \mathrm{t}$.
2. The projected female spawning biomass for 2017 is $485,802 \mathrm{t}$.
3. The recommended 2017 ABC is $65,371 \mathrm{t}$ based on an $\mathrm{F}_{0.40}=0.129$ harvest level.
4. The 2017 overfishing level is $76,100 \mathrm{t}$ based on a $\mathrm{FofL}_{\mathrm{O}}=0.151$ harvest level.

| Quantity/Status | Last year |  | This year |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 2016 | 2017 | 2017 | 2018 |
| $M$ (natural mortality - Male, Female) | 0.35, 0.2 | 0.35, 0.2 | 0.35, 0.2 | 0.35, 0.2 |
| Specified/recommended Tier | За | За | За | За |
| Projected biomass (ages 1+) | 910,012 | 920,920 | 779,195 | 772,153 |
| Female spawning biomass (t) Projected | 535,350 | 534,347 | 485,802 | 464,066 |
| B100\% | 555,049 | 555,049 | 530,135 | 530,135 |
| $B_{40 \%}$ | 222,019 | 222,019 | 212,054 | 212,054 |
| B $35 \%$ | 194,267 | 194,267 | 185,547 | 185,547 |
| $F_{\text {OFL }}$ | 0.180 | 0.180 | 0.151 | 0.151 |
| $\operatorname{maxF}_{A B C}($ maximum allowable $=$ $\mathrm{F}_{40 \%}$ ) | 0.153 | 0.153 | 0.129 | 0.129 |
| Specified/recommended $F_{A B C}$ | 0.153 | 0.153 | 0.129 | 0.129 |
| Specified/recommended OFL (t) | 94,035 | 84,156 | 76,100 | 67,023 |
| Specified/recommended ABC (t) | 80,701 | 72,216 | 65,371 | 58,633 |
| Status | As determined last year for: |  | As determined this year for: |  |
|  | 2014 | 2015 | 2015 | 2016 |
| Overfishing | no | n/a | no | n/a |
| Overfished | n/a | no | n/a | no |
| Approaching overfished | n/a | no | n/a | no |

*Projections are based on estimated catches of $11,267 \mathrm{t}$ and $17,045 \mathrm{t}$ used in place of maximum permissible ABC for 2017 and 2018.

## Responses to SSC and Plan Team Comments on Assessments in General

## October 2015 SSC

The Team Procedures document clarifies that the proposed development and testing of a naming convention should focus on tracking the modeling configurations used for a particular stock assessment. The rationale for this request is two-fold. First, it will help us understand how long it has been since a benchmark change in model configuration has occurred; second, it will help the reviewers and public to track model changes. Of the options presented in the Joint Plan Teams minutes, the SSC agrees that Option 4 has several advantages and recommends that this Option be advanced next year.

Authors' response: New naming conventions were incorporated. See table in "Analytic Approach".

## December 2015 SSC

Many assessments are currently exploring ways to improve model performance by re-weighting historic survey data. The SSC encourages the authors and PTs to refer to the forthcoming CAPAM data-weighting workshop report.

## October 2016 SSC

The SSC recommends that the Gulf of Alaska Groundfish Plan Team (GOA GPT), BSAI GPT, and CPT encourage the continued use of multiple approaches to data weighting (not just the Francis (2011) method, but also including the harmonic mean and others).

Authors' response to previous two comments: We explored the Francis (2011) methodology for data weighting, and results were presented to the September 2016 Plan Team meeting. Future assessments will explore other data weighting approaches as well as the findings of the CAPAM data-weighting workshop.

## December 2015 SSC

The SSC recommends that assessment authors work with AFSC's survey program scientists to develop some objective criteria to inform the best approaches for calculating Q with respect to information provided by previous survey trawl performance studies (e.g. Somerton and Munro 2001), and fishtemperature relationships which may impact Q .

Authors' response: Catchability is modeled as a temperature dependent parameter in the Bering Sea shelf survey data component of the BSAI ATF assessment model. Authors will continue to evaluate Q with respect to trawl performance studies.

## October 2016 SSC

The SSC reminds groundfish and crab stock assessment authors to follow their respective guidelines for SAFE preparation.

Authors' response: Noted.

## October 2016 SSC

The SSC found the model numbering in the Eastern Bering Sea (EBS) Pacific cod model extremely helpful and looks forward to having more standardized model numbering across all stock assessment documents.

Authors' response: We incorporated the suggested naming convention.

## October 2016 SSC

The SSC requests that stock assessment authors bookmark their assessment documents and commends those that have already adopted this practice.

Authors' response: Noted.
October 2016 SSC
Some assessment authors have started to explore geostatistical approaches to estimating survey abundance or biomass and the SSC is encouraged by this development. The SSC re-iterates its support of the GOA GPT recommendation to form a study group to explore criteria necessary for adopting a geostatistical generalized linear mixed model approach (see December 2015 minutes).

Authors' response: Authors will consider this approach for future assessments.

## Responses to SSC and Plan Team Comments Specific to this Assessment

## September 2016 Plan Team

Ingrid Spies presented recent arrowtooth flounder model developments, which included data weighting and an improved length-age conversion matrix. As the BSAI arrowtooth flounder model is based on the BS shelf survey, BS slope survey, and AI survey, all of which have different sampling frequencies and numbers of hauls, she explored methods to weight the survey index data and the size composition data. In the current model, sizecomp data are weighted the same for all survey and fishery years, with a
multinomial sample size of 200 for the survey sizecomp data and 25 for the fishery sizecomp data, and all likelihood components are assigned a multiplicative weight ("lambda," or "emphasis") of 1.0.

The exploration of data weighting was conducted according to the two-step process described by Francis (2011), where step 1 involves using information about the data by themselves (e.g., number of samples, number of hauls from which data were taken, etc.), and step 2 involves tuning the weights based on the model's fits to the data. Final multiplicative weights are the product of the respective step 1 and step 2 multiplicative weights.

Five weighting approaches were explored:

- Model A: step 1 multinomial sample sizes and multiplicative weights were left as in the current model; step 2 multiplicative weights were set on an ad hoc basis for the survey index data and fixed at 1.0 for the sizecomp data.
- Model B: step 1 was the same as in Model A; step 2 multiplicative weights were set at 1.0 for all data components.
- Model C: step 1 multinomial sample sizes were set equal to the number of hauls from which data were taken and multiplicative weights were set at 1.0 for all data components; step 2 multiplicative weights were set on an ad hoc basis for the survey index data and set at 1.0 for all sizecomp data components.
- Model D: step 1 was the same as in Model C; step 2 multiplicative weights for the index data set by tuning the standard deviations of normalized residuals and multiplicative weights for the sizecomp data set by Equation TA1.8 of Francis (2011).
- Model E: step 1 was the same as Models C and D; step 2 was the same as in Model D, except that the multiplicative weight for the fishery sizecomp data was multiplied by 0.1 .

The following table shows the resulting step 2 multiplicative weights for all models and data components:

|  | Biomass data |  |  | Size composition data |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Model | Shelf | Slope | AI | Shelf | Slope | AI | Fishery |  |
| A | 12 | 3 | 5 | 1 | 1 | 1 | 1 |  |
| B | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| C | 12 | 3 | 5 | 1 | 1 | 1 | 1 |  |
| D | 3.3 | 1.3 | 2.4 | 0.46 | 0.28 | 0.16 | 0.11 |  |
| E | 3.3 | 1.3 | 2.4 | 0.46 | 0.28 | 0.16 | 0.011 |  |

Model A is Ingrid's preferred model. Although the standard deviations of normalized residuals for the survey index data are all somewhat high, she felt that they were reasonable, and the smaller sizecomp weights from Models D and E did not improve the fits to the index data appreciably. She noted that the Francis paper suggests that ad hoc weighting in step 2 (as in Model A) can be an acceptable method in some cases.

The Team recommends examining the length at age data to determine if they came from a length stratified or a random sample. If two different sampling methods were used, the results are not directly comparable. For November, the Team recommends that the length-age conversion matrix be corrected if needed. The Team recommends bringing forward the original (2014) model and Model A with the new weightings in November.

Authors' response: The current assessment contains model 15.0 (The original 2014 model), as well as Model 15.0a with new weightings (referred to as Model A above), as recommended by the Plan Team. The final model 15.1b also incorporates the suggested weightings.

## Introduction

Arrowtooth flounder (Atheresthes stomias) are relatively large flatfish that range from central California to the eastern Bering Sea and are currently the most abundant groundfish species in the Gulf of Alaska. Arrowtooth flounder occur from central California to the Bering Sea, in waters from about 20 m to 800 m , although catch per unit effort (CPUE) from survey data is highest between 100 m and 300 m . Spawning occurs in deep water in the Gulf of Alaska and along the shelf break in the eastern Bering Sea. Migration patterns are not well known for arrowtooth flounder; however, there is some indication that arrowtooth flounder move into deeper water as they grow, similar to other flatfish (Zimmerman and Goddard 1996). Fisheries data off Washington suggest that larger fish may migrate to deeper water in winter and shallower water in summer (Rickey 1995).

In the Bering Sea and Aleutian Islands management area, their abundance is approximately six times higher in the eastern Bering Sea than in the Aleutian Islands region. The distribution of ages appears to vary by region and sex; male arrowtooth as old as 36 years have been observed in the Aleutian Islands are not commonly observed older than age 10 on the Bering Sea shelf, while the female length and weight relationships do not vary significantly between the two regions. Arrowtooth flounder begin to recruit to the eastern Bering Sea slope at about age 4. Based on age data from the 1982 U.S.-Japan cooperative survey, recruitment to the slope gradually increases at older ages and reaches a maximum at age 9 . However, greater than $50 \%$ of age groups 9 and older continue to occupy continental shelf waters. The low proportion of the overall biomass on the slope during the 1988, 1991, and 2016 surveys, relative to that of earlier surveys, indicates that the proportion of the population occupying slope waters may vary considerably from year to year depending on the age structure of the population.

Arrowtooth flounder spawn in deep waters ( $>400 \mathrm{~m}$ ) along the continental shelf break in winter (Blood et al. 2007). They are batch spawners, spawning from fall to winter off Washington State at depths greater than 366 m (Rickey 1995). Spawning females have been found at 400 m and males at $\geq 450 \mathrm{~m}$ in the Gulf of Alaska, and larvae have been found at depths greater than 200 m (Blood et al. 2007; De Forest et al. 2014). The age composition of the species shows fewer males relative to females as fish increase in age, which suggests higher natural mortality (M) for males (Wilderbuer and Turnock 2009). To account for this process, natural mortality was fixed at 0.2 for females and 0.35 for males in the model.

The arrowtooth flounder resource in the EBS and the Aleutians is managed as a single stock although little is known about stock structure. There has been no research on this topic for this species.

## Fishery

Arrowtooth flounder were managed with Greenland turbot as a species complex until 1985 because of similarities in their life history characteristics, distribution and exploitation. Greenland turbot were the target species and arrowtooth flounder were caught as bycatch. Management of Greenland turbot and the Atheresthes complex was performed separately starting in 1986 due to considerable differences in their stock condition. Two species of Atheresthes occur in the Bering Sea, arrowtooth flounder (Atheresthes stomias) and Kamchatka flounder (A. evermanni). These two species are very similar in appearance and were not routinely distinguished in the commercial catches until 2007 (Figure 6.1). Likewise, these species were not consistently distinguished in trawl survey catches until 1992. The species complex was split and separate assessments begun in 2010 due to the emergence of a directed fishery for Kamchatka flounder in the BSAI management area. Before 2010, the ABC for the species complex was determined by the large amount ( $\sim 93 \%$ ) of arrowtooth flounder relative to Kamchatka flounder in the species
complex; overharvest of Kamchatka flounder could occur as the ABC for the species complex exceeded the Kamchatka flounder biomass. Separate management of arrowtooth flounder and Kamchatka flounder began in the 2011 fishing season.

Catch records of arrowtooth flounder and Greenland turbot were combined during the 1960s. The fisheries for Greenland turbot intensified during the 1970s and the bycatch of arrowtooth flounder is assumed to have also increased. In 1974-76, total catches of arrowtooth flounder reached peak levels ranging from 19,000 to $25,000 \mathrm{t}$ (Table 6.1). Catches decreased after implementation of the Magnuson Fishery Conservation and Management Act (MFCMA) in 1976. The decline after 1976 resulted from catch restrictions placed on the fishery for Greenland turbot and phasing out of the foreign fishery in the U.S. EEZ. Catches in Table 6.2 are for arrowtooth flounder and Kamchatka flounder combined until 2008, the year in which the NMFS Alaska Regional Office (AKRO) started providing separate catch statistics for arrowtooth and Kamchatka flounder. Arrowtooth flounder has remained lightly exploited with catches (extrapolated for arrowtooth only) averaging 14,155 t from 1976-2015. The estimated proportion of Kamchatka flounder in the combined catch of arrowtooth and Kamchatka are shown in Table 6.1 through 2007. Total catch reported through October 26, 2016 is 9,712 t (below the 2016 TAC of $14,000 \mathrm{t}$ ). The NMFS AKRO BLEND/Catch Accounting System reports indicate that bottom trawling accounted for $94 \%$ of the 2016 catch ( $4 \%$ by pelagic trawl and $2 \%$ by hook and line).

Although much research has been conducted on their commercial utilization (e.g. Greene and Babbit 1990, Wasson et al. 1992, Porter et al. 1993, Reppond et al. 1993, Cullenberg 1995) and some targeting occurs in the Gulf of Alaska and the Bering Sea, arrowtooth flounder continue to be captured primarily in pursuit of higher value species and historically have been mostly discarded in the Bering Sea and the Aleutian Islands. The catch information in Table 6.1 reports the past annual total catch tonnage for the foreign and JV fisheries and the current domestic fisheries. The proportions of retained and discarded arrowtooth flounder in Bering Sea fisheries are estimated from observer at-sea sampling for 1985-2016 are shown in Table 6.2, and include Kamchatka flounder as well as arrowtooth flounder through 2007. With the implementation of Amendment 80 in 2008, the percentage of arrowtooth flounder retained in catches has increased to 88\% in 2014, and has remained high in 2015 (84\%) and 2016 (83\%). The largest catches, as well as discard amounts, occur in the flatfish fisheries. The increasing trend of retention is expected to continue in the near future due to the recent changes in fishing practices.

## Data

The data used in this assessment include estimates of total catch, trawl survey biomass estimates and standard error from the eastern Bering Sea shelf, eastern Bering Sea slope and Aleutian Islands surveys, sex-specific trawl survey length frequencies and fishery length-frequencies from observer sampling. Length composition data is available from each survey. It is used in the model for each year unless age composition data is available. Age composition data is also available for each survey. Bolded text represents new data added this assessment.

| Source | Data | Years |
| :---: | :---: | :---: |
| NMFS Bering Sea shelf survey | Survey biomass | 1982-2014, 2015, 2016 |
|  | Age Composition | $\begin{aligned} & \text { 1993, 1994, 1996, 1998, 2004, 2010, 2012, 2014, } \\ & 2015 \end{aligned}$ |
|  | Length composition | 1987-2013, 2016 |
| NMFS Bering Sea slope survey | Survey biomass | 1979, 1981, 1982, 1985, 1988, 1991, 2002, 2004, 2008, 2010, 2012, 2016 |
|  | Age Composition | 2012 |
|  | Length composition | 1981, 1982, 1985, 1988, 1991, 2002, 2004, 2008, 2010, 2016 |
| NMFS Aleutian Islands survey | Survey biomass | $\begin{aligned} & \text { 1980, 1983, 1986, 1991, 1994, 1997, 2000, 2002, } \\ & \text { 2004, 2006, 2010, 2012, 2014, } 2016 \end{aligned}$ |
|  | Age composition | 2010, 2014 |
|  | Length composition | $\begin{aligned} & \text { 1980, 1983, 1986, 1991, 1994, 1997, 2000, 2002, } \\ & \text { 2004, 2006, 2010, 2012, } 2016 \end{aligned}$ |
| Fishery | Catch length composition | 1978-1988, 1990-2014, 2015, 2016 |

## Fishery:

Fishery catch data from 1976 - October 26, 2016 (Table 6.1) and fishery length-frequency data from 1978-2016 are used in the assessment. Actual arrowtooth flounder catch is available from observer at-sea sampling applied to the Alaska regional office blend estimates for 2007-2016. For 1976-2006 the annual arrowtooth flounder catch was calculated as $93 \%$ of the combined arrowtooth flounder-Kamchatka flounder catch on record, based on their average annual proportions in trawl surveys since 1992 (the first year of reliable identification by species). These corrections were been applied to the catch totals in Table 6.1, under "ATF est". New fishery length-at-age data is incorporated in this assessment, and is shown in Figure 6.2. The number of fisheries length observations in each year is shown below.

| Year | Number of length <br> observations | Year | Number of length <br> observations |
| ---: | ---: | ---: | ---: |
| 1978 | 11,426 | 1998 | 3,819 |
| 1979 | 6,565 | 1999 | 3,974 |
| 1980 | 9,945 | 2000 | 1,415 |
| 1981 | 7,790 | 2001 | 2,984 |
| 1982 | 36,784 | 2002 | 2,404 |
| 1983 | 31,955 | 2003 | 3,565 |
| 1984 | 23,189 | 2004 | 4,367 |
| 1985 | 25,817 | 2005 | 2,689 |
| 1986 | 14,399 | 2006 | 2,143 |
| 1987 | 24,066 | 2007 | 601 |
| 1988 | 833 | 2008 | 1,422 |
| 1989 | 224 | 2009 | 557 |
| 1990 | 3,831 | 2010 | 922 |
| 1991 | 10,179 | 2011 | 887 |
| 1992 | 816 | 2012 | 529 |
| 1993 | 1,570 | 2013 | 643 |
| 1994 | 410 | 2014 | 156 |
| 1995 | 3,098 | 2015 | 16 |


| 1996 | 1,185 | 2016 | 128 |
| :---: | :---: | :---: | :---: |
| 1997 | 3,914 |  |  |

Catch from sources other than those that are included in the Alaska Region's official estimate of catch (e.g., removals due to scientific surveys, subsistence fishing, recreational fishing, fisheries managed under other FMPs is shown in the Appendix Table A1.

## Survey:

Biomass estimates ( t ) for arrowtooth flounder from the standard survey area in the eastern Bering Sea and Aleutian Islands region are shown in Table 6.3. Although the standard sampling trawl for the shelf changed in 1982 to the more efficient trawl 83/112 trawl which may have caused an overestimate of the biomass increase in the pre-1982 part of the time-series, biomass estimates from AFSC surveys on the continental shelf have shown a consistent increasing trend since 1975 that has leveled off since 2010. Since 1982, biomass point estimates indicate that arrowtooth abundance has increased eight-fold to a high of 772,988 t in 2005. In 2006-2007 the estimates declined slightly but remained at high levels, between 547,496-670,132 t. Survey biomass estimates have declined since 2005 and have remained in the range of $400,000 \mathrm{t}$. The 2016 slope survey estimate of $45,525 \mathrm{t}$ was the lowest since 2002, and may reflect movement of arrowtooth onto the shelf (Figure 6.3).

