
KILLER WHALE (Orcinus orca): Hawaii Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Killer whales have been observed in all oceans and seas of the world (Leatherwood and Dahlheim 1978). Although reported from tropical and offshore waters (Heyning and Dahlheim 1988), killer whales prefer the colder waters of both hemispheres, with greatest abundances found within 800 km of major continents (Mitchell 1975). They are considered rare in Hawaiian waters. No killer whales were seen during 1993-98 aerial surveys within about 25 nmi of the main Hawaiian Islands, but one sighting was reported during subsequent surveys (Mobley et al. 2000, 2001). Baird et al. (2006) reported 21 sighting records in Hawaiian waters between 1994 and 2004. Summer/fall shipboard surveys of U.S. Economic Zone (EEZ) Hawaiian waters resulted in two sightings in 2002 and one in 2010 (Figure 1; Barlow 2006; Bradford et al. 2013). Three strandings have been reported since 1950 (Richards 1952, NMFS PIR Mammal Reponses Network Marine database), including one since 2007. Eighteen additional sightings were reported around the

Figure 1. Locations of killer whale sightings from longline observer records (crosses; NMFS/PIR, unpublished data) and sighting locations during the 2002 (open diamonds) and 2010 (black diamonds) shipboard surveys of U.S. EEZ waters surrounding the Hawaiian Islands (Barlow 2006, Bradford et al. 2013; see Appendix 2 for details on timing and location of survey effort). Outer line represents approximate boundary of survey area and U.S. EEZ. Gray shading indicates area of Papahanaumokuakea Marine National Monument. Dotted line represents the 1,000m isobath.

main Hawaiian Islands, French Frigate Shoals, and offshore of the Hawaiian islands (Baird *et al.* 2006). Except in the northeastern Pacific where "resident", "transient", and "offshore" stocks have been described for coastal waters of Alaska, British Columbia, and Washington to California (Bigg 1982; Leatherwood et al. 1990, Bigg et al. 1990, Ford et al. 1994), little is known about stock structure of killer whales in the North Pacific. A global-scale analysis of killer whale phylogeographic structure clustered one animal sampled near Hawaii with eastern and western North Pacific transients. The other Hawaii sample within that analysis did not cluster with any known ecotype, but had divergence time between that of transient and offshore forms (Morin et al 2010).

For the Marine Mammal Protection Act (MMPA) stock assessment reports, eight killer whale stocks are recognized within the Pacific U.S. EEZ: 1) the Eastern North Pacific Alaska Resident stock - occurring from southeastern Alaska to the Aleutian Islands and Bering Sea, 2) the Eastern North Pacific Northern Resident stock occurring from British Columbia through part of southeastern Alaska, 3) the Eastern North Pacific Southern Resident stock - occurring mainly within the inland waters of Washington State and southern British Columbia, but also in coastal waters from British Columbia through California, 4) the Eastern North Pacific Gulf of Alaska. Aleutian Islands, and Bering Sea Transient stock - occurring mainly from Prince William Sound through the Aleutian Islands and Bering Sea, 5) the AT1 Transient stock - occurring in Alaska from Prince William Sound through the Kenai Fjords, 6) the West Coast Transient stock - occurring from California through southeastern Alaska, 7) the Eastern North Pacific Offshore stock - occurring from California through Alaska, and 8) the Hawaiian stock (this report). The Hawaii stock includes animals found both within the Hawaiian Islands EEZ and in adjacent high seas waters. Because data on abundance, distribution, and human-caused impacts are largely lacking for high seas waters, the status of this stock is evaluated based on data from U.S. EEZ waters of the Hawaiian Islands (NMFS 2005). Stock assessment reports for the Southern Resident, Eastern North Pacific Offshore, and Hawaiian stocks can be found in the Pacific Region stock assessment reports; all other killer whale stock assessments are included in the Alaska Region stock assessments.

POPULATION SIZE

A 2002 shipboard line-transect survey of the entire Hawaiian Islands EEZ resulted in an abundance estimate of 349 (CV=0.98) killer whales (Barlow 2006). The recent 2010 shipboard line-transect survey of the

Hawaiian Islands EEZ resulted in an abundance estimate of 101 (CV = 1.0) killer whales (Bradford et al 2013). This is currently the best available abundance estimate for this stock.

