HARBOR PORPOISE (*Phocoena phocoena*): Northern California/Southern Oregon Stock # STOCK DEFINITION AND GEOGRAPHIC RANGE In the Pacific, harbor porpoise are found in coastal and inland waters from Point Conception, California to Alaska and across to Kamchatka and Japan (Gaskin 1984). Harbor porpoise appear to have more restricted movements along the western coast of the continental U.S. than along the eastern coast. Regional differences in pollutant residues in harbor porpoise indicate that they do not move extensively between California. Oregon. and Washington (Calambokidis and Barlow 1991). That study also showed some regional differences within California (although the sample size was small). This pattern stands as a sharp contrast to the eastern coast of the U.S. and Canada where harbor porpoise are believed to migrate seasonally from as far south as the Carolinas to the Gulf of Maine and Bay of Fundy (Polacheck et al. 1995). A phylogeographic analysis of genetic data from northeast Pacific harbor porpoise did not show complete concordance between sequence types and geographic location (Rosel 1992). However, an analysis of molecular variance (AMOVA) of the same with additional samples found significant genetic differences for four of the six pair-wise comparisons between the four **Figure 1.** Stock boundaries and distributional range of harbor porpoise along the California/southern Oregon coasts. Dashed line represents harbor porpoise habitat (0-200 m) along the U.S. west coast. areas investigated: California, Washington, British Columbia, and Alaska (Rosel et al. 1995). These results demonstrate that harbor porpoise along the west coast of North America are not panmictic or migratory, and movement is sufficiently restricted that genetic differences have evolved. Subsequent genetic analyses of samples ranging from Monterey Bay, California to Vancouver Island, British Columbia indicate that there is small-scale subdivision within the U.S. portion of this range Chivers *et al.*, 2002, 2007). In their assessment of harbor porpoise, Barlow and Hanan (1995) recommended that the animals inhabiting central California (defined to be from Point Conception to the Russian River) be treated as a separate stock. Their justifications for this were: 1) fishery mortality of harbor porpoise was limited to central California, 2) movement of individual animals appears to be restricted within California, and consequently 3) fishery mortality could cause the local depletion of harbor porpoise if central California is not managed separately. Although geographic structure exists along an almost continuous distribution of harbor porpoise from California to Alaska, stock boundaries are difficult to draw because any rigid line is (to a greater or lesser extent) arbitrary from a biological perspective. Nonetheless, failure to recognize geographic structure by defining management stocks can lead to depletion of local populations. Based on more recent genetic findings (Chivers *et al.*, 2002, 2007), California coast stocks were re-evaluated and significant genetic differences were found among four identified sampling sites. Revised stock boundaries were identified based on these genetic data and density discontinuities identified from aerial surveys (Figure 1). For the 2002 Marine Mammal Protection Act (MMPA) Stock Assessment Reports, other Pacific coast harbor porpoise stocks include: 1) a Morro Bay stock, 2) a Monterey Bay stock, 3) a San Francisco-Russian River stock, 4) a northern Oregon/Washington coast stock, 5) an Inland Washington stock, 6) a Southeast Alaska stock, 7) a Gulf of Alaska stock, and 8) a Bering Sea stock. The stock assessment reports for harbor porpoise stocks within waters of California, Oregon, and Washington appear in this volume. The three Alaska harbor porpoise stocks are reported separately in the Stock Assessment Reports for the Alaska Region. #### POPULATION SIZE Previous estimates of abundance for California harbor porpoise were based on aerial surveys conducted between the coast and the 50-fm isobath during 1988-95 (Barlow and Forney 1994, Forney 1999). These estimates did not include an unknown number of animals found in deeper waters. Barlow (1988) found that the vast majority of harbor porpoise in California were within the 0-50-fm depth range; however, Green et al. (1992) found that 24% of harbor porpoise seen during aerial surveys of Oregon and Washington were between the 100m and 200m isobaths (55 to 109 fathoms). A systematic ship survey of depth strata out to 90 m in northern California showed that porpoise abundance declined significantly in waters deeper than 60 m (Carretta et al. 2001b). Since 1999, aerial surveys extended farther offshore (to the 200m depth contour or 15 nmi distance, whichever is farther) to provide a more complete abundance estimate. The most recent estimate of abundance for the northern California/southern Oregon stock, based on 2007-2011 aerial surveys is 35,769 (CV=0.52) harbor porpoises (Forney et al. 2013). This estimate includes a correction factor of 3.42 (1/g(0); g(0)=0.292, CV=0.366) (Laake *et al.