Trawl surveys were intermittently conducted over the continental slope (1979, 1981, 1982, 1985, 1988, 1991, 2002, 2004, 2008, 2010, 2012, and 2016). Only the surveys conducted since 2002 are considered part of a standard time series of biomass. These surveys sampled depths ranging from 200-1,200 meters and the Poly Nor' Eastern bottom trawl net with mud sweep ground gear was the standard sampling net. The slope surveys conducted in 1988 and 1991 sampled depths from 200-800 m and used a polyethylene Nor' Eastern trawl with bobbin roller gear. Slope surveys conducted between 1979 and 1985 sampled depths ranging from 200-1000 m and used different gear altogether. These surveys show that arrowtooth flounder biomass increased significantly from 1979 to 1985. The biomass estimate in 1988 and 1991 were lower. Based on slope surveys conducted between 1979 and $1985,67 \%$ to $100 \%$ of the arrowtooth flounder biomass on the slope was found at depths less than 800 m . These data suggest that less than $20 \%$ of the total EBS population occupied slope waters in 1988 and 1991, a period of high arrowtooth flounder abundance. Surveys conducted during periods of low and increasing arrowtooth abundance (1979-85) indicate that $27 \%$ to $51 \%$ of the population weight occupied slope waters. Although the 20022004 surveys were deeper than earlier slope surveys, over $90 \%$ of the estimated arrowtooth biomass was located in waters less than 800 meters.

Error estimates in the survey biomass estimates are due to sampling variability. Arrowtooth flounder absolute abundance estimates are based on "area-swept" bottom trawl survey methods. These methods require several assumptions which can add to the uncertainty of the estimates. For example, it is assumed that the sampling plan covers the distribution of the species and that all fish in the path of the trawl are captured (no losses due to escape or gains due to herding).

The relative abundance of arrowtooth flounder increased substantially on the continental shelf from 1982 to 1990; the CPUE from AFSC shelf surveys increased steadily from 1.6 to $9.9 \mathrm{~kg} /$ ha (Figure 6.4). The overall shelf catch rate decreased slightly to $7.1 \mathrm{~kg} / \mathrm{ha}$ in 1991. The CPUE continued to increase through 1997 to $15.0 \mathrm{~kg} / \mathrm{ha}$. These increases in CPUE were also observed on the slope from 1981 to 1986 as CPUE from the Japanese land-based fishery increased from 1.5 to $21.0 \mathrm{t} / \mathrm{hr}$ (Bakkala and Wilderbuer 1990). From 1999 to 2005 the shelf survey CPUE increased at a high rate each year. Survey estimates are consistently high from 2003-2011 (between $8-11 \mathrm{~kg} / \mathrm{ha}$ ), and the 2005 CPUE of $15.4 \mathrm{~kg} /$ ha was the highest ever estimated from the shelf survey.

## Analytic Approach

## Model Structure

This stock assessment utilizes AD Model Builder software (a C++ software language extension and automatic differentiation library) to model the population dynamics of Bering Sea and Aleutian Islands arrowtooth flounder. The model is parameterized in terms of numbers at age. Survey and fishery length composition observations are fit using a length-age conversion matrix. In 2010 there were two years of age data incorporated into the model, and numbers-at-age were primarily fit to length composition data. The number of age data collections has increased to 12 in the current assessment. The model simulates the dynamics of the population and matches observed biomass estimates and length and age compositions from surveys and fishery sampling programs as closely as possible. This is accomplished by the simultaneous estimation of the parameters in the model using the maximum likelihood estimation procedure. The fit of the simulation values to the observed characteristics is optimized by maximizing the likelihood function given some distributional assumptions about the observed data (see Table 6.4).

A retrospective analysis was performed extending back 10 years, with data from 2007-2016. Ten runs were performed; the 2015 run was created by dropping the 2016 data, the 2014 run was created by dropping all data except through 2014, etc (Figure 6.5).

## Description of Alternative Models

The age-structured assessment model is similar to the model used for the 2014 and 2015 assessments. The 2015 model (Model 15.0) was similar to the 2014 model but was adapted to incorporate data from a varying number of surveys and could therefore be used to run Gulf of Alaska or BSAI arrowtooth flounder stock assessments. There were no changes to the configuration of the BSAI assessment model from previous years. Weights were applied to the three survey indices, shelf, Aleutian Islands, and slope (weight values were 12, 3, 5) in Model 15.0a, and the data was current through 2014. Data was current through 2016 in Model 15.0b, with length composition and survey estimates of biomass for each of the three surveys, as well as updated age data from the shelf and AI data. Slope age data was added to the data in Model 15.1. A new likelihood component was added for slope age likelihood because this was the first time that age data from the slope survey was incorporated into the model. The length-age conversion matrix was added in Model 15.1a, based on age data from Table 6.5. The length-age matrix was corrected for stratified sample design using methods in Dorn (1992). Finally, survey index weights were added in Model 15.1b, but due to new data, the weights were adjusted from Model 15.0a (weight values were 4, 2, 3). A summary of model results is shown in Table 6.6, and stock size estimates for the various models is shown in Figure 6.6.

| Name | New data | Weights | Model configuration change |
| :--- | :--- | :--- | :--- |
| 15.0 | No | No | No change - same as 2015 model. |
| 15.0 a | No | Yes | No other changes. |
| 15.0 b | Yes - updated AI, shelf, <br> ages and lengths for all <br> surveys. Also updated <br> temperature anomalies. | No | No. |
| 15.1 | Yes - all new data added <br> (AI, shelf, slope ages and <br> lengths). Also updated <br> temperature anomalies. | No | Yes - Added new likelihood component for slope ages. |
| 15.1 a | Yes - all new data added <br> (AI, shelf, slope ages and <br> lengths). Also updated | No | Yes - Added new likelihood component for slope ages. <br> Also new age-length conversion matrix (after Dorn 2002). |


|  | temperature anomalies. |  |  |
| :--- | :--- | :--- | :--- |
| 15.1 b | Yes - all new data added <br> (AI, shelf, slope ages and <br> lengths). Also updated <br> temperature anomalies. | Yes | Yes - Added new likelihood component for slope ages. <br> New length-age conversion matrix (after Dorn 2002). |

## Parameters Estimated Outside the Assessment Model

Parameters of the von Bertalanffy growth curve for arrowtooth flounder from age data collected during the 1982 U.S.-Japan cooperative survey and the 1991 slope survey (Zimmermann and Goddard 1996) are as follows:

|  | Sample size | Age range | $\mathrm{L}_{\text {inf }}$ | k | $\mathrm{t}_{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1982 age sample |  |  |  |  |  |
| Male | 528 | $2-14$ | 45.9 | 0.23 | -0.70 |
| Female | 706 | $2-14$ | 73.8 | 0.14 | -0.20 |
| Sexes combined | 1,234 | $2-14$ | 59.0 | 0.17 | -0.50 |
| 1991 age sample |  |  |  |  |  |
| Male | 53 | $3-9$ | 57.9 | 0.17 | -2.17 |
| Female | 134 | $4-12$ | 85.0 | 0.16 | -0.81 |

Based on 282 observations during an AFSC survey in 1976, the length (mm)-weight (gm) relationship for arrowtooth flounder (sexes combined) is described by the equation:

$$
\mathrm{W}=5.682 \times 10^{-6} * \mathrm{~L}^{3.1028}
$$

Maturity information from a histological examination of arrowtooth flounder in the Gulf of Alaska (Zimmerman 1997) indicates that $50 \%$ of male and female fish become mature at 46.9 and 42.2 cm , respectively. A similar study in the Bering Sea based on female samples only found that $50 \%$ of female fish become mature at approximately 46 cm and 7 years (Stark 2011). The maturity-at-age is governed by the relationship:

$$
Q_{a}=\frac{1}{1+e^{-(A+a B)}}
$$

where $A$ and $B$ are parameters in the relationship (i.e. Tables 1 and 2; Stark 2011) and $a$ represents age. The parameters A and B are based on a February 2008 collection of $n=175$ female fish (Stark 2011). The weight-at-age and maturity-at age schedules used in the model are shown in Table 6.7.

Attempts to estimate catchability by profiling over fixed q values in a previous assessment (Wilderbuer and Sample 1995) were unsuccessful as estimated values always reached the upper bounds placed on the parameter. The results indicated $q$ values as high as 2.0 which suggests that more fish are caught in the survey trawl than are present in the "effective" fishing width of the trawl (i.e. some herding occurs or the "effective" fishing width of the trawl may be the distance between where the sweep lines contact the seafloor instead of between the wingtips of the survey trawl). Results from two herding experiments conducted in 1994 to discern the herding characteristics of the standard shelf survey trawl indicated a trawl catch of flatfish was composed of fish which were directly in the trawl path as well as those which moved into the trawl path because of the mud cloud disturbance caused by the bridle contact with the seafloor (Somerton and Munro 2001). Thus the "area-swept" technique of estimation would overestimate the abundance when herding occurred. Further research on the whole gear efficiency, the proportion of fish passing between the otter doors of a bottom trawl net that are subsequently captured,
included arrowtooth flounder. Results indicated that arrowtooth have high efficiency (the proportion of fish passing between the otter doors of a bottom trawl that are subsequently captured), varying by fish length, similar to other flatfish, approximately 40-50\% (Somerton et al. 2007).

Examination of Bering Sea shelf survey biomass estimates indicate that some of the annual variability seemed to positively co-vary with bottom water temperature. Variations in CPUE (Figure 6.4) were particularly evident during the coldest year (1999) and the warmest year (2003). The relationship between average annual bottom water temperature collected during the survey and annual survey biomass estimates can be better understood by modeling survey catchability as:

$$
q=e^{-\alpha+\beta T}
$$

where $q$ is catchability, $\alpha$ and $\beta$ are a parameters estimated by the model, and $T_{t}$ is the average annual bottom water temperature. The catchability equation has two parts. The $\mathrm{e}^{\alpha}$ term is a constant or timeindependent estimate of q . The model estimate of $\alpha=-0.52$ indicates that $\mathrm{q}>1$ suggesting that arrowtooth flounder are herded into the trawl path of the net which is consistent with the experimental results for other flatfish species. The second term, $\mathrm{e}^{\beta T}$ is a time-varying (annual) q which relates to the metabolic aspect of herding or distribution (availability) which can vary annually with bottom water temperature. In 2014, the temperature anomaly was positive, following two years of low temperatures; resulting in an increase in the catchability estimate (Figure 6.8).

## Parameter Estimates

## Parameters Estimated Inside the Assessment Model

The suite of parameters estimated by the base model are classified by the following likelihood components:

| Data Component | Distribution assumption |
| :--- | :--- |
| Trawl fishery size composition | Multinomial |
| Shelf survey population size composition | Multinomial |
| Slope survey population size composition | Multinomial |
| Shelf survey age composition | Multinomial |
| Aleutian survey age composition | Multinomial |
| Trawl survey biomass estimates and S.E. | Log normal |

The total log likelihood is the sum of the log likelihoods for each data component. The model allows for the individual likelihood components to be weighted by an emphasis factor. The number of parameters estimated by the base model are presented below:

| Fishing mortality <br> (avg. and devs) | Selectivity | Temp-q | Year class strength | Total |
| :---: | :---: | :---: | :---: | :---: |
| 42 | 58 | 5 | 61 | 166 |

The recruitment parameters are comprised of 21 initial ages in 1976 and 41 subsequent age sex-specific recruitment estimates from 1976-2016. The difference in the number of parameters estimated in this assessment compared to last year can be accounted for by additional years of survey data, estimates of more years of recruitment and fishing mortality. Five more parameters, alpha, beta, and a proportion attributed to each survey, are estimated in a later stage to estimate the annual relationship between bottom
water temperature (to 200 m ) and shelf survey catchability and the overall value of catchability which relates to the capture process and availability of the stock (discussed in the next section). In addition, two parameters per sex are estimated for increasing logistic selectivity for the three surveys, and 19 parameters per sex for the fishery selectivity.

It was assumed that the shelf and slope surveys measure non-overlapping segments of the arrowtooth flounder stock. Biomass was apportioned between the three areas by a linear fit to the 3 survey timeseries and the averages of the annual proportions were estimated from the linear regressions (Fig 6.3). The resulting proportions are $79 \%$ shelf, $9 \%$ slope and $13 \%$ in the Aleutian Islands. Equal emphasis was placed on fitting all data components for this assessment. The relationship between annual bottom water temperature and shelf survey catchability was modeled to improve the fit to the shelf survey biomass estimates. Results are closely linked to fitting the general trend of increasing shelf survey biomass estimates during the 1980s to the present high level, and to fitting the male and female size compositions (Fig 6.10) and sex ratios from the shelf, slope and Aleutian Islands surveys.

The population simulation specifies the number-at-age in the beginning year of the simulation, the number of recruits in subsequent years, and the survival rate for each cohort as it moves through the population calculated from the population dynamics equations (see Table 6.4 and Table 6.8).

The fishing mortality rates ( F ) for each age and year are calculated to approximate the catch weight by solving for F while still allowing for observation error in catch measurement (Table 6.9). No additional weighting were placed on the catch, age, or length likelihood components. Selectivities for fishery and the three surveys are shown in Table 6.10.

Survey results indicate that fish less than about 4 years old ( $<30 \mathrm{~cm}$ ) are found only on the Bering Sea shelf. Males from $30-50 \mathrm{~cm}$ and females $30-70 \mathrm{~cm}$ are found in shelf and slope waters, and males > 50 cm and females $>70 \mathrm{~cm}$ are mainly found on the slope. Sex specific "domed-shaped" selectivity was estimated for males and females in the shelf survey, using an ascending and descending logistic curve. We assumed an asymptotic selectivity pattern for both sexes in the slope surveys and the Aleutian Islands surveys (Figure 6.9).

Past estimates of the natural mortality of arrowtooth flounder were assumed to be 0.20 . This estimate was used because it is similar to that of other species of flatfish with approximately the same age range as arrowtooth flounder and is the same estimate used by Okada et al. (1980). However, examination of shelf and slope survey population estimates indicated that females are consistently estimated to be in higher abundance than males (Figure 6.7). This difference was also evident in the Gulf of Alaska from triennial surveys conducted from 1984-2007 (Turnock et al. 2007). Possible reasons for the higher estimates of females in the survey observations may be: 1) there is a spatial separation of males and females where males are less available to the survey trawl, 2) there is a higher natural mortality for males than females, or 3) there are some sampling problems.

Since there is a current lack of evidence that male arrowtooth flounder are less available to the Bering Sea shelf survey sampling trawl than females, differential sex-specific natural mortality has been investigated as an alternative model in past assessments as an explanation of the observed differences in survey catch sex ratio (Figure 6.7; Wilderbuer and Sample 2002). For this assessment, model runs were again made with female natural mortality fixed at 0.2 for a range of values for males. Model runs were evaluated with respect to the estimate of male and female selectivity for the shelf survey, the estimated sex ratio and the overall model fit. Also, a constraint was placed on fitting the sex ratio estimated from the trawl surveys, as follows:

$$
\text { SRlike }=0.5\left[\frac{\sum\left(S \bar{R}_{\text {obs }}-S R_{\text {pred }}\right)^{2}}{\sigma_{\text {obs }}}\right]
$$

where SRlike is the sex ratio likelihood component, $\mathrm{SR}_{\text {obs }}$ is the observed sex ratio in shelf survey trawl surveys from 1982-2014, $\mathrm{SR}_{\text {pred }}$ is the model predicted sex ratio in the estimated population, and oobs is the standard error of the observed population sex ratio.

## Results

## Model Evaluation

In September 2016, the BSAI Plan Team recommended that the arrowtooth flounder assessment bring forward the 2015 combined model (Model 15.0), as well as a model that includes weights for the three survey indices. They also recommended that the length-age conversion matrix be corrected for stratified age sampling designs. The length-age conversion matrix was added in Model 15.1a, based on age data from Table 6.5, and was corrected for stratified sample design using methods in Dorn (1992). The final model (Model 15.1b) includes adjusted weights for the three survey indices (4, 2, 3). This adjustment was necessary after addition of new data for the model to converge. It also includes the corrected length-age conversion matrix, and new data. These three models (15.0, 15.0a, and 15.1b) are compared in Table 6.6 and Figure 6.6.

Results of the retrospective analysis are shown in Figure 6.5. The upper panel shows the spawning biomass time series from the current version of 15_1b with 10 retrospective runs (2006-2015) obtained by dropping one year of data at a time. The lower panel shows the change in spawning biomass relative to the current version of model 15_1b for each of the 10 retrospective runs. Mohn's rho is 0.246 . The plots of spawning biomass are all higher than the base model (Model 15_1b using data through 2016) as data is removed sequentially for each retrospective run. Retrospective runs for 2015 and 2014 show sequentially higher spawning biomass but the remaining retrospective runs remain relatively constant. Although there are no guidelines regarding how large rho (absolute value) should be before an assessment is declared to exhibit an important retrospective bias, 0.246 is not out of the range observed for other Alaska groundfish species.

Final parameter estimates for Model 15_1b are shown in Table A2.

## Time Series Results

This year's model shows a recent trend of increasing female spawning biomass, but a decrease in total biomass (Figure 6.10). The 2016 model estimates lower levels of total biomass than the 2014 assessment, and a downward shift in historical biomass.

Estimates indicate that arrowtooth flounder total biomass increased almost four fold from 1976 to the 2009 value of $907,756 \mathrm{t}$ (Figure 6.10, Table 6.11). After a rapid increase from 1985-94, the population increase slowed to a lower rate from 1992-1999 before increasing at a higher rate to the highest level estimated in 2009 (Figure 6.10), largely from the influence of the largest shelf survey biomass estimates ever recorded of $772,998 \mathrm{t}$ in 2005 (Table 6.3) and consecutive years of good recruitment. Biomass estimates from surveys have declined for the Bering Sea shelf since 2005 and the slope since 2008. The most recent year of Aleutian Islands data is also lower than the highest estimate in 2006 (Table 6.3). Female spawning biomass in 2016 is estimated at $427,240 \mathrm{t}$, which represents approximately $25 \%$ decrease from estimates for 2014 (Table 6.11). The model estimates of population numbers by age, year, and sex are given in Table 6.12.

The model fit to the shelf survey tracks the trend of increasing abundance from 1982 to the high levels from 1993-97 and 2005-2006 (Figure 6.10). It does not fit the extremely high values in 2005 or the lower values in recent years. Consideration of the relationship between annual bottom water temperature and catchability improves the fit to the shelf survey biomass. Figure 6.10 shows that the data weighting in

Model 15_1b provides a better fit to the data than Model 15_1a, which does not have survey biomass index data weighting.

The model provides reasonable fits to the survey size composition time-series for males and females, which are shown in Figure 6.11. The shelf survey has the best fit, due to the fact that there are more years of data for that survey. The model provides better fits to the survey age compositions, Bering Sea shelf, as well as the Aleutian Islands survey (Figure 6.11).