Minimum Population Estimate

The minimum population size is calculated as the lower 20th percentile of the log-normal distribution (Barlow et al 1995) of the 2010 abundance estimate or 50 killer whales within the Hawaiian Islands EEZ.

Current Population Trend

No data are available on current population trend. The broad and overlapping confidence intervals around the 2002 and 2010 estimates preclude assessment of trend with the available data.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No data are available on current and maximum net productivity rate in Hawaiian waters.

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size within the U.S. EEZ of the Hawaiian Islands (50) <u>times</u> one half the default maximum net growth rate for cetaceans (½ of 4%) <u>times</u> a recovery factor of 0.50 (for a stock of unknown status with no known fishery mortality or serious injury within the Hawaiian Islands EEZ; Wade and Angliss 1997), resulting in a PBR of 1.0 killer whales per year.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

New Serious Injury Guidelines

NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998, Andersen et al. 2008, NOAA 2012). NMFS defines serious injury as an "injury that is more likely than not to result in mortality". Injury determinations for stock assessments revised in 2013 or later incorporate the new serious injury guidelines, based on the most recent 5-year period for which data are available.

Fishery Information

Information on fishery-related mortality and serious injury of cetaceans in Hawaiian waters is limited, but the gear types used in Hawaiian fisheries are responsible for marine mammal mortality and serious injury in other fisheries throughout U.S. waters. No interactions between nearshore fisheries and killer whales have been reported in Hawaiian waters. No estimates of human-caused mortality or serious injury are currently available for nearshore hook and line or gillnet fisheries because these fisheries are not observed or monitored for protected species bycatch. Killer whale interactions with Hawaii fisheries appear to be rare. In 1990, a solitary killer whale was reported to have removed the catch from a longline in Hawaii (Dollar 1991). There are currently two distinct longline fisheries based in Hawaii: a deep-set longline (DSLL) fishery that targets primarily tunas, and a shallow-set longline fishery (SSLL) that targets swordfish. Both fisheries operate within U.S. waters and on the high seas. Between 2007 and 2011, no killer whales were observed hooked or entangled in the SSLL fishery (100% observer coverage) or the DSLL fishery (20-22% observer coverage) (McCracken 2013, Bradford & Forney 2013).

STATUS OF STOCK

The Hawaii stock of killer whales is not considered strategic under the 1994 amendments to the MMPA. The status of killer whales in Hawaiian waters relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this stock. Killer whales are not listed as "threatened" or "endangered" under the Endangered Species Act (1973), nor designated as "depleted" under the MMPA. Given the absence of recent recorded fishery-related mortality or serious injuries the total fishery mortality and serious injury can be considered to be insignificant and approaching zero.

REFERENCES

Anderson, M.S., K.A. Forney, T.V.N. Cole, T. Eagle, R.P. Angliss, K. Long, L. Barre, L. VanAtta, D. Borggaard, T. Rowles, B. Norberg, J. Whaley, L. Engleby. Differentiating serious and non-serious injury of marine mammals: Report of the Serious Injury Technical Workshop 10-13 September 2007, Seattle, WA. NOAA Tech Memo NMFS-OPR-39, 94 p.

