SPOTTED SEAL (Phoca largha): Alaska Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Spotted seals are distributed along the continental shelf of the Bering, Chukchi, and Beaufort seas, and the Sea of Okhotsk south to the western Sea of Japan and northern Yellow Sea (Fig. 1). Eight main areas of spotted seal breeding have been reported (Shaughnessy and Fay 1977). On the basis of small samples and preliminary analyses of genetic composition, potential geographic barriers, and significance of breeding groups Boveng et al. (2009) grouped those breeding areas into three Distinct Population Segments (DPSs): The Bering DPS, which includes breeding areas in the Bering Sea; the Okhotsk DPS; and the Southern DPS, which includes spotted seals breeding in the Yellow Sea and Peter the Great Bay in the Sea of Japan. For the purposes of this stock assessment the Bering DPS is considered the Alaska stock of the spotted seal.

The distribution of spotted seals is seasonally related to specific life history events that can be broadly divided into two periods: late-fall through spring when whelping, nursing, breeding, and molting occur in association with

Figure 1. Approximate distribution of spotted seals (shaded area).

the presence of sea ice on which the seals haul out, and summer through fall when seasonal sea ice has melted and most spotted seals use land for hauling out (Boveng et al. 2009). Satellite tagging studies showed that seals tagged in the northeastern Chukchi Sea moved south in October and passed through the Bering Strait in November. Seals overwintered in the Bering Sea along the ice edge and made east-west movements along the edge (Lowry et al. 1998). During spring they tend to prefer small floes (i.e., < 20 m in diameter), and inhabit mainly the southern margin of the ice in areas where water depth does not exceed 200 m, and move to coastal habitats after molting and the retreat of the sea ice (Fay 1974, Shaughnessy and Fay 1977, Lowry et al. 2000, Simpkins et al. 2003). In summer and fall, spotted seals use coastal haul-out sites regularly (Frost et al. 1993, Lowry et al. 1998), and may be found as far north as 69-72°N in the Chukchi and Beaufort Seas (Porsild 1945, Shaughnessy and Fay 1977). To the south, along the west coast of Alaska, spotted seals are known to occur around the Pribilof Islands, Bristol Bay, and the eastern Aleutian Islands. Spotted seals are closely related to and often mistaken for Pacific harbor seals (Phoca vitulina richardii). The two species are often seen together and are partially sympatric, as their ranges overlap in the southern part of the Bering Sea (Quakenbush 1988). Yet, spotted seals breed earlier and are less social during the breeding season, and only spotted seals are strongly associated with pack ice (Shaughnessy and Fay 1977). These and other ecological, behavioral, genetic, and morphological differences support their recognition as two separate species (Quakenbush 1988, O'Corry-Crowe and Westlake 1997).

The following information was considered in classifying stock structure based on the Dizon et al. (1992) phylogeographic approach: 1) Distributional data: geographic distribution continuous; 2) Population response data: unknown; 3) Phenotypic data: unknown; 4) Genotypic data: unknown. Based on this limited information, and the absence of any significant fishery interactions, there is currently no strong evidence to suggest splitting Alaska spotted seals into more than one stock. Therefore, only one Alaska stock is recognized in U.S. waters.

POPULATION SIZE

Recent surveys and analyses have substantially improved the documentation of the spotted seal population breeding in the U.S. waters of the Bering Sea. A large segment (280,000 km²) of the breeding area was surveyed by helicopter from an icebreaker in the spring of 2007; the abundance of spotted seals was estimated using a model that

incorporated variation due to detectability, availability (proportion hauled out), and changes in extent and concentration of sea ice during the surveys. The modal estimate of abundance was 233,700 spotted seals with a 95% credible interval of 137,300-793,100 (Ver Hoef et al. 2014). A more extensive fixed-wing aerial survey (767,000 km²) conducted during April-May of 2012 and 2013 encompassed the vast majority of the spotted seal breeding area. Analysis of a portion of the data, from 10 broadly-distributed survey flights during 20-27 April 2012, resulted in a mean estimate of 460,268 spotted seals, with a 95% CI of 391,000-559,993 (Conn et al. 2014). The method accounted for uncertainty in detection rate and species classification, as well as availability.

Other, previous surveys and estimates for spotted seals in the Bering Sea (e.g., Braham et al. 1984, Fedoseev et al. 1988, Fedoseev 2000, Rugh et al. 1995) are problematic to interpret and to compare with recent estimates because there is insufficient information available to assess detection rates, species mis-classification rates, area surveyed, extrapolation to unsurveyed areas, and other critical factors for estimating abundance and trends (Burkanov et al. 1988, Conn et al. 2013, Ver Hoef et al. 2014).