Increases in abundance from 1983-95 were the result of strong year-classes spawned in 1981, 1984, 1987, 1988, and 1989 (Figure 6.12, Table 6.13). From 1989-1993 recruitment was below average and stock abundance leveled-off. Recent leveling off in arrowtooth flounder biomass can be attributed to belowaverage year classes in 2006 and 2010, as well as lower estimates of survey biomass in recent years.

The conclusion from the CAPAM workshop was that both the McAllister \& Ianelli and Francis data weighting methods should be considered, and alternative likelihoods should be coded in the future. This assessment incorporated methods from Francis (2011). Alternative methods will be examined in the future.

## Harvest Recommendations

Arrowtooth flounder have a wide-spread bathymetric distribution in the Bering Sea/Aleutian Islands region and are above $\mathrm{B}_{40 \%}$, and are subject to minimal commercial harvest. The estimate of projected 2017 total biomass from the stock assessment projection model is $779,195 \mathrm{t}$ and the female spawning biomass is estimated at $485,802 \mathrm{t}$.

The reference fishing mortality rate for arrowtooth flounder is determined by the amount of reliable population information available (Amendment 56 of the Fishery Management Plan for the groundfish fishery of the Bering Sea/Aleutian Islands). Equilibrium female spawning biomass is calculated by applying the female spawning biomass per recruit resulting from a constant $\mathrm{F}_{0.40}$ harvest to an estimate of average equilibrium recruitment. Year classes spawned in 1976-2011 are used to calculate the average equilibrium recruitment. This results in an estimate of $B_{0.40}=212,054 \mathrm{t}$ for 2017. The stock assessment model estimates the 2016 level of female spawning biomass at $495,189 \mathrm{t}$. Since reliable estimates of $B$, $B_{0.40}, F_{0.40}$, and $F_{0.30}$ exist and $B>B_{0.40}(495,189 \gg 212,054)$, arrowtooth flounder reference fishing mortality is defined in tier 3a. For the 2017 harvest: $F_{A B C} \square F_{0.40}=0.129$ and $F_{O F L}=F_{0.35}=0.151$ (full selection $F$ values).

Acceptable biological catch is estimated for 2017 by applying the $F_{0.40}$ fishing mortality rate and agespecific fishery selectivities to the projected 2017 estimate of age-specific total biomass as follows:

$$
A B C=\sum_{a=a_{r}}^{a_{\text {noges }}} \bar{w}_{a} n_{a}\left(1-e^{-M-F s_{a}}\right) \frac{F s_{a}}{M+F s_{a}}
$$

where $S_{a}$ is the selectivity at age, $M$ is natural mortality, $W_{a}$ is the mean weight at age, and $n_{a}$ is the beginning of the year numbers at age. This results in a 2017 ABC of $65,371 \mathrm{t}$.

The overfishing level is estimated for 2017 by applying the $\mathrm{F}_{35 \%}$ fishing mortality rate and age-specific fishery selectivities to the projected 2016 estimate of age-specific total biomass. This results in a 2017 OFL of 76,100 t .

A standard set of projections is required for each stock managed under Tiers 1, 2, or 3 of Amendment 56. This set of projections encompasses seven harvest scenarios designed to satisfy the requirements of

Amendment 56, the National Environmental Protection Act, and the Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA).

For each scenario, the projections begin with the vector of current year numbers at age estimated in the assessment. This vector is then projected forward to the beginning of the following year (current year +1 ) using the schedules of natural mortality and selectivity described in the assessment and the best available estimate of total (year-end) catch for the current year. In each subsequent year, the fishing mortality rate is prescribed on the basis of the spawning biomass in that year and the respective harvest scenario. In each year, recruitment is drawn from an inverse Gaussian distribution whose parameters consist of maximum likelihood estimates determined from recruitments estimated in the assessment. Spawning biomass is computed in each year based on the time of peak spawning and the maturity and weight schedules described in the assessment. Total catch is assumed to equal the catch associated with the respective harvest scenario in all years. This projection scheme is run 1000 times to obtain distributions of possible future stock sizes, fishing mortality rates, and catches.

Five of the seven standard scenarios will be used in an Environmental Assessment prepared in conjunction with the final SAFE. These five scenarios, which are designed to provide a range of harvest alternatives that are likely to bracket the final TAC for next year (current year +1), are as follow ("max $F_{A B C}$ " refers to the maximum permissible value of $F_{A B C}$ under Amendment 56):

Scenario 1: In all future years, $F$ is set equal to $\max F_{A B C}$. Rationale: Historically, TAC has been constrained by ABC, so this scenario provides a likely upper limit on future TACs.

Scenario 2: In all future years, $F$ is set equal to a constant fraction of $\max F_{A B C}$, where this fraction is equal to the ratio of the $F_{A B C}$ value for next year's (current year +1 ) recommended in the assessment to the $\max F_{A B C}$ for next year. Rationale: When $F_{A B C}$ is set at a value below $\max F_{A B C}$, it is often set at the value recommended in the stock assessment.
Scenario 3: In all future years, $F$ is set equal to $50 \%$ of max $F_{A B C}$. Rationale: This scenario provides a likely lower bound on $F_{A B C}$ that still allows future harvest rates to be adjusted downward when stocks fall below reference levels.

Scenario 4: In all future years, $F$ is set equal to the most recent 5 -year (current year -6 - current year -1 ) average $F$. Rationale: For some stocks, TAC can be well below ABC, and recent average $F$ may provide a better indicator of $F_{T A C}$ than $F_{A B C}$.

Scenario 5: In all future years, $F$ is set equal to zero. Rationale: In extreme cases, TAC may be set at a level close to zero.

Two other scenarios are needed to satisfy the MSFCMA's requirement to determine whether a stock is currently in an overfished condition or is approaching an overfished condition. These two scenarios are as follow (for Tier 3 stocks, the MSY level is defined as $B_{35 \%}$ ):

Scenario 6: In all future years, $F$ is set equal to $F_{\text {OFL }}$. Rationale: This scenario determines whether a stock is overfished. If the stock is expected to be above $1 / 2$ of its MSY level in the current year and above its MSY level in 10 (current year +10 ) years under this scenario, then the stock is not overfished.

Scenario 7: In the next year and the following year (current year +1 , current year +2 ), $F$ is set equal to $\max F_{A B C}$, and in all subsequent years, $F$ is set equal to $F_{\text {OFL }}$. Rationale: This scenario determines whether a stock is approaching an overfished condition. If the stock is expected to be above its MSY level in 13 years (current year +13 ) under this scenario, then the stock is not approaching an overfished condition.

Simulation results (Table 6.14) indicate that arrowtooth flounder are not currently overfished and the stock is not considered to be approaching an overfished condition. The stock projection at the average exploitation rate for the past 5 years is shown in Figure 6.15 and a phase-plane diagram showing the timeseries of FSB estimates relative to the harvest control rule is shown in Figure 6.16. The ABC and TAC values that have been used to manage the combined stock since 1980 are listed in Table 6.15.

The 2016 catch through October 26, 2016 was $9,712 \mathrm{t}$. The total catch in 2016 was estimated to be the same as the 2015 total catch, $11,267 \mathrm{t}$. The 2017, and 2018 catches were estimated to be mean of the last three years $(2013,2014,2015)$ catches, 16,964 t. Arrowtooth flounder catches have ranged from 11,26738,881 for the past six full years, between 2011 and 2015, with the highest catch in 2011 and the lowest in 2015, indicating a possible declining trend. High catches in 2011 were the result of bycatch in targeted Kamchatka flounder fishing, and such high catches are unlikely to occur again. Therefore, the most recent full years catch of $11,267 \mathrm{t}$ in 2015 is a good estimate of future catch.

## Ecosystem Considerations

## Ecosystem Effects on the Stock

## 1) Prey availability/abundance trends

Arrowtooth flounder diet varies by life stage as indicated in the previous section. Regarding juvenile prey and its associated habitat, information is not available to assess the abundance trends of the benthic infauna of the Bering Sea shelf. The original description of infaunal distribution and abundance by Haflinger (1981) resulted from sampling conducted in 1975 and 1976 and has not be re-sampled since. Information on pollock abundance is available in Chapter 1 of this SAFE report. It has been hypothesized that predators on pollock, such as adult arrowtooth flounder, may be important species which control (with other factors) the variation in year-class strength of juvenile pollock (Hunt et al. 2011). The populations of arrowtooth flounder which have occupied the outer shelf and slope areas of the Bering Sea over the past twenty years for summertime feeding do not appear food-limited. These populations have fluctuated due to the variability in recruitment success which suggests that the primary infaunal food source has been at an adequate level to sustain the arrowtooth flounder population.

## 2) Predator population trends

As juveniles, it is well-documented from studies in other parts of the world that flatfish are prey for shrimp species in nearshore areas. This has not been reported for Bering Sea arrowtooth flounder due to a lack of juvenile sampling and collections in nearshore areas, but is thought to occur. As late juveniles they are found in stomachs of pollock and Pacific cod, mostly small arrowtooth flounder ranging from 5 to 15 cm standard length.

Past, present and projected future population trends of these predator species can be found in their respective SAFE chapters in this volume. Encounters between arrowtooth flounder and their predators may be limited as their distributions do not completely overlap in space and time.
3) Changes in habitat quality

Changes in the physical environment which may affect arrowtooth flounder distribution patterns, recruitment success, migration timing and patterns are catalogued in the Ecosystem Considerations section of this SAFE report. Habitat quality may be enhanced during years of favorable cross-shelf advection (juvenile survival) and warmer bottom water temperatures with reduced ice cover (higher metabolism with more active feeding).

Arrowtooth flounder are a high trophic level predator in the Bering Sea, feeding on both benthic and pelagic components of the food web (Figure 6.17). Unlike the Gulf of Alaska however, they are not at the
top of the food chain on the eastern Bering Sea shelf. Arrowtooth flounder in the Bering Sea are an occasional prey in the diets of groundfish in the Bering Sea and are eaten by Pacific cod, walleye pollock, Alaska skates, and sleeper sharks. However, given the large biomass of these species as juveniles in the Bering Sea overall, these occasionally recorded events translate into considerable total mortality for the arrowtooth flounder population in the Bering Sea ecosystem. Using the year 1991 as a baseline, the top three predators on arrowtooth flounder $>30 \mathrm{~cm}$, by relative importance, are walleye pollock ( $29 \%$ of the total mortality), Alaska skate (21\%) and sleeper shark (11\%) (Figure 6.18). After these predators the next highest sources of mortality (1991) on arrowtooth flounder are four fisheries, the flatfish trawl (7\%) pollock trawl (6\%), cod trawl (4) and the cod longline fishery (2\%). In the Aleutian Islands, sleeper sharks are the primary predators on arrowtooth flounder adults, while Pacific cod are the primary predator on arrowtooth flounder juveniles.

Most of the occurrences of arrowtooth flounder measured in groundfish stomachs was of fish between 2040 cm fork length, and were found in larger individuals of the predator species. For juvenile arrowtooth flounder ( $<20 \mathrm{~cm}$ fork length), $97 \%$ of the total mortality is unknown with the remaining $3 \%$ primarily attributed to arrowtooth flounder and a few other species (Figure 6.19).

The three major predators listed above do not depend on arrowtooth flounder in terms of their total consumption. Arrowtooth flounder only comprise approximately $2 \%$ of the diet of Bering Sea Pollock, $3 \%$ of Alaska skate and $12 \%$ of the sleeper shark diet. Therefore it is not expected that a change in arrowtooth flounder would have a great effect on these species' prey availability, while decreases in the large adults of these species might reduce overall predation mortality experienced by arrowtooth flounder.

## Fishery Effects on the Ecosystem

1) Arrowtoooth flounder are not pursued as a target fishery at this time and thus have no "fishery effect" on the ecosystem. In instances when arrowtooth flounder were caught in sufficient quantities in the catch that they could be classified as a target, their contribution to the total bycatch of prohibited species is summarized for 2006 and 2007 in Table 13 of the Economic SAFE (Appendix C) and is summarized for 2007 as follows:

## Prohibited species

Arrowtooth flounder "fishery" \% of total
Halibut mortality bycatch

Herring $<1$
$-0$
Red King crab 0
C. bairdi $<1$

Other Tanner crab $<1$
Salmon $<1$
2) Relative to the predator needs in space and time, harvesting of arrowtooth flounder selects few fish between $5-15 \mathrm{~cm}$ and therefore has minimal overlap with removals from predation.
3) The catch is not perceived to have an effect on the amount of large size target fish in the population due to it's history of very light exploitation (2\%) over the past 30 years.
4) Arrowtooth flounder discards are presented in the Catch History section.
5) It is unknown what effect the catch has had on arrowtooth flounder maturity-at-age and fecundity.
6) Analysis of the benthic disturbance from harvesting arrowtooth flounder is available in the Preliminary draft of the Essential Fish Habitat Environmental Impact.

Arrowtooth flounder are an important ecosystem component as predators. This is particularly relevant as their abundance has increased in the eastern Bering Sea since 1976. Nearly half of the adult diet is comprised of juvenile pollock (47\%) followed by adult pollock (19\%) and euphausiids (9\%). This is in marked contrast to their diet in the Gulf of Alaska, where pollock are a relatively small percentage of their forage base, which instead consists primarily of shrimp.

The balance of the arrowtooth flounder diet in the eastern Bering Sea includes eelpouts, shrimp, herring, eulachon and flathead sole juveniles (Figure 6.20). Diets of juvenile arrowtooth flounder are more similar to other Bering Sea shelf flatfish species than to arrowtooth flounder adults. Nonpandalid shrimp compose $42 \%$ of the total consumption, euphausiids $25 \%$, juvenile Pollock $22 \%$ and then polychaetes, sculpins and mysids accounting for another 10\% (Figure 6.21). With the exception of juvenile pollock, juvenile arrowtooth flounder exhibit a stronger benthic pathway in their diet than adults. In the Aleutian Islands, arrowtooth flounder feed on the range of available forage fishes, including myctophids, Atka mackerel, and pollock. They are an important predator on Atka mackerel juveniles, making up 23\% of the assumed natural mortality of this species.

In terms of the size of pollock consumed, arrowtooth flounder consume a greater number of pollock between the range of $15-25 \mathrm{~cm}$ fork length than do Pacific cod or Pacific halibut, which consume primarily adult fish and fish smaller than 15 cm (Figure 6.22).

Food web models for the Bering Sea have been constructed to discern what the effect of changes in key predators has as a source of mortality on species which are linked to them through consumption pathways. These models are 30 year realizations run 1,000 times and thus give a measure of the uncertainty in the food model parameters. A simulation analysis where arrowtooth flounder survival was decreased by $10 \%$ and the rest of the ecosystem was allowed to adjust to this decrease for 30 years (Figure 6.23) indicates that positive changes in biomass for affected species were only minimal with flathead sole showing the largest increase ( $\sim 3 \%$ ), probably due to competition for a variety of shared prey resources such as shrimp. As expected the largest negative changes in biomass were for arrowtooth flounder (both adults and juveniles) themselves and a smaller negative change for sleeper sharks ( $<4 \%$ ). All other effects were on the order of 1-2\%. When juvenile arrowtooth flounder are decreased, again it is flathead sole biomass which is increased, but only by a small percentage change, even if the change in arrowtooth juveniles is as much as $60 \%$ (Figure 6.24). As in the first simulation, the changes are minor for all other species and fisheries. However, it's important to note that this reflects a sensitivity analysis around conditions in the early 1990s; the increase of arrowtooth flounder in recent years suggests that this analysis should be re-performed with current conditions.

To evaluate the dependence of arrowtooth flounder adults and juveniles on a suite of species and fisheries which are dynamically related to them, a simulation analysis was conducted where survival of each species group/fishery on the X axis in Figure 6.25 was decreased by $10 \%$ and the rest of the ecosystem adjusted to this decrease for 30 years. These model runs indicate that the biomass of arrowtooth juveniles is very sensitive to changes on the order of only $10 \%$ in key species, whereby their biomass may be reduced by $40-60 \%$. The changes are primarily bottom-up, with few top-down or competitive effects. This supports the research of Wilderbuer et al. (2002) which suggests that the control of arrowtooth flounder production is primarily based on physical drivers, e.g. advection to nursery habitat. However, it's important to note that the effect of decreasing pollock (adults or juveniles) is to increase arrowtooth flounder in the model rather than decrease it; this suggests that the role of pollock as a predator on arrowtooth flounder (potentially limiting their population growth) is greater than the importance of pollock as prey, at least for small perturbations of pollock. For adults, the pattern is similar although the percent change in biomass is less (30\%).

| Ecosystem effects on arrowtooth flounder |  |  |  |
| :---: | :---: | :---: | :---: |
| Indicator | Observation | Interpretation | Evaluation |
| Prey availability or abundance trends |  |  |  |
| Predator population trends <br> Fish (Pollock, Pacific cod) | Stable | Possible increases to arrowtooth mortality |  |
| Changes in habitat quality Temperature regime | Cold years arrowtooth catchability and herding may decrease | Likely to affect surveyed stock | No concern (dealt with in model) |
| Winter-spring environmental conditions | Affects pre-recruit survival | Probably a number of factors | Causes natural variability |
| Arrowtooth flounder effects on ecosystem |  |  |  |
| Indicator | Observation | Interpretation | Evaluation |
| Fishery contribution to bycatch |  |  |  |
| Prohibited species | Stable, heavily monitored | Minor contribution to mortality | No concern |
| Forage (including herring, Atka mackerel, cod, and pollock) | Stable, heavily monitored | Bycatch levels small relative to forage biomass | No concern |
| HAPC biota | Low bycatch levels of (spp) | Bycatch levels small relative to HAPC biota | No concern |
| Marine mammals and birds | Very minor direct-take | Safe | No concern |
| Sensitive non-target species | Likely minor impact | Data limited, likely to be safe | No concern |
| Fishery concentration in space and time | Very low exploitation rate | Little detrimental effect | No concern |
| Fishery effects on amount of large size target fish | Very low exploitation rate | Natural fluctuation | No concern |
| Fishery contribution to discards and offal production | Stable trend | Improving, but data limited | Possible concern |
| Fishery effects on age-at-maturity and fecundity | Unknown | NA | Possible concern |

## Data Gaps and Research Priorities

We recommend studies on genetic population structure in arrowtooth flounder, as stock structure has not been examined in this species. In addition, the relationship between male and female natural mortality and sex ratio should be further investigated.

