PYGMY SPERM WHALE (Kogia breviceps): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The pygmy sperm whale appears to be distributed worldwide in temperate to tropical waters (Caldwell and Caldwell 1989; Bloodworth and Odell 2008). Sightings of these animals in the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) occur primarily in oceanic waters (Figure 1; Mullin *et al.* 1991; Mullin and Fulling 2004; Maze-Foley and Mullin 2006). Pygmy sperm whales and dwarf sperm whales (*Kogia sima*) are difficult to differentiate at sea, and sightings of either species are often categorized as *Kogia* sp. Sightings of this category were documented in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico from 1992 to 1998 (Hansen *et al.* 1996; Mullin and Hoggard 2000). The difficulty in sighting pygmy and dwarf sperm whales may be exacerbated by their avoidance reaction towards ships, and change in behavior towards approaching survey aircraft (Würsig *et al.* 1998).

In a study using hematological and stable-isotope data, Barros *et al.* (1998) speculated that dwarf sperm whales may have a more pelagic distribution than pygmy sperm whales, and/or dive deeper during feeding bouts. Diagnostic morphological characters have also been useful in distinguishing the 2 *Kogia* species (Barros and Duffield 2003), thus enabling researchers to use stranding data in distributional and ecological studies. Specifically, the distance from the snout to the center of the blowhole in proportion to the animal's total length, as well as the height of the dorsal fin, in proportion to the animal's total length, can be used to differentiate between the 2 *Kogia* species when such measurements are obtainable (Barros and Duffield 2003).

Although there are only a few records from Gulf of Mexico waters beyond U.S. boundaries (e.g., Ortega Ortiz 2002), pygmy sperm whales almost certainly occur throughout the oceanic Gulf of Mexico (Jefferson *et al.* 2008), which is also composed of waters belonging to Mexico and Cuba where there is currently little information on cetacean species abundance and distribution. U.S. waters only comprise about 40% of the entire Gulf of Mexico, and 65% of oceanic waters are south of the U.S. Exclusive Economic Zone (EEZ).

The Gulf of Mexico population is provisionally being considered a separate stock for management purposes, although there is currently no information to differentiate this stock from the Atlantic Ocean stock(s). Additional morphological, genetic and/or behavioral data are needed to provide further information on stock delineation.

POPULATION SIZE

The best abundance estimate available for northern Gulf of Mexico pygmy and dwarf sperm whales is 186 (CV=1.04; Table 1). This estimate is from a summer 2009 oceanic survey covering waters from the 200m isobath to the seaward extent of the U.S. EEZ.

Earlier abundance estimates

All estimates of abundance were derived through the application of distance sampling analysis (Buckland *et al.* 2001) and the computer program DISTANCE (Thomas *et al.* 1998) to line-transect survey data collected from ships in the oceanic northern Gulf of Mexico (i.e., 200m isobath to

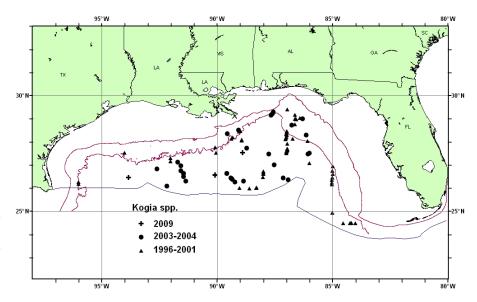


Figure 1. Distribution of pygmy and dwarf sperm whale sightings from SEFSC vessel surveys during spring 1996-2001, summer 2003 and spring 2004, and summer 2009. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100m and 1,000m isobaths and the offshore extent of the U.S. EEZ.

seaward extent of the U.S. EEZ) and are summarized in Appendix IV.

From 1991 through 1994, and from 1996 through 2001 (excluding 1998), annual surveys were conducted during spring along a fixed plankton-sampling trackline. Due to limited survey effort in any given year, the survey effort-weighted estimated average abundance of dwarf and pygmy sperm whales for all surveys combined was estimated. For 1991 to 1994, the estimate was 547 (CV=0.28) (Hansen *et al.* 1995), and for 1996 to 2001, 742 (CV=0.29) (Mullin and Fulling 2004; Table 1). A separate estimate of abundance for pygmy sperm whales could not be estimated due to uncertainty of species identification at sea.

