BOTTLENOSE DOLPHIN (*Tursiops truncatus*): Northern Gulf of Mexico Continental Shelf Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) continental shelf bottlenose dolphin stock inhabits waters from 20 to 200 m deep in the northern Gulf from the U.S.-Mexican border to the Florida Keys (Figure 1). Both "coastal" and "offshore" ecotypes of bottlenose dolphins occur in the Gulf of Mexico (Hersh and Duffield 1990; LeDuc and Curry 1998). The continental shelf stock probably consists of a mixture of both the coastal and offshore ecotypes. The offshore and coastal ecotypes are genetically distinct using both mitochondrial and nuclear markers (Hoelzel *et al.* 1998). In the northwestern Atlantic, Torres *et al.* (2003) found a statistically significant break in the distribution of the ecotypes at 34 km from shore. The offshore ecotype was found exclusively seaward of 34 km and in waters deeper than 34 m. Within 7.5 km of shore, all animals were of the coastal ecotype. The continental shelf is much wider in the Gulf of Mexico so these results may not apply. The continental shelf stock range may extend into Mexican and Cuban territorial waters; however, there are no available estimates of either abundance or mortality from those countries. A stranded dolphin from the Florida Panhandle, genetically intermediate between

coastal and offshore forms, was rehabilitated and released over the shelf off western Florida, and traveled into the Atlantic Ocean (Wells *et al.* 1999).

The bottlenose dolphins inhabiting waters <20 m deep in the northern Gulf are believed to constitute 36 inshore or coastal stocks. An oceanic stock is provisionally defined for bottlenose dolphins inhabiting waters >200 m. Both inshore and coastal stocks and the oceanic stock are separate from the continental shelf stock, but the continental shelf stock may overlap with coastal stocks and the oceanic stock in some areas be genetically and may indistinguishable from some of those stocks. However, studies have shown significant genetic differentiation between inshore stocks and coastal/continental



Figure 1. Distribution of bottlenose dolphin sightings from SEFSC fall vessel surveys during 1998-2001. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100-m and 1,000-m isobaths and the offshore extent of the U.S. EEZ.

shelf stocks along the central west coast of Florida (Sellas et al. 2005).

Based on research currently being conducted on bottlenose dolphins in the northern Gulf of Mexico, as well as the western North Atlantic Ocean, the structure of these stocks is uncertain, but appears to be complex. The multidisciplinary research programs conducted over the last 38 years (e.g., Wells 1994) have begun to shed light on the structure of some of the stocks of bottlenose dolphins, though additional analyses are needed before stock structures can be elaborated on in the northern Gulf of Mexico. As research is completed, it may be necessary to revise stocks of bottlenose dolphins in the northern Gulf of Mexico.

POPULATION SIZE

The current population size for the bottlenose dolphin continental shelf stock in the northern Gulf of Mexico is unknown because the survey data from the continental shelf are more than 8 years old (Wade and Angliss 1997).

Estimates of abundance were derived through the application of distance sampling analysis (Buckland *et al.* 2001) and the computer program DISTANCE (Thomas *et al.* 1998) to sighting data. Data were collected from 1998 to 2001 during fall plankton surveys conducted from NOAA ships *Oregon II* (2000) and *Gordon Gunter* (1998,

1999, 2001). Tracklines, which were perpendicular to the bathymetry, covered shelf waters from the 20-m to the 200-m isobaths (Figure 1; Table 1; Fulling *et al.* 2003). Due to limited survey effort in any given year, survey effort was pooled across all years to develop an average abundance estimate for both areas.

The previous abundance estimate of bottlenose dolphins was based on data pooled from 2000 through 2001 for continental shelf vessel surveys and was 17,777 (CV=0.32) (see Fulling *et al.* 2003). As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates using data older than 8 years are deemed unreliable, and therefore should not be used for PBR determinations. Because data from the continental shelf are more than 8 years old, the current best population estimate is unknown.

Minimum Population Estimate

The minimum population estimate is unknown. The minimum population estimate is the lower limit of the twotailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for bottlenose dolphins is unknown. The minimum population estimate for the northern Gulf of Mexico is unknown.

