ATLANTIC SPOTTED DOLPHIN (Stenella frontalis): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are 2 species of spotted dolphins in the Atlantic Ocean, the Atlantic spotted dolphin (*Stenella frontalis*) and the pantropical spotted dolphin (*S. attenuata*) (Perrin *et al.* 1987). The Atlantic spotted dolphin occurs in 2 forms which may be distinct sub-species (Perrin *et al.* 1987, 1994; Rice 1998; Viricel and Rosel 2014): the large, heavily spotted form which inhabits the continental shelf and is usually found inside or near the 200m isobath; and the smaller, less spotted island and offshore form which occurs in the Atlantic Ocean but is not known to occur in the Gulf of Mexico (Fulling *et al.* 2003; Mullin and Fulling 2003; Mullin and Fulling 2004; Viricel and Rosel 2014). Where they co-occur, the offshore form of the Atlantic spotted dolphin and the pantropical spotted dolphin can be difficult to differentiate at sea.

The Atlantic spotted dolphin is endemic to the Atlantic Ocean in temperate to tropical waters (Perrin *et al.* 1987, 1994). In the Gulf of Mexico, Atlantic spotted dolphins occur primarily from continental shelf waters 10-200m deep to slope waters <500m deep (Figure 1; Fulling *et al.* 2003; Mullin and Fulling 2004; Maze-Foley and Mullin 2006). Atlantic spotted dolphins were seen in all seasons during GulfCet aerial surveys of the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico) from 1992 to 1998 (Hansen *et al.* 1996; Mullin and Hoggard 2000). It has been suggested that this species may move inshore seasonally during spring, but data supporting this hypothesis are limited (Caldwell and Caldwell 1966; Fritts *et al.* 1983). Because there are confirmed records from the southern Gulf of Mexico beyond U.S. boundaries (e.g., Jefferson and Schiro 1997, Ortega Ortiz 2002), this may be a transboundary stock.

Genetic analysis of Atlantic spotted dolphins in the Gulf of Mexico and western North Atlantic revealed significant differentiation for both nuclear and mitochondrial DNA markers (Adams and Rosel 2005; Viricel and Rosel 2014). Estimates of immigration rates between the western North Atlantic shelf population and the Gulf of Mexico were less than 1% per year (Viricel and Rosel 2014), which is well below the 10% per year threshold for

demographic independence (Hastings 1993), thereby supporting separate stocks for Gulf of Mexico and western Atlantic North shelf populations. Viricel and Rosel (2014) also found support for 2 demographically independent populations within the northern Gulf of Mexico. population primarily occupied shelf waters from the Texas-Mexico border eastward to Cape San Blas, Florida while the second population was concentrated over the Florida shelf in the eastern Gulf of and stretched Mexico Florida westward to the panhandle. Thus, the populations appear to overlap in shelf waters between approximately Mobile Bay and Cape San Blas. Additional work is necessary to identify a boundary between them.

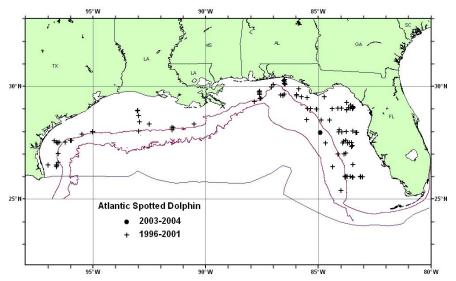


Figure 1. Distribution of Atlantic spotted dolphin sightings from SEFSC spring and fall vessel surveys during 1996-2001 and from summer 2003 and spring 2004 surveys. All the on-effort sightings are shown, though not all were used to estimate abundance. Solid lines indicate the 100m and 1,000m isobaths and the offshore extent of the U.S. EEZ.

POPULATION SIZE

The current population size for the Atlantic spotted dolphin in the northern Gulf of Mexico is unknown because the most recent survey data are more than 8 years old (Wade and Angliss 1997).

