
HARBOR PORPOISE (Phocoena phocoena): Southeast Alaska Stock

NOTE – March 2008: In areas outside of Alaska, studies have shown that stock structure is more fine-scale than is reflected in the Alaska Stock Assessment Reports. At this time, no data are available to reflect stock structure for harbor porpoise in Alaska. However, based on comparisons with other regions, smaller stocks are likely. Should new information on harbor porpoise stocks become available, the harbor porpoise Stock Assessment Reports will be updated.

STOCK DEFINITION AND GEOGRAPHIC RANGE

In the eastern North Pacific Ocean, the harbor porpoise ranges from Point Barrow, along the Alaska coast, and down the west coast of North America to Point Conception, California (Gaskin 1984). Harbor porpoise primarily frequent coastal waters and in the Gulf of Alaska and Southeast Alaska (Dahlheim et al. 2000, 2009), they occur most frequently in waters less than 100 m deep (Hobbs and Waite 2010). The average density of harbor porpoise in Alaska appears to be less than that reported off the west coast of the continental U.S., although areas of high densities do occur in Glacier Bay and the adjacent waters of Icy Strait, Yakutat Bay, the Copper River Delta, and Sitkalidak Strait (Dahlheim et al. 2000, Hobbs and Waite 2010). Stock discreteness in the eastern North Pacific was analyzed using mitochondrial DNA from samples collected along the West Coast (Rosel 1992), including one sample

Figure 27. Approximate distribution of harbor porpoise in Alaska waters (shaded area).

from Alaska. Two distinct mitochondrial DNA groupings or clades were found. One clade is present in California, Washington, British Columbia and the single sample from Alaska (no samples were available from Oregon), while the other is found only in California and Washington. Although these two clades are not geographically distinct by latitude, the results may indicate a low mixing rate for harbor porpoise along the west coast of North America. Investigation of pollutant loads in harbor porpoise ranging from California to the Canadian border also suggests restricted harbor porpoise movements (Calambokidis and Barlow 1991); these results are reinforced by a similar study in the northwest Atlantic (Westgate and Tolley 1999). Further genetic testing of the same samples mentioned above, along with a few additional samples including 8 more from Alaska, found significant genetic differences for three of the six pair-wise comparisons between the four areas investigated: California, Washington, British Columbia, and Alaska (Rosel et al. 1995). Those results demonstrate that harbor porpoise along the west coast of North America are not panmictic, and that movement is sufficiently restricted to result in genetic differences. This is consistent with low movement suggested by genetic analysis of harbor porpoise specimens from the North Atlantic (Rosel et al. 1999). Numerous stocks have been delineated with clinal differences over areas as small as the waters surrounding the British Isles (Walton 1997). In a molecular genetic analysis of small-scale population structure of eastern North Pacific harbor porpoise, Chivers et al. (2002) included 30 samples from Alaska, 16 of which were from Copper River Delta, 5 from Barrow, 5 from southeast Alaska, and 1 sample each from St. Paul, Adak, Kodiak, and Kenai. Unfortunately, no conclusions could be drawn about the genetic structure of harbor porpoise within Alaska because of insufficient samples. Accordingly, harbor porpoise stock structure in Alaska is unknown at this time.

Although it is difficult to determine the true stock structure of harbor porpoise populations in the northeast Pacific, from a management standpoint, it would be prudent to assume that regional populations exist and that they should be managed independently (Rosel et al. 1995, Taylor et al. 1996). The Alaska Scientific Review Group concurred that while the available data were insufficient to justify recognizing three biological stocks of harbor

porpoise in Alaska, it did not recommend against the establishment of three management units in Alaska (DeMaster 1996, 1997). Accordingly, from the above information, three harbor porpoise stocks in Alaska are recommended, recognizing that the boundaries were set arbitrarily: 1) the Southeast Alaska stock - occurring from the northern border of British Columbia to Cape Suckling, Alaska, 2) the Gulf of Alaska stock - occurring from Cape Suckling to Unimak Pass, and 3) the Bering Sea stock - occurring throughout the Aleutian Islands and all waters north of Unimak Pass (Fig. 28).

