Logo
Subscriber access provided by UNIVERSITY OF NORTH TEXAS LIBRARY
Login     Register     Shibboleth      Mobile      Cart


A division of Canadian Science Publishing

a not-for-profit publisher

Alaska’s changing fire regime — implications for the vulnerability of its boreal forests

Eric S. Kasischke,a David L. Verbyla,b T. Scott Rupp,b A. David McGuire,c Karen A. Murphy,d Randi Jandt,e Jennifer L. Barnes,f Elizabeth E. Hoy,a Paul A. Duffy,b Monika Calef,g Merritt R. Turetskyh

aDepartment of Geography, 2181 LeFrak Hall, University of Maryland, College Park, MD 20742, USA.

bDepartment of Forest Sciences, School of Natural Resources and Agricultural Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775-7200, USA.

cUS Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.

dNational Wildlife Refuge System, Anchorage, AK 99503, USA.

eAlaska Fire Service, Bureau of Land Management, Fort Wainwright, AK 99703, USA.

fUS National Park Service, Fairbanks, Alaska 99709, USA.

gDepartment of Geography and Planning, SUNY Albany, Albany, NY 12222, USA.

hDepartment of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.

Corresponding author

Published on the web 28 June 2010.

Received August 26, 2009. Accepted February 16, 2010.

This article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming.


Canadian Journal of Forest Research, 2010, 40(7): 1313-1324, 10.1139/X10-098

Abstract

A synthesis was carried out to examine Alaska’s boreal forest fire regime. During the 2000s, an average of 767 000 ha·year–1 burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from human-ignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce (Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska’s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska’s boreal forests and land and fire management are discussed.


