
The Effect of Climatological Cycles and Storm Events 
on Water Quality in the National Estuarine Research 

Reserve Systems of the Southeastern U.S 
 

A Final Report Submitted to  
 

The NOAA/UNH Cooperative Institute for Coastal and Estuarine  
Environmental Technology (CICEET) 

 
Submitted by 

 
Dr. Susan B. Wilde, Belle W. Baruch Institute for Marine Science, USC 

Charleston, South Carolina, 29492 
 

Dr. Don Edwards, Department of Statistics, USC 
Dr. Erik Smith, Belle W. Baruch Institute for Marine Science, USC, 

 North Inlet/Winyah Bay NERR 
Dr. Elizabeth Wenner, Marine Resources Research Institute, South Carolina Dept. 

of Natural Resources, ACE Basin NERR 
Dr. David. L. White, NOAA Hollings Marine Laboratory/JHT 

 
 

July 30, 2007 

 
 

This project was funded by a grant from NOAA/UNH Cooperative Institute for Coastal 
and Estuarine Environmental Technology, NOAA Grant Number NA05-998      

 

                                                  



 2 

Expanded Executive Summary and Key Findings 
 
The ultimate resource issue addressed with this investigation was detection of 
anthropogenic impacts on the coastal environment.  The tool developed within the scope 
of our project was a periodicity removal and event detection analysis which allows for 
removal of natural cylic periodicity and known meteorological forcing on water quality 
parameters.  Once the periodicity has been removed, there are often anomalies in the 
series.  Unusual events in the data series are interesting sources of variability.  It is 
important to identify and quantify events in environmental time series in order to gain a 
better understanding of the ecosystem.  Events could be the result of natural or human 
influences.  To try to identify their causes, detected events can be compared to known 
meteorological events, such as rainfall, drought, or tropical storm.  Unusual events 
sometimes reveal processes operating at higher time or space scales.  We addressed 
statistical procedures that are capable of lending managers the ability to discriminate 
between natural forcing variable and new human induced or dramatic climate forcing.   
These methods are superior to previously published analyses because they are more 
accurate and amenable to large datasets with high variability.  Unfortunately, due to the 
overwhelming statistical challenges these data present, it was not within the scope of this 
project to bring this method directly to the managers in organized training sessions.  We 
did, however, correspond with NERRs managers to guide which analyses would be most 
beneficial to mining these long-term water quality datasets. 
 
This report explores methods for modeling periodic environmental time series data from 
estuaries, and for detecting “events” in environmental time series.  Both classical 
parametric and new, nonparametric methods are considered.  While humans utilize and 
benefit from estuarine resources, they also greatly influence these ecosystems.  Both 
human and natural influences cause estuarine habitats to be very dynamic and vulnerable 
ecosystems.  In order to quantify human influences, it is necessary to determine baseline 
measures of water quality in estuarine ecosystems. 
 
Increased awareness of the implications of both human and natural disturbances resulted 
in the passage of the Coastal Zone Management Act in 1972.  This in turn led to the 
establishment of the National Estuarine Research Reserve System (NERRS).  The 
NERRS is a network of 27 protected areas in the U.S. and Puerto Rico established for 
long-term research, water-quality monitoring, and education.  These reserves cover over 
one million acres of protected estuarine waters, adjoining wetlands, and surrounding 
uplands (Owen and White 2005).  The five reserves on the Southeastern Atlantic coast 
are the focus this study including North Carolina, North Inlet-Winyah Bay, ACE Basin, 
Sapelo Island, and Guana Tolomata Matanzas (GTM) NERRs.. 

 
In 1995, the NERRS established the System-Wide Monitoring Program (SWMP), 
designed to monitor a standard collection of water quality variables across all reserves.  
The variables that were initially chosen to be monitored beginning with Phase I in 1996 
were pH, specific conductivity, temperature, turbidity, salinity, depth, and dissolved 
oxygen (DO; mg/L and also percent saturation, the ratio of the dissolved oxygen content 
to the potential capacity at that temperature and elevation, expressed as a percentage).  
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These particular variables were selected to measure the water quality for both estuarine 
species and humans.  Measurements for each variable are obtained at 30-minute intervals 
at 2-4 sites at each of the NERRS SWMP reserves beginning January 1, 1995 (Sanger et 
al. 2002).  These automatic data loggers relay measurements to internal memory and can 
run unattended for weeks at a time, after which they are removed, cleaned, recalibrated, 
and redeployed.  As one example, Figure 2 shows the depth, water temperature, salinity, 
and DO (percent saturation) at the East Cribbing site of the North Carolina reserve near 
Wilmington, North Carolina for the 48th SWMP deployment, June 30 – July 7, 2004.   
 
 
Figure 2:  Water Quality Data for a Single Deployment 
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In these and many other environmental time series, periodicity is dominant.  In the 
NERRS water quality data, we believe this periodicity should be modeled for the most 
part as signal, with deterministic origin, driven by gravitational and solar energy forces.  
In order to detect, measure, and understand the aperiodic influences and events in 
estuarine water quality data, steps should first be made to quantify and understand the 
effects of these natural periodic influences.   
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Notice the comparatively low readings of temperature, salinity, and dissolved oxygen late 
in day 913 in Figure 2.  Since the levels of these three water quality variables appear to 
be lower than at the same time on other days in the deployment, this is a possible event.  
Once the periodicity has been removed, we can better study these series to determine if 
these disturbances are indeed unusual events. 

 

The first two suggested applications of the analysis were to evaluate short-term impacts 
on estuarine salinity during strong rain events and named storms.  Results from these 
analyses are also discussed within this final report and references within.  While many 
short-term variables responded to relatively small recorded rain events, we did not detect 
long-term signatures within the water quality data from any of the hurricanes that were 
evaluated in our analyses.  
 
Finally, all necessary statistical tools required to accomplish this effort are described in 
this report and are most are available free on the internet.  Details of the statistical 
modeling efforts are contained in the University of South Carolina statistics department 
graduate student thesis and dissertation and pending journal articles (Autin, 2007, Li, 
2007, Autin and Edwards, submitted).      