POPULATION SIZE

In June and July of 1997, an aerial survey covering the waters of the eastern Gulf of Alaska from Dixon Entrance to Cape Suckling and offshore to the 1,000 fathom depth contour resulted in an observed abundance estimate of 3,766 (CV = 0.162) animals (Hobbs and Waite 2010). The inside waters of Southeast Alaska, Yakutat Bay, and Icy Bay were included in addition to the offshore waters. The total area surveyed across inside waters, was $106,087 \text{ km}^2$. Only a fraction of the small bays and inlets (< 5.5 km wide) of Southeast Alaska were surveyed and included in this abundance estimate, although the areas omitted represent only a small fraction of the total survey area. The observed abundance estimate includes a correction factor (1.56) for perception bias to correct for animals not counted because they were not observed. Laake et al. (1997) estimated the availability bias for aerial surveys of harbor porpoise in Puget Sound to be 2.96 (CV = 0.180); the use of this correction factor is preferred to other published correction factors (e.g., Barlow et al. 1988; Calambokidis et al. 1993) because it is an empirical estimate of availability bias. The estimated corrected abundance from this survey is 11,146 (3,766 \times 2.96; CV = 0.242) harbor porpoise for both the coastal and inside waters of Southeast Alaska (Hobbs and Waite, 2010). Recent survey data are currently being analyzed, and a new abundance estimate and PBR for this stock will be available and incorporated into the 2012 SARs.

Minimum Population Estimate

For the Southeast Alaska stock of harbor porpoise, the minimum population estimate (N_{MIN}) for the aerial surveys is calculated using Equation 1 from the PBR Guidelines (Wade and Angliss 1997): $N_{MIN} = N/\exp(0.842*[\ln(1+[CV(N)]^2)]^{1/2})$. Using the population estimates (N) of 11,146 and its associated CV (0.242), N_{MIN} for this stock is 9,116 (Hobbs and Waite, unpubl. ms). However, because the survey data are now 12 years old, it is not considered a reliable minimum population estimate for calculating a PBR.

Current Population Trend

The abundance of harbor porpoise in Southeast Alaska was estimated for 1993 and 1997. Abundance estimates were determined from coastal aerial surveys from Prince William Sound to Dixon entrance, and from aerial surveys in Southeast Alaska (Dahlheim et al. 2000). These surveys produced abundance estimates of 3,982 and 1,586 for the two areas, respectively, giving a combined estimate for the range of the Southeast Alaska harbor porpoise stock of 5,568. The 1997 estimate of 11,146 is double the 1993 estimate (Hobbs and Waite 2010); however, the 1997 surveys included inside waters of Southeast Alaska while the 1993 survey covered only coastal waters. These estimates are not directly comparable because the area surveyed in 1997 was larger than that in 1993, including inside waters, and because the 1997 abundance estimation involved direct calculation of perception bias, while the 1993 estimate used a correction factor based on some untested assumptions about observer behavior and visibility of harbor porpoise. Dahlheim et al. (2009) found only a slight annual increase (0.2%) in harbor porpoise populations based on survey data from 1991-1993, 2006, and 2007, which is not considered a significant increase.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

A reliable estimate of the maximum net productivity rate (R_{MAX}) is not currently available for the Southeast Alaska stock of harbor porpoise. Hence, until additional data become available, it is recommended that the cetacean maximum theoretical net productivity rate of 4% be employed (Wade and Angliss 1997).

POTENTIAL BIOLOGICAL REMOVAL

Under the 1994 reauthorized Marine Mammal Protection Act (MMPA), the potential biological removal (PBR) is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor: $PBR = N_{MIN} \times 0.5 R_{MAX} \times F_R$. The recovery factor (F_R) for this stock is 0.5, the value for cetacean stocks with unknown population status (Wade and Angliss 1997). Thus, using the abundance estimate calculated from 1997 surveys, the PBR for the Southeast Alaska stock of harbor porpoise would be calculated to be 91 animals (9,116×0.02 × 0.5). However, the 2005 revisions to the SAR guidelines (NMFS 2005)

state that abundance estimates older than 8 years should not be used to calculate PBR due to a decline in confidence in the reliability of an aged abundance estimate. Therefore, the PBR for this stock is considered undetermined. Recent survey data are currently being analyzed, and a new abundance estimate and PBR for this stock will be available and incorporated into the 2012 SARs.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fisheries Information