Abundance Estimates

All estimates of abundance were derived through the application of distance sampling analysis (Buckland *et al.* 2001) and the computer program DISTANCE (Thomas *et al.* 1998) to line-transect survey data collected from ships in the northern Gulf of Mexico and are summarized in Appendix IV.

From 1991 through 1994, and from 1996 through 2001 (excluding 1998), annual surveys were conducted during spring in oceanic waters (i.e., 200m isobath to seaward extent of the U.S. EEZ) along a fixed plankton sampling trackline. Due to limited survey effort in any given year, the survey effort-weighted estimated average abundance of Atlantic spotted dolphins for all surveys combined was estimated. For 1991 to 1994, the estimate was 3,213 (CV=0.44; Hansen *et al.* 1995), and for 1996 to 2001, 175 (CV=0.84; Mullin and Fulling 2004). These were underestimates because the continental shelf was not covered during these surveys.

Data were also collected from 1998 to 2001 during fall plankton surveys. Tracklines, which were perpendicular to the bathymetry, covered shelf waters from the 20m to the 200m isobaths. The estimated abundance of Atlantic spotted dolphins, pooled from 2000 through 2001, for the fall outer continental shelf surveys was 37,611 (CV=0.28) (Table 1; see Fulling *et al.* 2003).

During summer 2003 and spring 2004, surveys dedicated to estimating cetacean abundance were conducted in oceanic waters along a grid of uniformly-spaced transect lines from a random start. The abundance estimate for Atlantic spotted dolphins in oceanic waters, pooled from 2003 to 2004, was 0 (Mullin 2007).

The most recent best abundance estimate for the Atlantic spotted dolphin in the northern Gulf of Mexico was the combined estimate of abundance for both the outer continental shelf (fall surveys, 2000-2001) and oceanic waters (spring and summer surveys, 2003-2004), which was 37,611 (CV=0.28; Table 1). Because these data are more than 8 years old, the current best population estimate is unknown.

Table 1. Most recent abundance estimates (\overline{N}_{best}) and coefficient of variation (CV) of Atlantic spotted dolphins in the northern Gulf of Mexico outer continental shelf (OCS) (waters 20-200m deep) during fall 2000-2001 and oceanic waters (200m to the offshore extent of the EEZ) during spring/summer 2003-2004.

Month/Year	Area	N _{best}	CV
Fall 2000-2001	Outer Continental Shelf	37,611	0.28
Spring/Summer 2003-2004	Oceanic	0	-
Fall & Spring/Summer	OCS & Oceanic	37,611	0.28

Minimum Population Estimate

The current minimum population estimate is unknown. The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997).

Current Population Trend

One abundance estimate is available covering this stock's entire range, and therefore there are insufficient data to assess population trends.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is currently undetermined. PBR is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size of this stock is unknown. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor is 0.5 because the stock is of unknown status.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The estimated mean annual fishery-related mortality and serious injury for this stock during 2007-2011 was 42 Atlantic spotted dolphins (CV=0.45) based on observer data for the commercial shrimp trawl fishery (see Fisheries

Information section below). More recent observer data for 2012 and 2013 for the shrimp trawl fishery are not available.

New Serious Injury Guidelines

NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998; Andersen *et al.* 2008; NOAA 2012). NMFS defines serious injury as an "*injury that is more likely than not to result in mortality*". Injury determinations for stock assessments revised in 2013 or later incorporate the new serious injury guidelines, based on the most recent 5-year period for which data are available.

Fisheries Information

The commercial fisheries that interact, or that potentially could interact, with this stock in the Gulf of Mexico are the Atlantic Ocean, Caribbean, Gulf of Mexico large pelagic longline fishery and the Southeastern U.S. Atlantic/Gulf of Mexico shrimp trawl fishery (Appendix III).

Pelagic swordfish, tunas and billfish are the targets of the longline fishery operating in the northern Gulf of Mexico. There has been no reported mortality or serious injury of an Atlantic spotted dolphin in the pelagic longline fishery during 1998-2013 (Yeung 1999; Yeung 2001; Garrison 2003; Garrison and Richards 2004; Garrison 2005; Fairfield Walsh and Garrison 2006; Fairfield-Walsh and Garrison 2007; Fairfield and Garrison 2008; Garrison *et al.* 2009; Garrison and Stokes 2010; 2012a,b; 2013; 2014).