References

  • Alaska Department of Environmental Conservation. 2009. ALASKA — Natural Systems Adaptation Option. Natural Systems Technical Working Group Report, 27 May 2009. Available from www.climatechange.alaska.gov/aag/docs/AAG7_NSTWG_OptnDescription_27May09.pdf.
  • Allen JL, Sorbel B. 2008. Assessing the differenced Normalized Burn Ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildland Fire 17(4): 463-475 CrossRef, ISI.
  • Amiro BD, Cantin A, Flannigan MD, de Groot WJ. 2009. Future emissions from Canadian boreal forest fires. Can. J. For. Res. 39(2): 383-395 Link, ISI. Abstract
  • Balshi MS, McGuire AD, Zhuang Q, Mellilo J, Kicklighter DW, Kasischke E, Wirth C, Flannigan M, Harden J, Clein JS, Burnside TJ, McAllister J, Kurz WA, Apps M, Shvidenko A. 2007. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J. Geophys. Res. 112: G02029.1 CrossRef.
  • Balshi MS, McGuire AD, Duffy P, Flannigan M, Walsh J, Melillo J. 2009. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob. Change Biol. 15(3): 578-600 a CrossRef, ISI.
  • Balshi MS, McGuire AD, Duffy P, Flannigan M, Kicklighter DW, Melillo J. 2009. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Glob. Change Biol. 15(6): 1491-1510 b CrossRef, ISI.
  • Bonsal BR, Lawford RG. 1999. Teleconnections between El Niño and La Niña events and summer extended dry spells on the Canadian Prairies. Int. J. Climatol. 19(13): 1445-1458 CrossRef, ISI.
  • Calef MP, McGuire AD, Chapin FS III. 2008. Human influences on wildfire in Alaska from 1988 through 2005: an analysis of the spatial patterns of human impacts. Earth Interact. 12(1): 1-17 CrossRef.
  • Chapin FS III, Rupp TS, Starfield AM, DeWilde LO, Zavaleta ES, Fresco N, Henkelman J, McGuire AD. 2003. Planning for resilience: modeling change in human–fire interactions in the Alaskan boreal forest. Front. Ecol. Environ. 1(5): 255-261 CrossRef, ISI.
  • Chapin FS III, Trainor SF, Huntington O, Lovecraft AL, Zavaleta E, Natcher DC, McGuire AD, Nelson JL, Ray L, Calef M, Fresco N, Huntington H, Rupp TS, DeWilde L, Naylor RL. 2008. Increasing wildfire in Alaska’s boreal forest: pathways to potential solutions of a wicked problem. Bioscience 58(6): 531-540 CrossRef, ISI.
  • Cumming SG. 2001. Forest type and wildfire in the Alberta boreal mixedwood: what do fires burn? Ecol. Appl. 11(1): 97-110 CrossRef, ISI.
  • de Groot WJ, Pritchard JM, Lynham TJ. 2009. Forest floor fuel consumption and carbon emissions in Canadian boreal forests. Can. J. For. Res. 39(2): 367-382 Link, ISI. Abstract
  • DeWilde L, Chapin FS III. 2006. Human impacts on the fire regime of interior Alaska: Interactions among fuels, ignition sources, and fire suppression. Ecosystems (N.Y., Print) 9(8): 1342-1353 CrossRef, ISI.
  • Dissing DD, Verbyla DL. 2003. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Can. J. For. Res. 33(5): 770-782 Link, ISI. Abstract
  • Duffy PA, Walsh JE, Graham JM, Mann DH, Rupp TS. 2005. Impacts of large-scale atmospheric–ocean variability on Alaskan fire season severity. Ecol. Appl. 15(4): 1317-1330 CrossRef, ISI.
  • Epting J, Verbyla D, Sorbel B. 2005. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 96(3–4): 328-339 CrossRef, ISI.
  • Euskirchen ES, McGuire AD, Rupp ST, Chapin FS III, Walsh JE. 2009. Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the Western Arctic, 2003–2100. J. Geophys. Res. 114: G04022 CrossRef.
  • Euskirchen ES, McGuire AD, Chapman FS III, Rupp TS. 2010. The changing effects of Alaska boreal forests on the climate system. Can. J. For. Res. 40(7) This issue Link. Abstract
  • Flannigan MD, Harrington JD. 1988. A study of the relation of meteorologic variables to monthly provincial area burned by wildfire in Canada. J. Appl. Meteorol. 27(4): 441-452 CrossRef.
  • Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks BJ. 2005. Future area burned in Canada. Clim. Change 72(1–2): 1-16 CrossRef, ISI.
  • Fraser RH, Hall RJ, Landry R, Lynham T, Raymond D, Lee B, Li Z. 2004. Validation and calibration of Canada-wide coarse-resolution satellite burned-area maps. Photogramm. Eng. Remote Sens. 70: 451-459 CrossRef, ISI.
  • French NHF, Kasischke ES, Hall RJ, Murphy KA, Verbyla DL, Hoy EE, Allen JL. 2008. Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results. Int. J. Wildland Fire 17(4): 443-462 CrossRef, ISI.
  • Gillett NP, Weaver AJ, Zwiers FW, Flannigan MD. 2004. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31(18): L18211 CrossRef.
  • Girardin M-P, Tardif J, Flannigan MD, Wotton BM, Bergeron Y. 2004. Trends and periodicities in the Canadian Drought Code and their relationships with atmospheric circulation for the southern Canadian boreal forest. Can. J. For. Res. 34(1): 103-119 Link, ISI. Abstract