## Literature cited

Akaike, H. 1974. A new look at the statistical model identification, IEEE Transactions on Automatic Control. 19(6): 716-723 doi:10.1109/TAC.1974.1100705, MR 0423716.
Blood, D., Matarese, A., and Busby, M. 2007. Spawning, egg development, and early life history dynamics of arrowtooth flounder (Atheresthes stomias) in the Gulf of Alaska. NOAA Professional Paper NMFS 7, 28 p.
Cullenberg, P. 1995. Commercialization of arrowtooth flounder. The Next Step. Proceedings of the International Symposium on North Pacific Flatfish (1994: Anchorage, Alaska). pp623-630.
De Forest, L., Duffy-Anderson, J. , Heintz, R., Matarese, A., Siddon, E., Smart, T., and Spies, I. Ecology and taxonomy of the early life stages of arrowtooth flounder (Atheresthes stomias) and Kamchatka flounder (A. evermanni) in the eastern Bering Sea, Bering Sea $3^{\text {rd }}$ Special Volume (BSIERP project).
Dorn, M. 1992. Detecting environmental covariates of Pacific whiting Merluccius productus growth using a growth-increment regression model. Fishery Bulletin, 90: 260-275.
Francis, R.I.C. 2011. Data weighting in statistical fisheries stock assessment models. CJFAS. 68: 11241138.

Greene, D. H. and J. K. Babbit. 1990. Control of muscle softening and protease-parasite interactions in arrowtooth flounder, Atheresthes stomias. J. Food Sce. 55(2): 579-580.
Haflinger, K. 1981. A survey of benthic infaunal communities of the Southeastern Bering Sea shelf. In Hood and Calder (editors) The Eastern Bering Sea Shelf: Oceanography and Resources, Vol. 2. P. 1091-1104. Office Mar. Pol. Assess., NOAA. Univ. Wash. Press, Seattle, Wa 98105.
Hunt, G. L., Jr., Coyle, K., Eisner, L., Farley, E., Heintz, R., Mueter, F., Napp, J,. Overland., J., Ressler, P,. Salo. S., Stabeno, P. 2011. Climate impacts on eastern Bering Sea foodwebs: a synthesis of new data and an assessment of the Oscillating Control Hypothesis. ICES Journal of Marine Science, 68(6): 1230-1243, doi:10.1093/icesjms/fsr036.
Okada K., H. Yamaguchi, T. Sasaki, and K. Wakabayashi. 1980. Trends of groundfish stocks in the Bering Sea and the northeastern Pacific based on additional preliminary statistical data in 1979. Unpubl. Manuscr., 37 p. Far Seas Fish. Res. Lab., Japan Fish. Agency.
Porter, R. W., B. J. Kouri and G. Kudo, 1993. Inhibition of protease activity in muscle extracts and surimi from Pacific Whiting, Merluccius productus, and arrowtooth flounder, Atheresthes stomias. Mar. Fish. Rev. 55(3):10-15.
Reppond, R. W., D. H. Wasson, and J. K. Babbitt. 1993. Properties of gels produced from blends of arrowtooth flounder and Alaska pollock surimi. J. Aquat. Food Prod. Technol., vol. 2(1): 83-98.
Rickey, M.H. 1995. Maturity, spawning, and seasonal movement of arrowtooth flounder, Atheresthes stomias, off Washington. Fish. Bull., U.S. 93(1):127-138.
Somerton, D. A., and P. Munro. 2001. Bridle efficiency of a survey trawl for flatfish. Fish. Bull. 99:641-652(2001).
Somerton, D., Munro, P., and Weinberg, K. 2007. Whole gear efficiency of a benthic survey trawl for flatfish. Fish. Bull. 105: 278-291.
Stark, J. 2011. Female maturity, reproductive potential, relative distribution, and growth compared between arrowtooth flounder (Atheresthes stomias) and Kamchatka flounder (A. evermanni) indicating concerns for management. Journal of Applied Ichthyology. 28(2) 226-230. doi: 10.1111/j.1439-0426.2011.01885.x.

Stewart, I., Leaman, B., Martell, S., Webster, R. 2012. Assessment of the Pacific halibut stock at the end of 2012. IPHC Report of Assessment and Research Activities. http://www.iphc.int/publications/rara/2012/rara2012093 assessment.pdf.
Turnock, B. J., T. K. Wilderbuer and E. S. Brown. 2007. Arrowtooth flounder. In Stock Assessment and Fishery Evaluation Report for the 2007 Gulf of Alaska Groundfish Fishery. Gulf of Alaska

Groundfish Plan Team, North Pacific Fishery Management Council, P. O. Box 103136, Anchorage, AK 99510.
Wasson, D. H., K. D. Reppond, J. K. Babbitt and J. S. French. 1992. Effects of additives on proteolytic and functional properties of arrowtooth flounder surimi. J. Aquat. Food Prod. Technol., vol. 1(3/4):147-165.
Wilderbuer, T. K., and T. M. Sample. 1995. Arrowtooth flounder. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 1991, p.129-141. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510.
Wilderbuer, T. K., and T. M. Sample. 2002. Arrowtooth flounder. In Stock Assessment and Fishery Evaluation Document for Groundfish Resources in the Bering Sea/Aleutian Islands Region as Projected for 2003, p.283-320. North Pacific Fishery Management Council, P.O. Box 103136, Anchorage Alaska 99510.
Wilderbuer, T. K., A. B. Hollowed, W. J. Ingraham, Jr., P. D. Spencer, M. E. Conners, N. A. Bond, and G. E. Walters. Flatfish recruitment response to decadal climate variability and ocean conditions in the eastern Bering Sea. Progress Oceanography 55 (2002) 235-247.
Wilderbuer, T. K., and B. J. Turnock. 2009. Sex-specific natural mortality of arrowtooth flounder in Alaska: Implications of a skewed sex ratio on exploitation and management. NAJFM 29:306322.

Zimmermann, M., and Goddard, P. 1996. Biology and distribution of arrowtooth (Atheresthes stomias) and Kamachatka (A. evermanni) flounders in Alaskan waters. Fishery Bulletin 94: 358-370.
Zimmermann, Mark. 1997. Maturity and fecundity of arrowtooth flounder, Atheresthes stomias, from the Gulf of Alaska. Fish Bull. 95:598-611.

## Tables

Table 6.1a. All nation total combined catch ( t ) of arrowtooth and Kamchatka flounder in the eastern Bering Sea and Aleutian Islands regiona, 1970-1990. Totals for arrowtooth (ATF) and Kamchatka are under "Combined" total, extrapolated ATF only is under "ATF est". ${ }^{\text {a Catches prior to } 1990 \text { are on file at }}$ the Alaska Fisheries Science Center, 7600 Sand Point Way N.E., Seattle, WA 98115. ${ }^{\text {b }}$ Non-U.S. fisheries: Japan, U.S.S.R., Republic of Korea, Taiwan, Poland, and Federal Republic of Germany. ${ }^{\text {CJoint ventures }}$ between U.S. fishing vessels and foreign processing vessels. ${ }^{\text {d }}$ Domestic annual harvesting.

| Year | Eastern Bering Sea |  |  |  | Aleutian Islands Region |  |  |  | Combined | ATF est. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Non-U.S. ${ }^{\text {b }}$ | $\begin{aligned} & \text { U.S. } \\ & \text { J.V.' } \end{aligned}$ | $\begin{aligned} & \text { U.S. } \\ & \text { DAH }^{\mathrm{d}} \end{aligned}$ | Total | Non-U.S. | $\begin{aligned} & \text { U.S. } \\ & \text { J.V. } \end{aligned}$ | $\begin{aligned} & \text { U.S. } \\ & \text { DAH } \end{aligned}$ | Total | Total | Total |
| 1970 | 12,598 |  |  | 12,598 | 274 |  |  | 274 | 12,872 | 11,971 |
| 1971 | 18,792 |  |  | 18,792 | 581 |  |  | 581 | 19,373 | 18,017 |
| 1972 | 13,123 |  |  | 13,123 | 1,323 |  |  | 1,323 | 14,446 | 13,435 |
| 1973 | 9,217 |  |  | 9,217 | 3,705 |  |  | 3,705 | 12,922 | 12,017 |
| 1974 | 21,473 |  |  | 21,473 | 3,195 |  |  | 3,195 | 24,668 | 22,941 |
| 1975 | 20,832 |  |  | 20,832 | 784 |  |  | 784 | 21,616 | 20,103 |
| 1976 | 17,806 |  |  | 17,806 | 1,370 |  |  | 1,370 | 19,176 | 17,834 |
| 1977 | 9,454 |  |  | 9,454 | 2,035 |  |  | 2,035 | 11,489 | 10,685 |
| 1978 | 8,358 |  |  | 8,358 | 1,782 |  |  | 1,782 | 10,140 | 9,430 |
| 1979 | 7,921 |  |  | 7,921 | 6,436 |  |  | 6,436 | 14,357 | 13,352 |
| 1980 | 13,674 | 87 |  | 13,761 | 4,603 |  |  | 4,603 | 18,364 | 17,079 |
| 1981 | 13,468 | 5 |  | 13,473 | 3,624 | 16 |  | 3,640 | 17,113 | 15,915 |
| 1982 | 9,065 | 38 |  | 9,103 | 2,356 | 59 |  | 2,415 | 11,518 | 10,712 |
| 1983 | 10,180 | 36 |  | 10,216 | 3,700 | 53 |  | 3,753 | 13,969 | 12,991 |
| 1984 | 7,780 | 200 |  | 7,980 | 1,404 | 68 |  | 1,472 | 9,452 | 8,790 |
| 1985 | 6,840 | 448 |  | 7,288 | 11 | 59 | 89 | 159 | 7,447 | 6,926 |
| 1986 | 3,462 | 3,298 | 5 | 6,766 |  | 78 | 337 | 415 | 7,181 | 6,678 |
| 1987 | 2,789 | 1,561 | 158 | 4,508 |  | 114 | 237 | 351 | 4,859 | 4,519 |
| 1988 |  | 2,552 | 15,395 | 17,947 |  | 22 | 2,021 | 2,043 | 19,990 | 18,591 |
| 1989 |  | 2,264 | 4,000 | 6,264 |  |  | 1,042 | 1,042 | 7,306 | 6,795 |
| 1990 |  | 660 | 7,315 | 7,975 |  |  | 5,083 | 5,083 | 13,058 | 12,144 |

Table 6.1b. All nation total combined catch (t) of arrowtooth and Kamchatka flounder in the eastern Bering Sea and Aleutian Islands regiona, 1991-2016. Totals for arrowtooth (ATF) and Kamchatka are under "Combined" total, extrapolated ATF only is under "ATF est". *Species-specific estimates of catch available starting in 2008.**Catch information through 26 October, 2016 (NMFS regional office).

| $\frac{\text { Year }}{\text { Year }}$ | Eastern Bering Sea |  |  |  | Aleutian Isla | ds R | gion | Combined | ATF est. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NonU.S. ${ }^{\text {b }}$ | $\begin{aligned} & \hline \text { U.S. } \\ & \text { J.V. } \end{aligned}$ | U.S. DAH ${ }^{\text {d }}$ | Total | Non-U.S. | $\begin{aligned} & \hline \text { U.S } \\ & \text { J.V } \end{aligned}$ | $\begin{aligned} & \text { U.S. } \\ & \text { DAH } \end{aligned}$ | Total | Total |
| 1991 |  |  |  |  |  |  |  | 22,052 | 20,508 |
| 1992 |  |  |  |  |  |  |  | 10,382 | 9,655 |
| 1993 |  |  |  |  |  |  |  | 9,338 | 8,684 |
| 1994 |  |  |  |  |  |  |  | 14,366 | 13,360 |
| 1995 |  |  |  |  |  |  |  | 9,280 | 8,631 |
| 1996 |  |  |  |  |  |  |  | 14,652 | 13,626 |
| 1997 |  |  |  |  |  |  |  | 10,054 | 9,350 |
| 1998 |  |  |  |  |  |  |  | 15,241 | 14,174 |
| 1999 |  |  |  |  |  |  |  | 10,573 | 9,833 |
| 2000 |  |  |  |  |  |  |  | 12,929 | 12,024 |
| 2001 |  |  |  |  |  |  |  | 13,908 | 12,934 |
| 2002 |  |  |  |  |  |  |  | 11,540 | 10,732 |
| 2003 |  |  |  |  |  |  |  | 12,834 | 11,936 |
| 2014 |  |  |  |  |  |  |  | 17,809 | 16,562 |
| 2005 |  |  |  |  |  |  |  | 13,685 | 12,727 |
| 2006 |  |  |  |  |  |  |  | 13,309 | 12,377 |
| 2007 |  |  |  |  |  |  |  | 11,913 | 10,722 |
| 2008* |  |  |  |  |  |  |  |  | 21,368 |
| 2009 |  |  |  |  |  |  |  |  | 29,900 |
| 2010 |  |  |  |  |  |  |  |  | 38,881 |
| 2011 |  |  |  |  |  |  |  |  | 20,095 |
| 2012 |  |  |  |  |  |  |  |  | 22,333 |
| 2013 |  |  |  |  |  |  |  |  | 20,538 |
| 2014 |  |  |  |  |  |  |  |  | 19,088 |
| 2015 |  |  |  |  |  |  |  |  | 11,267 |
| 2016** |  |  |  |  |  |  |  |  | 9,712 |

Table 6.2. Estimates of retained and discarded arrowtooth flounder catch, and the proportion of arrowtooth flounder in the total catch of 1985-2016. Beginning in 2007, when the two species were differentiated in commercial catches, catch is calculated based on values from the Observer Interface Database; prior to 2007, proportion was calculated as 0.07 . Arrowtooth flounder were identified to species starting in 2008; therefore only arrowtooth flounder data is presented from this year onward.

| Year | Retained | Discarded | Total (t) | \% Retained | Proportion <br> ATF in catch |
| ---: | ---: | ---: | ---: | :---: | :---: |
| 1985 | 17 | 72 | 89 | 19 | 0.07 |
| 1986 | 65 | 277 | 342 | 19 | 0.07 |
| 1987 | 75 | 320 | 395 | 19 | 0.07 |
| 1988 | 3,309 | 14,107 | 17,416 | 19 | 0.07 |
| 1989 | 958 | 4,084 | 5,042 | 19 | 0.07 |
| $1990^{*}$ | 2,356 | 10,042 | 12,398 | 19 | 0.07 |
| 1991 | 3,211 | 18,841 | 22,052 | 15 | 0.07 |
| 1992 | 675 | 9,707 | 10,382 | 7 | 0.07 |
| 1993 | 403 | 6,775 | 7,178 | 6 | 0.07 |
| 1994 | 626 | 13,641 | 14,267 | 4 | 0.07 |
| 1995 | 509 | 8,772 | 9,281 | 5 | 0.07 |
| 1996 | 1,372 | 13,280 | 14,652 | 9 | 0.07 |
| 1997 | 1,029 | 9,024 | 10,054 | 10 | 0.07 |
| 1998 | 2,896 | 12,345 | 15,241 | 19 | 0.07 |
| 1999 | 2,538 | 8,035 | 10,573 | 24 | 0.07 |
| 2000 | 5,124 | 7,805 | 12,929 | 60 | 0.07 |
| 2001 | 4,271 | 6,959 | 11,230 | 62 | 0.07 |
| 2002 | 4,039 | 7,501 | 11,540 | 35 | 0.07 |
| 2003 | 4,024 | 8,810 | 12,834 | 31 | 0.07 |
| 2004 | 4,987 | 12,822 | 17,809 | 28 | 0.07 |
| 2005 | 8,211 | 5,474 | 13,685 | 60 | 0.07 |
| 2006 | 6,921 | 6,388 | 13,309 | 52 | 0.07 |
| 2007 | 6,910 | 5,003 | 11,913 | 58 | 0.10 |
| 2008 | 14,316 | 7,051 | 21,368 | 67 | - |
| 2009 | 21,827 | 8,073 | 29,900 | 73 | - |
| 2010 | 27,994 | 10,887 | 38,881 | 72 | - |
| 2011 | 16,560 | 3,635 | 20,195 | 82 | - |
| 2012 | 19,470 | 2,909 | 22,379 | 87 | - |
| 2013 | 17,015 | 3,485 | 20,501 | 83 | - |
| 2014 | 16,765 | 2,323 | 19,088 | 88 | - |
| 2015 | 9,437 | 1,829 | 11,267 | 84 |  |
| 2016 | 8,205 | 1,733 | 9,938 | 83 |  |
| 1903 |  | 4 | $p 3$ |  |  |

*1990 retained rate was applied to the 1985-89 reported catch. The 2016 catch is through 10/26/2016. Source: NMFS AKRO BLEND/Catch Accounting System.