Between 1997 and 2011, 5 common bottlenose dolphins and 7 unidentified dolphins, which could have been either common bottlenose dolphins or Atlantic spotted dolphins, became entangled in the lazy line, turtle excluder device or tickler chain gear in the commercial shrimp trawl fishery in the Gulf of Mexico. All dolphin bycatch interactions resulted in mortalities except for 1 unidentified dolphin that was released alive in 2009. Soldevilla *et al.* (2015) provide mortality estimates calculated from analysis of shrimp fishery effort data and NMFS's Observer Program bycatch data. Annual mortality estimates were calculated for the years 1997-2011 from stratified annual fishery effort and bycatch rates, and a 5-year unweighted mean mortality estimate for 2007-2011 was calculated for Gulf of Mexico dolphin stocks. The 4-area (TX, LA, MS/AL, FL) stratification method was chosen because it best approximates how fisheries operate (Soldevilla *et al.* 2015). The mean annual mortality estimate for the Atlantic spotted dolphin stock is 42 (CV=0.45). Limitations and biases of annual bycatch mortality estimates are described in detail in Soldevilla *et al.* (2015).

Other Mortality

A total of 16 Atlantic spotted dolphins were reported stranded in the Gulf of Mexico during 2009–2013 (Table 1; NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 11 June 2014). Evidence of human interaction was detected for 1 stranded animal, which had ingested a plastic sandwich bag. No evidence of human interaction was detected for 3 animals, and for the remaining 12 animals, it could not be determined if there was evidence of human interaction. Stranding data probably underestimate the extent of human and fishery-related mortality and serious injury because not all of the dolphins that die or are seriously injured in human interactions wash ashore, or, if they do, they are not all recovered (Peltier *et al.* 2012; Wells *et al.* 2015). Additionally, not all carcasses will show evidence of human interaction, entanglement or other fishery-related interaction due to decomposition, scavenger damage, etc. (Byrd *et al.* 2014). Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of human interaction.

Since 1990, there have been 13 common bottlenose dolphin die-offs or Unusual Mortality Events (UMEs) in the northern Gulf of Mexico, and 3 of these included Atlantic spotted dolphins. 1) Between August 1999 and May 2000, 150 common bottlenose dolphins died coincident with *Karenia brevis* blooms and fish kills in the Florida Panhandle. Additional strandings included 3 Atlantic spotted dolphins, 1 Risso's dolphin, *Grampus griseus*, 2 Blainville's beaked whales, *Mesoplodon densirostris*, and 4 unidentified dolphins. Brevetoxin was determined to be the cause of this event (Twiner *et al.* 2012; Litz *et al.* 2014). 2) In 2005, a particularly destructive red tide (*K. brevis*) bloom occurred off of central west Florida. Manatee, sea turtle, bird and fish mortalities were reported in the area in early 2005 and a manatee UME had been declared. Common bottlenose dolphin mortalities began to rise above the historical averages by late July 2005, continued to increase through October 2005, and were then declared to be part of a multi-species UME. The multi-species UME extended into 2006, and ended in November 2006. A total of 190 dolphins were involved, primarily common bottlenose dolphins plus strandings of 1 Atlantic spotted dolphin and 23 unidentified dolphins. The evidence suggests the effects of a red tide bloom contributed to the cause of this event (Litz *et al.* 2014). 3) A UME was declared for cetaceans in the northern Gulf of Mexico beginning 1 February 2010;

and, as of September 2014, the event is still ongoing (Litz *et al.* 2014). It includes cetaceans that stranded prior to the *Deepwater Horizon* oil spill (see "Habitat Issues" below), during the spill, and after. During 2010-2013, 12 animals from this stock were considered to be part of the UME.