During summer 2003 and spring 2004, surveys dedicated to estimating cetacean abundance were conducted along a grid of uniformly-spaced transect lines from a random start. The estimate of abundance for dwarf and pygmy sperm whales in oceanic waters, pooled from 2003 to 2004, was 453 (CV=0.35) (Mullin 2007; Table 1).

Recent survey and abundance estimate

During summer 2009, a line-transect survey dedicated to estimating the abundance of oceanic cetaceans was conducted in the northern Gulf of Mexico. Survey lines were stratified in relation to depth and the location of the Loop Current. The estimate of abundance for dwarf and pygmy sperm whales in oceanic waters during 2009 was 186 (CV=1.04; Table 1).

Table 1. Summary of combined abundance estimates for northern Gulf of Mexico pygmy and dwarf sperm whales. Month, year and area covered during each abundance survey, and resulting abundance estimate (N _{best}) and coefficient of variation (CV).					
Month/Year	Area	N _{best}	CV		
Apr-Jun 1991-1994	Oceanic waters	547	0.28		
Apr-Jun 1996-2001 (excluding 1998)	Oceanic waters	742	0.29		
Jun-Aug 2003, Apr-Jun 2004	Oceanic waters	453	0.35		
Jun-Aug 2009	Oceanic waters	186	1.04		

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for pygmy and dwarf sperm whales is 186 (CV=1.04). It is not possible to determine the minimum population estimate for only pygmy sperm whales. The minimum population estimate for the northern Gulf of Mexico is 90 pygmy and dwarf sperm whales.

Current Population Trend

There are insufficient data to determine the population trends for this species due to uncertainty in species identification at sea. Four point estimates of *Kogia* spp. abundance have been made based on data from surveys covering 1991-2009. The estimates vary by a maximum factor of nearly four. To determine whether changes in abundance have occurred over this period, an analysis of all the survey data needs to be conducted which incorporates covariates (e.g., survey conditions, season) that could potentially affect estimates. Nevertheless, differences in temporal abundance estimates will still be difficult to interpret without a Gulf of Mexico-wide understanding of *Kogia* abundance. The oceanography of the Gulf of Mexico is quite dynamic, and the spatial scale of the Gulf is small relative to the ability of most cetacean species to travel. Studies based on abundance and distribution surveys restricted to U.S. waters are unable to detect temporal shifts in distribution beyond U.S. waters that might account for any changes in abundance.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of the minimum population size, one half the maximum net

productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for pygmy and dwarf sperm whales is 90. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico pygmy and dwarf sperm whales is 0.9. It is not possible to determine the PBR for only pygmy sperm whales.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The estimated annual average fishery-related mortality or serious injury to this stock during 2006–2010 was 0.3 pygmy sperm whales (CV=1.0; Table 2).

Fisheries Information

The commercial fishery which potentially could interact with this stock in the Gulf of Mexico is the Atlantic Ocean, Caribbean, Gulf of Mexico large pelagic longline fishery (Appendix III). Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the northern Gulf of Mexico. There were no reports of mortality or serious injury to pygmy sperm whales by this fishery during 1998-2009 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison *et al.* 2009; Garrison and Stokes 2010); however, during 2010, 1 mortality of a pygmy sperm whale (a portion of the carcass was retrieved and species identification was confirmed through genetic analyses) was observed during quarter 2 and estimated mortalities attributable to the pelagic longline fishery in the Gulf of Mexico region during quarter 2 were 1.2 (CV=1.00; Garrison and Stokes 2011). The total estimated mortality for 2010 was 1.2 animals (CV=1.0). The annual average serious injury and mortality attributable to the Gulf of Mexico pelagic longline fishery for the 5-year period from 2006 to 2010 was 0.3 animals (CV=1.0; Table 2).

Table 2. Summary of the incidental mortality and serious injury of northern Gulf of Mexico pygmy sperm whale (*Kogia breviceps*) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the observed mortalities and serious injuries recorded by on-board observers, the estimated annual mortality and serious injury, the combined annual estimates of mortality and serious injury (Estimated Combined Mortality), the estimated CV of the combined estimates (Estimated CVs) and the mean of the combined estimates (CV in parentheses).