Table 6.3. Estimated arrowtooth flounder biomass from trawl surveys conducted on the Eastern Bering Sea shelf, slope and the Aleutian Islands. The 1988 and 1991 slope estimates were from the depth ranges of 200-800 m while earlier slope estimates were from 200-1,000 m. The 2002 through 2016 slope estimates were from sampling conducted from 200-1,200 m.

| Year | shelf survey | slope <br> survey | Aleutian Islands |
| :---: | :---: | :---: | :---: |
| 1979 |  | 36,700 |  |
| 1980 |  |  | 16,500 |
| 1981 |  | 34,900 |  |
| 1982 | 69,990 | 24,700 |  |
| 1983 | 110,643 |  | 24,465 |
| 1984 | 160,396 |  |  |
| 1985 | 163,637 | 74,400 |  |
| 1986 | 229,865 |  | 110,476 |
| 1987 | 294,670 |  |  |
| 1988 | 297,210 | 30,600 |  |
| 1989 | 355,844 |  |  |
| 1990 | 402,326 |  |  |
| 1991 | 298,670 | 28,400 | 21,897 |
| 1992 | 370,517 |  |  |
| 1993 | 497,085 |  |  |
| 1994 | 514,336 |  | 58,191 |
| 1995 | 446,826 |  |  |
| 1996 | 527,249 |  |  |
| 1997 | 463,081 |  | 73,893 |
| 1998 | 345,130 |  |  |
| 1999 | 239,708 |  |  |
| 2000 | 314,694 |  | 65,028 |
| 2001 | 378,107 |  |  |
| 2002 | 331,345 | 42,508 | 88,750 |
| 2003 | 543,569 |  |  |
| 2004 | 549,338 | 53,745 | 94,998 |
| 2005 | 772,988 |  |  |
| 2006 | 670,132 |  | 183,836 |
| 2007 | 547,496 |  |  |
| 2008 | 588,342 | 68,317 |  |
| 2009 | 456,371 |  |  |
| 2010 | 586,954 | 74,065 | 80,060 |
| 2011 | 568,200 |  |  |
| 2012 | 445,736 | 72,845 | 60,371 |
| 2013 | 405,509 |  |  |
| 2014 | 465,616 |  | 75,958 |
| 2015 | 409,243 |  |  |
| 2016 | 475,264 | 45,525 | 65,901 |

Table 6.4. Key equations used in the population dynamics model.
$N_{t, 1}=R_{t}=R_{0} e^{\tau_{t}}, \quad \tau_{t} \sim N\left(0, \delta^{2}{ }_{R}\right)$
Recruitment 1956-75
$N_{t, 1}=R_{t}=R_{\gamma} e^{\tau_{t}}, \tau_{t} \sim N\left(0, \delta^{2}{ }_{R}\right)$
Recruitment 1976-2005
$C_{t, a}=\frac{F_{t, a}}{Z_{t, a}}\left(1-e^{-z_{t, a}}\right) N_{t, a}$
Catch in year $t$ for age $a$ fish
$N_{t+1, a+1}=N_{t, a} e^{-z_{t, a}}$
Numbers of fish in year $t+1$ at age $a$
$N_{t+1, A}=N_{t, A-1} e^{-z_{t, A-1}}+N_{t, A} e^{-z_{t, A}}$
Numbers of fish in the "plus group"
$S_{t}=\sum N_{t, a} W_{t, a} \phi_{a}$
Spawning biomass
$Z_{t, a}=F_{t, a}+M$
Total mortality in year $t$ at age $a$
$F_{t, a}=s_{a} \mu^{F} \exp ^{\varepsilon^{F}}{ }_{t}, \varepsilon^{F}{ }_{t} \sim N\left(o, \sigma^{2_{F}}\right)$
Fishing mortality
$s_{a}=\frac{1}{1+\left(e^{-\alpha+\beta a}\right)}$
Age-specific fishing selectivity
$C_{t}=\sum C_{t, a}$
Total catch in numbers
$P_{t, a}={ }^{C_{t, a}} / c_{t}$
Proportion at age in catch
$\operatorname{SurB}_{t}=q \sum N_{t, a} W_{t, a} v_{a}$
reclike $=\lambda\left(\sum_{i=1965}^{\text {endear }} \bar{R}-R_{i}\right)^{2}+\sum_{a=1}^{20}\left(R_{\text {init }}-R_{\text {init, } a}\right)^{2}$
recruitment likelihood
catchlike $=\lambda \sum_{i=s t a r t y e a r}^{\text {endyear }}\left(\ln C_{\text {obs }, i}-\ln C_{\text {est }, i}\right)^{2}$
catch likelihood
surveylike $=\lambda \frac{(\ln B-\ln \hat{B})^{2}}{2 \sigma^{2}}$
survey biomass likelihood

SurvAgelike $=\sum_{t, a} n_{t} P_{t, a}\left(\ln \hat{P}_{t, a}+0.001\right)-\sum_{t, a} n_{t} P_{t, a}\left(\ln P_{t, a}+0.001\right)$ survey age comp likelihood

SurvLengthlike $=\sum_{t, a} n_{t} P_{t, a}\left(\ln \hat{P}_{t, a}+0.001\right)-\sum_{t, a} n_{t} P_{t, a}\left(\ln P_{t, a}+0.001\right)$ survey length comp likelihood
Sexratiolike $=\frac{\sum_{i=1982}^{\text {lastsurvey }}\left(S \bar{R}_{\text {obs }}-S R_{i}\right)^{2}}{\sigma_{S R}}$ sex ratio likelihood

Table 6.5. Cruise data from which age data is available for arrowtooth flounder. Longitude and latitude represent minimum values from which samples were taken. Count represents the number of fish for which age and length data are available.

| Cruise | Survey Name | Latitude | Longitude | Count |
| :---: | :---: | :---: | :---: | :---: |
| 198001 | Aleutian Islands Bottom Trawl Survey | 51.32 | -165.11 | 70 |
| 198301 | Aleutian Islands Bottom Trawl Survey | 51.23 | -167.27 | 55 |
| 198601 | Aleutian Islands Bottom Trawl Survey | 51.19 | -165.02 | 328 |
| 199101 | Aleutian Islands Bottom Trawl Survey | 51.25 | -165.14 | 605 |
| 199701 | Aleutian Islands Bottom Trawl Survey | 51.19 | -179.96 | 773 |
| 200001 | Aleutian Islands Bottom Trawl Survey | 51.20 | -179.95 | 780 |
| 200201 | Aleutian Islands Bottom Trawl Survey | 51.25 | -179.95 | 1050 |
| 201001 | Aleutian Island Bottom Trawl Survey | 51.20 | -179.96 | 477 |
| 201401 | Aleutian Island Bottom Trawl Survey | 51.25 | -179.97 | 314 |
| 197601 | EBS Crab/Groundfish Bottom Trawl Survey | 54.85 | -159.15 | 282 |
| 198106 | Marine Mammal Feeding Study | 53.79 | -163.42 | 91 |
| 198203 | CRAB/GRFSH | 55.00 | -158.32 | 237 |
| 198402 | EBS Crab/Groundfish Bottom Trawl Survey | 54.98 | -158.31 | 576 |
| 198501 | Winter Groundfish Trawl Survey | 54.98 | -159.57 | 78 |
| 198701 | US-Japan Cooperative Longline Survey | 51.32 | -133.92 | 1771 |
| 199110 | EBS Triennial Survey | 54.21 | -165.81 | 187 |
| 199201 | EBS Crab/Groundfish Bottom Trawl Survey | 54.68 | -158.31 | 97 |
| 199301 | EBS Crab/Groundfish Bottom Trawl Survey | 54.78 | -159.54 | 209 |
| 199401 | EBS Crab/Groundfish Bottom Trawl Survey | 54.69 | -158.31 | 125 |
| 199601 | EBS Crab/Groundfish Bottom Trawl Survey | 54.83 | -176.96 | 211 |
| 199801 | EBS Crab/Groundfish Bottom Trawl Survey | 54.84 | -178.15 | 275 |
| 200401 | 2004 Bering Sea Shelf Survey | 54.66 | -178.16 | 592 |
| 200501 | EBS Crab/Groundfish Bottom Trawl Survey | 54.99 | -176.76 | 554 |
| 200601 | EBS Crab/Groundfish Bottom Trawl Survey | 54.98 | -178.18 | 604 |
| 200801 | EBS Crab/Groundfish Bottom Trawl Survey | 54.68 | -178.20 | 795 |
| 200901 | EBS Crab/Groundfish Bottom Trawl Survey | 54.68 | -178.18 | 691 |
| 201001 | 2010 EBS Bottom Trawl Survey | 54.71 | -178.23 | 470 |
| 201201 | 2012 EBS Slope Survey | 54.26 | -179.50 | 765 |
| 201201 | 2012 EBS Bottom Trawl Survey | 54.66 | -177.45 | 328 |
| 201401 | 2014 EBS Bottom Trawl Survey | 54.98 | -178.19 | 388 |
| 201501 | 2015 EBS Bottom Trawl Survey | 54.69 | -178.18 | 611 |

Table 6.6. Results comparing model fits and 2017 yield for different model configurations.

|  | Model $15.0$ | Model $15.0 a$ | Model $15.0 b$ | Model $15.1$ | Model 15.1a | $\begin{aligned} & \text { Model } \\ & 15.1 b \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total log(Likelihood) |  |  |  |  |  |  |
| Catch | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.03 |
| Recruitment | 26.80 | 28.30 | 26.30 | 26.90 | 21.20 | 26.90 |
| EBS shelf survey biomass | 145.40 | 32.20 | 187.70 | 185.00 | 185.00 | 88.10 |
| EBS slope survey biomass | 61.50 | 51.90 | 54.40 | 50.60 | 38.00 | 59.00 |
| Aleutian survey biomass | 45.40 | 32.50 | 45.20 | 47.00 | 49.70 | 44.00 |
| EBS shelf survey age comp | 147.00 | 200.70 | 636.30 | 310.00 | 300.00 | 306.40 |
| EBS slope survey age comp | - | - | - | 47.40 | 43.70 | 49.00 |
| Aleutian survey age comp | 119.80 | 134.50 | 476.80 | 284.70 | 287.60 | 313.90 |
| EBS shelf survey length comp | 849.70 | 900.70 | 1777.8 | 613.30 | 619.60 | 637.00 |
| EBS slope survey length comp |  |  |  |  |  | 735.60 |
| Aleutian survey length comp |  |  |  |  |  | 893.80 |
| Fishery length comp | 385.00 | 406.20 | 609.00 | 442.50 | 538.70 | 516.40 |
| Priors/Penalties | 0.92 | 0.96 | 0.86 | 0.79 | 0.69 | 0.79 |
| Stock status (t) |  |  |  |  |  |  |
| 2017 Spawning biomass | 530,121 | 618,340 | 452,585 | 447,755 | 427,240 | 427,240 |
| 2017 Total biomass | 896,812 | 976,238 | 752,296 | 734,214 | 694,508 | 694,508 |

Model descriptions (see text for details):
Model 15.0—last year’s base model with 2014 data.
Model 15.0a-base model with weights on survey indices.
Model 15.0b—base model with updated length composition and bottom temperature data, plus age data from the Aleutians and shelf surveys.
Model 15.1— Model 15.0b with slope age data and slope likelihood component for age.
Model 15.1a-model 15.1 with updated length-age conversion matrix.
Model 15.1b—model 15.1a with survey index weights.

Table 6.7. Arrowtooth flounder male and female weight-at-age ( kg ) and proportion of females mature at age.

| Age | Female weight at age | Male wt at age | Female <br> maturity at age <br> (Zimmerman 2007) | Female <br> maturity at age <br> (Stark 2011) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0.02 | 0.01 | 0 | 0.00 |
| 2 | 0.04 | 0.04 | 0 | 0.00 |
| 3 | 0.11 | 0.09 | 0 | 0.01 |
| 4 | 0.22 | 0.17 | 0.02 | 0.02 |
| 5 | 0.36 | 0.39 | 0.39 | 0.06 |
| 6 | 0.55 | 0.52 | 0.84 | 0.16 |
| 7 | 0.76 | 0.66 | 1.00 | 0.34 |
| 8 | 0.99 | 0.80 | 1.00 | 0.59 |
| 9 | 1.25 | 1.94 | 1 | 0.80 |
| 10 | 1.52 | 1.21 | 1 | 0.97 |
| 11 | 1.80 | 1.34 | 1 | 0.99 |
| 12 | 2.08 | 1.45 | 1 | 1 |
| 13 | 2.35 | 1.56 | 1 | 1 |
| 14 | 2.61 | 1.66 | 1 | 1 |
| 15 | 2.83 | 1.83 | 1 | 1 |
| 16 | 3.01 | 1.91 | 1 | 1 |
| 17 | 3.16 | 1.98 | 1 | 1 |
| 18 | 3.27 | 2.04 | 1 | 1 |
| 19 | 3.37 |  | 1 | 1 |
| 20 | 3.44 |  |  | 1 |
| 21 | 3.53 |  |  | 1 |

Table 6.8. Variables used in the population dynamics model.

| Variables |  |
| :---: | :---: |
| $\kappa_{t}$ | Age 1 recruitment in year $t$ |
| $\kappa_{0}$ | Geometric mean value of age 1 recruitment, 1956-75 |
| ${ }^{1} \gamma$ | Geometric mean value of age 1 recruitment, 1976-96 |
| $\tau_{t}$ | Recruitment deviation in year $t$ |
| ${ }^{1 v_{t, a}}$ | Number of fish in year $t$ at age $a$ |
| $\smile_{t, a}$ | Catch numbers of fish in year $t$ at age $a$ |
| ${ }^{1}{ }_{t, a}$ | Proportion of the numbers of fish age $a$ in year $t$ |
| $L_{t}$ | Total catch numbers in year $t$ |
| ${ }^{*} v_{t, a}$ | Mean body weight (kg) of fish age $a$ in year $t$ |
| $\phi_{a}$ | Proportion of mature females at age $a$ |
| $\boldsymbol{1}_{t, a}$ | Instantaneous annual fishing mortality of age $a$ fish in year $t$ |
| M | Instantaneous natural mortality, assumed constant over all ages and years |
| L $_{t, a}$ | Instantaneous total mortality for age $a$ fish in year $t$ |
| $s_{a}$ | Age-specific fishing gear selectivity |
| $\mu^{*}$ | Median year-effect of fishing mortality |
| $\varepsilon_{t}$ | The residual year-effect of fishing mortality |
| $\nu_{a}$ | Age-specific survey selectivity |
| $\alpha$ | Slope parameter in the logistic selectivity equation |
| $\beta$ | Age at $50 \%$ selectivity parameter in the logistic selectivity equation |
| $\sigma_{t}$ | Standard error of the survey biomass in year $t$ |

Table 6.9. Model estimates of arrowtooth flounder fishing mortality and exploitation rate (catch/total biomass). Full selection occurred at age 21 in males and age 8 in females.

| Year | Full selection $\mathbf{F}$ | Exploitation rate |
| ---: | ---: | ---: |
| 1976 | 0.070 | 0.046 |
| 1977 | 0.041 | 0.029 |
| 1978 | 0.038 | 0.027 |
| 1979 | 0.058 | 0.040 |
| 1980 | 0.082 | 0.054 |
| 1981 | 0.085 | 0.054 |
| 1982 | 0.059 | 0.038 |
| 1983 | 0.072 | 0.047 |
| 1984 | 0.053 | 0.031 |
| 1985 | 0.042 | 0.024 |
| 1986 | 0.038 | 0.021 |
| 1987 | 0.023 | 0.013 |
| 1988 | 0.089 | 0.048 |
| 1989 | 0.030 | 0.016 |
| 1990 | 0.050 | 0.026 |
| 1991 | 0.073 | 0.040 |
| 1992 | 0.031 | 0.017 |
| 1993 | 0.024 | 0.015 |
| 1994 | 0.034 | 0.022 |
| 1995 | 0.021 | 0.014 |
| 1996 | 0.032 | 0.021 |
| 1997 | 0.022 | 0.014 |
| 1998 | 0.033 | 0.022 |
| 1999 | 0.023 | 0.015 |
| 2000 | 0.029 | 0.018 |
| 2001 | 0.031 | 0.019 |
| 2002 | 0.025 | 0.015 |
| 2003 | 0.027 | 0.016 |
| 2004 | 0.035 | 0.021 |
| 2005 | 0.026 | 0.016 |
| 2006 | 0.027 | 0.016 |
| 2007 | 0.022 | 0.014 |
| 2008 | 0.039 | 0.024 |
| 2009 | 0.053 | 0.033 |
| 2010 | 0.071 | 0.044 |
| 2011 | 0.037 | 0.023 |
| 2012 | 0.041 | 0.026 |
| 2013 | 0.038 | 0.025 |
| 2014 | 0.037 | 0.024 |
| 2015 | 0.022 | 0.015 |
| 2016 | 0.019 | 0.013 |
|  |  |  |

Table 6.10. Model estimates of arrowtooth flounder age-specific fishery and survey selectivities, by sex.

|  | Fishery <br> Age | shelf survey |  |  | slope survey |  | Aleutians survey |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| females | males | females | males | females | males | females | males |  |
| 1 | 0.01 | 0.02 | 0.04 | 0.19 | 0.00 | 0.03 | 0.05 | 0.09 |
| 2 | 0.04 | 0.05 | 0.23 | 0.28 | 0.00 | 0.05 | 0.10 | 0.14 |
| 3 | 0.10 | 0.09 | 0.70 | 0.41 | 0.00 | 0.08 | 0.18 | 0.21 |
| 4 | 0.22 | 0.16 | 0.95 | 0.57 | 0.01 | 0.12 | 0.31 | 0.31 |
| 5 | 0.43 | 0.26 | 1.00 | 0.74 | 0.28 | 0.19 | 0.48 | 0.42 |
| 6 | 0.71 | 0.37 | 1.00 | 0.89 | 0.95 | 0.27 | 0.65 | 0.55 |
| 7 | 0.96 | 0.48 | 0.99 | 1.00 | 1.00 | 0.38 | 0.79 | 0.67 |
| 8 | 1.00 | 0.58 | 0.95 | 0.95 | 1.00 | 0.51 | 0.88 | 0.77 |
| 9 | 0.98 | 0.65 | 0.81 | 0.60 | 1.00 | 0.63 | 0.94 | 0.85 |
| 10 | 0.94 | 0.72 | 0.50 | 0.21 | 1.00 | 0.74 | 0.97 | 0.90 |
| 11 | 0.91 | 0.78 | 0.20 | 0.05 | 1.00 | 0.82 | 0.98 | 0.94 |
| 12 | 0.88 | 0.83 | 0.06 | 0.01 | 1.00 | 0.89 | 0.99 | 0.96 |
| 13 | 0.87 | 0.88 | 0.01 | 0.00 | 1.00 | 0.93 | 1.00 | 0.98 |
| 14 | 0.86 | 0.93 | 0.00 | 0.00 | 1.00 | 0.96 | 1.00 | 0.99 |
| 15 | 0.86 | 0.97 | 0.00 | 0.00 | 1.00 | 0.98 | 1.00 | 0.99 |
| 16 | 0.87 | 0.99 | 0.00 | 0.00 | 1.00 | 0.99 | 1.00 | 1.00 |
| 17 | 0.87 | 1.00 | 0.00 | 0.00 | 1.00 | 0.99 | 1.00 | 1.00 |
| 18 | 0.88 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 19 | 0.90 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 20 | 0.90 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 21 | 0.90 | 1.00 | 0.00 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 |

Table 6.11. Model estimates of arrowtooth flounder $1+$ total biomass ( t ) and female spawning biomass ( t ) from the 2016 and 2014 assessments.

|  | 2016 Assessment <br> Total biomass | 2014 Assessment |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Female Spawning biomass | Total biomass | Female Spawning biomass |
| 1976 | 390,856 | 220,752 | 269,581 | 137,913 |
| 1977 | 370,529 | 222,374 | 267,323 | 127,605 |
| 1978 | 353,616 | 230,546 | 273,114 | 128,654 |
| 1979 | 337,621 | 234,225 | 281,156 | 136,179 |
| 1980 | 316,147 | 224,650 | 284,669 | 142,697 |
| 1981 | 294,020 | 204,088 | 287,394 | 144,561 |
| 1982 | 278,586 | 182,632 | 291,738 | 144,598 |
| 1983 | 275,086 | 168,333 | 304,652 | 148,601 |
| 1984 | 280,844 | 155,518 | 317,146 | 152,209 |
| 1985 | 294,173 | 147,059 | 333,697 | 159,777 |
| 1986 | 316,171 | 142,848 | 353,901 | 170,170 |
| 1987 | 346,003 | 145,414 | 381,113 | 182,853 |
| 1988 | 384,995 | 158,480 | 412,852 | 199,211 |
| 1989 | 417,692 | 167,959 | 437,638 | 204,155 |
| 1990 | 469,980 | 187,240 | 477,253 | 216,960 |
| 1991 | 516,793 | 206,192 | 510,536 | 228,980 |
| 1992 | 551,853 | 223,632 | 531,547 | 239,547 |
| 1993 | 590,261 | 253,621 | 559,302 | 263,221 |
| 1994 | 621,176 | 291,844 | 583,417 | 293,761 |
| 1995 | 636,732 | 330,313 | 598,051 | 320,825 |
| 1996 | 649,886 | 367,626 | 616,089 | 345,783 |
| 1997 | 651,189 | 390,281 | 627,504 | 359,496 |
| 1998 | 655,984 | 404,944 | 645,562 | 371,083 |
| 1999 | 658,794 | 407,468 | 661,463 | 375,655 |
| 2000 | 672,283 | 406,905 | 683,861 | 381,405 |
| 2001 | 690,899 | 400,347 | 707,317 | 385,656 |
| 2002 | 716,031 | 392,546 | 731,488 | 391,757 |
| 2003 | 749,117 | 390,974 | 761,140 | 403,703 |
| 2004 | 784,858 | 396,355 | 791,072 | 418,167 |
| 2005 | 815,630 | 407,748 | 816,099 | 431,908 |
| 2006 | 849,607 | 430,302 | 845,881 | 450,913 |
| 2007 | 876,395 | 457,121 | 870,942 | 470,156 |
| 2008 | 899,248 | 486,330 | 895,262 | 491,018 |
| 2009 | 904,125 | 507,179 | 907,756 | 505,908 |
| 2010 | 891,490 | 518,572 | 905,159 | 513,829 |
| 2011 | 860,724 | 515,407 | 889,634 | 510,566 |
| 2012 | 845,222 | 520,482 | 888,498 | 517,672 |
| 2013 | 822,562 | 518,416 | 881,413 | 522,331 |
| 2014 | 798,002 | 512,882 | 877,781 | 527,622 |
| 2015 | 773,399 | 503,052 |  |  |
| 2016 | 762,657 | 495,189 |  |  |