 
Key Findings 
 

• Generalized additive models (GAMs) are a very promising method for modeling 
estuarine water quality data, and more generally, for any time series with strong 
and potentially non-sinusoidal signals of known period.   

• For the NERRS data, classical harmonic regression techniques work well for the 
analysis of depth data; however, they are not as satisfactory for analysis of other, 
less regular, water quality variables.   

• The GAMs are also more automatically adaptive and require less user-
intervention than the harmonic regression models.   

• The ease of their use in R also makes them very appealing.  Not only are they 
adaptive and user-friendly, but they are also non-prohibitive in terms of 
computation time. 

• Efron’s local false discovery rate algorithm was effective is detecting events in 
the ACE Basin reserve water quality data. 

• The model developed from the first ACE Basin site (ACEBB) suggests that small 
total precipitation and large mean and mean absolute deviation of landward wind 
results lead to a large drop in salinity.  

• For the second ACE site (ACEMC), the model predicts that short rainfall 
duration, large total precipitation, small mean absolute deviation of precipitation 
and large mean absolute deviation of landward wind during rainfall period should 
cause a large drop in salinity.  

• Hurricanes impacts on water quality parameters in NERRs site within the storm 
path indicated that the water quality changes were short-term and generally all 
parameters returned to baseline level cycles within 48 hrs.   
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Abstract 
Determining the role of anthropogenic forces and climatic variability on estuarine water 
quality requires the ability to predict and distinguish effects of stochastic events (e.g., 
hurricanes) vs. typical estuarine periodicities, and to reveal how periodicities are 
influenced by large-scale, climatic variability. In these and most other environmental 
time series, periodicity is dominant.   
In order to detect, measure, and understand the aperiodic influences and events in 
estuarine water quality data, steps should first be made to quantify and understand the 
effects of these natural periodic influences. 
 
Our specific objectives were to remove cyclic periodicity from NERRS environmental 
time series as a source of variation to facilitate short-term and long-term event detection.  
Then using the periodicity free data, identify and quantify events in NERRS 
environmental time series in order to gain a better understanding of the ecosystem.   To 
evaluate short-term storm effects, we sought to develop a statistical model of high rainfall 
and wind impacts upon water-quality parameters (salinity, depth) within a model 
estuarine ecosystem (ACE NERR site) in the southeastern US.  Finally, we examine 
storm tracks and meteorological history of named tropical systems between 1996-2004, 
in order to determine the frequency, duration, and intensity of systems that potentially 
impacted water quality at NERR SWMP sites. 
 
To accomplish our first objective to remove periodicity, we compare statistical methods 
including; harmonic regression, GAMs with cubic regression splines, and GAMs with 
cyclic regression splines using water quality data collected from the National Estuarine 
Research Reserve System (NERRS).  Once the periodicity has been removed from 
ecological datasets, there is likely still some atypical variation, such as unusual events, in 
the time series.  Unusual events and disturbances are important and interesting sources of 
variability in ecological datasets.  Several methods are used in event detection including 
Shewhart Control Chart Method and Efron’s local false discovery rate.  For the third 
objective, rainfall and wind impact were evaluated using a SAS program, 420 rainfall 
events in total have been extracted from the original meteorological data at ACE Basin 
between July 1, 2001 and December 31, 2005.  The final objective was to provide a 
presentation format to visualize water quality changes within NERRs sites exposed to the 
track of a hurricane. 
 
We have investigated the use of classical harmonic regression models and nonparametric 
harmonic regression models (generalized additive models) for estuarine water quality 
data. For the NERRS data, classical harmonic regression techniques work well for the 
analysis of depth data; however, they are not as satisfactory for analysis of other, less 
regular, water quality variables.  The GAMs show great potential for these applications.  
Additionally , we  adapted Efron’s local false discovery rate methods for detecting events 
in estuarine water quality data.  We then used the event detection algorithm to detect 
events in the water quality data collected at the ACE Basin NERRS reserve.  Once events 
are detected in a time series, causes for the events should be explored.  Water quality 
events can be compared to known meteorological events, such as rainfall events, 
droughts, and El Niño/La Niña climatic cycle effects.   
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Introduction 
Demographic pressures increasingly affect coastal resources. More than half of the 
nation’s citizens live in coastal areas, which account for only 13% of the nation’s 
acreage. In the next 15 years, 27 million people, (~50% of the US population increase), 
are predicted to move into the coastal zone (Beach 2002). Associated with these changes 
in population distribution, are developmental and societal practices that negatively impact 
ecological systems. The NERRS SWMP provides long-term monitoring of water quality, 
to gather baseline data for estuarine systems that may be impacted. Estuarine water 
quality is also influenced by the interaction of atmospheric, oceanic, watershed, and 
anthropogenic forces. Thus, pronounced variability occurs across a wide range of 
temporal and spatial scales. 
 
The analysis of long-term, water-quality data is complicated by the uncertainty of 
measurements made across multiple environmental scales (i.e., climatic to estuarine). For 
instance, climate variability is typically recorded on global, hemispheric, and regional 
scales. However, to effectively manage environmental resources, it is necessary to 
analyze data at the ecosystem level (Preston, 2004). Determining the role of climatic 
variability on estuarine water quality requires the ability to predict and distinguish effects 
of stochastic events (e.g., hurricanes) vs. typical estuarine periodicities, and to reveal how 
periodicities are influenced by large-scale, climatic variability. In these and most other 
environmental time series, periodicity is dominant.  In the NERRS water quality data, this 
periodicity is modeled as signal, with deterministic origin, driven by gravitational and 
solar energy forces.  In order to detect, measure, and understand the aperiodic influences 
and events in estuarine water quality data, steps should first be made to quantify and 
understand the effects of these natural periodic influences. 
 