Minimum Population Estimate

The 2012 survey was used as the basis for the minimum population estimate because it was the most current survey, the survey tracks encompassed more of the spotted seal breeding area than did the 2007 tracks, and it was conducted at a substantially higher altitude (1,000 ft.) than the 2007 survey (400 ft.), reducing the potential for bias from disturbance. Conn et al. (2014) acknowledged potential upward bias resulting from the process of extrapolating to unsurveyed areas; consequently, the lower 95% confidence limit, rather than the lower 80% limit was used for the minimum population estimate, $N_{MIN} = 391,000$.

Current Population Trend

Frost et al. (1993) report that counts of spotted seals were relatively stable at Kasegaluk Lagoon from the mid-1970s through 1991. Because this represents only a fraction of the stock's range and the data are outdated, reliable data on trends in population abundance for the Alaska stock of spotted seals are considered unavailable.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

A reliable estimate of the maximum net productivity rate is currently unavailable for the Alaska stock of spotted seals. Hence, until additional data become available, it is recommended that the pinniped maximum theoretical net productivity rate (R_{MAX}) of 12% be employed for this stock (Wade and Angliss 1997).

POTENTIAL BIOLOGICAL REMOVAL

Under the 1994 reauthorized Marine Mammal Protection Act (MMPA), the potential biological removal (PBR) is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor: $PBR = N_{MIN} \times 0.5R_{MAX} \times F_R$. The recovery factor (F_R) for this stock is 0.5, the value for pinniped stocks with unknown population status (Wade and Angliss 1997). Therefore, PBR for this stock is 391,000 × 0.06 × 0.5 = 11,730 individuals.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

New Serious Injury Guidelines

NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998, Andersen et al. 2008, NOAA 2012). NMFS defines serious injury as an "*injury that is more likely than not to result in mortality*". Injury determinations for stock assessments revised in 2013 or later incorporate the new serious injury guidelines, based on the most recent 5-year period for which data are available.

Fisheries Information

Prior to 2004, there were no reports of incidental serious injuries and mortalities of spotted seals in any of the observed fisheries. Between 2008 and 2012, incidental serious injuries and mortalities of spotted seals were reported in 3 of the 22 federally regulated commercial fisheries in Alaska monitored for incidental mortality by fisheries observers: the Bering Sea/Aleutian Islands flatfish trawl, Bering Sea/Aleutian Islands pollock trawl, and the Bering Sea/Aleutian Islands Pacific cod longline fisheries (Table 1). The total estimated minimum annual mortality rate incidental to commercial fisheries is 1.5 (CV = 0.13) spotted seals per year, based on observer data.

Serious injury and mortality of harbor seals incidental to commercial fisheries has occurred within the past five years and, because it is virtually impossible to distinguish between these two species, some of the reported harbor seal takes may actually have been spotted seals. Further, no observer programs have been done on nearshore Bristol Bay fisheries that are known to interact with this stock, making the total mortality due to fisheries unknown.

Table 1.	Summary of incidental mortality of spotted seals (Alaska stock) du	lue to c	commercial fish	eries from 2008
through 2	012 and calculation of the mean annual mortality rate (Breiwick 20	013). I	Details of how p	percent observer
coverage	is measured are included in Appendix 6.			

Fishery name	Years	Data	Observer	Reported	Estimated	Mean		
		type	coverage	mortality (in	mortality (in	annual		
				given yrs.)	given yrs.)	mortality		
Bering Sea/Aleutian Islands	2008	obs	100	2	2.0	1.00		
flatfish trawl	2009	data	100	1	1.0	(CV = 0.01)		
	2010		100	0	0			
	2011		100	0	0			
	2012		100	2	2.0			
Bering Sea/Aleutian Islands	2008	obs	85	0	0	0.20		
pollock trawl	2009	data	86	0	0	(CV = 0.11)		
	2010		86	1	1.0			
	2011		98	0	0			
	2012		98	0	0			
Bering Sea/Aleutian Islands	2008	obs	63	0	0	0.32		
Pacific cod longline	2009	data	60	0	0	(CV = 0.61)		
	2010		64	0	0			
	2011		57	1	1.6			
	2012		51	0	0			
Minimum total annual mortality								
						(CV = 0.13)		

Subsistence/Native Harvest Information

Spotted seals are an important species for Alaskan subsistence hunters, primarily in the Bering Strait and Yukon-Kuskokwim regions.