Table 6.12. Model estimates of arrowtooth flounder population number-at-age, by sex, 1976-2016.

| females | numbers at age (1,000s) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1976 | 35,942 | 18,918 | 11,144 | 25,451 | 55,906 | 90,306 | 48,497 | 12,562 | 27,053 | 12,401 |
| 1977 | 141,266 | 29,400 | 15,449 | 9,064 | 20,533 | 44,485 | 70,551 | 37,243 | 9,624 | 20,758 |
| 1978 | 33,585 | 115,597 | 24,034 | 12,599 | 7,356 | 16,530 | 35,424 | 55,612 | 29,316 | 7,583 |
| 1979 | 25,324 | 27,484 | 94,512 | 19,608 | 10,234 | 5,931 | 13,197 | 28,022 | 43,937 | 23,181 |
| 1980 | 54,407 | 20,718 | 22,454 | 76,958 | 15,860 | 8,184 | 4,672 | 10,249 | 21,720 | 34,099 |
| 1981 | 204,156 | 44,498 | 16,912 | 18,242 | 61,932 | 12,558 | 6,343 | 3,549 | 7,763 | 16,482 |
| 1982 | 210,640 | 166,964 | 36,317 | 13,734 | 14,668 | 48,965 | 9,708 | 4,801 | 2,678 | 5,870 |
| 1983 | 37,441 | 172,326 | 136,403 | 29,569 | 11,106 | 11,725 | 38,539 | 7,531 | 3,717 | 2,076 |
| 1984 | 264,508 | 30,625 | 140,714 | 110,915 | 23,843 | 8,829 | 9,145 | 29,531 | 5,757 | 2,846 |
| 1985 | 161,140 | 216,414 | 25,026 | 114,637 | 89,814 | 19,109 | 6,979 | 7,137 | 23,004 | 4,490 |
| 1986 | 146,246 | 131,859 | 176,914 | 20,408 | 93,038 | 72,295 | 15,214 | 5,500 | 5,616 | 18,121 |
| 1987 | 332,405 | 119,677 | 107,806 | 144,323 | 16,576 | 74,999 | 57,698 | 12,029 | 4,343 | 4,439 |
| 1988 | 345,427 | 272,068 | 97,899 | 88,069 | 117,583 | 13,442 | 60,451 | 46,240 | 9,633 | 3,480 |
| 1989 | 291,910 | 282,486 | 222,022 | 79,479 | 70,766 | 92,834 | 10,368 | 45,614 | 34,786 | 7,261 |
| 1990 | 200,245 | 238,902 | 231,023 | 181,256 | 64,660 | 57,229 | 74,482 | 8,257 | 36,289 | 27,694 |
| 1991 | 142,096 | 163,842 | 195,240 | 188,258 | 146,859 | 51,878 | 45,322 | 58,270 | 6,449 | 28,374 |
| 1992 | 207,513 | 116,229 | 133,783 | 158,747 | 151,784 | 116,710 | 40,445 | 34,706 | 44,512 | 4,934 |
| 1993 | 140,457 | 169,829 | 95,052 | 109,214 | 129,134 | 122,723 | 93,607 | 32,195 | 27,598 | 35,420 |
| 1994 | 127,919 | 114,960 | 138,921 | 77,644 | 88,962 | 104,686 | 98,858 | 74,956 | 25,759 | 22,093 |
| 1995 | 125,526 | 104,685 | 94,004 | 113,372 | 63,116 | 71,832 | 83,776 | 78,453 | 59,417 | 20,435 |
| 1996 | 194,780 | 102,744 | 85,644 | 76,814 | 92,420 | 51,242 | 58,003 | 67,306 | 62,986 | 47,724 |
| 1997 | 186,084 | 159,407 | 84,022 | 69,908 | 62,470 | 74,691 | 41,068 | 46,124 | 53,465 | 50,068 |
| 1998 | 246,751 | 152,310 | 130,407 | 68,650 | 56,976 | 50,696 | 60,269 | 32,962 | 36,993 | 42,901 |
| 1999 | 343,783 | 201,937 | 124,550 | 106,436 | 55,819 | 46,027 | 40,602 | 47,881 | 26,158 | 29,379 |
| 2000 | 322,761 | 281,381 | 165,192 | 101,751 | 86,721 | 45,273 | 37,106 | 32,548 | 38,353 | 20,963 |
| 2001 | 269,505 | 264,157 | 230,134 | 134,883 | 82,808 | 70,181 | 36,365 | 29,597 | 25,936 | 30,582 |
| 2002 | 323,975 | 220,563 | 216,026 | 187,864 | 109,713 | 66,943 | 56,273 | 28,937 | 23,526 | 20,631 |
| 2003 | 345,088 | 265,162 | 180,416 | 176,449 | 153,004 | 88,915 | 53,898 | 45,031 | 23,136 | 18,821 |
| 2004 | 296,617 | 282,437 | 216,883 | 147,339 | 143,655 | 123,912 | 71,506 | 43,062 | 35,945 | 18,479 |
| 2005 | 193,539 | 242,740 | 230,945 | 176,986 | 119,753 | 115,962 | 99,117 | 56,712 | 34,113 | 28,497 |
| 2006 | 299,017 | 158,403 | 198,549 | 188,616 | 144,114 | 97,012 | 93,302 | 79,241 | 45,300 | 27,264 |
| 2007 | 228,334 | 244,730 | 129,563 | 162,149 | 153,565 | 116,719 | 78,024 | 74,552 | 63,261 | 36,186 |
| 2008 | 182,302 | 186,891 | 200,205 | 105,855 | 132,141 | 124,600 | 94,155 | 62,600 | 59,770 | 50,742 |
| 2009 | 212,505 | 149,181 | 152,794 | 163,311 | 85,960 | 106,484 | 99,386 | 74,387 | 49,392 | 47,200 |
| 2010 | 160,592 | 173,866 | 121,904 | 124,477 | 132,239 | 68,888 | 84,167 | 77,550 | 57,942 | 38,517 |
| 2011 | 147,118 | 131,360 | 141,977 | 99,135 | 100,397 | 105,167 | 53,769 | 64,556 | 59,338 | 44,404 |
| 2012 | 158,931 | 120,393 | 107,402 | 115,834 | 80,535 | 80,965 | 83,992 | 42,554 | 51,026 | 46,941 |
| 2013 | 213,320 | 130,052 | 98,419 | 87,589 | 94,014 | 64,832 | 64,474 | 66,207 | 33,497 | 40,203 |
| 2014 | 144,026 | 174,565 | 106,328 | 80,286 | 71,135 | 75,776 | 51,731 | 50,963 | 52,265 | 26,465 |
| 2015 | 133,229 | 117,863 | 142,730 | 86,753 | 65,229 | 57,379 | 60,539 | 40,960 | 40,302 | 41,365 |
| 2016 | 419,018 | 109,048 | 96,421 | 116,618 | 70,704 | 52,936 | 46,301 | 48,591 | 32,852 | 32,340 |

Table 6.12 (cont'd). Model estimates of arrowtooth flounder population number-at-age, by sex, 19762016.

|  | females |  |  |  | numbers at age (1,000s) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 1976 | 10,343 | 8,638 | 7,512 | 6,783 | 4,551 | 4,178 | 3,276 | 2,754 | 2,330 | 1,984 | 4,724 |
| 1977 | 9,537 | 7,971 | 6,669 | 5,805 | 5,245 | 3,519 | 3,230 | 2,532 | 2,127 | 1,797 | 5,175 |
| 1978 | 16,377 | 7,534 | 6,303 | 5,276 | 4,595 | 4,151 | 2,785 | 2,555 | 2,003 | 1,681 | 5,510 |
| 1979 | 6,003 | 12,980 | 5,977 | 5,003 | 4,189 | 3,648 | 3,296 | 2,211 | 2,027 | 1,588 | 5,702 |
| 1980 | 18,024 | 4,676 | 10,125 | 4,666 | 3,908 | 3,272 | 2,849 | 2,573 | 1,724 | 1,580 | 5,683 |
| 1981 | 25,946 | 13,748 | 3,574 | 7,747 | 3,573 | 2,992 | 2,505 | 2,180 | 1,967 | 1,317 | 5,546 |
| 1982 | 12,499 | 19,725 | 10,474 | 2,726 | 5,914 | 2,727 | 2,283 | 1,911 | 1,661 | 1,497 | 5,224 |
| 1983 | 4,560 | 9,726 | 15,371 | 8,169 | 2,127 | 4,615 | 2,128 | 1,781 | 1,489 | 1,294 | 5,234 |
| 1984 | 1,594 | 3,507 | 7,494 | 11,855 | 6,304 | 1,642 | 3,560 | 1,641 | 1,372 | 1,146 | 5,025 |
| 1985 | 2,223 | 1,247 | 2,748 | 5,875 | 9,299 | 4,945 | 1,287 | 2,792 | 1,286 | 1,075 | 4,833 |
| 1986 | 3,541 | 1,756 | 986 | 2,174 | 4,649 | 7,359 | 3,913 | 1,019 | 2,207 | 1,016 | 4,668 |
| 1987 | 14,339 | 2,806 | 1,392 | 782 | 1,725 | 3,690 | 5,839 | 3,104 | 808 | 1,749 | 4,505 |
| 1988 | 3,559 | 11,505 | 2,252 | 1,118 | 628 | 1,386 | 2,964 | 4,690 | 2,492 | 648 | 5,020 |
| 1989 | 2,631 | 2,698 | 8,740 | 1,713 | 851 | 478 | 1,054 | 2,255 | 3,563 | 1,892 | 4,302 |
| 1990 | 5,786 | 2,098 | 2,153 | 6,980 | 1,368 | 680 | 382 | 842 | 1,800 | 2,843 | 4,942 |
| 1991 | 21,689 | 4,538 | 1,648 | 1,692 | 5,487 | 1,076 | 534 | 300 | 661 | 1,413 | 6,111 |
| 1992 | 21,762 | 16,670 | 3,495 | 1,270 | 1,305 | 4,233 | 830 | 412 | 231 | 509 | 5,788 |
| 1993 | 3,930 | 17,350 | 13,301 | 2,790 | 1,014 | 1,042 | 3,379 | 662 | 329 | 184 | 5,023 |
| 1994 | 28,377 | 3,151 | 13,919 | 10,674 | 2,239 | 814 | 836 | 2,712 | 531 | 264 | 4,176 |
| 1995 | 17,546 | 22,559 | 2,507 | 11,080 | 8,499 | 1,783 | 648 | 666 | 2,158 | 423 | 3,531 |
| 1996 | 16,424 | 14,111 | 18,152 | 2,018 | 8,920 | 6,843 | 1,435 | 522 | 536 | 1,736 | 3,181 |
| 1997 | 37,976 | 13,082 | 11,248 | 14,476 | 1,610 | 7,115 | 5,457 | 1,145 | 416 | 427 | 3,918 |
| 1998 | 40,205 | 30,514 | 10,517 | 9,046 | 11,644 | 1,295 | 5,723 | 4,389 | 920 | 334 | 3,492 |
| 1999 | 34,107 | 31,994 | 24,303 | 8,380 | 7,210 | 9,281 | 1,032 | 4,560 | 3,496 | 733 | 3,046 |
| 2000 | 23,562 | 27,373 | 25,693 | 19,523 | 6,733 | 5,793 | 7,456 | 829 | 3,662 | 2,806 | 3,034 |
| 2001 | 16,731 | 18,821 | 21,881 | 20,546 | 15,616 | 5,386 | 4,633 | 5,963 | 663 | 2,926 | 4,667 |
| 2002 | 24,351 | 13,335 | 15,012 | 17,460 | 16,399 | 12,464 | 4,298 | 3,697 | 4,756 | 528 | 6,055 |
| 2003 | 16,518 | 19,511 | 10,691 | 12,040 | 14,007 | 13,156 | 9,998 | 3,447 | 2,964 | 3,812 | 5,276 |
| 2004 | 15,045 | 13,215 | 15,620 | 8,562 | 9,645 | 11,220 | 10,537 | 8,007 | 2,760 | 2,372 | 7,274 |
| 2005 | 14,666 | 11,954 | 10,509 | 12,427 | 6,814 | 7,676 | 8,928 | 8,384 | 6,368 | 2,194 | 7,668 |
| 2006 | 22,795 | 11,741 | 9,576 | 8,421 | 9,960 | 5,462 | 6,152 | 7,155 | 6,716 | 5,099 | 7,897 |
| 2007 | 21,798 | 18,239 | 9,401 | 7,670 | 6,746 | 7,980 | 4,375 | 4,927 | 5,729 | 5,376 | 10,403 |
| 2008 | 29,046 | 17,508 | 14,658 | 7,557 | 6,167 | 5,425 | 6,416 | 3,517 | 3,960 | 4,603 | 12,677 |
| 2009 | 40,122 | 22,993 | 13,874 | 11,621 | 5,994 | 4,891 | 4,301 | 5,087 | 2,787 | 3,137 | 13,687 |
| 2010 | 36,871 | 31,391 | 18,014 | 10,877 | 9,115 | 4,701 | 3,835 | 3,373 | 3,985 | 2,182 | 13,172 |
| 2011 | 29,587 | 28,383 | 24,208 | 13,905 | 8,401 | 7,041 | 3,630 | 2,961 | 2,601 | 3,071 | 11,831 |
| 2012 | 35,170 | 23,460 | 22,526 | 19,222 | 11,045 | 6,673 | 5,592 | 2,883 | 2,350 | 2,063 | 11,822 |
| 2013 | 37,034 | 27,782 | 18,551 | 17,823 | 15,214 | 8,742 | 5,281 | 4,425 | 2,280 | 1,857 | 10,975 |
| 2014 | 31,804 | 29,331 | 22,024 | 14,714 | 14,141 | 12,072 | 6,935 | 4,189 | 3,508 | 1,806 | 10,168 |
| 2015 | 20,971 | 25,229 | 23,288 | 17,496 | 11,692 | 11,238 | 9,591 | 5,510 | 3,326 | 2,784 | 9,504 |
| 2016 | 33,217 | 16,851 | 20,283 | 18,729 | 14,073 | 9,405 | 9,038 | 7,714 | 4,430 | 2,673 | 9,877 |

Table 6.12 (cont'd). Model estimates of arrowtooth flounder population number-at-age, by sex, 19762016.

| males | numbers at age (1,000s) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1976 | 35,942 | 16,283 | 8,256 | 16,228 | 30,682 | 42,658 | 19,717 | 4,396 | 8,148 | 3,215 |
| 1977 | 141,266 | 25,284 | 11,435 | 5,779 | 11,301 | 21,213 | 29,253 | 13,416 | 2,971 | 5,475 |
| 1978 | 33,585 | 99,447 | 17,781 | 8,027 | 4,044 | 7,874 | 14,709 | 20,190 | 9,222 | 2,035 |
| 1979 | 25,324 | 23,645 | 69,950 | 12,486 | 5,620 | 2,821 | 5,468 | 10,172 | 13,912 | 6,335 |
| 1980 | 54,407 | 17,820 | 16,616 | 49,024 | 8,713 | 3,899 | 1,944 | 3,744 | 6,925 | 9,426 |
| 1981 | 204,156 | 38,263 | 12,507 | 11,618 | 34,071 | 6,004 | 2,661 | 1,314 | 2,512 | 4,616 |
| 1982 | 210,640 | 143,564 | 26,850 | 8,742 | 8,069 | 23,455 | 4,092 | 1,796 | 880 | 1,670 |
| 1983 | 37,441 | 148,221 | 100,876 | 18,816 | 6,100 | 5,596 | 16,154 | 2,800 | 1,222 | 596 |
| 1984 | 264,508 | 26,337 | 104,079 | 70,600 | 13,098 | 4,214 | 3,834 | 10,978 | 1,890 | 820 |
| 1985 | 161,140 | 186,156 | 18,512 | 72,980 | 49,311 | 9,099 | 2,910 | 2,632 | 7,497 | 1,285 |
| 1986 | 146,246 | 113,437 | 130,914 | 12,994 | 51,066 | 34,357 | 6,309 | 2,008 | 1,809 | 5,136 |
| 1987 | 332,405 | 102,961 | 79,789 | 91,921 | 9,098 | 35,614 | 23,854 | 4,362 | 1,383 | 1,242 |
| 1988 | 345,427 | 234,107 | 72,472 | 56,102 | 64,520 | 6,370 | 24,870 | 16,614 | 3,031 | 959 |
| 1989 | 291,910 | 242,886 | 164,252 | 50,641 | 38,942 | 44,376 | 4,336 | 16,759 | 11,099 | 2,010 |
| 1990 | 200,245 | 205,553 | 170,905 | 115,416 | 35,504 | 27,217 | 30,905 | 3,010 | 11,598 | 7,663 |
| 1991 | 142,096 | 140,938 | 144,498 | 119,869 | 80,651 | 24,683 | 18,812 | 21,243 | 2,059 | 7,902 |
| 1992 | 207,513 | 99,954 | 98,962 | 101,124 | 83,431 | 55,714 | 16,906 | 12,780 | 14,329 | 1,380 |
| 1993 | 140,457 | 146,121 | 70,330 | 69,535 | 70,891 | 58,303 | 38,794 | 11,731 | 8,842 | 9,889 |
| 1994 | 127,919 | 98,919 | 102,847 | 49,447 | 48,799 | 49,627 | 40,700 | 27,007 | 8,148 | 6,129 |
| 1995 | 125,526 | 90,068 | 69,591 | 72,242 | 34,644 | 34,071 | 34,511 | 28,195 | 18,648 | 5,610 |
| 1996 | 194,780 | 88,412 | 63,405 | 48,944 | 50,730 | 24,276 | 23,817 | 24,069 | 19,624 | 12,958 |
| 1997 | 186,084 | 137,152 | 62,205 | 44,546 | 34,305 | 35,440 | 16,897 | 16,518 | 16,641 | 13,533 |
| 1998 | 246,751 | 131,061 | 96,546 | 43,745 | 31,276 | 24,032 | 24,764 | 11,778 | 11,490 | 11,555 |
| 1999 | 343,783 | 173,742 | 92,208 | 67,824 | 30,656 | 21,844 | 16,719 | 17,166 | 8,138 | 7,918 |
| 2000 | 322,761 | 242,122 | 122,296 | 64,836 | 47,608 | 21,467 | 15,255 | 11,646 | 11,931 | 5,646 |
| 2001 | 269,505 | 227,287 | 170,382 | 85,948 | 45,469 | 33,289 | 14,961 | 10,598 | 8,068 | 8,246 |
| 2002 | 323,975 | 189,772 | 159,922 | 119,713 | 60,248 | 31,771 | 23,176 | 10,379 | 7,330 | 5,567 |
| 2003 | 345,088 | 228,161 | 133,566 | 112,428 | 84,004 | 42,168 | 22,172 | 16,128 | 7,206 | 5,078 |
| 2004 | 296,617 | 243,020 | 160,572 | 93,884 | 78,869 | 58,767 | 29,408 | 15,416 | 11,185 | 4,986 |
| 2005 | 193,539 | 208,844 | 170,961 | 112,781 | 65,771 | 55,055 | 40,856 | 20,366 | 10,640 | 7,698 |
| 2006 | 299,017 | 136,298 | 146,982 | 120,178 | 79,126 | 46,021 | 38,406 | 28,418 | 14,130 | 7,367 |
| 2007 | 228,334 | 210,576 | 95,922 | 103,316 | 84,308 | 55,357 | 32,097 | 26,706 | 19,710 | 9,779 |
| 2008 | 182,302 | 160,817 | 148,229 | 67,454 | 72,533 | 59,054 | 38,675 | 22,368 | 18,572 | 13,682 |
| 2009 | 212,505 | 128,343 | 113,109 | 104,071 | 47,221 | 50,574 | 40,988 | 26,727 | 15,400 | 12,745 |
| 2010 | 160,592 | 149,557 | 90,209 | 79,311 | 72,688 | 32,804 | 34,918 | 28,133 | 18,251 | 10,471 |
| 2011 | 147,118 | 112,969 | 105,022 | 63,142 | 55,218 | 50,237 | 22,484 | 23,742 | 18,997 | 12,253 |
| 2012 | 158,931 | 103,578 | 79,463 | 73,749 | 44,216 | 38,521 | 34,894 | 15,552 | 16,363 | 13,054 |
| 2013 | 213,320 | 111,883 | 72,842 | 55,778 | 51,606 | 30,809 | 26,711 | 24,084 | 10,691 | 11,211 |
| 2014 | 144,026 | 150,182 | 78,694 | 51,144 | 39,051 | 35,988 | 21,389 | 18,464 | 16,586 | 7,340 |
| 2015 | 133,229 | 101,402 | 105,642 | 55,263 | 35,818 | 27,246 | 25,002 | 14,798 | 12,730 | 11,401 |
| 2016 | 419,018 | 93,835 | 71,381 | 74,292 | 38,800 | 25,092 | 19,039 | 17,428 | 10,294 | 8,839 |