* 1997), to adjust for groups missed by aerial observers. ## **Minimum Population Estimate** The minimum population estimate for harbor porpoise in northern California/southern Oregon is taken as the lower 20th percentile of the log-normal distribution of the abundance estimate obtained from 2007-2011 aerial surveys, or 23,749 animals. #### **Current Population Trend** The latest abundance estimate is similar to the previous 2002-2007 estimate of 39,581 harbor porpoises (see previous stock assessment reports), and no recent trend is apparent. Further analyses will be required to estimate long-term population trends from the available abundance estimates, particularly because the abundance estimates are derived using common parameters and some shared survey data. ### CURRENT AND MAXIMUM NET PRODUCTIVITY RATES Based on what are argued to be biological limits of the species (i.e. females give birth first at age 4 and produce one calf per year until death), the theoretical, maximum-conceivable growth rate of a closed harbor porpoise population was estimated as 9.4% per year based on a human survivorship curve (Barlow and Boveng 1991). This maximum theoretical rate represents maximum survival in a protected environment and may not be achievable for any wild population (Barlow and Boveng 1991). Woodley and Read (1991) calculate a maximum growth rate of approximately 5% per year, but their argument for this being a maximum (i.e. that porpoise survival rates cannot exceed those of Himalayan thar) is not well justified. Population growth rates have not actually been measured for any harbor porpoise population. Because a reliable estimate of the maximum net productivity rate is not available for harbor porpoise, we use the default maximum net productivity rate (R_{MAX}) of 4% for cetaceans (Wade and Angliss 1997). # POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (23,749) times one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) times a recovery factor of 1.0 (for a species within its Optimal Sustainable Population; Wade and Angliss 1997), resulting in a PBR of 475. #### **HUMAN-CAUSED MORTALITY** # **Fishery Information** There were three harbor porpoise strandings in this stock's range that showed evidence of interactions with entangling net fisheries during 2007. Two of these were reported to be entangled in lost river salmon gillnet gear, while the third was an unidentified fishery interaction. **Table 1.** Summary of available information on incidental mortality and injury of harbor porpoise (northern California/southern Oregon stock) in commercial fisheries that might take this species during 2007-2011. n/a indicates that data are not available. | Fishery Name | Year(s) | Data Type | Percent
Observer
Coverage | Observed
Mortality | | Mean Annual Takes (CV in parentheses) | |----------------------------|-----------|-----------|---------------------------------|-----------------------|-----|---------------------------------------| | Unknown fishery | 2007-2011 | Stranding | n/a | 3 | n/a | ≥0.6 (n/a) | | Minimum total annual takes | | | | | | ≥0.6 (n/a) | #### STATUS OF STOCK Harbor porpoise in northern California/southern Oregon are not listed as threatened or endangered under the Endangered Species Act nor as depleted under the Marine Mammal Protection Act. The northern California portion of this harbor porpoise stock was determined to be within their Optimum Sustainable Population (OSP) level in the mid-1990s (Barlow and Forney 1994), based on a lack of significant anthropogenic mortality. The amount of anthropogenic mortality as documented through fishery-related strandings appears to be negligible compared with the population size and the stock is still considered to be within the range of OSP. Because the known human-caused mortality or serious injury (≥0.6 harbor porpoise per year) is less than the PBR (475), this stock is not considered a "strategic" stock under the MMPA. Because average annual fishery mortality is less than 10% of the PBR, the fishery mortality can be considered insignificant and approaching zero mortality and serious injury rate. There are no known habitat issues that are presently of concern for this stock, although harbor porpoise are sensitive to disturbance by anthropogenic sound sources, such as those generated during the installation and operation of marine renewable energy facilities (Teilmann and Carstensen 2012). #### REFERENCES - Barlow, J. 1988. Harbor porpoise (*Phocoena phocoena*) abundance estimation in California, Oregon and Washington: I. Ship surveys. Fish. Bull. 86:417-432. - Barlow, J. and P. Boveng. 