Highlights Archive

Search Highlights:

January 10, 2017

Metabolic Adaptation Of C. thermocellum To Growth Inhibitors Released During Deconstruction Of Switchgrass
Integrated omics data of microbial growth on complex lignocellulosic biomass over time provided a detailed view of the molecular machinery (metabolites and enzymes) that reveals temporal adaptation to a complex, lignocellulose substrate — information that is critical for engineering C. thermocellum's industrial efficacy.


January 03, 2017

Engineering N-terminal End of CelA Enhances the Cellulolytic Activity of Caldicellulosiruptor bescii
To test whether alteration of the N-terminal terminus of CelA GH9 and CelA GH48 domains might improve secretion and/or catalytic efficiency of CelA, repeating aspartate tags were introduced into the N-terminal ends of these 8 domains. Introduction of repeating aspartate tags resulted in an increase in the general activity of the exoproteome and a dramatic increase in growth of C. bescii on crystalline cellulose. Most efficient cellulase systems contain highly active exocellulase enzymes capable of decrystallizing cellulose, so the observed increase in activity on Avicel bears directly upon the ability of CelA to degrade realistic biomass feedstocks destined for biofuels production.

BioEnergy Science Center one of three DOE Bioenergy Research Centers established by the U.S. Department of Energy.