Current Population Trend

There are insufficient data to determine the population trends for this species. The pooled abundance estimate from the 2000-2001 ship survey of 17,777 (CV=0.32) and the previous abundance from a 1992-1994 aerial survey of 50,247 (CV=0.18) (Blaylock and Hoggard 1994) are significantly different (P<0.05). However, there are a number of reasons the 2 estimates are different other than from a change in abundance. Blaylock and Hoggard (1994) estimated from aerial surveys that about 31% of the bottlenose dolphins in shelf waters west of Mobile Bay were in a rather small area from the Mississippi River Delta west to about 90.5°W. Vessel survey effort in this area was small and resulted in only 1 sighting of bottlenose dolphins. Therefore, vessel-based estimates may have underestimated the abundance of bottlenose dolphins in the western shelf. Aerial abundances were based on survey lines that extended from 9.3 km past the 18 m (10 fm) curve to 9.3 km past 183 m (100 fm) curve, so the area surveyed was somewhat different than from the study area (20-200 m) for vessel surveys. Also, Atlantic spotted dolphins are very common in shelf waters and are similar in length and shape to bottlenose dolphins. Atlantic spotted dolphins are born without spots and become progressively more spotted with age, but young animals look very similar to bottlenose dolphins. Therefore, depending on the composition of the group, from a distance Atlantic spotted are not always easily distinguished from bottlenose dolphins, so it is possible that some groups were misidentified during aerial surveys leading to bias in the relative abundance of each species.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential biological removal level (PBR) is undetermined. PBR is the product of the minimum population size, one half the maximum net productivity rate and a "recovery" factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04, the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because the stock is of unknown status.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

There has been no reported fishing-related mortality of bottlenose dolphins in the pelagic longline fishery during 1998-2007 (Yeung 1999; 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008). However, during 2007 there was 1 bottlenose dolphin released alive with no serious injury after an entanglement interaction with the pelagic longline fishery (Fairfield and Garrison 2008). There were 3 interactions with the shark bottom longline fishery, including one mortality, during 1994-2003, and none during 2004-2007 (Burgess (Burgess and Morgan 2003a; b; Hale and Carlson 2007; Hale *et al.* 2007; Richards 2007).

Fisheries Information

The level of past or current, direct, human-caused mortality of bottlenose dolphins in the northern Gulf of Mexico is unknown; however, interactions between bottlenose dolphins and fisheries have been observed in the northern Gulf of Mexico. Fishery interactions have been reported to occur between bottlenose dolphins and the pelagic longline fishery in the Gulf of Mexico (SEFSC unpublished logbook data). During 2007, 1 bottlenose dolphin was observed entangled and released alive by the pelagic longline fishery in the northern Gulf of Mexico. All gear was removed and the animal was presumed to have no serious injuries (Fairfield and Garrison 2008). This animal could have belonged to the continental shelf or oceanic stock. Annual fishery-related mortality and serious injury to bottlenose dolphins from the pelagic longline fishery was estimated to be 2.8 per year (CV=0.74) during 1992-1993. This could include bottlenose dolphins from the oceanic stock. The shark bottom longline fishery has been observed since 1994, and 3 interactions with bottlenose dolphins have been recorded in the northern Gulf of Mexico. The incidents include 1 mortality (2003) and 2 hooked animals that escaped at the vessels (1999, 2002; Burgess and Morgan 2003a; b; Hale and Carlson 2007; Hale et al. 2007; Richards 2007). Based on the water depths of the interactions (~12-60 m), they likely involved animals from the eastern coastal and continental shelf stocks. For the shark bottom longline fishery in the northern Gulf of Mexico, Richards (2007) estimated bottlenose dolphin mortalities of 58 (CV=0.99), 0 and 0 for 2003, 2004 and 2005, respectively. A voluntary observer program for the shrimp trawl fishery began in 1992 and became mandatory in 2007. Two bottlenose dolphin mortalities were observed during 2003 and 2007 which could have belonged to either a coastal or a bay, sound and estuarine stock. During 1992-2007 the shrimp trawl fishery observer program recorded an additional 6 unidentified dolphins caught in a lazy line or turtle excluder device, and 1 or more of these animals may have belonged to the continental shelf stock of bottlenose dolphins. In 2 of the 6 cases, an observer report indicated the animal may have already been decomposed, but this could not be confirmed in the absence of a necropsy. A trawl fishery for butterfish was monitored by NMFS observers for a short period in the 1980s with no records of incidental take of marine mammals (Burn and Scott 1988; NMFS unpublished data), although an experimental set by NMFS resulted in the death of 2 bottlenose dolphins (Burn and Scott 1988). There are no other data available.