Table 6.12 (cont’d). Estimates of arrowtooth flounder population number-at-age, by sex, 1976-2016.

| males | numbers at age (1,000s) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 1976 | 2,308 | 1,659 | 1,242 | 965 | 557 | 440 | 297 | 215 | 157 | 115 | 144 |
| 1977 | 2,150 | 1,537 | 1,101 | 821 | 636 | 366 | 289 | 195 | 141 | 103 | 170 |
| 1978 | 3,741 | 1,465 | 1,045 | 747 | 556 | 430 | 247 | 195 | 131 | 95 | 184 |
| 1979 | 1,395 | 2,557 | 1,000 | 712 | 508 | 377 | 291 | 167 | 132 | 89 | 189 |
| 1980 | 4,276 | 938 | 1,715 | 668 | 474 | 337 | 250 | 193 | 111 | 88 | 185 |
| 1981 | 6,248 | 2,820 | 616 | 1,121 | 435 | 308 | 218 | 162 | 125 | 72 | 176 |
| 1982 | 3,051 | 4,108 | 1,846 | 401 | 727 | 281 | 198 | 141 | 104 | 81 | 160 |
| 1983 | 1,126 | 2,050 | 2,752 | 1,233 | 267 | 483 | 187 | 132 | 93 | 69 | 159 |
| 1984 | 398 | 749 | 1,357 | 1,815 | 810 | 175 | 316 | 122 | 86 | 61 | 149 |
| 1985 | 556 | 269 | 504 | 912 | 1,216 | 541 | 117 | 211 | 81 | 57 | 140 |
| 1986 | 878 | 379 | 183 | 342 | 617 | 822 | 365 | 79 | 142 | 55 | 133 |
| 1987 | 3,517 | 600 | 258 | 124 | 232 | 419 | 557 | 248 | 53 | 96 | 128 |
| 1988 | 860 | 2,432 | 414 | 178 | 86 | 160 | 288 | 383 | 170 | 37 | 154 |
| 1989 | 632 | 564 | 1,587 | 269 | 115 | 55 | 103 | 185 | 246 | 109 | 123 |
| 1990 | 1,385 | 435 | 387 | 1,088 | 184 | 79 | 38 | 70 | 126 | 168 | 158 |
| 1991 | 5,203 | 938 | 294 | 261 | 731 | 123 | 53 | 25 | 47 | 84 | 218 |
| 1992 | 5,273 | 3,456 | 620 | 194 | 171 | 478 | 81 | 34 | 16 | 31 | 198 |
| 1993 | 951 | 3,624 | 2,372 | 425 | 132 | 117 | 327 | 55 | 23 | 11 | 156 |
| 1994 | 6,843 | 657 | 2,501 | 1,635 | 293 | 91 | 80 | 224 | 38 | 16 | 115 |
| 1995 | 4,210 | 4,692 | 450 | 1,709 | 1,115 | 199 | 62 | 55 | 153 | 26 | 89 |
| 1996 | 3,893 | 2,918 | 3,248 | 311 | 1,180 | 769 | 137 | 43 | 38 | 105 | 79 |
| 1997 | 8,916 | 2,674 | 2,000 | 2,223 | 212 | 805 | 525 | 94 | 29 | 26 | 126 |
| 1998 | 9,383 | 6,174 | 1,849 | 1,382 | 1,534 | 146 | 555 | 361 | 65 | 20 | 104 |
| 1999 | 7,945 | 6,439 | 4,229 | 1,265 | 944 | 1,046 | 100 | 378 | 246 | 44 | 85 |
| 2000 | 5,484 | 5,495 | 4,448 | 2,918 | 872 | 650 | 720 | 69 | 260 | 169 | 89 |
| 2001 | 3,894 | 3,777 | 3,778 | 3,054 | 2,001 | 597 | 444 | 492 | 47 | 178 | 176 |
| 2002 | 5,677 | 2,676 | 2,591 | 2,588 | 2,088 | 1,366 | 407 | 303 | 336 | 32 | 242 |
| 2003 | 3,850 | 3,921 | 1,846 | 1,785 | 1,780 | 1,435 | 938 | 280 | 208 | 231 | 188 |
| 2004 | 3,508 | 2,655 | 2,700 | 1,269 | 1,226 | 1,221 | 984 | 643 | 192 | 143 | 287 |
| 2005 | 3,424 | 2,404 | 1,816 | 1,843 | 865 | 834 | 830 | 669 | 437 | 130 | 292 |
| 2006 | 5,320 | 2,363 | 1,656 | 1,250 | 1,267 | 594 | 572 | 569 | 459 | 300 | 290 |
| 2007 | 5,089 | 3,670 | 1,627 | 1,139 | 858 | 869 | 407 | 392 | 390 | 314 | 404 |
| 2008 | 6,778 | 3,523 | 2,537 | 1,124 | 786 | 591 | 599 | 280 | 270 | 269 | 495 |
| 2009 | 9,365 | 4,628 | 2,400 | 1,725 | 763 | 532 | 400 | 405 | 190 | 183 | 517 |
| 2010 | 8,636 | 6,325 | 3,117 | 1,612 | 1,156 | 510 | 355 | 267 | 270 | 127 | 467 |
| 2011 | 6,996 | 5,745 | 4,191 | 2,058 | 1,061 | 758 | 334 | 233 | 175 | 177 | 388 |
| 2012 | 8,399 | 4,785 | 3,921 | 2,855 | 1,399 | 720 | 514 | 226 | 158 | 119 | 383 |
| 2013 | 8,918 | 5,724 | 3,253 | 2,660 | 1,933 | 946 | 486 | 347 | 153 | 106 | 339 |
| 2014 | 7,677 | 6,093 | 3,902 | 2,214 | 1,807 | 1,311 | 641 | 329 | 235 | 103 | 301 |
| 2015 | 5,033 | 5,252 | 4,160 | 2,659 | 1,506 | 1,227 | 889 | 435 | 223 | 159 | 275 |
| 2016 | 7,905 | 3,485 | 3,633 | 2,874 | 1,835 | 1,038 | 846 | 613 | 299 | 154 | 299 |

Table 6.13. Estimated age 1 recruitment of arrowtooth flounder (thousands of fish) from the 2016 and 2014 stock assessments. Average from 1976-2011, from the 2016 assessment $=$ 402,411,100 t.

| Year class | 2016 Assessment | 2014 Assessment |
| ---: | ---: | ---: |
| 1976 | 71,884 | 148,166 |
| 1977 | 282,532 | 318,730 |
| 1978 | 67,171 | 165,953 |
| 1979 | 50,648 | 212,560 |
| 1980 | 108,815 | 207,590 |
| 1981 | 408,312 | 457,928 |
| 1982 | 421,280 | 179,162 |
| 1983 | 74,881 | 162,072 |
| 1984 | 529,016 | 411,610 |
| 1985 | 322,280 | 310,242 |
| 1986 | 292,492 | 286,798 |
| 1987 | 664,810 | 739,482 |
| 1988 | 690,854 | 442,634 |
| 1989 | 583,820 | 457,740 |
| 1990 | 400,490 | 322,520 |
| 1991 | 284,192 | 339,574 |
| 1992 | 415,026 | 392,778 |
| 1993 | 280,914 | 316,026 |
| 1994 | 255,838 | 322,154 |
| 1995 | 251,052 | 402,700 |
| 1996 | 389,560 | 521,000 |
| 1997 | 372,168 | 433,762 |
| 1998 | 493,502 | 472,252 |
| 1999 | 687,566 | 638,174 |
| 2000 | 645,522 | 472,150 |
| 2001 | 539,010 | 504,390 |
| 2002 | 647,950 | 601,246 |
| 2003 | 690,176 | 735,422 |
| 2004 | 593,234 | 519,780 |
| 2005 | 387,078 | 366,568 |
| 2006 | 598,034 | 689,512 |
| 2007 | 456,668 | 585,760 |
| 2008 | 364,604 | 491,166 |
| 2009 | 425,010 | 652,230 |
| 2010 | 321,184 |  |
| 2011 | 294,236 |  |
|  |  |  |
|  |  |  |
|  |  |  |

Table 6.14. Projections of arrowtooth flounder female spawning biomass ( t ), future catch ( t ) and full selection fishing mortality rates for seven future harvest scenarios.

Scenarios 1 and 2
Maximum ABC harvest permissible
Female

| Year | spawning biomass | catch | F |
| :---: | ---: | :---: | :---: |
| 2016 | 497,979 | 11,267 | 0.018 |
| 2017 | 485,802 | 17,045 | 0.028 |
| 2018 | 464,066 | 63,450 | 0.131 |
| 2019 | 410,282 | 57,473 | 0.131 |
| 2020 | 365,411 | 53,120 | 0.131 |
| 2021 | 330,106 | 50,640 | 0.131 |
| 2022 | 306,101 | 49,189 | 0.131 |
| 2023 | 291,597 | 47,129 | 0.131 |
| 2024 | 280,393 | 45,162 | 0.131 |
| 2025 | 269,184 | 43,471 | 0.131 |
| 2026 | 258,733 | 42,067 | 0.131 |
| 2027 | 249,790 | 40,704 | 0.131 |
| 2028 | 242,452 | 39,427 | 0.130 |
| 2029 | 236,473 | 38,401 | 0.129 |

Scenario 4
Harvest at average $F$ over the past 5 years

| Year | Female <br> spawning biomass | catch | F |
| :---: | ---: | :---: | :---: |
| 2016 | 497,979 | 11,267 | 0.018 |
| 2017 | 485,325 | 23,853 | 0.038 |
| 2018 | 460,792 | 33,282 | 0.068 |
| 2019 | 430,680 | 31,724 | 0.068 |
| 2020 | 405,031 | 30,682 | 0.068 |
| 2021 | 385,044 | 30,383 | 0.068 |
| 2022 | 373,488 | 30,503 | 0.068 |
| 2023 | 370,107 | 30,135 | 0.068 |
| 2024 | 368,717 | 29,642 | 0.068 |
| 2025 | 365,205 | 29,143 | 0.068 |
| 2026 | 360,325 | 28,698 | 0.068 |
| 2027 | 355,209 | 28,278 | 0.068 |
| 2028 | 350,254 | 27,888 | 0.068 |
| 2029 | 345,435 | 27,547 | 0.068 |

Scenario 3
1/2 Maximum ABC harvest permissible
Female

| Year | spawning biomass | catch | F |
| :---: | ---: | :---: | :---: |
| 2016 | 497,979 | 11,267 | 0.018 |
| 2017 | 484,700 | 32,684 | 0.064 |
| 2018 | 454,866 | 16,830 | 0.034 |
| 2019 | 437,916 | 16,492 | 0.034 |
| 2020 | 424,058 | 16,357 | 0.034 |
| 2021 | 414,509 | 16,555 | 0.034 |
| 2022 | 412,319 | 16,945 | 0.034 |
| 2023 | 417,913 | 17,048 | 0.034 |
| 2024 | 425,010 | 17,040 | 0.034 |
| 2025 | 428,853 | 16,984 | 0.034 |
| 2026 | 430,003 | 16,918 | 0.034 |
| 2027 | 429,704 | 16,831 | 0.034 |
| 2028 | 428,532 | 16,731 | 0.034 |
| 2029 | 426,599 | 16,632 | 0.034 |

Scenario 5
No fishing

## Female

| Year | spawning biomass | catch | F |
| :---: | ---: | ---: | ---: |
| 2016 | 497,979 | 11,266 | 0.018 |
| 2017 | 486,974 | 0 | 0 |
| 2018 | 482,238 | 0 | 0 |
| 2019 | 477,839 | 0 | 0 |
| 2020 | 475,331 | 0 | 0 |
| 2021 | 475,832 | 0 | 0 |
| 2022 | 482,683 | 0 | 0 |
| 2023 | 497,145 | 0 | 0 |
| 2024 | 512,938 | 0 | 0 |
| 2025 | 524,593 | 0 | 0 |
| 2026 | 532,395 | 0 | 0 |
| 2027 | 537,620 | 0 | 0 |
| 2028 | 540,981 | 0 | 0 |
| 2029 | 542,684 | 0 | 0 |

Table 6.14 (continued).

| Scenario 6 <br> Determination of whether arrowtooth <br> flounder are currently overfished <br> B35=185,547 |  |  |  |
| :--- | :--- | :--- | :---: |
| Female |  |  |  |
| Year | spawning biomass | catch | F |
| 2016 | 497,979 | 11,267 | 0.018 |
| 2017 | 481,501 | 76,100 | 0.154 |
| 2018 | 416,637 | 67,023 | 0.154 |
| 2019 | 361,957 | 60,112 | 0.154 |
| 2020 | 317,814 | 55,299 | 0.154 |
| 2021 | 284,380 | 52,732 | 0.154 |
| 2022 | 262,705 | 51,313 | 0.154 |
| 2023 | 250,269 | 49,175 | 0.154 |
| 2024 | 240,829 | 47,144 | 0.154 |
| 2025 | 231,352 | 45,108 | 0.154 |
| 2026 | 222,839 | 42,994 | 0.153 |
| 2027 | 216,186 | 41,235 | 0.150 |
| 2028 | 211,224 | 39,937 | 0.147 |
| 2029 | 207,486 | 39,025 | 0.144 |


| Scenario 7 <br> Determination of whether arrowtooth <br> flounder are approaching an overfished <br> condition <br> B35=185,547 |  |  |  |
| :--- | :--- | :--- | :--- |
| Year | Female | spawning biomass | catch |$\quad$ F | 2016 | 497,979 | 11,267 | 0.018 |
| :---: | ---: | ---: | ---: |
| 2017 | 482,312 | 65,371 | 0.131 |
| 2018 | 425,796 | 58,633 | 0.131 |
| 2019 | 376,569 | 62,241 | 0.154 |
| 2020 | 330,122 | 57,028 | 0.154 |
| 2021 | 294,550 | 54,114 | 0.154 |
| 2022 | 270,947 | 52,403 | 0.154 |
| 2023 | 256,833 | 50,021 | 0.154 |
| 2024 | 245,969 | 47,792 | 0.154 |
| 2025 | 235,303 | 45,734 | 0.154 |
| 2026 | 225,740 | 43,533 | 0.153 |
| 2027 | 218,221 | 41,630 | 0.151 |
| 2028 | 212,596 | 40,206 | 0.148 |
| 2029 | 208,371 | 39,196 | 0.145 |

Table 6.15. TAC and ABC used to manage the BSAI arrowtooth flounder complex since 1980.

| year | TAC | ABC |
| :---: | :---: | :---: |
| $\mathbf{1 9 8 0}$ |  | 20,000 |
| $\mathbf{1 9 8 1}$ |  | 16,500 |
| $\mathbf{1 9 8 2}$ |  | 16,500 |
| $\mathbf{1 9 8 3}$ |  | 20,000 |
| $\mathbf{1 9 8 4}$ |  | 20,000 |
| $\mathbf{1 9 8 5}$ |  | 20,000 |
| $\mathbf{1 9 8 6}$ | 20,000 | 20,000 |
| $\mathbf{1 9 8 7}$ | 9,795 | 30,900 |
| $\mathbf{1 9 8 8}$ | 5,531 | 99,500 |
| $\mathbf{1 9 8 9}$ | 6,000 | 163,700 |
| $\mathbf{1 9 9 0}$ | 10,000 | 106,500 |
| $\mathbf{1 9 9 1}$ | 20,000 | 116,400 |
| $\mathbf{1 9 9 2}$ | 10,000 | 82,300 |
| $\mathbf{1 9 9 3}$ | 10,000 | 72,000 |
| $\mathbf{1 9 9 4}$ | 10,000 | 93,400 |
| $\mathbf{1 9 9 5}$ | 10,227 | 113,000 |
| $\mathbf{1 9 9 6}$ | 9,000 | 129,000 |
| $\mathbf{1 9 9 7}$ | 20,760 | 108,000 |
| $\mathbf{1 9 9 8}$ | 16,000 | 147,000 |
| $\mathbf{1 9 9 9}$ | 134,354 | 140,000 |
| $\mathbf{2 0 0 0}$ | 131,000 | 131,000 |
| $\mathbf{2 0 0 1}$ | 22,015 | 117,000 |
| $\mathbf{2 0 0 2}$ | 16,000 | 113,000 |
| $\mathbf{2 0 0 3}$ | 12,000 | 112,000 |
| $\mathbf{2 0 0 4}$ | 12,000 | 115,000 |
| $\mathbf{2 0 0 5}$ | 12,000 | 108,000 |
| $\mathbf{2 0 0 6}$ | 13,000 | 136,000 |
| $\mathbf{2 0 0 7}$ | 20,000 | 158,000 |
| $\mathbf{2 0 0 8}$ | 75,000 | 244,000 |
| $\mathbf{2 0 0 9}$ | 75,000 | 156,000 |
| $\mathbf{2 0 1 0}$ | 75,000 | 156,000 |
| $\mathbf{2 0 1 1}$ | 25,900 | 153,000 |
| $\mathbf{2 0 1 2}$ | 25,900 | 157,000 |
| $\mathbf{2 0 1 3}$ | 25,000 | 152,000 |
| $\mathbf{2 0 1 4}$ | 25,000 | 106,599 |
| $\mathbf{2 0 1 5}$ | 22,000 | 80,547 |
| $\mathbf{2 0 1 6}$ | 14,000 | 80,701 |
|  |  |  |

## Figures

Comparison of species identified during the EBS survey


Figure 6.1. Number of hauls where arrowtooth flounder and Kamchatka flounder were identified during the annual Bering Sea shelf surveys, 1982-2016, within the standard survey area.


Figure 6.2. Size composition of arrowtooth flounder from the fishery data 1976-2016.


Figure 6.3. Survey estimates for the Bering Sea shelf, slope and the Aleutian Islands arrowtooth flounder biomass, with fitted linear model predictions. Predictions based on linear models of survey data indicate $750,179 \mathrm{t}$ in the BSAI, with $13 \%$ in the Aleutians, $78 \%$ on the Bering Sea shelf, and $9 \%$ on the Bering Sea slope.

## Arrowtooth Flounder <br> AFSC survey data: standard shelf area



Figure 6.4. Arrowtooth flounder CPUE (kg/ha) from the standard shelf survey area (1982-1992) and standard shelf survey area including Northwestern stratum 82 and 90 (1993-2016).


Figure 6.5. Retrospective analysis of spawning biomass estimates from model 15_1b. The top panel shows the spawning biomass time series from the current version of 15_1b with 10 retrospective runs (2006-2015) obtained by dropping one year of data at a time. The bottom panel shows the change in spawning biomass relative to the current version of model 15_1b for each of the 10 retrospective runs.


Figure 6.6. Total biomass and female spawning biomass for the different model configurations presented in this assessment.

Sex ratio in surveys


Figure 6.7. Proportion of the estimated male population from Bering Sea and Aleutian Islands trawl surveys on the continental shelf and slope.

Relationship between modeled temperature and q


Figure 6.8. Shelf survey annual avg. bottom temperature anomalies (bars), model estimate of annual shelf survey $q$ due to effect of water temperature (circles with lines).


Figure 6.9. Age-specific fishery selectivity (top left panel), shelf survey selectivity (top right panel) slope survey selectivity (bottom left panel) and Aleutian Islands survey selectivity (bottom right panel), by sex, estimated from the stock assessment model.

Fit to EBS shelf survey biomass


Fit to Aleutians survey biomass


Estimated Total Biomass


Fit to EBS slope survey biomass


Estimated Female Spawning Biomass


Figure 6.10. Stock assessment model results of the fit to the shelf survey biomass time-series (upper left panel), slope survey biomass (upper right panel), estimate of female spawning biomass with $\mathrm{B}_{35 \%}$ and $\mathrm{B}_{40 \%}$ indicated (middle right panel), the fit to the Aleutian Islands survey (middle left panel) and the estimate of total biomass (bottom panel). Credible intervals on model estimates of female spawning biomass and total biomass are from $5 \%$ and $95 \%$ quantiles of MCMC posterior values. Red lines in the fit to survey data show the results of the final model, and the blue lines show Model 15_1a, the same as the preferred model without data weighting.


Figure 6.11. Model fit (dotted lines) to Bering Sea shelf survey male observed length composition (bar plots).


Figure 6.11 (continued). Model fit (dotted lines) to Bering Sea shelf survey female observed length composition (bar plots).


Figure 6.11 (continued). Model fit (dotted lines) to Bering Sea slope survey male and female observed length composition (bar plots).


Figure 6.11 (continued). Model fit (dotted lines) to Aleutian Islands survey observed male length composition (bar plots).


Figure 6.11 (continued). Model fit (dotted lines) to Aleutian Islands survey female observed length composition (bar plots).


Figure 6.11 (continued). Model fit (dotted lines) to Bering Sea shelf survey male and female observed age composition (bar plots).


Figure 6.11 (continued). Model fit (dotted lines) to Bering Sea slope male and female survey observed age composition (bar plots).


Figure 6.11 (continued). Model fit (dotted lines) to Aleutian Islands survey male and female observed age composition (bar plots).

## Estimated age 1 recruitment



Figure 6.12. Estimates of arrowtooth flounder age 1 recruitment from the stock assessment model mcmc output, with $5 \%$ and $95 \%$ credible intervals.

## Posterior of 2016 female spawning biomass



Figure 6.13. Posterior distribution of the estimate of female spawning biomass ( t ) from the preferred stock assessment model run, compared with the model estimate of $\mathrm{B}_{35 \%}, 210,622 \mathrm{t}$.


Figure 6.14. Beverton and Holt spawner recruit model fit to the age 1 recruitment data for Bering Sea arrowtooth flounder.


Figure 6.15. Projected female spawning biomass ( $1,000 \mathrm{~s} t$ ) of arrowtooth flounder if future harvest is at the same fishing mortality rate as the past five years.


Figure 6.16. Phase plane diagram showing the time-series of stock assessment model estimates of female spawning biomass relative to the harvest control rule, with projection model results for 2017 and 2018.


Figure 6.17. Adult and juvenile arrowtooth flounder in the EBS food web. Box size is proportional to biomass, and lines between boxes represent the most significant energy flows. Predators of arrowtooth are dark blue, prey of arrowtooth are green, and species that are both predators and prey of arrowtooth are light blue.

BS Arrowtooth mortality


Figure 6.18. Mortality of Bering Sea arrowtooth flounder $>20 \mathrm{~cm}$ fork length by predator or fishery as from predator ration and diet estimates, and fisheries catch data, 1990-94, as described in Appendix 1 of the Ecosystem Considerations chapter. "Unexplained" mortality is the difference between the stock assessment mortality and total predation; high unexplained mortality may indicate a top predator in an ecosystem. Hatching in each wedge indicates qualitative data confidence: no hatching indicates value came from species with good diet coverage within the time period and region; striped hatching indicates limited data from literature sources; cross-hatching indicates estimate derived from ecosystem model (poor data quality).

BS Arrowtooth_Juv mortality


Figure 6.19. Mortality of Bering Sea arrowtooth flounder $<20 \mathrm{~cm}$ fork length by predator or fishery as from predator ration and diet estimates, and fisheries catch data, 1990-94, as described in Appendix 1 of the Ecosystem Considerations chapter. "Unexplained" mortality is the difference between the stock assessment mortality and total predation; high unexplained mortality may indicate a top predator in an ecosystem. Hatching in each wedge indicates qualitative data confidence: no hatching indicates value came from species with good diet coverage within the time period and region; striped hatching indicates limited data from literature sources; cross-hatching indicates estimate derived from ecosystem model (poor data quality).


Figure 6.20. Diet of Bering Sea arrowtooth flounder >20cm fork length, 1991-1994 from AFSC food habits data 1990-94, as described in Appendix 1 of the Ecosystem Considerations chapter. Hatching in each wedge indicates qualitative data confidence: no hatching indicates value came from species with good diet coverage within the time period and region; striped hatching indicates limited data from literature sources; cross-hatching indicates estimate derived from ecosystem model (poor data quality).


Figure 6.21. Diet of Bering Sea arrowtooth flounder <20cm fork length, 1991-1994 from AFSC food habits data 1990-94, as described in Appendix 1 of the Ecosystem Considerations chapter. Hatching in each wedge indicates qualitative data confidence: no hatching indicates value came from species with good diet coverage within the time period and region; striped hatching indicates limited data from literature sources; cross-hatching indicates estimate derived from ecosystem model (poor data quality).


Pollock as prey - fork length (cm), 1984-2006
Figure 6.22. Length frequency of pollock found in stomachs, from groundfish food habits collected from 1984-2006 on AFSC summer trawl surveys in the eastern Berng Sea. Predators are sorted by median prey length of pollock in their stomachs. All lengths of predators are combined.


Figure 6.23. Effect of changing arrowtooth $>20 \mathrm{~cm}$ survival on fishery catch (yellow) and biomass of other species (dark red) in the EBS, from a simulation analysis where arrowtooth survival was decreased by $10 \%$ and the rest of the ecosystem adjusted to this decrease for 30 years. Boxes show resulting percent change in the biomass of each species on the x axis after 30 years for $50 \%$ of feasible ecosystems, error bars show results for $95 \%$ of feasible ecosystems (see Aydin et al. in press for detailed Sense methods).

BS Arrowtooth_Juv effects on other species


Figure 6.24. Effect of changing arrowtooth $<20 \mathrm{~cm}$ survival on fishery catch (yellow) and biomass of other species (dark red) in the EBS, from a simulation analysis where arrowtooth survival was decreased by $10 \%$ and the rest of the ecosystem adjusted to this decrease for 30 years. Boxes show resulting percent change in the biomass of each species on the x axis after 30 years for $50 \%$ of feasible ecosystems, error bars show results for $95 \%$ of feasible ecosystems (see Aydin et al. in press for detailed Sense methods).

BS Species affecting Arrowtooth


Figure 6.25. Effect of reducing fisheries catch (yellow) and other species survival (dark red) on arrowtooth $>20 \mathrm{~cm}$ biomass, from a simulation analysis where survival of each $X$ axis species group was decreased by $10 \%$ and the rest of the ecosystem adjusted to this decrease for 30 years. Boxes show resulting percent change in the biomass of adult arrowtooth after 30 years for 50\% of feasible ecosystems, error bars show results for $95 \%$ of feasible ecosystems (see Aydin et al. in press for detailed Sense methods).

## Appendix

Table A1. Total tonnage of the research catch for arrowtooth flounder and Kamchatka flounder through 2007, and for arrowtooth only from 2008 onwards. Data for 1991-2015 is from AKFIN, Noncommercial Fishery Catch and represents only arrowtooth flounder (accessed October 27, 2016). Data for 2016 are incomplete, but include catch from the 2016 EBS shelf survey.

| Year | Research catch (t) |
| :--- | ---: |
| 1977 | 1 |
| 1978 | 3.7 |
| 1979 | 22.5 |
| 1980 | 63.6 |
| 1981 | 48.4 |
| 1982 | 46.6 |
| 1983 | 21.8 |
| 1984 | 6.1 |
| 1985 | 194.1 |
| 1986 | 57.7 |
| 1987 | 9.4 |


| 1988 | 33.7 |
| :--- | ---: |
| 1989 | 22.8 |
| 1990 | 21.9 |
| 1991 | 21.5 |
| 1992 | 23.6 |
| 1993 | 32.1 |
| 1994 | 22.5 |
| 1995 | 38.9 |
| 1996 | 27.5 |
| 1997 | 47.6 |
| 1998 | 43 |
| 1999 | 68.8 |
| 2000 | 48.3 |
| 2001 | 49.3 |
| 2002 | 24.8 |
| 2003 | 38.7 |
| 2004 | 22.6 |
| 2005 | 38 |
| 2006 | 27.6 |
| 2007 | 38.5 |
| 2008 | 22.3 |
| 2009 | 31.3 |
| 2010 | 196.1 |
| 2011 | 242.7 |
| 2012 | 50.4 |
| 2013 | 14.8 |
| 2014 | 38.5 |
| 2015 | 27.3 |
| 2016 | 17.2 |

Table A2. Parameters estimated in the model, and standard deviation.

| Parameter name | Year | value |
| :--- | ---: | ---: |
| fishsel_params_f[1] | 1.12420 | std.dev |
| fishsel_params_f[2] | 13.59200 | 2,536 |
| fishsel_params_m[1] | 0.42326 | 6,699 |
| fishsel_params_m[2] | 3.18460 | 230 |
| srv_params_f[1] | 2.04850 | 13,758 |
| srv_params_f[2] | 2.59860 | 0.134 |
| srv_params_f[3] | 3.95830 | 0.061 |
| srv_params_f[4] | 5.23510 | 0.594 |
| srv_params_f[5] | 0.70245 | 0.057 |
| srv_params_f[6] | 5.13660 | 0.074 |
| srv_params_m[1] | 0.50000 | 0.288 |
| srv_params_m[2] | 4.69850 | 0.000 |
| srv_params_m[3] | 0.50000 | 0.099 |
| srv_params_m[4] | 7.95140 | 0.000 |
| srv_params_m[5] | 0.50000 | 0.145 |
| srv_params_m[6] | 5.61060 | 0.000 |
| srv1desc_params_f[1] | 1.41540 | 0.154 |
| srv1desc_params_f[2] | 10.00000 | 0.131 |


| srv1desc_params_m[1] |  | 1.59620 | 0.273 |
| :---: | :---: | :---: | :---: |
| srv1desc_params_m[2] |  | 8.97600 | 0.183 |
| alpha |  | -0.55531 | 0.024 |
| beta |  | 0.10101 | 0.007 |
| mean_log_rec |  | 18.66400 | 0.030 |
| F40 |  | 0.14201 | 0.028 |
| F35 |  | 0.16693 | 0.034 |
| F30 |  | 0.44144 | 343 |
| fspbio |  | 220,750 | 17,569 |
| fspbio | 1976 | 222,370 | 14,493 |
| fspbio | 1977 | 230,550 | 11,622 |
| fspbio | 1978 | 234,220 | 9,523 |
| fspbio | 1979 | 224,650 | 8,269 |
| fspbio | 1980 | 204,090 | 7,406 |
| fspbio | 1981 | 182,630 | 6,676 |
| fspbio | 1982 | 168,330 | 6,004 |
| fspbio | 1983 | 155,520 | 5,388 |
| fspbio | 1984 | 147,060 | 4,849 |
| fspbio | 1985 | 142,850 | 4,386 |
| fspbio | 1986 | 145,410 | 4,082 |
| fspbio | 1987 | 158,480 | 4,075 |
| fspbio | 1988 | 167,960 | 4,276 |
| fspbio | 1989 | 187,240 | 4,586 |
| fspbio | 1990 | 206,190 | 5,103 |
| fspbio | 1991 | 223,630 | 5,824 |
| fspbio | 1992 | 253,620 | 6,651 |
| fspbio | 1993 | 291,840 | 7,645 |
| fspbio | 1994 | 330,310 | 8,712 |
| fspbio | 1995 | 367,630 | 9,626 |
| fspbio | 1996 | 390,280 | 10,234 |
| fspbio | 1997 | 404,940 | 10,548 |
| fspbio | 1998 | 407,470 | 10,663 |
| fspbio | 1999 | 406,900 | 10,638 |
| fspbio | 2000 | 400,350 | 10,521 |
| fspbio | 2001 | 392,550 | 10,376 |
| fspbio | 2002 | 390,970 | 10,317 |
| fspbio | 2003 | 396,360 | 10,430 |
| fspbio | 2004 | 407,750 | 10,768 |
| fspbio | 2005 | 430,300 | 11,313 |
| fspbio | 2006 | 457,120 | 11,951 |
| fspbio | 2007 | 486,330 | 12,562 |
| fspbio | 2008 | 507,180 | 13,138 |
| fspbio | 2009 | 518,570 | 13,652 |
| fspbio | 2010 | 515,410 | 14,114 |
| fspbio | 2011 | 520,480 | 14,389 |
| fspbio | 2012 | 518,420 | 14,538 |
| fspbio | 2013 | 512,880 | 14,537 |
| fspbio | 2014 | 503,050 | 14,371 |
| fspbio | 2015 | 495,190 | 14,040 |
| totalbiomass | 1976 | 390,860 | 14,851 |
| totalbiomass | 1977 | 370,530 | 12,834 |
| totalbiomass | 1978 | 353,620 | 11,305 |
| totalbiomass | 1979 | 337,620 | 10,095 |
| totalbiomass | 1980 | 316,150 | 9,097 |
| totalbiomass | 1981 | 294,020 | 8,242 |
| totalbiomass | 1982 | 278,590 | 7,524 |


| totalbiomass | 1983 | 275,090 | 6,995 |
| :--- | :--- | :--- | ---: |
| totalbiomass | 1984 | 280,840 | 6,645 |
| totalbiomass | 1985 | 294,170 | 6,513 |
| totalbiomass | 1986 | 316,170 | 6,682 |
| totalbiomass | 1987 | 346,000 | 7,209 |
| totalbiomass | 1988 | 384,990 | 9,038 |
| totalbiomass | 1989 | 417,690 | 9,183 |
| totalbiomass | 1990 | 469,980 | 10,485 |
| totalbiomass | 1991 | 516,790 | 12,901 |
| totalbiomass | 1992 | 551,850 | 13,960 |
| totalbiomass | 1993 | 590,260 | 14,697 |
| totalbiomass | 1994 | 621,180 | 15,204 |
| totalbiomass | 1995 | 636,730 | 15,532 |
| totalbiomass | 1996 | 649,890 | 15,698 |
| totalbiomass | 1997 | 651,190 | 15,842 |
| totalbiomass | 1998 | 655,980 | 16,005 |
| totalbiomass | 1999 | 658,790 | 16,308 |
| totalbiomass | 2000 | 672,280 | 16,761 |
| totalbiomass | 2001 | 690,900 | 17,349 |
| totalbiomass | 2002 | 716,030 | 18,017 |
| totalbiomass | 2003 | 749,120 | 18,725 |
| totalbiomass | 2004 | 784,860 | 19,404 |
| totalbiomass | 2005 | 815,630 | 20,090 |
| totalbiomass | 2006 | 849,610 | 20,696 |
| totalbiomass | 2007 | 876,390 | 21,204 |
| totalbiomass | 2008 | 899,250 | 21,588 |
| totalbiomass | 2009 | 904,120 | 21,745 |
| totalbiomass | 2010 | 891,490 | 21,749 |
| totalbiomass | 2011 | 860,720 | 21,548 |
| totalbiomass | 2012 | 845,220 | 21,225 |
| totalbiomass | 2013 | 822,560 | 20,790 |
| totalbiomass | 2014 | 798,000 | 20,392 |
| totalbiomass | 2015 | 773,400 | 20,019 |
| totalbiomass | 2016 | 762,660 |  |

(This page intentionally left blank)