STATE	2009	2010	2011	2012	2013	TOTA
Alabama	0	0	0	0	1*	1
Florida	4	3*	1*	6*	1*	15
Louisiana	0	0	0	0	0	0
Mississippi	0	0	0	0	0	0
Texas	0	0	0	0	0	0
TOTAL	4	3	1	6	2	16

HABITAT ISSUES

The *Deepwater Horizon* (DWH) MC252 drilling platform, located approximately 50 miles southeast of the Mississippi River Delta in waters about 1500 m deep, exploded on 20 April 2010. The rig sank, and over 87 days up to ~4.9 million barrels of oil were discharged from the wellhead until it was capped on 15 July 2010 (McNutt *et al.* 2012). During the response effort dispersants were applied extensively at the seafloor and at the sea surface (Lehr *et al.* 2010; OSAT 2010). In-situ burning, or controlled burning of oil at the surface, was also used extensively as a response tool (Lehr *et al.* 2010). The oil, dispersant and burn residue compounds present ecological concerns (Buist *et al.* 1999; NOAA 2011). The magnitude of this oil spill was unprecedented in U.S. history, causing impacts to wildlife, natural habitats and human communities along coastal areas from western Louisiana to the Florida Panhandle (NOAA 2011). It could be years before the entire scope of damage is ascertained (NOAA 2011).

Shortly after the oil spill, the Natural Resource Damage Assessment (NRDA) process was initiated under the Oil Pollution Act of 1990. A variety of NRDA research studies are being conducted to determine potential impacts of the spill on marine mammals. These studies have focused on identifying the type, magnitude, severity, length and impact of oil exposure to oceanic, continental shelf, coastal and estuarine marine mammals. For continental shelf and oceanic cetaceans, the NOAA-led efforts include: aerial surveys to document the distribution, abundance, species and exposure relative to oil from the DWH spill; and ship surveys to evaluate exposure to oil and other chemicals and to assess changes in animal behavior and distribution relative to oil exposure through visual and acoustic surveys, deployment of passive acoustic monitoring systems, collection of tissue samples, and deployment of satellite tags on sperm and Bryde's whales.

Vessel and aerial surveys documented common bottlenose dolphins, Atlantic spotted dolphins, rough-toothed dolphins, spinner dolphins, pantropical spotted dolphins, Risso's dolphins, striped dolphins, sperm whales, dwarf/pygmy sperm whales and a Cuvier's beaked whale swimming in oil or potentially oil-derived substances (e.g., sheen, mousse) in offshore waters of the northern Gulf of Mexico following the DWH oil spill. The effects of oil exposure on marine mammals depend on a number of factors including the type and mixture of chemicals involved, the amount, frequency and duration of exposure, the route of exposure (inhaled, ingested, absorbed, or external) and biomedical risk factors of the particular animal (Geraci 1990). In general, direct external contact with petroleum compounds or dispersants with skin may cause skin irritation, chemical burns and infections. Inhalation of volatile petroleum compounds or dispersants may irritate or injure the respiratory tract, which could lead to pneumonia or inflammation. Ingestion of petroleum compounds may cause injury to the gastrointestinal tract, which could affect an animal's ability to digest or absorb food. Absorption of petroleum compounds or dispersants may damage kidney, liver and brain function in addition to causing immune suppression and anemia. Long term chronic effects such as lowered reproductive success and decreased survival may occur (Geraci 1990).

STATUS OF STOCK

Atlantic spotted dolphins are not listed as threatened or endangered under the Endangered Species Act, and the northern Gulf of Mexico stock is not considered strategic under the MMPA. Despite an undetermined PBR and unknown population size, this is not a strategic stock because previous estimates of population size have been large compared to the number of cases of documented human-caused mortality and serious injury. There is insufficient information available to determine whether the total fishery-related mortality and serious injury for this stock is insignificant and approaching zero mortality and serious injury rate. The status of Atlantic spotted dolphins in the northern Gulf of Mexico, relative to OSP, is unknown. There are insufficient data to determine the population trends for this stock.