  • Harden JW, Manies KL, Turetsky MR, Neff JC. 2006. Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Glob. Change Biol. 12(12): 2391-2403 CrossRef, ISI.
  • Hartmann, B., and Wendler, G. 2003. Manifestation of the Pacific Decadal Oscillation shift of 1976 in Alaskan climatology. In Proceedings of the 7th AMS Conference on Polar Meteorology and Climatology, Hyannis, Massachusetts. American Meteorological Society, Boston, Mass.
  • Hély C, Flannigan M, Bergeron Y, McRae D. 2001. Role of vegetation and weather on fire behavior in the Canadian mixedwood boreal forest using two fire behavior prediction systems. Can. J. For. Res. 31(3): 430-441 CrossRef, ISI.
  • Hess JC, Scott CA, Hufford GL, Fleming MD. 2001. El Niño and its impact on fire weather conditions in Alaska. Int. J. Wildland Fire 10(1): 1-13 CrossRef, ISI.
  • Hessl AE, McKenzie D, Schellhaas R. 2004. Drought and Pacific Decadal Oscillation linked to fire occurrence in the inland Pacific Northwest. Ecol. Appl. 14(2): 425-442 CrossRef, ISI.
  • Hoy EE, French NHF, Turetsky MR, Trigg SN, Kasischke ES. 2008. Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaska black spruce forests. Int. J. Wildland Fire 17(4): 500-514 CrossRef, ISI.
  • Hurrell, J.W., Kushnir, Y.Y., Ottersen, G., and Visbeck, M. 2003. The North Atlantic Oscillation: climatic significance and environmental impact. Geophysical Monograph Series No. 134. American Geophysical Union, Washington, D.C.
  • Johnson EA, Miyanishi K, Weir JMH. 1998. Wildfires in the western Canadian boreal forest: landscape patterns and ecosystem management. J. Veg. Sci. 9(4): 603-610 CrossRef, ISI.
  • Johnstone JF. 2006. Response of boreal plant communities to variations in previous fire-free interval. Int. J. Wildland Fire 15(4): 497-508 CrossRef, ISI.
  • Johnstone JF, Chapin FS III, Hollingsworth TN, Mack MC, Romanovsky V, Turetsky M. 2010. Fire, climate change, and forest resilience in interior Alaska. Can. J. For. Res. 40(7) This issue Link. Abstract
  • Jones BM, Kolden CA, Jandt R, Abatzoglou JT, Urban F, Arp CD. 2009. Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska. Arct. Antarct. Alp. Res. 41(3): 309-316 CrossRef, ISI.
  • Jorgenson MT, Romanovsky V, Harden J, Shur Y, O’Donnell J, Schuur EAG, Kanevskiy M, Marchenko S. 2010. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40(7) This issue Link. Abstract
  • Kane ES, Kasischke ES, Valentine DW, Turetsky MR, McGuire AD. 2007. Topographic influences on wildfire consumption of soil organic carbon in interior Alaska: implications for black carbon accumulation. J. Geophys. Res. 112: G03017 CrossRef.
  • Kasischke ES, Johnstone JF. 2005. Variation in postfire organic layer thickness in a black spruce forest complex in interior Alaska and its effects on soil temperature and moisture. Can. J. For. Res. 35(9): 2164-2177 Link, ISI. Abstract
  • Kasischke ES, Turetsky MR. 2006. Recent changes in the fire regime across the North American boreal region — spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33(9): L09703 CrossRef.
  • Kasischke ES, Christensen NL Jr, Stocks BJ. 1995. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5(2): 437-451 CrossRef, ISI.
  • Kasischke ES, Williams D, Barry D. 2002. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 11(2): 131-144 CrossRef, ISI.
  • Kasischke, E.S., Rupp, T.S., and Verbyla, D.L. 2006. Fire trends in the Alaskan boreal forest. In Alaska’s changing boreal forest. Edited by F.S. Chapin III, M.W. Oswood, K. Van Cleve, L.A. Viereck, and D.L. Verbyla. Oxford University Press, New York. pp. 285–301.
  • Kasischke ES, Turetsky MR, Ottmar RD, French NHF, Hoy EE, Kane ES. 2008. Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests. Int. J. Wildland Fire 17(4): 515-526 CrossRef, ISI.
  • Key, C.H., and Benson, N.C. 2006. Landscape assessment: ground measure of severity, the Composite Burn Index; and remote sensing of severity, the Normalized Burn Ratio. In FIREMON: fire effects monitoring and inventory system. Edited by D.C. Lutes, R.E. Keane, J.F. Caratti, C.H. Key, N.C. Benson, S. Sutherland, and L.J. Gangi. U.S. For. Serv. Gen. Tech. Rep. RMRS-GTR-164-CD. USDA Forest Service, Rocky Mountain Research Station, Ogden, Utah. pp. LA1–LA51.
  • Kofinas GP, Chapin FS III, BurnSilver S, Schmidt JI, Fresco NL, Kielland K, Martin S, Springsteen A, Rupp TS. 2010. Resilience of Athabascan subsistence systems to interior Alaska’s changing climate. Can. J. For. Res. 40(7) This issue Link. Abstract