Other Mortality

A total of 1,425 bottlenose dolphins were found stranded in the northern Gulf of Mexico from 2003 through 2007 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 16 September 2008). Of these, 82 showed evidence of human interactions as the cause of death (e.g., gear entanglement, mutilation, gunshot wounds). Bottlenose dolphins are known to become entangled in, or ingest recreational and commercial fishing gear (Wells and Scott 1994; 1997; Gorzelany 1998; Wells *et al.* 1998), and some are struck by vessels (Wells and Scott 1997). The vast majority of stranded bottlenose dolphins are assumed to belong to one of the coastal or bay, sound and estuarine stocks. Nevertheless, it is possible that some of the stranded bottlenose dolphins belonged to the continental shelf or oceanic stocks and that they were among those strandings with evidence of human interactions. (Strandings do occur for other cetacean species whose primary range in the Gulf of Mexico is outer continental shelf or oceanic waters.)

The use of explosives to remove oil rigs in portions of the continental shelf in the western Gulf of Mexico has the potential to cause serious injury or mortality to marine mammals. These activities have been closely monitored by NMFS observers since 1987 (Gitschlag and Herczeg 1994). There have been no reports of either serious injury or mortality to bottlenose dolphins (NMFS unpublished data).

STATUS OF STOCK

The status of bottlenose dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. There are insufficient data to determine the population trends for this species. Total human-caused mortality and serious injury for this stock is not known. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. Despite an undetermined PBR and unknown population size, this is not a strategic stock because previous estimates of population size have been large compared to the number of cases of documented human-related mortality and serious injury.

REFERENCES CITED

Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade 1995. U.S. marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6. 73 pp.

- Blaylock, R.A. and W. Hoggard 1994. Preliminary estimates of bottlenose dolphin abundance in southern U.S. Atlantic and Gulf of Mexico continental shelf waters. NOAA Tech. Memo. NMFS-SEFSC-356. 10 pp.
- Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers and L. Thomas 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press. 432 pp.
- Burgess, G. and A. Morgan 2003a. Commercial shark fishery observer program. Renewal of an observer program to monitor the directed commercial shark fishery in the Gulf of Mexico and South Atlantic: 1999 fishing season. U.S. National Marine Fisheries Service, Highly Migratory Species Management Division Award NA97FF004. Final Report.
- Burgess, G. and A. Morgan 2003b. Commercial shark fishery observer program. Renewal of an observer program to monitor the directed commercial shark fishery in the Gulf of Mexico and the south Atlantic: 2002(2) and 2003(1) fishing seasons. U.S. National Marine Fisheries Service, Highly Migratory Species Management Division Award NA16FM0598. Final Report.
- Burn, D. and G.P. Scott 1988. Synopsis of available information on marine mammal-fisheries interactions in the southeastern United States: Preliminary report. Contribution ML-CRG-87/88-26, National Marine Fisheries Service, Miami, FL 37 pp.
- Fairfield-Walsh, C. and L.P. Garrison 2007. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2006. NOAA Tech. Memo. NOAA NMFS-SEFSC-560. 54 pp.
- Fairfield, C.P. and L.P. Garrison 2008. Estimated bycatch of marine mammals and sea turtles in the US Atlantic pelagic longline fleet during 2007. NOAA Tech. Memo. NOAA NMFS-SEFSC-572. 62 pp.
- Fairfield Walsh, C. and L.P. Garrison 2006. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2005. NOAA Tech. Memo. NOAA NMFS-SEFSC-539. 52 pp.
- Fulling, G.L., K.D. Mullin and C.W. Hubard 2003. Abundance and distribution of cetaceans in outer continental shelf waters of the U.S. Gulf of Mexico. Fish. Bull. 101: 923-932.
- Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515. 52 pp.
- Garrison, L.P. 2005. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2004. NOAA Tech. Memo. NMFS-SEFSC-531. 57 pp.
- Garrison, L.P. and P.M. Richards 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527. 57 pp.
- Gitschlag, G.R. and B.A. Herczeg 1994. Sea turtle observations at explosive removals of energy structures. Mar. Fish. Rev. 56(2): 1-8.
- Gorzelany, J.F. 1998. Unusual deaths of two free-ranging Atlantic bottlenose dolphins (*Tursiops truncatus*) related to ingestion of recreational fishing gear. Mar. Mamm. Sci. 14(3): 614-617.
- Hale, L.F. and J.K. Carlson 2007. Characterization of the shark bottom longline fishery: 2005-2006. NOAA Tech. Memo. NMFS-SEFSC-554. 28 pp.
- Hale, L.F., L.D. Hollensead and J.K. Carlson 2007. Characterization of the shark bottom longline fishery: 2007. NOAA Tech. Memo. NMFS-SEFSC-564. 25 pp.
- Hersh, S.L. and D.A. Duffield 1990. Distinction between Northwest Atlantic offshore and coastal bottlenose dolphins based on hemoglobin profile and morphometry. Pages 129-139 *in*: S. Leatherwood and R.R. Reeves, (eds.) The bottlenose dolphin. Academic Press, San Diego, CA.
- Hoelzel, A.R., C.W. Potter and P.B. Best 1998. Genetic differentiation between parapatric 'nearshore' and 'offshore' populations of bottlenose dolphins. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 265: 1177-1183.
- LeDuc, R.G. and B.E. Curry 1998. Mitochondrial DNA sequence analysis indicates need for revision of the genus *Tursiops*. Reports of the International Whaling Commission 47: 393.
- Richards, P.M. 2007. Estimated takes of protected species in the commercial directed shark bottom longline fishery 2003, 2004, and 2005. NMFS SEFSC Contribution PRD-06/07-08, June 2007, 21 pp.
- Sellas, A.B., R.S. Wells and P.E. Rosel 2005. Mitochondrial and nuclear DNA analyses reveal fine scale geographic structure in bottlenose dolphins (*Tursiops truncatus*) in the Gulf of Mexico. Conserv. Genet. 6(5): 715-728.
- Thomas, L., J.L. Laake, J.F. Derry, S.T. Buckland, D.L. Borchers, D.R. Anderson, K.P. Burnham, S. Strindberg, S.L. Hedley, F.F.C. Marques, J.H. Pollard and R.M. Fewster 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
- Torres, L.G., P.E. Rosel, C. D'Agrosa and A.J. Read 2003. Improving management of overlapping bottlenose dolphin ecotypes through spatial analysis and genetics. Mar. Mamm. Sci. 19(3): 502-514.
- Wade, P.R. and R.P. Angliss 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12. 93 pp.