Fishery	Years	Vessels	Data Type	Observer Coverage	Observed Serious Injury	Observed Mortality	Estimated Serious Injury	Estimated Mortality	Estimated Combined Mortality	Est. CVs	Mean Annual Mortality
Pelagic Longline	06-10	47, 55, 53, 47, 46	Obs. Data Logbook	.08, .14, .25, .21, .26	0,0,0,0,0	0,0,0,0,1	0,0,0,0,0	0,0,0,0,1.4	0,0,0,0,1.4	NA, NA, NA, NA,1.0	0.3 (1.0)
TOTAL										_	0.3 (1.0)

- Number of vessels in the fishery is based on vessels reporting effort to the pelagic longline logbook.
- b. Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program.

 Mandatory logbook data were used to measure total effort for the longline fishery. These data are collected at the Southeast Fisheries Science Center (SEFSC). Observer coverage in the GOM is dominated by very high coverage rates during April-June associated with efforts to improve estimates of Bluefin Tuna bycatch.

Other Mortality

At least 14 pygmy sperm whale strandings were documented in the northern Gulf of Mexico during 2006–2010 (Table 3; NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 16 November 2011). For 7 of the strandings, no evidence of human interactions was detected, and for the remaining 7, it could not be determined if there was evidence of human interactions. An additional 3 *Kogia* spp. stranded during 2006–2010. Evidence of human interactions was detected for 1 of the *Kogia* sp. strandings; it could not be determined if there was evidence of human interactions for the remaining 2 *Kogia* sp. strandings. Stranding data probably underestimate the extent of fishery-related mortality and serious injury because not all of the marine mammals which

die or are seriously injured in fishery interactions wash ashore, not all that wash ashore are discovered, reported or investigated, nor will all of those that do wash ashore necessarily show signs of entanglement or other fishery interaction. Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of fishery interactions.

An Unusual Mortality Event (UME) was declared for cetaceans in the northern Gulf of Mexico beginning 1 February 2010; and, as of early 2012, the event is still ongoing. It includes cetaceans that stranded prior to the Deepwater Horizon oil spill (see "Habitat Issues" below), during the spill, and after. During 2010, 1 animal from this stock was considered to be part of the UME.

Table 3. Pygmy sperm whale (Kogia breviceps) strandings along the northern Gulf of Mexico coast, 2006-	
2010.	

STATE	2006 2007		2008	2009	2010	TOTAL	
Alabama	0	0	0	0_{p}	0	0	
Florida	1 ^a	1	2	3 ^{c,d}	0	7	
Louisiana	0	0	0	0	1*	1	
Mississippi	0	0	0	0	0	0	
Texas	1	0	3	2	0	6	
TOTAL	2	1	5	5	1	14	

^a 1 additional *Kogia* sp. stranded

HABITAT ISSUES

The Deepwater Horizon (DWH) MC252 drilling platform, located approximately 50 miles southeast of the Mississippi River Delta in waters about 1500m deep, exploded on 20 April 2010. The rig sank, and for 87 days millions of barrels of oil and gas were discharged from the wellhead until it was capped on 15 July 2010. During the response effort dispersants were applied extensively at the seafloor and at the sea surface (Lehr *et al.* 2010; OSAT 2010). In-situ burning, or controlled burning of oil at the surface, was also used extensively as a response tool (Lehr *et al.* 2010). The oil, dispersant and burn residue compounds present ecological concerns. The magnitude of this oil spill was unprecedented in U.S. history, causing impacts to wildlife, natural habitats and human communities along coastal areas from western Louisiana to the Florida Panhandle (NOAA 2011). It could be years before the entire scope of damage is ascertained (NOAA 2011).