  • Lutz, H.J. 1959. In Aboriginal man and white man as historical causes of fires in the boreal forest, with particular reference to Alaska. Yale School of Forestry Publication No. 65. Yale University, New Haven, Conn.
  • Lynch JA, Clark JS, Bigelow NH, Edwards ME, Finney BP. 2003. Geographic and temporal variations in fire history in boreal ecosystems of Alaska. J. Geophys. Res. 108(8152): FFR8.1-FFR8.17 CrossRef.
  • Lyons EA, Jin Y, Randerson JT. 2008. Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations. J. Geophys. Res. 113: G02012 CrossRef.
  • Macias Fauria M, Johnson EA. 2006. Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. J. Geophys. Res. 111: G04008 CrossRef.
  • Maier JAK, Ver Hoef J, McGuire AD, Bowyer RT, Saperstein L, Maier HA. 2005. Distribution and density of moose in relation to landscape characteristics: effects of scale. Can. J. For. Res. 35(9): 2233-2243 Link, ISI. Abstract
  • Martell DL, Sun H. 2008. The impact of fire suppression, vegetation, and weather on the area burned by lightning-caused forest fires in Ontario. Can. J. For. Res. 38(6): 1547-1563 Link, ISI. Abstract
  • McGuiney, E., Shulski, M., and Wendler, G. 2005. Alaska lightning climatology and application to wildfire science. In Proceedings of the 85th American Meteorological Society Annual Meeting, San Diego, Calif. Available from ams.confex.com/ams/pdfpapers/85059.pdf.
  • Murphy KA, Reynolds JH, Koltun JM. 2008. Evaluating the ability of the differenced Normalized Burn Ration (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. Int. J. Wildland Fire 17(4): 490-499 CrossRef, ISI.
  • Papineau JM. 2001. Wintertime temperature anomalies in Alaska correlated with ENSO and PDO. Int. J. Climatol. 21(13): 1577-1592 CrossRef, ISI.
  • Randerson JT, Liu H, Flanner MG, Chambers SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS III, Harden JW, Goulden ML, Lyons EA, Neff JC, Schuur EAG, Zender CS. 2006. The impact of boreal forest fire on climate warming. Science 314(5802): 1130-1132 CrossRef, Medline, ISI.
  • Renkin RA, Despain DG. 1992. Fuel moisture, forest type, and lightning-caused fire in Yellowstone National Park. Can. J. For. Res. 22(1): 37-45 Link, ISI. Abstract
  • Rupp TS, Olson M, Adams LG, Dale BW, Joly K, Henkelman J, Collins WB, Starfield AM. 2006. Simulating the influences of various fire regimes on caribou winter habitat. Ecol. Appl. 16(5): 1730-1743 CrossRef, Medline, ISI.
  • Shetler G, Turetsky MR, Kane E, Kasischke E. 2008. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can. J. For. Res. 38: 2328-2336 Link, ISI. Abstract
  • Skinner WR, Stocks BJ, Martell DL, Bonsal B, Shabbar A. 2002. A 500 hPa synoptic wildland fire climatology for large Canadian forest fires, 1959–1996. Theor. Appl. Climatol. 71(3–4): 157-169 CrossRef, ISI.
  • Swetnam TW, Betancourt JL. 1990. Fire – Southern Oscillation relations in the southwestern United States. Science 249(4972): 1017-1020 CrossRef, Medline, ISI.
  • Turetsky MR, Mack MC, Hollingsworth T, Harden JW. 2010. The role of mosses in ecosystem succession and function in Alaska’s boreal forest. Can. J. For. Res. 40(7) This issue CrossRef.
  • Verbyla D, Lord R. 2008. Estimating post-fire organic soil depth in the Alaskan boreal forest using the Normalized Burn Ratio. Int. J. Remote Sens. 29(13): 3845-3853 CrossRef, ISI.
  • Verbyla D, Kasischke ES, Hoy EE. 2008. Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+ data. Int. J. Wildland Fire 17(4): 527-534 CrossRef, ISI.
  • Viereck LA. 1973. Wildfire in the taiga of Alaska. Quat. Res. 3(3): 465-495 CrossRef.
  • Wein, R.W., and MacLean, D.A. (Editors). 1983. The role of fire in northern circumpolar ecosystems. John Wiley & Sons, New York.
  • Westerling AL, Gershunov A, Cayan DR, Barnett TP. 2002. Long lead statistical forecasts of area burned in western US wildfires by ecosystem province. Int. J. Wildland Fire 11(4): 257-266 CrossRef, ISI.
  • Yi S, McGuire AD, Harden J, Kasischke E, Manies K, Hinzman L, Liljedahl A, Randerson J, Liu H, Romanovsky V, Marchenko S, Kim Y. 2009. Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. J. Geophys. Res. 114: G02015.1-G02015.20 CrossRef.
  • Yoshikawa K, Bolton WR, Romanovsky VE, Fukuda M, Hinzman LD. 2002. Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. J. Geophys. Res. 107(8148) CrossRef.
  • Zackrisson O. 1977. Influence of forest fires on the north Swedish Boreal Forest. Oikos 29(1): 22-32 CrossRef, ISI.
  • Zhuang Q, McGuire AD, O’Neill KP, Harden JW, Romanovsky VE, Yarie J. 2002. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. J. Geophys. Res. 107(8147) CrossRef.