In recent years, the SAB has experienced a range of both large-scale, longer-term 
climatological conditions and short-term storm events that have greatly impacted its 
estuaries. The longest drought in the past ~50 years (Waple, 2003) spanned 1998-2002, 
and was associated with a strong La Niña event during 1998-2001(Lawrimore, 2001; 
Waple, 2002). In mid-2002, the drought ended rapidly, with a dramatic rainfall increase; 
an El Niño event occurred from late 2002 through 2003 (Levinson, 2004). [El Niño 
brings moisture to the southeastern U.S., and is not conducive to hurricane formation in 
the Atlantic. Prolonged La Niña events are correlated with drought and increased Atlantic 
hurricane formation.] Superimposed upon this large-scale climatic variability, was 
pronounced, inter-annual variability in storm-events frequencies. In the fall of 1999, three 
hurricanes, including Dennis (Aug. 24-Sept. 5), Floyd (Sept. 14-17) and Irene (Oct. 13-
16), impacted the southeast, leading to unprecedented flooding in portions of North 
Carolina and the northeastern coastal counties of South Carolina (Bales, 2003; Peierls, 
2003).  
 
The effects of climatic variability, across a range of scales, on estuarine water quality 
dynamics are thus highly relevant to the South Atlantic Bight. The development of 
specific, quantitative techniques to assess the effects of stochastic events and larger-scale, 
climatic conditions will be valuable to estuarine ecologists and coastal resource managers 
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alike. This will provide the necessary tools for analyzing long-term water quality data 
sets, in order to better understand the factors affecting variability across space and time. 
 
Objectives 
The research analyses addressed complexities in evaluating effects of climatic variability 
by the first addressing cyclic periodicity and event detection, and then using these tools to 
conduct intensive investigation of short-term stochastic events including rainstorms and 
named tropical systems. Our analyses focused on the role of these processes at the scale 
of individual estuarine ecosystems (NERR sites) within the South Atlantic Bight.   
 
Our specific objectives were to: 
1.  Remove cyclic periodicity from NERRS environmental time series as a source of 
variation to facilitate short-term and long-term event detection.   
2.  Identify and quantify events in NERRS environmental time series in order to gain a 
better understanding of the ecosystem. 
3.  Develop a statistical model of high rainfall and wind impacts upon water-quality 
parameters (salinity, depth) within a model estuarine ecosystem (ACE NERR site) in the 
southeastern US.  
4.  Examine storm tracks and meteorological history of named tropical systems between 
1996-2004, in order to determine the frequency, duration, and intensity of systems that 
potentially impacted water quality at NERR SWMP sites. 
 

• Objectives 1 and 2 will be used to facilitate investigation of events that could be 
the result of natural or human influences.  To try to identify their causes, detected 
events are initially compared to known meteorological events, such as rainfall, 
drought, or tropical storm.  Objectives 3 and 4 focus on rainfall, wind and named 
storm events on estuarine water quality parameters. 

• Reports and publications generated by Objectives 1-4 are supported by 
implementing available web-based, analytical tools for future data modeling 
(Autin 2006, 2007, Li, 2007).  

 
Methods 
Objective 1.  Compare methods to remove cyclic periodicity including; harmonic 
regression, GAMs with cubic regression splines, and GAMs with cyclic regression 
splines using water quality data collected from the National Estuarine Research Reserve 
System (NERRS).   
 
The use of statistical models in tidal prediction is based upon the theory that all tidal 
components are independent and that their periods are known.  The periods of the major 
tidal constituents (Table 1) have been calculated due to constant and astronomical forces 
(see e.g. Defant 1958).  Semidiurnal components have a tidal cycle that consists of two 
high and two low tides of approximately the same height per lunar day (~24.84 hours).  
Diurnal components have a tidal cycle that usually consists of one high tide per day. 

 



 8 

Classical and proposed methods for modeling periodic environmental time series are 
compared using data from southeastern NERRs sites.  Classical harmonic regression 
analysis, used by physical oceanographers for decades, assumes that effects of periodic 
components can be modeled by weighted sums of sine waves of known periods.  
Generalized additive models (GAMs) allow more flexibility in the form of the regression 
function.  They permit parametric, semiparametric, and nonparametric regression 
functions of the predictor variables.  Applications of nonparametric harmonic regression 
are presented with analyses for the SWMP data from NERRs sites.   

 
Table 1:  Major Components of Tidal Forces 

Designation Symbol Period Description 
Semidiurnal 
Semidiurnal 
Semidiurnal 
 
Semidiurnal 

M2 
S2 
N2 
 
K2 

12.4206012 
12.0000000 
12.6583482 
 
11.9672348 

Main lunar (semidiurnal) constituent 
Main solar (semidiurnal) constituent 
Lunar due to monthly variation in moon’s 
distance 

Soli-lunar due to changes in declination of sun 
and moon 

Diurnal 
 
Diurnal 
Diurnal 
Diurnal 

K1 
 
O1 
P1 

S1 

23.9344697 
 
25.8193417 
24.0658902 
24.0000000 

Soli-lunar due to changes in declination of sun 
and moon 

Main lunar (diurnal) constituent 
Main solar (diurnal) constituent 
Daily constituent 

Long Period M1 327.858984 Moon’s fortnightly constituent 
Note:  Period is given in solar hours. 

Harmonic Regression 
Harmonic regression uses the sine curve to account for periodic patterns.  Multiple 
harmonic regression is derived from the modeling of two or more additive sine functions 
representing different periods.  The use of multiple harmonics allows (theoretically) for 
any periodic function of period p to be arbitrarily well-approximated in this manner, 
given enough terms.  The accuracy of the approximation improves by increasing the 
number of harmonics, but its scientific meaning is often unclear (Piegorsch and Edwards 
2002).  In practice, one or two harmonics are typically used per period for analysis of 
estuarine data by physical oceanographers. 
 
Tidal components that have the same designation have periods of similar length.  
According to the oceanographic literature, in order to analytically separate these similar 
components from each other, series of ample length must be available.  Specifically, 
according to Foreman and Henry (1989): 

(1) 328 hours = 13.67 days are needed to distinguish O1 and K1 

(2) 355 hours = 14.79 days are needed to distinguish S2 and M2 
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(3) 182 days are needed to distinguish P1, K1, and S1 

(4) 182 days are needed to distinguish K2 and S2. 

In statistical terms, this inseparability of terms corresponds to severe collinearity in the 
multiple harmonic regression models for short series.  We adopt the above guidelines in 
order to ensure that there will not be unacceptably strong collinearity among the similar 
periodic components, in both the classical and nonparametric approaches. 