Shortly after the oil spill, the Natural Resource Damage Assessment (NRDA) process was initiated under the Oil Pollution Act of 1990. A variety of NRDA research studies are being conducted to determine potential impacts of the spill on marine mammals. These studies have focused on identifying the type, magnitude, severity, length and impact of oil exposure to oceanic, coastal and estuarine marine mammals. The research is ongoing and likely will continue for some time. For continental shelf and oceanic cetaceans, the NOAA-led efforts include: aerial surveys to document the distribution, abundance, species and exposure of marine mammals and turtles relative to oil from DWH spill; and ship surveys to evaluate exposure to oil and other chemicals and to assess changes in animal behavior and distribution relative to oil exposure through visual and acoustic surveys, deployment of passive acoustic monitoring systems, collection of tissue samples, and deployment of satellite tags on sperm and Bryde's whales.

Aerial surveys have observed Risso's dolphins, spinner dolphins, pantropical spotted dolphins, striped dolphins, bottlenose dolphins and sperm whales swimming in oil in offshore waters (NOAA 2010a). The effects of oil exposure on marine mammals depend on a number of factors including the type and mixture of chemicals involved, the amount, frequency and duration of exposure, the route of exposure (inhaled, ingested, absorbed, or external) and biomedical risk factors of the particular animal (Geraci 1990; NOAA 2010b). In general, direct external contact with petroleum compounds or dispersants with skin may cause skin irritation, chemical burns and infections. Inhalation of volatile petroleum compounds or dispersants may irritate or injure the respiratory tract, which could lead to pneumonia or inflammation. Ingestion of petroleum compounds may cause injury to the gastrointestinal tract, which could affect an

^b 1 *Kogia* sp. stranded

^c Two of the animals were a mom/calf pair stranding together

^d 1 additional *Kogia* sp. stranded

^{*}This stranding is included in the Northern Gulf of Mexico UME

animal's ability to digest or absorb food. Absorption of petroleum compounds or dispersants may damage kidney, liver and brain function in addition to causing immune suppression and anemia. Long term chronic effects such as lowered reproductive success and decreased survival may occur (Geraci 1990; NOAA 2010b).

STATUS OF STOCK

The status of pygmy sperm whales in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. Total human-caused mortality and serious injury for this stock is not known. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. Despite an unknown PBR for this species, this is not a strategic stock because it is assumed that average annual human-related mortality and serious injury does not exceed combined PBR for dwarf and pygmy sperm whales. However, the continuing inability to distinguish between species of *Kogia* raises concerns about the possibility of mortalities of 1 stock or the other exceeding PBR.

REFERENCES

- Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6, 73 pp.
- Barros, N. B. and D. A. Duffield. 2003. Unraveling the mysteries of pygmy and dwarf sperm whales. Strandings Newsletter of the Southeast U.S. Marine Mammal Stranding Network. December 2003. NOAA Tech. Memo. NMFS-SEFSC-521, 11 pp.
- Barros, N. B., D. A. Duffield, P. H. Ostrom, D. K. Odell and V. R. Cornish. 1998. Nearshore vs. offshore ecotype differentiation of *Kogia breviceps* and *K. sima* based on hemoglobin, morphometric and dietary analyses. Abstracts. World Marine Mammal Science Conference. Monaco. 20-24 January.
- Bloodworth, B. E. and D. K. Odell. 2008. Kogia breviceps (Cetacea: Kogiidae). Mammalian Species 819: 1-12.
- Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press. 432 pp.
- Caldwell, D. K. and M. C. Caldwell. 1989. Pygmy sperm whale *Kogia breviceps* (de Blainville, 1838): Dwarf sperm whale *Kogia sima* Owen, 1866. pp. 235-260. *In*: S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales. Academic Press, San Diego, CA.
- Fairfield Walsh, C. and L.P. Garrison. 2006. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2005. NOAA Tech. Memo. NOAA NMFS-SEFSC-539, 52 pp.
- Fairfield-Walsh, C. and L.P. Garrison. 2007. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2006. NOAA Tech. Memo. NOAA NMFS-SEFSC-560, 54 pp.
- Fairfield, C.P. and L.P. Garrison. 2008. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2007. NOAA Tech. Memo. NOAA NMFS-SEFSC-572, 62 pp.
- Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
- Garrison, L.P. 2005. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2004. NOAA Tech. Memo. NMFS-SEFSC-531, 57 pp.
- Garrison, L.P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
- Garrison, L.P., L. Stokes and C. Fairfield. 2009. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2008. NOAA Tech. Memo. NMFS-SEFSC-591, 63 pp.
- Garrison, L.P. and L. Stokes. 2010. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2009. NOAA Tech. Memo. NMFS-SEFSC-607, 64 pp.
- Garrison, L.P. and L. Stokes. 2011. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2010. NOAA Tech. Memo. NMFS-SEFSC-624, 59 pp.
- Geraci, J.R. 1990. Physiologic and toxic effects on cetaceans. pp. 167-197 In: J. R. Geraci and D. J. St. Aubin (eds.) Sea mammals and oil: Confronting the risks. Academic Press, New York. 259 pp.
- Hansen, L. J., K.D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. Southeast Fisheries Science Center, Miami Laboratory, Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.