- Angliss, R.P. and D.P. DeMaster. 1997. Differentiating serious and non-serious injury of marine mammals taken incidental to commercial fishing operations: Report of the Serious Injury Workshop 1-2 April. 1997, Silver Spring, MD. NOAA Tech Memo NMFS-OPR-13, 48 p.
- Baird, R.W., D.J. McSweeney, C. Bane, J. Barlow, D.R. Salden, L.K. Antoine, R.G. DeLuc, and D.L. Webster. 2006. Killer whales in Hawaiian waters: Information on population identity and feeding habits. Pacific Science 60(4): 523-530.
- Barlow, J. 2006. Cetacean abundance in Hawaiian waters estimated from a summer/fall survey in 2002. Marine Mammal Science 22(2): 446-464.
- Barlow, J., S.L. Swartz, T.C. Eagle, and P.R. Wade. 1995. U.S. Marine Mammal Stock Assessments: Guidelines for Preparation, Background, and a Summary of the 1995 Assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6, 73 p.
- Bigg, M. A. 1982. An assessment of killer whale (*Orcinus orca*) stocks off Vancouver Island, British Columbia. Rep. Int. Whal. Commn. 32:655-666.
- Bigg, M. A., P. F. Olesiuk, G. M. Ellis, J. K. B. Ford, and K. C. Balcomb, III. 1990. Social organization and genealogy of resident killer whales (*Orcinus orca*) in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Commn. (Spec. Iss. 12):383-405.
- Bradford, A.L. and K.A. Forney. 2013. Injury determinations for cetaceans observed interacting with Hawaii and American Samoa longline fisheries during 2007-2011. PIFSC Working Paper WP-13-002.
- Bradford. A.L., K.A. Forney, E.M. Oleson, and J. Barlow. 2013. Line-transect abundance estimates of cetaceans in the Hawaiian EEZ. PIFSC Working Paper WP-13-004.
- Dollar, R. A. 1991. Summary of swordfish longline observations in Hawaii, July 1990-March 1991. Southwest Fish. Cent. Admin. Rep. H-91-09, 13 pp.
- Ford, J. K. B., G. M. Ellis, and K.C. Balcomb. 1994. Killer whales. The natural history and genealogy of *Orcinus orca* in British Columbia and Washington State. UBC Press, Vancouver, Canada.
- Heyning, J. E. and M. E. Dahlheim. 1988. Orcinus orca. Mamm. Spec.304:1-9.
- Kobayashi, D. R. and K. E. Kawamoto. 1995. Evaluation of shark, dolphin, and monk seal interactions with Northwestern Hawaiian Island bottomfishing activity: a comparison of two time periods and an estimate of economic impacts. Fisheries Research 23: 11-22.
- Leatherwood, J. S., and M. E. Dahlheim. 1978. Worldwide distribution of pilot whales and killer whales. Naval Ocean Systems Center, Tech. Rep. 443:1-39.
- Leatherwood, S., C. O. Matkin, J. D. Hall, and G. M. Ellis. 1990. Killer whales, *Orcinus orca*, photo-identified in Prince William Sound, Alaska, 1976 through 1987. Can Field-Nat. 104:362-371.
- McCracken, M. 2013. Preliminary assessment of incidental interactions with marine mammals in the Hawaii longline deep and shallow set fisheries from 2007 to 2011. PIFSC Working Paper WP-13.
- Mitchell, E. D. 1975. Report on the meeting on small cetaceans, Montreal, April 1-11, 1974. J. Fish. Res. Board Canada, 32:914-916.
- Mobley, J. R., Jr, S. S. Spitz, K. A. Forney, R. A. Grotefendt, and P. H. Forestall. 2000. Distribution and abundance of odontocete species in Hawaiian waters: preliminary results of 1993-98 aerial surveys. Admin. Rep. LJ-00-14C. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 26 pp.
- Mobley, J. R., L. Mazzuca, A. S. Craig, M. W. Newcomer, and S. S. Spitz. 2001. Killer whales (*Orcinus orca*) sighted West of Ni'ihau, Hawai'i. Pacific Science 55:301–303.
- Morin, P.A., F.I. Archer, A.D. Foote, et al. 2010. Complete mitochondrial genome phylogeographic analysis of killer whales (*Orcinus orca*) indicates multiple species. Gen. Res. 20: 908-916.
- Nitta, E. and J. R. Henderson. 1993. A review of interactions between Hawaii's fisheries and protected species. Mar. Fish. Rev. 55(2):83-92.
- NMFS. 2005. Revisions to Guidelines for Assessing Marine Mammal Stocks. 24 pp. Available at: http://www.nmfs.noaa.gov/pr/pdfs/sars/gamms2005.pdf
- NMFS. 2012. NOAA Fisheries Policy Directive 02-038-01 Process for Injury Determinations (01/27/12). Available at: http://www.nmfs.noaa.gov/pr/pdfs/serious_injury_policy.pdf
- Perrin, W.F., G. P. Donovan and J. Barlow. 1994. Gillnets and Cetaceans. Rep. Int. Whal. Commn., Special Issue 15, 629 pp.
- Richards, L. P. 1952. Cuvier's beaked whale from Hawaii. J. Mamm. 33:255.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp.

Wade, P. R. and T. Gerrodette. 1993. Estimates of cetacean abundance and distribution in the eastern tropical Pacific. Rep. Int. Whal. Commn. 43:477-493.