1991. Modeling age-specific mortality for marine mammal populations. Mar. Mamm. Sci. 7(1):84-119. - Barlow, J. and K. A. Forney. 1994. An assessment of the 1994 status of harbor porpoise in California. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-205. 17 pp. - Barlow, J. and D. Hanan. 1995. An assessment of the status of harbor porpoise in central California. Rept. Int. Whal., Special Issue 16:123-140. - Carretta, J.V. J. Barlow, K.A. Forney, M.M. Muto, and J. Baker. 2001a. U.S. Pacific Marine Mammal Stock Assessments: 2001. U.S. Dep. Commer. NOAA Technical Memorandum, NOAA-TM-NMFS-SWFSC-317. 280p. - Carretta, J.V., B.L. Taylor, and S.J. Chivers. 2001b. Abundance and depth distribution of harbor porpoise (*Phocoena phocoena*) in northern California determined from a 1995 ship survey. U.S. Fishery Bulletin 99:29-39. - Calambokidis, J. and J. Barlow. 1991. Chlorinated hydrocarbon concentrations and their use for describing population discreteness in harbor porpoises from Washington, Oregon, and California. pp. 101-110 In: J. E. Reynolds III and D. K. Odell (eds.) Marine mammal strandings in the United States. NOAA Tech. Rep. NMFS 98. - Chivers, S.J., A.E. Dizon, P.J. Gearin, and K.M. Robertson. 2002. Small-scale population structure of eastern North Pacific harbour porpoises, (Phocoena phocoena), indicated by molecular genetic analyses. Journal of Cetacean Research and Management 4(2):111-122. - Chivers, S.J., B. Hanson, J. Laake, P. Gearin, M.M. Muto, J. Calambokidis, D. Duffield, T. McGuire, J. Hodder, D. Greig, E. Wheeler, J. Harvey, K.M. Robertson, and B. Hancock. 2007. Additional genetic evidence for population structure of Phocoena phocoena off the coasts of California, Oregon, and Washington. Southwest Fisheries Science Center Administrative Report LJ-07-08. 16pp. - Forney, K. A. 1999. The abundance of California harbor porpoise estimated from 1993-97 aerial line-transect surveys. Admin. Rep. LJ-99-02. Southwest Fisheries Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 16 pp. - Forney, K. A., J. V. Carretta, and S. R. Benson. 2013. Preliminary estimates of harbor porpoise abundance in Pacific Coast waters of California, Oregon and Washington, 2007-2012. Draft Document PSRG-2013-10 submitted to the Pacific Scientific Review Group, 2-4 April 2013, San Diego, CA. - Gaskin, D. E. 1984. The harbour porpoise (*Phocoena phocoena* L.): regional populations, status, and information on direct and indirect catches. Rep. int. Whal. Commn 34:569 586. - Green, G. A., J. J. Brueggeman, R. A. Grotefendt, C. E. Bowlby, M. L. Bonnell, and K. C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington, 1989-1990. Ch. 1 In: J. J. Brueggeman (ed.). Oregon and Washington Marine Mammal and Seabird Surveys. Minerals Management Service Contract Report 14-12-0001-30426 prepared for the Pacific OCS Region. - Laake, J. L., J. C. Calambokidis, S. D. Osmek, and D. J. Rugh. 1997. Probability of detecting harbor porpoise from aerial surveys: estimating g(0). J. Wildl. Manag. 61:63-75. - Polacheck, T., F. W. Wenzel, and G. Early. 1995. What do stranding data say about harbor porpoise (*Phocoena phocoena*). Rep. Int. Whal. Comm., Special Issue 16:169-179. - Rosel, P. E. 1992. Genetic population structure and systematic relationships of some small cetaceans inferred from mitochondrial DNA sequence variation. Ph.D. Dissertation, Univ. Calif. San Diego. 191pp. - Rosel, P. E., A. E. Dizon, and M. G. Haygood. 1995. Variability of the mitochondrial control region in populations of the harbour porpoise, <u>Phocoena phocoena</u>, on inter-oceanic and regional scales. Can. J. Fish. and Aquat. Sci. 52:1210-1219. - Teilmann, J. and J. Carstensen. 2012. Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic—evidence of slow recovery. Environ. Res. Lett. 7 (2012) 045101, doi:10.1088/1748-9326/7/4/045101. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp. - Woodley, T. H. and A. J. Read. 1991. Potential rates of increase of a harbour porpoise (*Phocoena phocoena*) population subjected to incidental mortality in commercial fisheries. Can. J. Fish. Aquat. Sci. 48:2429-2435.