Until 2003, there were three different federally-regulated commercial fisheries in Alaska that could have interacted with the Southeast Alaska stock of harbor porpoise. As of 2003, changes in fishery definitions in the List of Fisheries resulted in separating the GOA groundfish fisheries into many fisheries (69 FR 70094, 2 December 2004). This change does not represent a change in fishing effort, but provides managers with better information on the component of each fishery responsible for the incidental serious injury or mortality of marine mammal stocks in Alaska. These fisheries (Pacific cod longline, Pacific halibut longline, rockfish longline, and sablefish longline) were monitored for incidental mortality by fishery observers from 2007 to 2009, although observer coverage has been very low in the offshore waters of Southeast Alaska. No mortalities from this stock of harbor porpoise incidental to commercial groundfish fisheries have been observed. There is no observer coverage for inside waters of Southeast Alaska. A reliable estimate of the mortality rate incidental to commercial fisheries is currently unavailable because of the absence of observer placements in Southeast Alaska fisheries. Therefore, it is unknown whether the kill rate is insignificant.

In 2007 and 2008, the Alaska Marine Mammal Observer Program (AMMOP) placed observers in four regions where the Yakutat salmon set gillnet fishery operates. These regions included the Alsek River area, the Situk area, the Yakutat Bay ara, and the Kaliakh River and Tsiu River area. Overall observer coverage was 5.3% in 2007 and 7.6% in 2008. Based on observed mortalities during these two years, the estimated mean annual mortality of harbor porpoise in the Yakutat salmon set gillnet fishery was 21.8 (Table 29b).

Table 29b. Summary of incidental mortality of harbor porpoise from the Southeast Alaska stock due to commercial fisheries from 2007 and 2008 and calculation of the mean annual mortality rate (Manly 2009). Details of how percent observer coverage is measured are included in Appendix 6.

Fishery name	Years	Data type	Observer coverage	Observed mortality (in given yrs.)	Estimated mortality (in given yrs.)	Mean annual mortality
Yakutat salmon set gillnet	2007-	obs	5.3%	1	16.1	21.8
	2008	data	7.6%	3	27.5	(CV = 0.54)
Minimum total annual mortality						21.8 (CV = 0.54)

Subsistence/Native Harvest Information

Subsistence hunters in Alaska have not been reported to take from this stock of harbor porpoise.

Other Mortality

Stranding data may also provide information on additional sources of potential human-related mortality. Between 2004 and 2008 there was one report to NMFS Enforcement of a harbor porpoise that had been found floating dead with approximately 91 stab wounds and chaffing on fins suggesting possible net entanglement. There were 3 mortalities of harbor porpoises due to entanglement in fishing gear near Yakutat in 2009 reported to the NMFS stranding network. One mortality occurred in a gill net and the other 2 occurred in subsistence salmon gillnets.

STATUS OF STOCK

Harbor porpoise are not listed as "depleted" under the MMPA or listed as "threatened" or "endangered" under the Endangered Species Act. Because the PBR is unknown, the level of annual U.S. commercial fishery-related mortality that can be considered insignificant and approaching zero mortality and serious injury rate is unknown. The estimated level of human-caused mortality and serious injury based on observer data (21.8) and stranding data (1) is 22.8. Because the abundance estimates are 12 years old and the frequency of incidental mortality in commercial fisheries is not known, the Southeast Alaska stock of harbor porpoise is classified as a strategic stock. Population trends and status of this stock relative to OSP are currently unknown.

HABITAT CONCERNS

Most harbor porpoise are found in waters less than 100m in depth and often concentrate in near-shore areas and inland waters, including bays, tidal areas and river mouths (Dahlheim et al. 2009). As a result, harbor porpoise are more vulnerable to nearshore physical habitat modifications resulting from urban and industrial development, including waste management, nonpoint source runoff; and physical habitat modifications including construction of docks and other over water structures, filling of shallow areas and dredging.

CITATIONS

- Barlow, J., C. W. Oliver, T. D. Jackson, and B. L. Taylor. 1988. Harbor porpoise, *Phocoena phocoena*, abundance estimation for California, Oregon, and Washington: II. Aerial surveys. Fish. Bull., U.S. 86:433-444.
- Calambokidis, J., and J. Barlow. 1991. Chlorinated hydrocarbon concentrations and their use for describing population discreteness in harbor porpoises from Washington, Oregon, and California, p. 101-110. *In J. E. Reynolds III and D. K. Odell (editors)*. Proceedings of the Second Marine Mammal Stranding Workshop: 3-5 December 1987. Miami, Florida. U.S. Dep. Commer., NOAA Tech. Rep. NMFS-98.
- Calambokidis, J., J. R. Evenson, J. C. Cubbage, S. D. Osmek, D. Rugh, and J. L. Laake. 1993. Calibration of sighting rates of harbor porpoise from aerial surveys. Final report to the National Marine Mammal Laboratory, AFSC, NMFS, NOAA, 7600 Sand Point Way, NE, Seattle, WA 98115. 55 pp.
- Chivers, S.J., Dizon, A.E., Gearin, P J. and K.M. Robertson. 2002. Small-scale population structure of eastern North Pacific harbor porpoise (*Phocoena phocoena*) indicated by molecular genetic analyses. J. Cetacean Res. Manage. 4(2):111-122.
- Dahlheim, M., A. York, R. Towell, J. Waite, and J. Breiwick. 2000. Harbor porpoise (*Phocoena phocoena*) abundance in Alaska: Bristol Bay to Southeast Alaska, 1991-1993. Mar. Mammal Sci. 16:28-45.
- Dahlheim, M., P. A. White, and J. Waite. 2009. Cetaceans of Southeast Alaska: distribution and seasonal occurrence. J. Biogeogr. 36(3): 410-426.
- DeMaster, D. P. 1996. Minutes from the 11-13 September 1996 meeting of the Alaska Scientific Review Group. Anchorage, Alaska. 20 pp. + appendices. (Available upon request National Marine Mammal Laboratory, 7600 Sand Point Way, NE, Seattle, WA 98115).
- DeMaster, D. P. 1997. Minutes from fifth meeting of the Alaska Scientific Review Group, 7-9 May 1997, Seattle, Washington. 21 pp. + appendices. (Available upon request Alaska Fish. Sci. Cent., 7600 Sand Point Way, NE, Seattle, WA 98115).
- Gaskin, D. E. 1984. The harbor porpoise *Phocoena phocoena* (L.): Regional populations, status, and information on direct and indirect catches. Rep. Int. Whal. Comm. 34:569-586.
- Hobbs, R. C. and J M. Waite. 2010. Abundance of harbor porpoise (*Phocoena phocoena*) in three Alaskan regions, corrected for observer errors due to perception bias and species misidentification, and corrected for animals submerged from view. Fish. Bull., U.S. 108(3):251-267.
- Laake, J. L., J. Calambokidis, S. D. Osmek, and D. J. Rugh. 1997. Probability of detecting harbor porpoise from aerial surveys: Estimating g(0). J. Wildl. Manage. 61(1):63-75.
- Manly, B. F. J. 2009. Incidental catch of marine mammals and birds in the Yakutat salmon set gillnet fishery, 2007 and 2008. Final report to NMFS Alaska Region. 96 pp. Available online at: http://alaskafisheries.noaa.gov/protectedresources/observers/bycatch/yakutat07-08.pdf
- NMFS. 2005. Revisions to Guidelines for Assessing Marine Mammal Stocks, 24 pp. Available at: http://www.nmfs.noaa.gov/pr/pdfs/sars/gamms2005.pdf
- Rosel, P. E. 1992. Genetic population structure and systematic relationships of some small cetaceans inferred from mitochondrial DNA sequence variation. Ph.D. Dissertation, Univ. Calif. San Diego. 191 pp.
- Rosel, P. E., A. E. Dizon, and M. G. Haygood. 1995. Variability of the mitochondrial control region in populations of the harbour porpoise, *Phocoena phocoena*, on inter-oceanic and regional scales. Can J. Fish. Aquat Sci. 52:1210-1219.
- Rosel, P. E., R. Tiedemann, and M. Walton. 1999. Genetic evidence for limited trans-Atlantic movements of the harbor porpoise *Phocoena phocoena*. Mar. Biol. 133: 583-591.
- Taylor, B. L., P. R. Wade, D. P. DeMaster, and J. Barlow. 1996. Models for management of marine mammals. Unpubl. doc. submitted to Int. Whal. Comm. (SC/48/SM50). 12 pp.
- Wade, P. R., and R. Angliss. 1997. Guidelines for assessing marine mammal stocks: report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.

- Walton, M. J. 1997. Population structure of harbour porpoises *Phocoena phocoena* in the seas around the UK and adjacent waters. Proc. R. Soc. Lond. B 264: 89-94.
- Westgate, A. J. and K. A. Tolley. 1999. Geographical differences in organochlorine contaminants in harbour porpoises *Phocoena phocoena* from the western North Atlantic. Mar. Ecol. Prog. Ser. 177:255-268.