
MINKE WHALE (Balaenoptera acutorostrata): Alaska Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

In the North Pacific, minke whales occur from the Bering and Chukchi seas south to near the Equator (Leatherwood et al. 1982). The following information was considered in classifying stock structure according to the Dizon et al. (1992) phylogeographic approach: 1) Distributional data: geographic distribution continuous; 2) Population response data: unknown; 3) Phenotypic data: unknown; and 4) Genotypic data: unknown. Based on this limited information, in 1991 the International Whaling Commission (IWC) recognized three stocks of minke whales in the North Pacific: one in the Sea of Japan/East China Sea, one in the rest of the western Pacific west of 180°N, and one in the "remainder" of the Pacific (Donovan 1991). The "remainder" stock designation reflects the lack of exploitation in the eastern Pacific and does not indicate that only one population exists in this area (Donovan 1991). In the "remainder" area,

Figure 1. Approximate distribution of minke whales in the eastern North Pacific (dark shaded areas).

minke whales are relatively common in the Bering and Chukchi seas and in the inshore waters of the Gulf of Alaska (Moore et al 2000, Friday et al. 2012, Clarke et al. 2013) but are not considered abundant in any other part of the eastern Pacific (Leatherwood et al. 1982, Brueggeman et al. 1990). Recent visual and acoustic data found minke whales in the Chukchi Sea north of Bering Strait in July and August (Clarke et al. 2013), and minke whale "boing" sounds have been detected in the northeast Chukchi Sea in August, October, and November (Delarue 2013). There are two types of geographically distinct "boing" sounds produced by minke whales in the North Pacific (Rankin and Barlow 2005). Those recorded in the Chukchi Sea matched "central Pacific" boings leading the authors to hypothesize that minke whales from the Chukchi Sea might winter in the central North Pacific, not near Hawaii (Delarue et al. 2013).

Ship surveys on the eastern Bering Sea shelf in 1999, 2000, 2002, 2004, 2008, and 2010 resulted in new information about the distribution and relative abundance of minke whales in this area (Moore et al. 2002; Friday et al. 2012, 2013). When comparing distribution and abundance in years when the entire study area was surveyed (2002, 2008, and 2010), Friday et al. (2013) found that minke whales were scattered throughout the study area in all oceanographic domains (coastal, middle shelf, and outer shelf/slope) in 2002 and 2008 but were concentrated in the outer shelf and slope in 2010. The highest minke whale abundance in the study area occurred in 2010 and abundance was greater in cold years (2008 and 2010) than a warm year (2002); however, changes in abundance were thought to be due at least in part to changes in distribution (Friday et al. 2013).

So few minke whales were seen during two offshore Gulf of Alaska surveys for cetaceans in 2009 and 2013 that a population estimate for this species in this area could not be determined (Rone et al. 2010, 2014).

In the northern part of their range, minke whales are believed to be migratory, whereas, they appear to establish home ranges in the inland waters of Washington and along central California (Dorsey et al. 1990). Because the "resident" minke whales from California to Washington appear behaviorally distinct from migratory whales farther north, minke whales in Alaska are considered a separate stock from minke whales in California, Oregon, and Washington (Dorsey et al. 1990). Accordingly, two stocks of minke whales are recognized in U.S. waters: 1) Alaska, and 2) California/Washington/Oregon (Fig. 1). The California/Oregon/Washington minke whale stock is reported separately in the Stock Assessment Reports for the U.S. Pacific Region.

POPULATION SIZE

No estimates have been made for the number of minke whales in the entire North Pacific. However, some information is available on the numbers of minke whales in some areas of Alaska. Visual surveys for cetaceans

were conducted on the eastern Bering Sea shelf in 2002, 2008, and 2010 in cooperation with research on commercial fisheries (Friday et al. 2013). The surveys included 3,752 km, 3,253 km, and 1,638 km of effort in 2002, 2008, and 2010, respectively. Results of the surveys in 2002, 2008, and 2010 provide provisional abundance estimates of 389 (CV = 0.52), 517 (CV = 0.69), and 2,020 (CV = 0.73) minke whales on the eastern Bering Sea shelf, respectively (Friday et al. 2013). These estimates are considered provisional because they have not been corrected for animals missed on the trackline, animals submerged when the ship passed, or responsive movement. Additionally, line-transect surveys were conducted in shelf and nearshore waters (within 30-45 nautical miles of land) in 2001-2003 from the Kenai Fjords in the Gulf of Alaska to the central Aleutian Islands. Minke whale abundance was estimated to be 1,233 (CV = 0.34) for this area (Zerbini et al. 2006). This estimate has also not been corrected for animals missed on the trackline. The majority of the sightings were in the Aleutian Islands, rather than in the Gulf of Alaska stock of minke whales because only a portion of the stock's range was surveyed.

Minimum Population

At this time, it is not possible to produce a reliable estimate of minimum abundance for this stock, as current estimates of abundance are not available.