REFERENCES

- Adams, L. and P. E. Rosel. 2005. Population differentiation of the Atlantic spotted dolphin *Stenella frontalis* in the Western North Atlantic, including the Gulf of Mexico. Mar. Biol. 148(3): 671-681.
- Andersen, M.S., K.A. Forney, T.V.N. Cole, T. Eagle, R. Angliss, K. Long, L. Barre, L. Van Atta, D. Borggaard, T. Rowles, B. Norberg, J. Whaley and L. Engleby. 2008. Differentiating serious and non-serious injury of marine mammals: Report of the serious injury technical workshop, 10-13 September 2007, Seattle, WA. NOAA Tech. Memo. NMFS-OPR-39, 94 pp.
- Angliss, R.P. and D.P. DeMaster. 1998. Differentiating serious and non-serious injury of marine mammals taken incidental to commercial fishing operations: Report of the serious injury workshop, 1-2 April 1997, Silver Spring, MD. NOAA Tech. Memo. NMFS-OPR-13, 48 pp.
- Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6, 73pp.
- Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D L. Borchers and L. Thomas. 2001. Introduction to distance sampling: Estimating abundance of biological populations. Oxford University Press, 432 pp.
- Buist, I., J. McCourt, S. Potter, S. Ross and K. Trudel. 1999. In situ burning. Pure. Appl. Chem. 71(1): 43-65.
- Byrd, B.L., A.A. Hohn, G.N. Lovewell, K.M. Altman, S.G. Barco, A. Friedlaender, C.A. Harms, W.A. McLellan, K.T. Moore, P.E. Rosel and V.G. Thayer. 2014. Strandings illustrate marine mammal biodiversity and human impacts off the coast of North Carolina, USA. Fish. Bull. 112: 1-23.
- Caldwell, D. K. and M. C. Caldwell. 1966. Observations on the distribution, coloration, behavior and audible sound production of the spotted dolphin, *Stenella plagiodon* (Cope). Los Angeles County Museum Contribution to Science, 104: 1-28.
- Fairfield Walsh, C. and L.P. Garrison. 2006. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2005. NOAA Tech. Memo. NOAA NMFS-SEFSC-539, 52 pp.
- Fairfield-Walsh, C. and L.P. Garrison. 2007. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2006. NOAA Tech. Memo. NOAA NMFS-SEFSC-560, 54 pp.
- Fairfield, C.P. and L.P. Garrison. 2008. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2007. NOAA Tech. Memo. NOAA NMFS-SEFSC-572, 62 pp.
- Fritts, T. H., A. B. Irvine, R. D. Jennings, L. A. Collum, W. Hoffman and M. A. McGehee. 1983. Turtles, birds, and mammals in the northern Gulf of Mexico and nearby Atlantic waters. U.S. Fish and Wildlife Service, Division of Biological Services, Washington, D.C., FWS/OBS-82/65, 455 pp.
- Fulling, G. L., K.D. Mullin and C. W. Hubard. 2003. Abundance and distribution of cetaceans in outer continental shelf waters of the U.S. Gulf of Mexico. Fish. Bull. 101:923-932.
- Garrison, L.P. 2003. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2001-2002. NOAA Tech. Memo. NMFS-SEFSC-515, 52 pp.
- Garrison, L.P. 2005. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2004. NOAA Tech. Memo. NMFS-SEFSC-531, 57 pp.
- Garrison, L.P. and P. M. Richards. 2004. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2003. NOAA Tech. Memo. NMFS-SEFSC-527, 57 pp.
- Garrison, L.P., L. Stokes and C. Fairfield. 2009. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2008. NOAA Tech. Memo. NMFS-SEFSC-591, 63 pp.
- Garrison, L.P. and L. Stokes. 2010. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2009. NOAA Tech. Memo. NMFS-SEFSC-607, 64 pp.
- Garrison, L.P. and L. Stokes. 2012a. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2010. NOAA Tech. Memo. NMFS-SEFSC-624, 59 pp.
- Garrison, L.P. and L. Stokes. 2012b. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic

- longline fleet during 2011. NOAA Tech. Memo. NMFS-SEFSC-632, 61 pp.
- Garrison, L.P. and L. Stokes. 2013. Estimated bycatch of marine mammals and turtles in the U.S. Atlantic pelagic longline fleet during 2013. NOAA Tech. Memo. NMFS-SEFSC-655, 62 pp.
- Garrison, L.P. and L. Stokes. 2014. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2013. NOAA Tech. Memo. NMFS-SEFSC-667, 61 pp.
- Geraci, J.R. 1990. Physiologic and toxic effects on cetaceans. pp. 167-197 In: J. R. Geraci and D. J. St. Aubin (eds.) Sea mammals and oil: Confronting the risks. Academic Press, New York. 259 pp.
- Hansen, L. J., K.D. Mullin and C. L. Roden. 1995. Estimates of cetacean abundance in the northern Gulf of Mexico from vessel surveys. NMFS-SEFSC Contribution No. MIA-94/95-25, 9 pp. Available from: NMFS, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL 33149.
- Hansen, L.J., K.D. Mullin, T.A. Jefferson and G.P. Scott. 1996. Visual surveys aboard ships and aircraft. pp. 55-132.
 In: R. W. Davis and G. S. Fargion (eds.) Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027.
 Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
- Hastings, H. 1993. Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74: 1362-1372.
- Jefferson, T.A. and A.J. Schiro. 1997. Distribution of cetaceans in the offshore Gulf of Mexico. Mammal Rev. 27(1): 27-50.
- Lehr, B., S. Bristol and A. Possolo, eds. 2010. Oil budget calculator: Deepwater Horizon. Technical documentation. Prepared by the Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team for the National Incident Command. Available from: http://www.restorethegulf.gov/sites/default/files/documents/pdf/OilBudgetCalc_Full_HQ-Print_111110.pdf
- Litz, J.A., M.A. Baran, S.R. Bowen-Stevens, R.H. Carmichael, K.M. Colegrove, L.P. Garrison, S.E. Fire, E.M. Fougeres, R. Hardy, S. Holmes, W. Jones, B.E. Mase-Guthrie, D.K. Odell, P.E. Rosel, J.T. Saliki, D.K. Shannon, S.F. Shippee, S.M. Smith, E.M. Stratton, M.C. Tumlin, H.R. Whitehead, G.A.J. Worthy and T.K. Rowles. 2014. Review of historical unusual mortality events (UMEs) in the Gulf of Mexico (1990–2009): Providing context for the complex and long-lasting northern Gulf of Mexico cetacean UME. Dis. Aquat. Organ. 112: 161-175.
- Maze-Foley, K. and K.D. Mullin. 2006. Cetaceans of the oceanic northern Gulf of Mexico: Distributions, group sizes and interspecific associations. J. Cetacean Res. Manage. 8(2): 203-213.
- McNutt, M.K., R. Camilli, T.J. Crone, G.D. Guthrie, P.A. Hsieh, T.B. Ryerson, O. Savas and F. Shaffer. 2012. Review of flow rate estimates of the *Deepwater Horizon* oil spill. P. Natl. Acad. Sci. USA 109 (50): 20260-20267.
- Mullin, K.D. 2007. Abundance of cetaceans in the oceanic Gulf of Mexico based on 2003-2004 ship surveys. 26 pp. Available from: NMFS, Southeast Fisheries Science Center, P.O. Drawer 1207, Pascagoula, MS 39568.
- Mullin, K.D. and G. L. Fulling. 2003. Abundance and distribution of cetaceans in the southern U.S. Atlantic Ocean during summer 1998. Fish. Bull. 101:603-613.
- Mullin, K.D. and G. L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mamm. Sci. 20(4):787-807.
- Mullin, K.D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. pp. 111-172. *In:* R. W. Davis, W. E. Evans and B. Würsig (eds.) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 2000-003. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
- NOAA. 2011. Public scoping for preparation of a programmatic environmental impact statement for the Deepwater Horizon BP Oil Spill. Available from: http://www.gulfspillrestoration.noaa.gov/wp-content/uploads/2011/04/Public-DWH-PEIS-Scoping-Review-Document1.pdf
- NOAA. 2012. Federal Register 77:3233. National policy for distinguishing serious from non-serious injuries of marine mammals. Available from: http://www.nmfs.noaa.gov/op/pds/documents/02/238/02-238-01.pdf
- Operational Science Advisory Team (OSAT). 2010. Summary report for sub-sea and sub-surface oil and dispersant detection: Sampling and monitoring. Prepared for P. F. Zukunft, RADM, U.S. Coast Guard, Federal On-Scene Coordinator, Deepwater Horizon MC252, December 17, 2010. Available from: http://www.restorethegulf.gov/sites/default/files/documents/pdf/OSAT_Report_FINAL_17DEC.pdf
- Ortega Ortiz, J.G. 2002. Multiscale analysis of cetacean distribution in the Gulf of Mexico. Ph.D. dissertation. Texas A&M University, College Station. 170 pp.
- Peltier, H., W. Dabin, P. Daniel, O. Van Canneyt, G. Dorémus, M. Huon and V. Ridoux. 2012. The significance of

- stranding data as indicators of cetacean populations at sea: modelling the drift of cetacean carcasses. Ecol. Indicators 18: 278–290.
- Perrin, W. F., E. D. Mitchell, J. G. Mead, D. K. Caldwell, M. C. Caldwell, P. J. H. van Bree and W. H. Dawbin. 1987. Revision of the spotted dolphins, *Stenella* spp. Mar. Mamm. Sci. 3(2):99-170.
- Perrin, W. F., D. K. Caldwell and M. C. Caldwell. 1994. Atlantic spotted dolphin *Stenella frontalis* (G. Cuvier, 1829). pp. 173-190. *In:* S. H. Ridgway and R. Harrison (eds.) Handbook of marine mammals, Vol. 5: The first book of dolphins. Academic Press, London. 416 pp.
- Rice, D. W. 1998. Marine mammals of the world, systematics and distribution. Spec. Publ. No. 4. The Society for Marine Mammalogy, Lawrence, KS. 231 pp.
- Soldevilla, M.S., L.P. Garrison, E. Scott-Denton and J.M. Nance. 2015. Estimation of marine mammal bycatch mortality in the Gulf of Mexico shrimp otter trawl fishery. NOAA Tech. Memo. NMFS-SEFSC-672, 70 pp.
- Thomas, L., J. L. Laake, J. F. Derry, S. T. Buckland, D. L. Borchers, D. R. Anderson, K. P. Burnham, S. Strindberg, S. L. Hedley, F. F. C. Marques, J. H. Pollard and R. M. Fewster. 1998. Distance 3.5. Research Unit for Wildlife Population Assessment, University of St. Andrews, St. Andrews, UK.
- Twiner, M.J., L.J. Flewelling, S.E. Fire, S.R. Bowen-Stevens, J.K. Gaydos, C.K. Johnson, J.H. Landsberg, T.A. Leighfield, B. Mase-Guthrie, L. Schwacke, F.M. Van Dolah, Z. Wang and T.K. Rowles. 2012. Comparative analysis of three brevetoxin-associated bottlenose dolphin (*Tursiops truncatus*) mortality events in the Florida panhandle region (USA). PLOS ONE 7(8). 19 pp.
- Viricel, A. and P.E. Rosel. 2014. Hierarchical population structure and habitat differences in a highly mobile marine species: the Atlantic spotted dolphin. Mol. Ecol. 23: 5018–5035.
- Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, WA. NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
- Wells, R.S., J.B. Allen, G. Lovewell, J. Gorzelany, R.E. Delynn, D.A. Fauquier and N.B. Barros. 2015. Carcass-recovery rates for resident bottlenose dolphins in Sarasota Bay, Florida. Mar. Mamm. Sci. 31(1): 355-368.
- Yeung, C. 1999. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1998. NOAA Tech. Memo. NMFS-SEFSC-430, 26 pp.
- Yeung, C. 2001. Estimates of marine mammal and marine turtle bycatch by the U.S. Atlantic pelagic longline fleet in 1999-2000. NOAA Tech. Memo. NMFS-SEFSC-467, 43 pp.