Cited by

View all 115 citing articles

no access
Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska

Shengli Huang, Devendra Dahal, Heping Liu, Suming Jin, Claudia Young, Shuang Li, Shuguang Liu

» Abstract

Canadian Journal of Forest Research, 2015, 45(3): 276-285, 10.1139/cjfr-2014-0309

no access
A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones

Yan Boulanger, Sylvie Gauthier, Philip J. Burton

» Abstract

Canadian Journal of Forest Research, 2014, 44(4): 365-376, 10.1139/cjfr-2013-0372

no access
The role of mosses in ecosystem succession and function in Alaska’s boreal forest

This article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming.

Merritt R. Turetsky, Michelle C. Mack, Teresa N. Hollingsworth, Jennifer W. Harden

» Abstract

Canadian Journal of Forest Research, 2010, 40(7): 1237-1264, 10.1139/X10-072

no access
Resilience of Alaska’s boreal forest to climatic change

This article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming.

F.S. Chapin, A.D. McGuire, R.W. Ruess, T.N. Hollingsworth, M.C. Mack, J.F. Johnstone, E.S. Kasischke, E.S. Euskirchen, J.B. Jones, M.T. Jorgenson, K. Kielland, G.P. Kofinas, M.R. Turetsky, J. Yarie, A.H. Lloyd, D.L. Taylor

» Abstract

Canadian Journal of Forest Research, 2010, 40(7): 1360-1370, 10.1139/X10-074

no access
Resilience of Athabascan subsistence systems to interior Alaska’s changing climate

This article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming.

Gary P. Kofinas, F. Stuart Chapin, Shauna BurnSilver, Jennifer I. Schmidt, Nancy L. Fresco, Knut Kielland, Stephanie Martin, Anna Springsteen, T. Scott Rupp

» Abstract

Canadian Journal of Forest Research, 2010, 40(7): 1347-1359, 10.1139/X10-108

no access
Resilience and vulnerability of permafrost to climate change

This article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming.

M. Torre Jorgenson, Vladimir Romanovsky, Jennifer Harden, Yuri Shur, Jonathan O’Donnell, Edward A. G. Schuur, Mikhail Kanevskiy, Sergei Marchenko

» Abstract

Canadian Journal of Forest Research, 2010, 40(7): 1219-1236, 10.1139/X10-060

no access
Structure and resilience of fungal communities in Alaskan boreal forest soils

This article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming.

D. Lee Taylor, Ian C. Herriott, Kelsie E. Stone, Jack W. McFarland, Michael G. Booth, Mary Beth Leigh

» Abstract

Canadian Journal of Forest Research, 2010, 40(7): 1288-1301, 10.1139/X10-081

no access
The changing effects of Alaska’s boreal forests on the climate system

This article is one of a selection of papers from The Dynamics of Change in Alaska’s Boreal Forests: Resilience and Vulnerability in Response to Climate Warming.

E.S. Euskirchen, A.D. McGuire, F.S. Chapin, T.S. Rupp

» Abstract

Canadian Journal of Forest Research, 2010, 40(7): 1336-1346, 10.1139/X09-209

Connect With UsSign up for E-AlertsAlertsRead our BlogCSP BlogFacebookTwitterYouTubeFlickrLinked InRSS