Current Population Trend

There are no data on trends in minke whale abundance in Alaska waters.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

There are no estimates of the growth rate of minke whale populations in the North Pacific (Best 1993). Hence, until additional data become available, it is recommended that the cetacean maximum net productivity rate (R_{MAX}) of 4% be employed for this stock (Wade and Angliss 1997).

POTENTIAL BIOLOGICAL REMOVAL

Under the 1994 reauthorized Marine Mammal Protection Act (MMPA), the potential biological removal (PBR) is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor: $PBR = N_{MIN} \times 0.5R_{MAX} \times F_R$. Given the status of this stock is unknown, the appropriate recovery factor is 0.5 (Wade and Angliss 1997). However, because an estimate of minimum abundance is not available, the PBR for the Alaska minke whale stock is unknown at this time.

ANNUAL HUMAN-CAUSED MORTALITY

New Serious Injury Guidelines

NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historical injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998, Andersen et al. 2008, NOAA 2012). NMFS defines serious injury as an "*injury that is more likely than not to result in mortality*." Injury determinations for stock assessments revised in 2013 or later incorporate the new serious injury guidelines, based on the most recent 5-year period for which data are available.

Fisheries Information

Detailed information on U.S. commercial fisheries in Alaska waters (including observer programs, observer coverage, and observed incidental takes of marine mammals) is presented in Appendices 3-6 of the Alaska Stock Assessment Reports.

Six different commercial fisheries operating in Alaska waters within the range of the Alaska minke whale stock were monitored for incidental take by NMFS observers during 2009-2013: the Bering Sea/Aleutian Islands groundfish trawl, longline, and pot fisheries and the Gulf of Alaska groundfish trawl, longline, and pot fisheries. However, no mortality or serious injury of minke whales occurred in observed U.S. commercial fisheries in 2009-2013.

Alaska Native Subsistence/Harvest Information

No minke whales were ever taken by the modern shore-based whale fishery in the eastern North Pacific, which lasted from 1905 to 1971 (Rice 1974). Subsistence takes of minke whales by Alaska Natives are rare but have been known to occur. Only seven minke whales are reported to have been taken for subsistence by Alaska

Natives between 1930 and 1987 (C. Allison, International Whaling Commission, UK, pers. comm.). The most recent reported catches (two whales) in Alaska occurred in 1989 (Anonymous 1991), but reporting is likely incomplete. Based on this information, the average annual subsistence take was zero minke whales in 2009-2013.

Other Mortality

From 2009 to 2013, no human-related mortality or serious injury of minke whales was reported to the NMFS Alaska Region stranding database (Helker et al. 2015).

STATUS OF STOCK

Minke whales are not designated as "depleted" under the MMPA or listed as "threatened" or "endangered" under the Endangered Species Act. The greatest uncertainty regarding the status of the Alaska minke whale stock has to do with the uncertainty pertaining to the stock structure of this species in the eastern North Pacific. Because minke whales are considered common in the waters off Alaska and, because the number of human-related removals is currently thought to be minimal, this stock is presumed to not be a strategic stock. Reliable estimates of the minimum population size, population trends, PBR, and status of the stock relative to its Optimum Sustainable Population are currently not available. Because the PBR is unknown, the level of annual U.S. commercial fishery-related mortality and serious injury that can be considered insignificant and approaching zero mortality and serious injury rate is unknown.

HABITAT CONCERNS

Potential concerns include elevated levels of sound from anthropogenic sources (e.g., shipping, military sonars), possible changes in prey distribution with climate change, entanglement in fishing gear, ship strikes due to increased vessel traffic (e.g., from increased shipping in higher latitudes), and oil and gas activities.

CITATIONS

- Andersen, M. S., K. A. Forney, T. V. N. Cole, T. Eagle, R. Angliss, K. Long, L. Barre, L. Van Atta, D. Borggaard, T. Rowles, B. Norberg, J. Whaley, and L. Engleby. 2008. Differentiating serious and non-serious injury of marine mammals: report of the Serious Injury Technical Workshop, 10-13 September 2007, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-39, 94 p.
- Angliss, R. P., and D. P. DeMaster. 1998. Differentiating serious and non-serious injury of marine mammals taken incidental to commercial fishing operations. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-13, 48 p.

Anonymous. 1991. International Whaling Commission Report. Rep. Int. Whal. Comm. 41:1-2.

- Best, P. B. 1993. Increase rates in severely depleted stocks of baleen whales. ICES J. Mar. Sci. 50:169-186.
- Brueggeman, J. J., G. A. Green, K. C. Balcomb, C. E. Bowlby, R. A. Grotefendt, K. T. Briggs, M. L. Bonnell, R. G. Ford, D. H. Varoujean, D. Heinemann, and D. G. Chapman. 1990. Oregon-Washington marine mammal and seabird survey: information synthesis and hypothesis formulation. U.S. Dep. Interior, Outer Continental Shelf Study, Minerals Management Service 89-0030.
- Clarke, J., K. Stafford S. E. Moore, B. Rone, L. Aerts, and J. Crance. 2013. Subarctic cetaceans in the southern Chukchi Sea: evidence of recovery or response to a changing ecosystem. Oceanography 26(4):136-149.
- Delarue, J., B. Martin, and D. Hannay. 2013. Minke whale boing sound detections in the northeastern Chukchi Sea. Mar. Mammal Sci. 29:E333–E341.
- Dizon, A. E., C. Lockyer, W. F. Perrin, D. P. DeMaster, and J. Sisson. 1992. Rethinking the stock concept: a phylogeographic approach. Conserv. Biol. 6:24-36.
- Donovan, G. P. 1991. A review of IWC stock boundaries. Rep. Int. Whal. Comm. (Special Issue 13):39-68.
- Dorsey, E. M., S. J. Stern, A. R. Hoelzel, and J. Jacobsen. 1990. Minke whales (*Balaenoptera acutorostrata*) from the west coast of North America: individual recognition and small scale site fidelity. Rep. Int. Whal. Comm. (Special Issue 12):357-368.
- Friday, N. A., J. M. Waite, A. N. Zerbini, and S. E. Moore. 2012. Cetacean distribution and abundance in relation to oceanographic domains on the eastern Bering Sea shelf: 1999–2004. Deep-Sea Res. II 65-70:260-272.
- Friday, N. A., A. N. Zerbini, J. M. Waite, S. E. Moore, and P. J. Clapham. 2013. Cetacean distribution and abundance in relation to oceanographic domains on the eastern Bering Sea shelf in June and July of 2002, 2008, and 2010. Deep-Sea Res. II 94:244-256.
- Helker, V. T., B. M. Allen, and L. A. Jemison. 2015. Human-caused injury and mortality of NMFS-managed Alaska marine mammal stocks, 2009-2013. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-300, 94 p.

- Leatherwood, S., R. R. Reeves, W. F. Perrin, and W. E. Evans. 1982. Whales, dolphins, and porpoises of the eastern North Pacific and adjacent Arctic waters: a guide to their identification. U.S. Dep. Commer., NOAA Tech. Rep. NMFS Circular 444, 245 p.
- Moore, S. E., J. M. Waite, L. L. Mazzuca, and R. C. Hobbs. 2000. Provisional estimates of mysticete whale abundance on the central Bering Sea shelf. J. Cetacean Res. Manage. 2(3):227-234.
- Moore, S. E., J. M. Waite, N. A. Friday and T. Honkalehto. 2002. Distribution and comparative estimates of cetacean abundance on the central and south-eastern Bering Sea shelf with observations on bathymetric and prey associations. Prog. Oceanogr. 55(1-2):249-262.
- NOAA. 2012. Federal Register 77:3233. National policy for distinguishing serious from non-serious injury of marine mammals. Available online: http://www.nmfs.noaa.gov/op/pds/documents/02/238/02-238-01.pdf. Accessed December 2015.
- Rankin, S., and J. Barlow. 2005. Source of the North Pacific "boing" sound attributed to minke whales. J. Acoust. Soc. Am. 118:3346–3351.
- Rice, D. W. 1974. Whales and whale research in the eastern North Pacific. Pp. 170-195 *In* W. E. Schevill (ed.), The Whale Problem: A Status Report. Harvard Press, Cambridge, MA.
- Rone, B. K., A. B. Douglas, A. N. Zerbini, L. Morse, A. Martinez, P. J. Clapham, and J. Calambokidis. 2010. Results from the April 2009 Gulf of Alaska line transect survey (GOALS) in the Navy training exercise area. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-209, 39 p.
- Rone, B. K., A. B. Douglas, T. M. Yack, A. N. Zerbini, T. N. Norris, E. Ferguson, and J. Calambokidis. 2014. Report for the Gulf of Alaska Line-Transect Survey (GOALS) II: marine mammal occurrence in the Temporary Maritime Activities Area (TMAA). Submitted to Naval Facilities Engineering Command (NAVFAC) Pacific, Honolulu, HI under Contract No. N62470-10-D-3011, Task Order 0022, issued to HDR Inc., San Diego, CA. Prepared by Cascadia Research Collective, Olympia, WA; Alaska Fisheries Science Center, Seattle, WA; and Bio-Waves, Inc., Encinitas, CA. April 2014.
- Wade, P. R., and R. Angliss. 1997. Guidelines for assessing marine mammal stocks: report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 p.
- Zerbini, A. N., J. M. Waite, J. L. Laake, and P. R. Wade. 2006. Abundance, trends, and distribution of baleen whales off western Alaska and the central Aleutian Islands. Deep-Sea Res. I 53:1772-1790.