- Hansen, L.J., K.D. Mullin, T.A. Jefferson and G.P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132. *In:* R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
- Jefferson, T.A., M.A. Webber and R.L. Pitman. 2008. Marine mammals of the world. Academic Press, London. 573 pp.
- Lehr, B., S. Bristol and A. Possolo, eds. 2010. Oil budget calculator: Deepwater Horizon. Technical documentation. Prepared by the Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team for the National Incident Command. Available from: http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf
- Maze-Foley, K. and K.D. Mullin. 2006. Cetaceans of the oceanic northern Gulf of Mexico: Distributions, group sizes and interspecific associations. J. Cetacean Res. Manage. 8(2): 203-213.
- Mullin, K.D. 2007. Abundance of cetaceans in the oceanic Gulf of Mexico based on 2003-2004 ship surveys. 26 pp. Available from: NMFS, Southeast Fisheries Science Center, P.O. Drawer 1207, Pascagoula, MS 39568.
- Mullin, K.D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mamm. Sci. 20(4): 787-807.
- Mullin, K.D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. *In:* R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
- Mullin, K., W. Hoggard, C. Roden, R. Lohoefener, C. Rogers and B. Taggart. 1991. Cetaceans on the upper continental slope in the north-central Gulf of Mexico. OCS Study/MMS 91-0027. U.S. Dep. Interior, Minerals Management Service, Gulf of Mexico OCS Regional Office, New Orleans, LA. 108 pp.
- NOAA. 2010a. Frequently asked questions about marine mammal rescue and intervention plans in response to the Deepwater Horizon oil spill. Available from: http://sero.nmfs.noaa.gov/sf/deepwater_horizon/20100726_FINAL_FAQDWH_NOAA_marine_mammal_i ntervention_and_rescue.pdf
- NOAA. 2010b. Effects of oil on marine mammals and sea turtles. Available from: http://sero.nmfs.noaa.gov/sf/deepwater_horizon/Marine_mammals_turtles_FACT_SHEET.pdf.
- NOAA. 2011. Public scoping for preparation of a programmatic environmental impact statement for the Deepwater Horizon BP Oil Spill. Available from: http://www.gulfspillrestoration.noaa.gov/wp-content/uploads/2011/04/Public-DWH-PEIS-Scoping-Review -Document1.pdf
- Operational Science Advisory Team (OSAT). 2010. Summary report for sub-sea and sub-surface oil and dispersant detection: Sampling and monitoring. Prepared for P. F. Zukunft, RADM, U.S. Coast Guard, Federal On-Scene Coordinator, Deepwater Horizon MC252, December 17, 2010. Available from: http://www.restorethegulf.gov/sites/default/files/documents/pdf/OSAT_Report_FINAL_17DEC.pdf
- Ortega Ortiz, J. G. 2002. Multiscale analysis of cetacean distribution in the Gulf of Mexico. Ph.D. dissertation. Texas A&M University, College Station. 170 pp.
- Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. NOAA Tech Memo. NMFS-OPR-12, 93 pp.
- Würsig, B., S. K. Lynn, T. A. Jefferson and K.D. Mullin. 1998. Behavior of cetaceans in the northern Gulf of Mexico relative to survey ships and aircraft. Aquat. Mamm. 24:41-50.
- Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp.
- Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp.