
GRAY SEAL (*Halichoerus grypus grypus*): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The gray seal is found on both sides of the North Atlantic, with three major populations: eastern Canada, northwestern Europe and the Baltic Sea (Katona *et al.* 1993). The western North Atlantic stock is equivalent to the eastern Canada population, and ranges from New York to Labrador (Davies 1957; Mansfield 1966; Katona *et al.*

1993; Lesage and Hammill 2001). This stock is separated by geography, differences in the breeding season, and mitochondrial DNA variation from the northeastern Atlantic stock (Bonner 1981; Boskovic et al. 1996; Lesage and Hammill 2001). There are two breeding concentrations in eastern Canada; one at Sable Island, and one that breeds on the pack ice in the Gulf of St. Lawrence (Laviguer and Hammill 1993). Tagging studies indicate that there is little intermixing between the two breeding groups (Zwanenberg and Bowen 1990) and, for management purposes, they are treated by the Canadian DFO as separate stocks (Mohn and Bowen 1996). In the mid- 1980s, small numbers of animals and pupping were observed on several isolated islands along the Maine coast and in Nantucket-Vineyard Sound. Massachusetts (Katona et al. 1993; Rough 1995: J. R. Gilbert, pers. comm., University of Maine, Orono, ME). In the late 1990s, a year-round breeding population of approximately 400+ animals was documented on outer Cape Cod and Muskeget Island (D. Murley, pers. comm., Mass. Audubon Society, Wellfleet, MA). In December 2001, NMFS initiated aerial surveys to monitor gray seal pup production on Muskeget Island and adjacent sites in Nantucket Sound, and Green and

Seal Islands off the coast of Maine (Wood *et al.* 2007).

Figure 1. Approximate coastal range of gray seals. Isobaths are the 100-m, 1000-m, and 4000-m depth contours.

POPULATION SIZE

Current estimates of the total western

Atlantic gray seal population are not available; although estimates of portions of the stock are available for select time periods. The size of the Canadian population from 1993 to 2004 has been estimated from three surveys. A 1993 survey estimated the population at 144,000 animals (Mohn and Bowen 1996; DFO 2003) a 1997 survey estimated 195,000 (DFO 2003), and a 2004 survey obtained estimates ranging between 208,720 (SE=29,730) and 223,220 (SE=17,376) depending upon the model used (Trzcinski *et al.* 2005). The population at Sable Island had been increasing by approximately 13% per year for nearly 40 years (Bowen *et al.* 2003), but the most recent (2004) survey results indicated that this rate of population increase had declined to 7% (Trzcinski *et al.* 2005; Bowen *et al.* 2007). The non-Sable Island (Gulf of St Lawrence and Eastern Shore) abundance has increased from 20,900 (SE=200) in 1970 to 52,500 (SE=7,800) in 2004 (Hammill 2005).

In U.S. waters, gray seals currently pup at three established colonies: Muskeget Island, Massachusetts, Green Island, Maine, and Seal Island, Maine, as well as, more recently, at Matinicus Rock in Maine. They have been observed using the historic pupping site on Muskeget Island in Massachusetts since 1990. Pupping has taken place on Seal and Green Islands in Maine since at least the mid 1990's. Aerial survey data from these sites indicate that

pup production is increasing. A minimum of 2,620 pups (Muskeget= 2,095, Green= 59, Seal= 466) was born in the U.S. in 2008 (Wood LaFond 2009). Table 2 summarizes single-day pup counts from the three U.S. pupping colonies from 2001/2002 to 2007/2008 pupping periods. The decrease in pup counts in some years is an artifact of survey timing and not indicative of true declines in those years. In recent years NMFS monitoring surveys have detected an occasional mother/pup (white coats) pair on both Monomoy Island and Noman's Land in Massachusetts. Some of the local breeders have been observed with brands and tags indicating they had been born on Sable Island, Canada (Rough 1995). The increase in the number of gray seals observed in the U.S. is probably due to both natural increase and immigration.

Gray seals are also observed in New England outside of the pupping season. In April-May 1994 a maximum count of 2,010 was obtained for Muskeget Island and Monomoy combined (Rough 1995). Maine coast-wide surveys conducted during summer revealed 597 and 1,731 gray seals in 1993 and 2001, respectively (Gilbert *et al.* 2005). In March 1999 a maximum count of 5,611 was obtained in the region south of Maine (between Isles of Shoals, Maine and Woods Hole, Massachusetts) (Barlas 1999). No gray seals were recorded at haul-out sites between Newport, Rhode Island and Montauk Pt., New York (Barlas 1999), although, more recently several hundred gray seals have been recorded in surveys conducted off eastern Long Island (R. DiGiovanni, pers. comm., The Riverhead Foundation, Riverhead, NY).

	f abundance estimates for the western North Atlantic n abundance survey, resulting abundance estimate (N		year, and area covered of variation (CV).
Month/Year	Area	Nbest	CV
January 2004 ^a	Gulf of St Lawrence + Nova Scotia Eastern Shore	52,500	0.15
January 2004 ^a	Sable Island	208,720 216,490 223,220	0.14 0.11 0.08
^a These are mode	el based estimates derived from pup surveys.	•	•

Table 2. The number of pup	ps observed on Muskeget, Sea	al, and Green Islands 2002-200	08. Data are from aerial
surveys. These are	single-day counts, not estimat	es of total pup production. (W	ood LaFond 2009).
Pupping Season	Muskeget Island	Seal Island	Green Island
2001-2	883	No data	34
2002-3	509	147	No data
2003-4	824	150	26
2004-5	992	365	33
2005-6	868	239	43
2006-7	1704	364	57
2007-8	2095	466	59

Minimum Population Estimate

Depending on the model used, the N_{min} for the Canadian gray seal population was estimated to range between 125,541 and 169,064 (Trzcinski et al. 2005) Present data are insufficient to calculate the minimum population estimate for U.S. waters.

Current Population Trend

Gray seal abundance is likely increasing in the U.S. Atlantic Exclusive Economic Zone (EEZ), but the rate of increase is unknown. The population in eastern Canada was greatly reduced by hunting and bounty programs, and in the 1950s the gray seal was considered rare (Lesage and Hammill 2001). The Sable Island population was less affected and has been increasing for several decades. Pup production on Sable Island, Nova Scotia, has increased exponentially at a rate of 12.8% annually for more than 40 years (Stobo and Zwanenburg 1990; Mohn and Bowen 1996; Bowen *et al.* 2003; Trzcinski *et al.* 2005; Bowen *et al.* 2007), but has declined to 7% in 2004 (Trzcinski *et al.* 2005; Bowen *et al.* 2007). The non Sable Island population increased from 6,900 in the mid-1980s to a peak of 11,100 (SE=1,300) animals in 1996 (Hammill and Gosselin 2005). Pup production declined to 6,100 (SE=900) in 2000, then increased to 15,900 (SE=1,200) in 2004 (Hammill and Gosselin 2005). Approximately 57% of the

western North Atlantic population is from the Sable Island stock. In recent years pupping has been established on Hay Island, off the Cape Breton coast (Lesage and Hammill 2001).

Surveys of winter breeding colonies in Maine and on Muskeget Island may provide some measure of gray seal population trends and expansion in distribution. Sightings in New England increased during the 1980's as the gray seal population and range expanded in eastern Canada. Five pups were born at Muskeget in 1988. The number of pups increased to 12 in 1992, 30 in 1993, and 59 in 1994 (Rough 1995). In January 2002, 883 pups were counted on Muskeget Island and surrounding shoals (Wood Lafond 2009). In recent years NMFS monitoring surveys have detected an occasional mother/pup (white coats) pair on both Monomoy Island and Nomans Land. These observations continue the increasing trend in pup production reported by Rough (1995). The change in gray seal counts at Muskeget and Monomoy from 2,010 in spring 1994 to 5,611 in spring 1999 represents an annual increase rate of 20.5%, however, it has not been determined what proportion of the increase represents growth or immigration. For example, a few gray seals branded as pups on Sable Island in the 1970s (Stobo and Zwanenburg 1990) are typically sighted in the Cape Cod region during winter.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. A recent study estimated the current annual rate of increase at 7% on Sable Island (Trzcinski *et al.* 2005; Bowen *et al.* 2007), which represents a 45% decline from previous estimates (Mohn and Bowen 1996; Bowen *et al.* 2003). For purposes of this assessment, the maximum net productivity rate was assumed to be 0.12. This value is based on theoretical modeling showing that pinniped populations may not grow at rates much greater than 12% given the constraints of their reproductive life history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a "recovery" factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.12, the default value for pinnipeds. The recovery factor (F_R) for this stock is 1.0, the value for stocks of unknown status, but which are known to be increasing. PBR

for the western North Atlantic gray seals in U.S. waters is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

For the period 2005-2009, the total estimated human caused mortality and serious injury to gray seals was 1,682 per year. The average was derived from three components: 1) 678 (Table 3) from the 2005-2009 U.S. observed fishery; 2) 5 from average 2005-2009 non-fishery related, human interaction stranding mortalities (NMFS unpublished data); and 3) 999 from average 2005-2009 kill in the Canadian hunt.

Fishery Information

Detailed fishery information is given in Appendix III.

U.S.

Northeast Sink Gillnet

Annual estimates of gray seal bycatch in the Northeast sink gillnet fishery reflect seasonal distribution of the species and of fishing effort. There were 268 gray seal mortalities observed in the Northeast sink gillnet fishery between 1993 and 2009. Estimated annual mortalities (CV in parentheses) from this fishery were 0 in 1990-1992, 18 in 1993 (1.00), 19 in 1994 (0.95), 117 in 1995 (0.42), 49 in 1996 (0.49), 131 in 1997 (0.50), 61 in 1998 (0.98), 155 in 1999 (0.51), 193 in 2000 (0.55), 117 in 2001 (0.59), 0 in 2002, 242 (0.47) in 2003, 504 (0.34) in 2004, 574 (0.44) in 2005, 314 (0.22) in 2006, 886 (0.24) in 2007, 618 (0.23) in 2008 and 1,063 in 2009 (Table 3). There were 2, 9, 14, 8, 14, 6, and 8 unidentified seals observed during 2003-2009, respectively. Since 1997 unidentified seals have not been prorated to a species. This is consistent with the treatment of other unidentified mammals that do not get prorated to a specific species. Average annual estimated fishery-related mortality and serious injury to this stock attributable to this fishery during 2005-2009 was678 gray seals (CV=0.14) (Table 3). The stratification design used is the same as that for harbor porpoise (Bravington and Bisack 1996).

Gulf of Maine Atlantic Herring Purse Seine Fishery

The Gulf of Maine Atlantic Herring Purse Seine Fishery is a Category III fishery. This fishery was not observed until 2003, and was not observed in 2006. No mortalities have been observed, but 15 gray seals were captured and released alive in 2004, 19 in 2005, 0 in 2007, 6 in 2008, and 0 in 2009. In addition, 5 seals of unknown species were

captured and released alive in 2004, 2 in 2005, 1 in 2007, and none in 2008 or 2009.

Northeast Bottom Trawl

Vessels in the North Atlantic bottom trawl fishery, a Category III fishery under MMPA, were observed in order to meet fishery management, rather than marine mammal management needs. No mortalities were observed prior to 2005, when four mortalities were attributed to this fishery. No mortalities were observed in 2006. The estimated annual fishery-related mortality and serious injury attributable to this fishery was 0 between 2001 and 2004, and for 2006. Nine gray seal mortalities were attributed to this fishery in 2007, 4 in 2008 and 8 in 2009. Estimates have not been generated.

CANADA

An unknown number of gray seals have been taken in Newfoundland and Labrador, Gulf of St. Lawrence, and Bay of Fundy groundfish gillnets, Atlantic Canada and Greenland salmon gillnets, Atlantic Canada cod traps, and in Bay of Fundy herring weirs (Read 1994). In addition to incidental catches, some mortalities (e.g., seals trapped in herring weirs) were the result of direct shooting, and there were culls of about 1,700 animals annually during the 1970s and early 1980s on Sable Island (Anonymous 1986).

In 1996, observers recorded 3 gray seals (1 released alive) in Spanish deep-water trawl fishing on the southern edge of the Grand Banks (NAFO Areas 3) (Lens 1997). Seal bycatch occurred year-round, but interactions were highest during April-June. Many of the seals that died during fishing activities were unidentified. The proportion of sets with mortality (all seals) was 2.7 per 1,000 hauls (0.003).

Table 3. Summary of the incidental mortality of gray seal (Halichoerus grypus grypus) by commercial fishery
including the years sampled (Years), the type of data used (Data Type), the annual observer coverage
(Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated
annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the
mean annual mortality (CV in parentheses).

Fishery	Years	Data Type	Observer Coverage	Observed Mortality	Estimated Mortality	Estimated CVs	Mean Annual Mortality
Northeast Sink Gillnet	05-09	Obs. Data, Weighout, Logbooks	.07, .04, .07, .05. 04	33, 9, 80, 31, 52	574, 248, 886, 618, 1063	.44, .47, .24, .23, .26	678 (0.14)
Northeast Bottom Trawl	05-09	Obs. Data, Weighout	.12, .06, .06, .08, .09	4, 0, 9, 4, 8	unk ^d , 0, d ^d , unk ^d , unk unk	unk ^d , 0, ^{d, d} unk ^d unk, unk ^d	unk
TOTAL							678 (0.14)

a. Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. The Northeast Fisheries Observer Program collects landings data (Weighout), and total landings are used as a measure of total effort for the sink gillnet fishery. Mandatory logbook (Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast multispecies sink gillnet fishery.

b. The observer coverages for the Northeast sink gillnet fishery and the mid-Atlantic gillnet fisheries are ratios based on tons of fish landed.

^{c.} Since 1998, takes from pingered and non-pingered nets within a marine mammal time/area closure that required pingers, and takes from pingered and non-pingered nets not within a marine mammal time/area closure were pooled. The pooled bycatch rate was weighted by the total number of samples taken from the stratum and used to estimate the mortality. In 2005- 2009, respectively, 1, 1 8, 4and 13 takes were observed in nets with pingers. In 2005 – 2009, respectively, 20, 32, 8, 72, 27 and 39 takes were observed in nets without pingers.

^d. Analysis of bycatch mortality attributed to the Northeast bottom trawl fishery has not been generated.

Other Mortality

Canada: In Canada, gray seals were hunted for several centuries by indigenous people and European settlers in the Gulf of St. Lawrence and along the Nova Scotia eastern shore, and were locally extirpated (Laviguer and

Hammill 1993). Between 1999 and 2009 the annual kill of gray seals by hunters in Canada was: 1999 (98), 2000 (342), 2001 (76), 2002 (126), 2003 (6), 2004 (0), 2005 (579), 2006 (1,804) 2007 (887), 2008 (1,472), and 2009 (254). (DFO 2003; 2008; 2009; M. Hammill pers. comm.). The traditional hunt of a few hundred animals is expected to continue off the Magdalen Islands and in other areas, except Sable Island where commercial hunting is not permitted (DFO 2003). DFO established a total allowable catch (TAC) of 12,000 gray seals for 2007 and 2008: 2,000 in the Gulf and 10,000 on the Scotian Shelf. The TAC for 2009 and 2010 was 50,000 seals. Since 2007, a small commercial hunt has taken place on Hay Island in Nova Scotia (http://www.dfo-mpo.gc.ca/fm-gp/seal-phoque/faq-eng.htm). The hunting of gray seals will continue to be prohibited on Sable Island (http://www.dfo-mpo.gc.ca/seal-phoque/index_e.htm).

Canada also issues personal hunting licenses which allow the holder to take six gray seals annually (Lesage and Hammill 2001). Hunting is not permitted during the breeding season and some additional seasonal/spatial restrictions are in effect (Lesage and Hammill 2001).

U.S: Gray seals, like harbor seals, were hunted for bounty in New England waters until the late 1960s (Katona, *et al.* 1993; Lelli, *et al.* 2009). This hunt may have severely depleted this stock in U.S. waters (Rough 1995; Lelli, *et al.* 2009). Other sources of mortality include human interactions, storms, abandonment by the mother, disease, and predation. Mortalities caused by human interactions include boat strikes, fishing gear interactions, power plant entrainment, oil spill/exposure, harassment, and shooting. The Cape Cod stranding network has documented gray seals entangled in netting or plastic debris around the Cape Cod/Nantucket area, and in recent years have made successful disentanglement attempts.

From 2005 to 2009, 224 gray seal stranding mortalities were recorded, extending from Maine to North Carolina (Table 4; NMFS unpublished data). Most stranding mortalities were in Massachusetts, which is the center of gray seal abundance in U.S. waters. Fifty-one (22.8%) of the total stranding mortalities showed signs of human interaction (3 in 2005, 5 in 2006, 8 in 2007, 21 in 2008, and 14 in 2009), with 27 having some indication of fishery interaction (1 in 2005, 5 in 2006, 5 in 2007, 7 in 2008, and 9 in 2009). One gray seal during this period was reported as having been shot.

State	2005	2006	2007	2008	2009	Total
ME	4 (1)	3	5 (1)	6 (1)	3	21
NH	0	0	1 (1)	0	1 (1)	2
MA	26 (6)	29 (5)	50 (9)	53 (4)	52 (7)	210
RI	2 (1)	2 (2)	5 (1)	7	10 (2)	26
СТ	0	0	0	0	1(1)	1
NY	7	6 (4)	21 (17)	2 (2)	16 (7)	52
NJ	2 (2)	1 (1)	5 (2)	3	4	15
DE	0	0	0	1 (1)	0	1
MD	3 (2)	0	1	1	1	6
VA	1	0	1	1	2	5
NC	0	2	1 (1)	1 (1)	1 (1)	5
Total	45 (12)	43 (12)	90 (32)	75 (9)	91 (19)	344 (84)
Unspecified seals (all states)	59	46	34	51	34	224

Table 4. Gray seal (*Halichoerus grypus grypus*) stranding mortalities ^a along the U.S. Atlantic coast (2005-2009) with subtotals of animals recorded as pups in parentheses.

STATUS OF STOCK

The status of the gray seal population relative to OSP in U.S. Atlantic EEZ waters is unknown, but the stock's abundance appears to be increasing in Canadian and U.S. waters. The species is not listed as threatened or endangered under the Endangered Species Act. The total U.S. fishery-related mortality and serious injury for this stock is low relative to the stock size in Canadian and U.S. waters and can be considered insignificant and approaching zero mortality and serious injury rate. The level of human-caused mortality and serious injury in the U.S. Atlantic EEZ is unknown, but believed to be very low relative to the total stock size; therefore, this is not a strategic stock.

REFERENCES CITED

- Anonymous 1986. Seals and sealing in Canada. Rep. of the Royal Commission on Seals and Sealing, Vol. 1. Canadian Government Publishing Centre, Ottawa, Ontario, Canada, 65 pp.
- Barlas, M.E. 1999. The distribution and abundance of harbor seals (*Phoca vitulina concolor*) and gray seals (*Halichoerus grypus*) in southern New England, winter 1998-summer 1999. M.A. thesis. Graduate School of Arts and Sciences Boston University, Boston, MA. 52 pp.
- Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6. 73 pp.
- Bonner, W.N. 1981. Grey seal *Halichoerus grypus* Fabricus, 1791. Pages 111-144 *in*: S. H. Ridgway and R. J. Harrison, (eds.) Handbook of marine mammals, Vol. 2: Seals. Academic Press, London.
- Boskovic, R., K.M. Kovacs, M.O. Hammill and B.N. White. 1996. Geographic distribution of mitochondrial DNA haplotypes in grey seals (*Halichoerus grypus*). Can. J. Zool. 74: 1787-1796.
- Bowen, W.D., J. McMillan and R. Mohn. 2003. Sustained exponential population growth of grey seals at Sable Island, Nova Scotia. ICES J. Mar. Sci. 60: 1265-1274.
- Bowen, W.D., J.I. McMillan and W. Blanchard. 2007. Reduced population growth of gray seals at Sable Island: Evidence from pup production and age of primiparity. Mar. Mamm. Sci. 23: 48-64.
- Bravington, M.V. and K.D. Bisack. 1996. Estimates of harbour porpoise bycatch in the Gulf of Maine sink gillnet fishery, 1990-1993. Rep. Int. Whal. Comm. 46: 567-574.
- Davies, J.L. 1957. The geography of the gray seal. J. Mamm. 38: 297-310.
- deHart, P.A.P. 2002. The distribution and abundance of harbor seals (*Phoca vitulina concolor*) in the Woods Hole region. M.A. thesis. Graduate School of Arts and Sciences Boston University, Boston, MA. 88 pp.
- DFO. 2003. Atlantic Seal Hunt: 2003-2005 management plan. Department of Fisheries and Oceans. Fisheries Resource Management Atlantic, Ottawa, Ontario, Canada. 34 pp.
- DFO. 2008. Atlantic Seal Hunt: 2006-2010 management plan. Department of Fisheries and Oceans. Fisheries Resource Management Atlantic, Ottawa, Ontario, Canada. 34 pp. Available at: <u>http://www.dfo-mpo.gc.ca/seal-phoque/faq_e.htm#2.</u>
- DFO, 2009. Frequently asked questions about Canada's seal hunt. Department of Fisheries and Oceans. Available at: http://www.dfo-mpo.gc.ca/fm-gp/seal-phoque/faq-eng.htm
- Gilbert, J.R., G.T. Waring, K.M. Wynne and N. Guldager. 2005. Changes in abundance and distribution of harbor seals in Maine, 1981-2001. Mar. Mamm. Sci. 21: 519-535.
- Hammill, M.O. 2005. Abundance of Northwest Atlantic grey seals in the Gulf of St. Lawrence and along the Nova Scotia Eastern Shore. DFO Research Document 2005/036. Canadian Department of Fisheries and Oceans. Ottawa, Ontario. 11 pp.

http://www.dfo-mpo.gc.ca/csas/Csas/Publications/ResDocs-DocRech/2005/2005_036_e.

- Hammill, M.O. and J.F. Gosselin. 2005. Pup production of non-Sable Island grey seals in 2004. DFO Research Document 2005/036. Canadian Department of Fisheries and Oceans. Ottawa, Ontario. 20 pp. <u>http://www.dfo-mpo.gc.ca/csas/Csas/Publications/ResDocs-DocRech/2005/2005 033 e.htm</u>
- Katona, S.K., V. Rough and D.T. Richardson. 1993. A field guide to whales, porpoises, and seals from Cape Cod to Newfoundland. Smithsonian Institution Press, Washington, DC. 316 pp.
- Laviguer, L. and M.O. Hammill. 1993. Distribution and seasonal movements of grey seals, *Halichoerus grypus*, born in the Gulf of St. Lawrence and eastern Nova Scotia shore. Can. Field-Nat. 107: 329-340.
- Lens, S. 1997. Interactions between marine mammals and deep water trawlers in the NAFO regulatory area. ICES [Int. Counc. Explor. Sea] C.M. 1997/Q:08:10.
- Lesage, V. and M.O. Hammill. 2001. The status of the grey seal, *Halichoerus grypus*, in the Northwest Atlantic. Can. Field-Nat. 115(4): 653-662.

- Lelli, B., D.E. Harris, and A-M Aboueissa. 2009. Seal bounties in Maine and Massachusetts, 1888 to 1962. Northeast. Nat. 16(2): 239-254.
- Mansfield, A.W. 1966. The grey seal in eastern Canadian waters. Can. Audubon Mag. 28: 161-166.
- Mohn, R. and W.D. Bowen. 1996. Grey seal predation on the eastern Scotian Shelf: Modeling the impact on Atlantic cod. Can. J. Fish. Aquat. Sci 53: 2722-2738.
- Read, A.J. 1994. Interactions between cetaceans and gillnet and trap fisheries in the northwest Atlantic. Rep. Int. Whal. Comm. (Special Issue) 15: 133-147
- Rough, V. 1995. Gray seals in Nantucket Sound, Massachusetts, winter and spring, 1994. Final report to Marine Mammal Commission. Contract T10155615 28 pp.
- Stobo, W.T. and K.C.T. Zwanenburg. 1990. Grey seal (*Halichoerus grypus*) pup production on Sable Island and estimates of recent production in the northwest Atlantic. Pages 171-184 in: W. D. Bowen, (ed.) Population biology of sealworm (*Pseudoterranova decipiens*) in relation to its intermediate and seal hosts. Can. Bull. Fish. and Aq. Sci. 222.
- Trzcinski, M.K., R. Mohn and W.D. Bowen. 2005. Estimation of grey seal population size and trends at Sable

 Island. DFO Research Document 2005/067. Canadian Department of Fisheries and Oceans. Ottowa,

 Ontario.
 10

 pp.
 <u>http://www.dfo-mpo.gc.ca/csas/Csas/Publications/ResDocs-</u>

 DocRech/2005/2005
 067

 e.htm
 0
- Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12. 93 pp.
- Wood LaFond, S. 2009. Dynamics of Recolonization: a Study of the Gray Seal (*Halichoerus grypus*) in the Northeast U.S. Ph.D. Dissertation. University of Massachusetts, Boston. 83 p.
- Wood, S.A., S. Brault and J.R. Gilbert. 2007. 2002 aerial survey of grey seals in the northeastern United States. Pages 117-121 in: T. Haug, M. Hammill and D. Ólafsdóttir, (eds.) Grey seals in the North Atlantic and Baltic. NAMMCO Sci. Pub. 6, Tromsø, Norway.
- Zwanenberg, K.C.T. and W.D. Bowen. 1990. Population trends of the grey seal (*Halichoerus grypus*) in eastern Canada. Pages 185-197 in: W. D. Bowen, (ed.) Population biology of sealworm (*Pseudoterranova decipiens*) in relation to its intermediate and seal hosts. Can. Bull. Fish. and Aq. Sci. 222.