Few studies give a statewide estimate of subsistence take. The Division of Subsistence, Alaska Department of Fish and Game and the Alaska Native Harbor Seal Commission have reported subsistence harvest levels of harbor seals and sea lions annually (e.g., Wolfe et al. 2009). Harvest data were reported from 63 coastal communities, including 6 communities from northern Bristol Bay. Due to seasonal geographic overlap in spotted and harbor seal distribution in northern Bristol Bay in combination with the difficulty in distinguishing the two species from external morphology, reports of harvests of spotted seals were differentiated from harbor seals based on ecological features of the kill, primarily degree of association with seasonal ice (Wolfe et al. 2008). In 2008, six coastal villages in northern Bristol Bay reported a total of 271 spotted seals taken during for subsistence harvest (213 harvested, 58 struck and lost). As of 2009, data on community subsistence harvests are no longer being collected. Five Alaska Native communities in the Northwest Arctic region of Alaska voluntarily reported a total of 119 spotted seals were harvested during 2012 (Ice Seal Committee 2013). No complete data for the spotted seal harvest and struck and lost animals are available for the 2008-2012 period.

The Division of Subsistence, Alaska Department of Fish and Game, maintains a database that provides additional information on the subsistence harvest of ice seals in different regions of Alaska (ADFG 2000a, b). Information on subsistence harvest of spotted seals has been compiled for 135 villages from reports from the Division of Subsistence (Coffing et al. 1998, Georgette et al. 1998, Wolfe and Hutchinson-Scarbrough 1999) and a report from the Eskimo Walrus Commission (Sherrod 1982). Data were lacking for 22 villages; their harvests were estimated using the annual per capita rates of subsistence harvest from a nearby village. Harvest levels were estimated from data gathered in the 1980s for 16 villages; otherwise, data gathered from 1990-1998 were used. As of August 2000; the subsistence harvest database indicated that the estimated number of spotted seals harvested for subsistence use per year was 5,265.

At this time, there are no efforts to quantify the total statewide level of harvest of spotted seals by all Alaska communities.

A report on ice seal subsistence harvest in three Alaskan communities indicated that the number and species of ice seals harvested in a particular village may vary considerably among years (Coffing et al. 1999). These interannual differences are likely due to differences in ice and wind conditions that change the hunters' access to different ice habitats frequented by different types of seals. Although some of the more recent entries in the ADFG database have associated measures of uncertainty (Coffing et al. 1999, Georgette et al. 1998), the overall total does not. The estimate of 5,265 spotted seals is the best estimate of harvest level currently available.

STATUS OF STOCK

Spotted seals in Alaska are not designated as "depleted" under the MMPA or listed as "threatened" or "endangered" under the Endangered Species Act. Based on currently available data, the minimum estimated U.S. commercial fishery-related mortality and serious injury for this stock (1.52) is less than 10% of the calculated PBR (1,173) and, therefore, can be considered to be insignificant and approaching a zero mortality and serious injury rate. The estimated annual level of total human-caused mortality and serious injury is 1.52 (commercial fisheries) + 5,265 (Alaska Native harvest) = 5,267 does not exceed the PBR (11,730) for this stock. The Alaska stock of spotted seals is not considered a strategic stock.

On 28 March 2008, NMFS initiated a status review of the spotted seal (73 FR 16617). On 28 May 2008, NMFS received a petition to list spotted seals under the ESA, primarily due to concern about threats to this species' habitat from loss of sea ice and climate change in the Arctic. NMFS found that the petition presented sufficient information to consider listing and proceeded with the status review (73 FR 51615, 4 September 2008). After the status review was complete (Boveng et al. 2009), NMFS determined that listing the Bering and Okhotsk DPSs of spotted seals was not warranted at this time. The Southern DPS, however, was proposed for listing as "threatened" under the ESA (74 FR 53683, 20 October 2009). After fully considering comments from peer reviewers and the public, NMFS issued a final rule listing the Southern DPS as "threatened" on 22 October 2010 (75 FR 65239).

Habitat Concerns

The main concern about the conservation status of spotted seals stems from the likelihood that their sea-ice habitat has been modified by the warming climate and, more so, that the scientific consensus projections are for continued and perhaps accelerated warming in the foreseeable future (Boveng et al. 2009). Despite the recent dramatic reductions in Arctic Ocean ice extent during summer, the sea ice in the Bering Sea is expected to continue forming annually in winter for the foreseeable future. There will likely be more frequent years in which ice coverage is reduced, resulting in a decline in the long-term average ice extent, but Bering Sea spotted seals will likely continue to encounter sufficient ice to support adequate vital rates. Even if sea ice were to vanish completely from the Bering Sea, there may be prospects for spotted seals to adjust their breeding grounds to follow the northward shift of the annual ice front into the Chukchi Sea. Laidre et al. (2008) concluded that on a worldwide basis spotted seals were likely to be moderately sensitive to climate change based on an analysis of various life history features that could be affected by climate.