- Wells, R.S. 1994. Determination of bottlenose dolphin stock discreteness: Application of a combined behavioral and genetic approach. K. R. Wang, P. M. Payne and V.G. Thayer (compilers). Coastal stock(s) of Atlantic bottlenose dolphin: Status review and management. Proceedings and recommendations from a workshop held in Beaufort, NC, 13-14 September 1993. NOAA Tech. Memo. NMFS-OPR-4. 16-20 pp.
- Wells, R.S., S. Hofmann and T.L. Moors 1998. Entanglement and mortality of bottlenose dolphins, *Tursiops truncatus*, in recreational fishing gear in Florida. Fish. Bull. 96(3): 647-650.
- Wells, R.S., C.A. Manire, H.L. Rhinehart, D. Smith, A.J. Westgate, F.I. Townsend, T. Rowles, A.A. Hohn and L.J. Hansen 1999. Ranging patterns of rehabilitated rough-toothed dolphins, *Steno bredanensis*, released in the northeastern Gulf of Mexico. 13th Biennial Conference on the Biology of Marine Mammals, 28 Nov - 3 Dec, 1999, Maui, HI.
- Wells, R.S. and M.D. Scott 1994. Incidence of gear entanglement for resident inshore bottlenose dolphins near Sarasota, Florida. Pages 629 in: W.F. Perrin, G.P. Donovan and J. Barlow, (eds.) Gillnets and cetaceans. Rep. Int. Whal. Comm. Special Issue 15.
- Wells, R.S. and M.D. Scott 1997. Seasonal incidence of boat strikes on bottlenose dolphins near Sarasota, Florida. Mar. Mamm. Sci. 13(3): 475-480.
- Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. NOAA Tech. Memo. NMFS-SEFSC-430. 26 pp.
- Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. NOAA Tech. Memo., NMFS, Southeast Fisheries Science Center, Miami, FL. NMFS-SEFSC-467. 43 pp.