 

Generalized Additive Models 

Modern generalized additive models (Hastie and Tibshirani 1990) allow more flexibility 
in the form of the regression function.  As described in detail by Wood (2006), a 
univariate function f(x) of the predictor x can be approximated by a spline function g(x).  
A polynomial regression spline is a type of smoother that fits piecewise polynomials to 
data.  The piecewise polynomials are connected at user-specified x-locations called knots, 
and the spline is typically required to have no discontinuity, and to be smooth, at knots.  
Knots must also be specified for the endpoints of the series.  The difficulty in using this 
technique is the determination of the number and locations of knots to use. 

 
Objective 2.  Develop a data-driven event detection algorithm using Efron’s (2006) idea 
of local false discovery rates to detect events in water quality time series.   
 
Once the periodicity has been removed from ecological datasets, there is likely still some 
atypical variation, such as unusual events, in the time series.  Unusual events and 
disturbances are important and interesting sources of variability in ecological datasets.  
Understanding their causes can lead to better understanding of the ecosystem.  Events can 
be defined as sequences of observations that are improbably higher or lower than would 
be expected given the distribution of the “noise.”  In the analysis of time series data, there 
are two characteristics that are most important in describing an event:  duration and 
intensity.  Jassby and Powell (1990) believe that unusual events are among the most 
complicated, yet most crucial, phenomena that ecologists must handle effectively.  The 
timing, frequency, length, and intensity of events may be important in determining long-
term changes in ecosystem structure and function (Vernberg, 1993).  Although it is 
important to identify and quantify these events, objective and efficient methods for doing 
so are not readily available for ecological data. 
 
Allen et al. (1996) adapted quality control methods, widely used in industry, to detect and 
quantify unusual events in year-long data sets collected at the North Inlet-Winyah Bay 
Reserve in South Carolina.  They used the Shewhart Control Chart Method to define four 
types of events according to intensity and duration.  This method uses the residuals from 
the removal of periodicity and long-term trends from the data.  Extreme residuals (or 
series of residuals) are flagged if they would be improbable given the magnitude of 
typical variability as measured by the standard deviation.  Following classical industrial 
process control rules, Allen et al. defined four types of events, types A, B, C, and D: 

(A) One point at least 3 standard deviations above or below the mean; 
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(B) Two out of three consecutive points at least 2 standard deviations above or 
below the mean; 

(C) Four out of five consecutive points at least 1.5 standard deviations above or 
below the mean; 

(D) Eight consecutive points at least 0.2 standard deviations above or below the 
mean. 

 
These threshold deviation levels are standard in control chart methods, chosen such that 
approximately only 1 in 400 detected events are false positives under a Normal errors 
assumption.  The Shewhart Control Chart Method used by Allen et. al. (1996) only 
allowed for four types of events.  For each event of differing length, a new threshold 
criterion was defined.  We would like to develop a more automated and comprehensive 
method for detecting events of almost any length.  This gives rise to a large-scale 
multiple-hypothesis testing situation motivating the control of false discovery rate, 
discussed in the next section.   
 
Traditionally, family-wise error rate (FWER) has been used to measure the overall error 
rate under the multiple-hypothesis test setting.  The FWER is defined as the probability 
of making one or more false rejections among all tests.  The significance level α is chosen 
such that FWER ≤ α, and then a rejection region is found that maintains level α FWER.  
In many circumstances, FWER is too strict, especially for a large number of tests. 
 
Since the methods that use p-values rely on null hypothesis tail areas, they are extensions 
of traditional frequentist hypothesis testing.  Efron (2004) presents empirical Bayes 
methods for large-scale false discovery rate analysis.  The local false discovery rate 
provides a useful method for identifying “interesting” (non-null) cases.  we present a 
data-driven event detection algorithm that utilizes Efron’s local false discovery rate.  The 
performance of this algorithm is investigated via simulation studies.  The algorithm is 
then used to detect events in the ACE Basin reserve water quality data. 
 
Objective 3.  Develop a statistical model of high rainfall and wind impacts upon water-
quality parameters (salinity, depth) within a model estuarine ecosystem (ACE NERR site) 
in the southeastern US.  
 
The meteorological data has been recorded at Bennett’s Point station every 15 minutes 
since July 1, 2001.  The original yearly data sets between 2001 and 2005 have been 
acquired from the CDMO website. In general, we define one rainfall event like this: the 
starting point is when the first non-zero precipitation occurs after two consecutive hours 
of zero precipitation. The ending point is when the last non-zero precipitation occurs 
before two consecutive hours of zero precipitation. We also only consider events which 
last at least a half hour.  
 
Since rainfall events which last only 15 minutes produce missing values for mean 
absolute deviation variables, the rainfall events project have been defined as the events 
whose durations are at least 30 minutes. Using a SAS program, 420 rainfall events in 
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total have been extracted from the original meteorological data at ACE Basin between 
July 1, 2001 and December 31, 2005 (Li, 2007). 
 
Objective 4.  Examine storm tracks and meteorological history of named tropical systems 
between 1996-2004, in order to determine the frequency, duration, and intensity of 
systems that potentially impacted water quality at NERR SWMP sites. 
 
Evaluate the impact of named storms on the southeastern NERRS sites.  To date, fourteen 
named storms have been graphically depicted in a movie format which allows 
simultaneous viewing of key meteorological data as forcing variables and selected 
responding water quality parameters.  
  
Results 
Removing periodicity from NERRS SWMP data.  
This analysis focused on the NERRS reserves in the Southeast:  North Carolina (NOC), 
North Inlet-Winyah Bay (NIW), ACE Basin (ACE), Sapelo Island (SAP), and Guana 
Tolomata Matanzas (GTM).  All data is available on the Centralized Data Management 
Office website (CDMO 2007).  In part because of profound shifts at redeployments (e.g. 
Figure 1), and in part to allow for changes in short-term periodic signals over seasons, 
our analysis of the water quality data from these reserves is broken into two phases.  
Phase I estimates and removes short-term periodic influences from each deployment of 
the data.  Phase II estimates and removes the annual periodicity and deployment effects 
from the phase I residuals. 
 
Figure 1:  Raw Depth Data for Several Deployments 
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The most important semidiurnal and diurnal constituents are listed in Table 1.  For the 
phase I analysis of the NERRS SWMP deployments of length 7 to 30 days, we separate 
and estimate four periodic signals:  Diel (24-hour period = S1), M2, N2, and O1.  Due to 
collinearity caused by limited series length, the estimated Diel signature is actually the 
sum of the effects of Diel + S2 + P1 + K1 + K2.  At most NERRS sites, for most 
deployments, the Diel (D) and M2 signals are by far the most important (Sanger et al. 
2002).   
 
The data is fit with a “floating” GAM with cyclic regression splines for each of the four 
periodic components:   
 
 ( ) ( ) ( ) ( ) ( ) iiiiiii stageOfstageNfstageMfDstageftfy εβ ++++++= 152423210 , (1) 

 
where ti is time (in days) of the ith observation i = 1, 2, …, n, f1 is a slow-changing trend 
curve modeled with a cubic regression spline, β0 is the intercept of the trend curve, and fj 
(j = 2, 3, 4, 5) is the cyclic regression spline curve for each of the four periodic 
components.  The errors εi are assumed to have mean zero.  For each penalized regression 
spline, the user-specified dimension of the basis is one more than the maximum degrees 
of freedom that the term can have. After some experimentation the dimension of the basis 
for f1 was set to 4 to prevent f1 from absorbing cyclicity from other terms.  For each of the 
cyclic regression splines, the default of 10 was used for the dimension of the basis.   
 
As a detailed example of the phase I analysis, consider the water depth (meters) data from 
the East Cribbing site of the NOC reserve for the June 30 – July 7, 2004.  Figure 2 shows 
the graphical summary of the model (1) fit:  the raw data with fitted GAM, residual plot, 
and the profile plots of the four periodic components.   
 
The model fits the data very well, which is typical for analyses of the depth variable.  The 
M2 tidal constituent is dominant, but note the asymmetry in the M2 profile plot.  As is 
evident here, it is often the case that the periodic components are far from being 
sinusoidal in shape.  For this reason, we believe classical harmonic regression is not 
appropriate for much of the NERRS-SWMP water quality data unless a large number of 
harmonics are used for each period, which is not typical. 
 
Non-sinusoidal periodic components such as the M2 profile seen in Figure 3 are pervasive 
throughout the data analyses of the CICEET NERRS study.  Further examples are shown 
in Figures 4-5.  Each figure contains the raw data with the fitted GAM (1), a residual plot, 
and the fits for the four periodic components.  Figure 3 shows the graphical summary of 
the phase I analysis for dissolved oxygen (measured as percent saturation) data collected 
during the July 18 – August 1, 2002 deployment at the St. Pierre site of the ACE Basin 
reserve.  The M2 component has a double-bump in the peak of the curve, and the Diel 
component has some slight curvature during the mid-portion of the Diel cycle.  
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Figure 2:  Depth Phase I Analysis Example 
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Figure 3:  Percent Saturation Phase I Analysis Example 
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A graphical summary of a phase I analysis for salinity (parts per thousand) data is shown 
in Figure 4.  Data was collected during the December 12-20, 2002 deployment of the 
Pine Island site of the GTM reserve.  As with the two previous examples, the periodic 
components are not sinusoidal.  The M2 component, in particular, displays some 
curvature during the descent from peak to trough of the cycle and is almost linear from 
trough to peak. 
 
Figure 4:  Salinity Phase I Analysis Example 

712 714 716 718

22
24

26
28

Day

S
al

in
ty

 (
pp

t)

GTM PI, Dep. 53, 12/12/2002 - 12/20/2002

712 714 716 718

-1
.0

0.
0

1.
0

Day

R
es

id
ua

l

Residuals

0.0 0.2 0.4 0.6 0.8 1.0

-3
-1

0
1

2

Dstage

S
al

in
ty

 (
pp

t)

Diel Tidal Constituent

0.0 0.2 0.4 0.6 0.8 1.0

-3
-1

0
1

2

M2stage

S
al

in
ty

 (
pp

t)
M2 Tidal Constituent

0.0 0.2 0.4 0.6 0.8 1.0

-3
-1

0
1

2

N2stage

S
al

in
ty

 (
pp

t)

N2 Tidal Constituent

0.0 0.2 0.4 0.6 0.8 1.0

-3
-1

0
1

2

O1stage

S
al

in
ty

 (
pp

t)

O1 Tidal Constituent

 
 
 
A graphical summary of a phase I analysis for dissolved oxygen (mg/L) data is shown in 
Figure 5.  Data was collected during the June 14-24, 1995 deployment of the Flume Dock 
site of the SAP reserve.  Both the Diel and M2 components have a great deal of curvature 
resulting in unusual shapes, especially in the M2 component.  The O1 and N2 constituents 
are unusually strong in this deployment, as is often the case at this particular site. 
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Since the periodic components of the water quality data often do not appear to be 
sinusoidal, this suggests that classical harmonic regression analysis may not be 
appropriate for this data.  The time series for all water quality variables were fit with 
model (1) for each deployment containing at least seven days of data.  Doing this for each 
site of each reserve in the CICEET study resulted in nearly 12,000 phase I analyses for 
the NERRS data.   
 
Figure 5:  Dissolved Oxygen Phase I Analysis Example 
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Phase II Analysis 
In phase II analyses, one of our goals is to attempt to model annual periodicity.  The trend 
and intercept are added back to the residuals from the phase I fit of model (1) for each 
deployment; these are referred to as phase I adjusted residuals.  Deployment effects are 
removed from these by treating deployment as a factor.  The GAM used for the phase II 
analysis is 
 ( ) ( ) ijijijiij YearStageftfy εδβ ++++= 210 , (2) 

where yij is the phase I adjusted residual for the jth observation from deployment i, δi is 
the unknown shift for the ith deployment,  f1 is a slow-changing trend curve modeled with 
a cubic regression spline, β0 is the intercept of the trend curve, and f2 is the cyclic 
regression spline curve for the annual periodic component (period 365.24 days).  After 
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experimentation, the dimension of the basis for f1 was set to 3, and the dimension of the 
basis for f2 was set to 5. 
 
As an example of phase II analysis, consider the phase I adjusted residuals for the 
dissolved oxygen (percent saturation) data collected at the Pine Island site of the GTM 
reserve (2001-2004) in Figure 6.  These phase I adjusted residuals were fit with model 
(2).  Figure 7 shows the resulting estimated periodic annual component superimposed on 
the phase II residuals (with the estimated annual periodic component added back in).   
 
Figure 6:  Dissolved Oxygen Phase I Adjusted Residuals 
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Figure 7:  Dissolved Oxygen Phase II Residuals with Annual Component 
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As a second example of phase II analysis, consider the phase I adjusted residuals for the 
water temperature (degrees Celsius) data collected at the Debidue Creek site of the NIW 
reserve (1998-2000) in Figure 8.  Figure 9 shows the estimated periodic annual 
component superimposed on the phase II residuals (with the estimated annual periodic 
component added back in), resulting from fitting the data with model.   
 
Figure 8:  Temperature Phase I Adjusted Residuals 
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Figure 9:  Temperature Phase II Residuals with Annual Component 
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The dissolved oxygen (measured as percent saturation) annual periodic component shown 
in Figure 7 has an unusual, non-sinusoidal shape.  Dissolved oxygen at this site is highest 
in late winter, and remains high in late spring before drastically dropping in the months of 
late summer/early autumn.  The water temperature annual periodic component shown in 
Figure 9 is also non-sinusoidal.  At this site, the higher temperatures during the summer 
last longer than the lower temperatures during the winter.   Also, the temperature drops 
during autumn more quickly than it increases during spring.  These periodic profiles 
further strengthen the premise that nonparametric harmonic regression is more 
appropriate for analyzing the NERRS water quality data than classical harmonic 
regression 
 
2.  NERRS Data Event Detection 
 

With datasets becoming incrementally large and complex, an automated method of 
detection of events is required to evaluate perturbations (natural or anthropogenic).  The 
objective here was to detect events of varying lengths in the NERRS water quality data.  
The analysis focused on the ACE Basin Reserve, one of the largest undeveloped estuaries 
on the East Coast, located just south of Charleston, South Carolina.  The residuals 
resulting from the phase I analyses were analyzed using the event detection algorithm 
with m={4,8,12,16} and τ = 0.0001.  This low value of τ  was chosen because higher 
values resulted in an implausible number of events being detected in the series.  Note that 
the residuals used for event detection are not the phase I adjusted residuals used in phase 
II analysis.  One problem with using the event detection algorithm for the NERRS data is 
the failure of the locfdr function (as mentioned in the previous section).  Although there 
were 2114 phase I analyses completed for ACE Basin, the locfdr function succeeded 
(using both Q* and V*) in only 970 of those cases.  R code used for event detection can 
be found in appendix of Autin (2007). 
 
For the first example, a graphical summary of the event detection for salinity (parts per 
thousand) data collected during the April 28 – May 8, 1995 deployment of the St. Pierre 
site of the ACE Basin reserve is presented in Figure 10.  The three left plots correspond 
to event detection using Q*, and the three right plots correspond to event detection using 
V*.  The top row shows plots of raw data, with observations detected as event points 
plotted with triangles.  The middle row shows residual plots with the detected event 
observations plotted with triangles.  The last row contains histograms of the z-values, as 

well as fitted density curves )(ˆ zf  (solid line) and )(00 zfπ (dashed line).  The colored 

histogram bars represent estimated non-null counts.  The triangle on the x-axis indicates 
the z-value threshold for fdr < 0.0001.  The event detection algorithm has identified an 
event that occurs during the late night of day 121 and early morning of day 122.  
However, the start and endpoints of the event differ for the two test statistics. 
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Figure 10:  ACE SP Salinity Events (Deployment 5) 

 
 
A graphical summary of the results of the detection algorithm for a deployment of 
dissolved oxygen (measured as percent saturation) is shown in Figure 11.  This data was 
collected during the March 3-13 deployment at the Big Bay site of the ACE Basin 
reserve.  Using both test statistics, the algorithm detected events at two separate times 
during the deployment.  The first event consists of high dissolved oxygen readings during 
the afternoon of day 64.  There is also an event of low dissolved oxygen readings during 
day 66.  When using the V* test statistic, a third event is detected during day 66, during 
which dissolved oxygen readings were higher than usual. 
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Figure 11:  ACE BB Dissolved Oxygen Events (Deployment 1) 

 
 
Figure 12 shows a graphical summary of the results of the event detection algorithm for a 
deployment of temperature (degrees Celsius) data collected during the June 20-29, 2004 
deployment at the Big Bay site of the ACE Basin reserve.  A higher-than-usual 
temperature event was detected at the beginning of the deployment using both test 
statistics.  Similarly, a lower-than-usual temperature event was detected at the beginning 
of day 3460.  Again, the test statistics differ in the length of the detected events, with Q* 
detecting longer events. 
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Figure 12:  ACE BB Temperature Events (Deployment 154) 

 
3.  Model high rainfall and wind impacts on ACE Basin NERRs sites. 
 
The next step in our exploration is to investigate seasonal patterns in the rainfall event 
data. There are more rainfall events in summer time (May-September) than in winter time 
(Figure 13).  In order to visually assess the relationship between rainfall events and 
change of water salinity at ACE Basin, the twenty eight largest rainfall events in terms of 
total precipitation were selected from the 420 rainfall events between July 1, 2001 and 
December 31, 2005. Preliminary inspections suggested that total precipitation of a 
rainfall event is a more significant variable than its duration. A rainfall period was 
defined as the time between two days before and four days after each rainfall event 
started. Meanwhile, the water quality sampling stations ACE Big Bay (ACEBB) and 
ACE Mosquito Creek (ACEMC) were selected based on data availability and their 
locations. ACEBB (station 1) is close to the South Carolina coast line and has the longest 
data record at the ACE Basin. ACEMC (station 3) is close to the ACE weather station at 
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Bennett’s Point (station 0). The water quality data for these two locations were acquired 
from the official site of NERR Centralized Data Management Office.   
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Figure 13: Number of rainfall events by month between 07/01/2001 and 12/31/2005 
 
Scatterplots of water depth and salinity were generated for each rainfall event using 
Minitab. The title of each plot contains the information of water sampling station 
(ACEBB or ACEMC), the rainfall total precipitation ranking, rainfall precipitation (mm), 
rainfall duration (min) and the starting time of the event. A scatterplot of water depth is 
shown above the plot of water salinity in each figure to monitor tidal stage during 
corresponding rainfall period. All salinity plots of ACEBB and ACEMC stations have the 
same salinity scale from 0 to 38 ppt and from 0 to 30 ppt respectively. The left vertical 
reference line in each plot stands for the starting point of each rain event as the right one 
stands for the ending point.   
 
ACE Big Bay Station 
Scatterplots of  water quality and salinity during the associated 27 largest rainfall periods 
were generated for ACE Big Bay station (Li, 2007).  Rain 1 started in the middle of an 
ebbing tide. There were two large drops in salinity after the rainfall started, in synchrony 
with the falling tide. The overall average salinity appears to have decreased after the 
rainfall, and the salinity range per tidal cycle appears to have increased (Figure 14).     
 
The information acquired from all the scatter plots of the ACEBB station is summarized 
in Table 2 shown below. In the table, all rainfall events are sorted by two major 
categories, the tide stages of rainfall onset and the types of reaction of water salinity to 
the rainfall events, and each category has four subcategories.    
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Figure 14: Scatter plot of ACEBB water depth and salinity during the rain 1 period 
 
 
Table 2: Table of the rainfall events at the ACEBB station  
 

Tide stage of rainfall onset 
Category 

High Ebb Low Flood 

No obvious 
change in salinity 
pattern 

6, 18, 24, 25, 
28 19, 23 20, 27 17 

"Lasting" drop in 
salinity (>4 days) 

2, 3, 5, 9, 10, 
11 1, 4, 12, 22 26  

Increase in tidal 
range 

2, 3, 5, 9, 10, 
11 1, 12, 22 26  

T
ype of R

eaction 

Temporary drop 
in salinity for a 
few tide cycles 

11 1, 12, 21, 22 15, 26 7, 13, 14, 16 
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ACE Mosquito Creek Station 
The available water quality data of ACE Mosquito Creek station, (located inland near the 
weather station), are dated between October 15, 2002 and December 31, 2005.  There 
were seventeen of the largest rainfalls within this time period.  The largest of these storms 
is depicted below to demonstrate the impact on salinity at this site.  Rain 2 started at mid 
flood tide. The overall average salinity appears to have decreased after the rainfall, as did 
the tidal range for salinity (Figure 15).    
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Figure 15: Scatter plot of ACEMC water depth and salinity during the rain 2 period 
 
 
The information acquired from all the scatter plots of the ACEMC station is summarized 
in Table 3 shown below. Similar to Table 2, all rainfall events are sorted by two major 
categories, the tide stages of rainfall onset and the types of reaction of water salinity to 
the rainfall events, and each category has four subcategories.    
 
In summary, about half of the rainfall events started at high tide at the ACEMC station, 
which is similar to the ACEBB station. Most of the rainfall events appear to have 
changed the salinity pattern after the rainfall. But unlike the ACEBB station, there was no 
rainfall event that caused a temporary drop in salinity for just a few cycles at the ACEMC 
station. Furthermore, it seems that rain 2 decreased the tidal range, which is very unusual.   
 
The nonlinear model was fit to water salinity rainfall event data of ACEBB and ACEMC 
Stations using SAS PROC NLIN (Li, 2007). After checking the overlaid plots of 
predicted and original values, the model fits the data acceptably well for descriptive 
purposes, especially for ACEMC, because there were no large drops in salinity at this 
station. But this model does fail to predict some extreme values at both stations. 
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Table 3: Table of the rainfall events at the ACEMC station 
 

Tide stage of rainfall onset 
Category 

High Ebb Low Flood 

No obvious 
change in 
salinity pattern 

8  17 25 

"Lasting" drop 
in salinity (4+ 
days) 

3, 5, 6, 9, 
11, 18 

4 19 2, 10 

Increase in tidal 
range 

18, 28 23 20  

T
ype of R

eaction 

Temporary drop 
in salinity for a 
few tide cycles 

    

 
 
As far as the variable change of predicted salinity ∆PS is concerned, the results of linear 
regression analysis from the two sampling stations are quite different from each other. 
For ACEBB, the model suggests that small total precipitation and large mean and mean 
absolute deviation of landward wind results lead to a large drop in salinity. For ACEMC, 
the model predicts that short rainfall duration, large total precipitation, small mean 
absolute deviation of precipitation and large mean absolute deviation of landward wind 
during rainfall period should cause a large drop in salinity. Though the variable PTOT 
appears in both models, it relates to the change of salinity in two different ways.     
 
The results of regression analysis using the dependent variable ∆β1  are also different 
between the two stations. For ACEBB, the model suggests that larger mean absolute 
deviation of precipitation results in greater immediate drop of linear trend slope. For 
ACEMC, the model predicts that short rainfall duration, small mean absolute deviation of 
precipitation and large mean absolute deviation of long-shore wind during rainfall period 
should cause a greater immediate drop of slope. Though the variable PMAD appears in 
both models, it affects the dependent variable ∆β1  in opposite directions. 
 
Finally, the third dependent variable ∆MS also has different results between the two 
stations. There is no common factor in the final models chosen. For ACEBB, no 
independent variables are significant at the 0.1 level. The significantly negative intercept 
suggests a drop in average salinity after the rainfalls. For ACEMC, the model suggests 
that small precipitation and a large mean absolute deviation of inland wind component 
tends to bring a greater drop in average salinity, which will typically be present given the 
large and negative intercept.        
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4.  Storm tracks and impacted water quality at NERR SWMP sites. 
 
Fourteen named storms have been graphically depicted in a movie format which allows 
simultaneous viewing of key meteorological data as forcing variables and selected 
responding water quality parameters.  Deployment August 26-September, 2004 was 
coincident with Hurricane Gaston.  The storm was within 200 miles of ACE Basin St. 
Pierre site from August 24-September 3, 2004.  Each frame of the movie displayed one 
day in the time course of the hurricane event (Figure 16).  At the top of the frame is the 
classification of the storm from TD tropical depression, TS tropical storm, H1 class X 
hurricane, distance from the site to the eye of the storm, and wind direction.  The 
meteorological variables included in the graphic are off-shore winds, long-shore winds 
and rainfall. The water quality variables depicted have been through the Phase I 
periodicity removal and demonstrate divergence from baseline values.  
 
Figure 16.  Hurricane Gaston in the ACE Basin site, St. Pierre Creek.  (August 28, 2004) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Discussion 
Removing periodicity 
We have investigated the use of classical harmonic regression models and nonparametric 
harmonic regression models (generalized additive models) for estuarine water quality 
data.  We explored the performance of these models using real time series from the 
National Estuarine Research Reserve System.  
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For the NERRS data, classical harmonic regression techniques work well for the analysis 
of depth data; however, they are not as satisfactory for analysis of other, less regular, 
water quality variables.  The GAMs show great potential for these applications.  The 
cubic and cyclic regression splines are competitive with one another in terms of fit.  
However, in practice, the cubic regression spline often had an “edge effect” problem with 
the NERRS data, whereas the cyclic regression splines resulted in smoothly periodic 
functions.  The GAMs are also more automatically adaptive and require less user-
intervention than the harmonic regression models.  When using harmonic regression, the 
user must determine the number of harmonics for each periodic term.  For the NERRS 
data, this decision would need to be made for each variable of each deployment in phase I 
analysis.  For the data in the CICEET NERRS project, this would result in nearly 12,000 
phase I decisions.  In phase II analysis, this decision would again need to be made for 
each variable at each site.  Using GAMs to model the data is much more automated.  
We believe that generalized additive models are a very promising method for modeling 
estuarine water quality data, and more generally, for any time series with strong and 
potentially non-sinusoidal signals of known period.  The ease of their use in R also makes 
them very appealing.  Not only are they adaptive and user-friendly, but they are also non-
prohibitive in terms of computation time; for example, phase I analyses for 150 
deployments of depth data take approximately 3.5 minutes to complete on an Intel® 
Pentium® M 1.60 GHz processor. 
 
Event Detection 
We have adapted Efron’s local false discovery rate methods for detecting events in 
estuarine water quality data.  We used a sum of squared residuals test statistic, Q*, as 
well as a more nonparametric test statistic, V*, which is the minimum absolute error for a 
sequence of residuals.  We developed a data-driven event detection algorithm that uses 
both test statistics in calculating local false discovery rates.  We used the event detection 
algorithm to detect events in the water quality data collected at the ACE Basin NERRS 
reserve. 
 
For the deployments from the ACE Basin reserve in which the locfdr function did not 
fail, results seem to be quite varied, even using a very low false discovery rate threshold 
τ=0.0001.  In some cases, the Q* and V* test statistics detected similar events that were 
believable.  There were cases in which the two test statistics detected completely different 
events.  In other cases, too many events were detected for the results to be believable.  
The reasons for these shortcomings when using the NERRS data are unclear. 
 
Future Research 
If extreme events or mid-length and long events of moderate intensity are present in a 
time series, this could influence the ability of the GAM to estimate the periodic 
components.  Thus, two passes of the GAM and event detection algorithm could be 
employed.  In the first pass, the most extreme and obvious events are removed from the 
dataset.  In the second pass, the observations that were not detected as events are modeled 
with the GAM.  This second pass should more accurately estimate the periodic 
components.  The resulting residuals can then be analyzed using the event detection 
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algorithm.  Once events are detected in a time series, causes for the events should be 
explored.  Water quality events can be compared to known meteorological events, such 
as rainfall events, droughts, and El Niño/La Niña climatic cycle effects.  Numerical, 
objective detection of events is just the first step. 
 
Utilization 
This project was a development of future modeling techniques and could not be readily 
transferred to managers at the current stage (see future application section for plan for 
technology transfer).   
 
Intellectual Property and Partnerships  
The partnership between the University of South Carolina statistical professors and 
graduate students enhanced the quality of the analysis.  Continuing this collaborative 
effort will yield ecological relevant information and modeling products useful to NERRs 
managers.  
 
Knowledge Exchange  
Presentations: 
Joint Statistical Meeting. Seattle, August 2006, "Nonparametric Harmonic Regression for 
Estuarine Water Quality Data", Melanie Autin.  She received the 2006 ASA Section on 
Statistics and the Environment (ENVR) JSM Presentation award.  
 
Manuscripts: 
Autin, Melanie and Don Edwards.  (submitted).  Nonparametric Harmonic Regression for 
Estuarine Water Quality Data.   
 
Graduate students supported by this project: 
Melanie Autin, PhD, Statistics Department, USC  May 2007 
Ross Li, MS,  Statistics Department, USC.  May 2007 

 
Additional materials: 
Hurricane CD:  contains all water quality variable “movies” from southeastern NERRs 
sites during named storms. 
 
Application 
The statistical analyses summarized in this report, and detailed with the USC statistical 
thesis and dissertations (Li, 2007, Autin 2007) could be conducted on additional NERRs 
data to remove periodicity and detect events within their reserves.  All the software 
needed, models are included in the appendix of the students’ thesis and dissertation.   
 
Managers and scientist utilizing reserve databases could use new statistical tools to 
further investigate the impact of short and long term natural perturbations and 
anthopogenic impacts.  This statistical analysis is quite advanced, however, and even 
with the work the students did to outline and streamline the procedure, requires analytical 
skills and lengthy computer time.  These obstacles could be overcome if statisticians were 
integrated into the NERRs database management.  Identifying universities who would 
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collaborate with NERRs managers to facilitate intensive modeling efforts would 
encourage more utilization and investigation of the existing NERRs databases.  One 
example of effective university/reserve collaboration is the existing relationship of the 
Statistical department at the University of South Carolina with ACE Basin, Sapelo Island, 
and North Inlet/Winyah Bay reserves. 
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