A second major concern, related by the common driver of carbon dioxide (CO_2) emissions, is the modification of habitat by ocean acidification, which may alter prey populations and other important aspects of the marine ecosystem. Ocean acidification, a result of increased CO_2 in the atmosphere, may impact spotted seal survival and recruitment through disruption of trophic regimes that are dependent on calcifying organisms. The nature and timing of such impacts are extremely uncertain. Because of spotted seals' apparent dietary flexibility, this threat should be of less immediate concern than the direct effects of sea-ice degradation (Boveng et al. 2009).

Additional habitat concerns include the potential effects from oil and gas exploration activities, particularly in the outer continental shelf leasing areas, such as disturbance from vessel traffic, seismic exploration noise, or the potential for oil spills.

CITATIONS

- Alaska Department of Fish and Game. 2000a. Community Profile Database 3.04 for Access 97. Division of Subsistence, Anchorage.
- Alaska Department of Fish and Game. 2000b. Seals+ Database for Access 97. Division of Subsistence, Anchorage.
- Andersen, M. S., K. A. Forney, T. V. N. Cole, T. Eagle, R. Angliss, K. Long, L. Barre, L. Van Atta, D. Borggaard, T. Rowles, B. Norberg, J. Whaley, and L. Engleby. 2008. Differentiating Serious and Non-Serious Injury of Marine Mammals: Report of the Serious Injury Technical Workshop, 10-13 September 2007, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-39, 94 p.

- Angliss, R. P., and D. P. DeMaster. 1998. Differentiating serious and non-serious injury of marine mammals taken incidental to commercial fishing operations. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-13, 48 p.
- Boveng, P. L., J. L. Bengtson, T. W. Buckley, M. F. Cameron, S. P. Dahle, B. P. Kelly, B. A. Megrey, J. E. Overland, and N. J. Williamson. 2009. Status review of the spotted seal (*Phoca largha*). U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-200, 153 p.
- Braham, H. W., J. J. Burns, G. A. Fedoseev, and B. D. Krogman. 1984. Habitat partitioning by ice-associated pinnipeds: distribution and density of seals and walruses in the Bering Sea, April 1976 Pages 25-47 in F. H. Fay and G. A. Fedoseev, editors. Soviet-American Cooperative Research on Marine Mammals. Volume 1 Pinnipeds. U.S. Dep. Commer., NOAA Tech. Rep. NMFS-12.
- Breiwick, J. M. 2013. North Pacific marine mammal bycatch estimation methodology and results, 2007-2011. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-260, 40 p.
- Burkanov, V. N., A. R. Semenov, S. A. Mashagin, and E. V. Kitayev. 1988. Data on abundance of ice forms of seals in the Karaginski Gulf of the Bering Sea in 1986-1987. Pages 71-80 in N. S. Chernysheva, editor. Scientific Research on Sea Mammals of the Northern Part of the Pacific Ocean in 1986-1987. All-Union Scientific Research Institute of Sea Fisheries and Oceanography (VNIRO), Moscow, Russia. (Translated from Russian by Canada Institute for Scientific and Technical Information, National Research Council, Ottawa, Canada, 9 p.).
- Coffing, M., C. Scott, and C.J. Utermohle. 1998. The subsistence harvest of seals and sea lions by Alaska Natives in three communities of the Yukon-Kuskokwim Delta, Alaska, 1997-1998. Technical Paper No. 255, Alaska Dep. Fish and Game, Division of Subsistence, Juneau.
- Coffing, M., C. Scott, and C.J. Utermohle. 1999. The subsistence harvest of seals and sea lions by Alaska Natives in three communities of the Yukon-Kuskokwim Delta, Alaska, 1998-1999. Technical Paper No. 257, Alaska Dep. Fish and Game, Division of Subsistence, Juneau.
- Conn, P. B., B. T. McClintock, M. F. Cameron, D. S. Johnson, E. E. Moreland, and P. L. Boveng. 2013. Accommodating species identification errors in transect surveys. Ecology 94:2607-2618.
- Conn, P. B., J. M. Ver Hoef, B. T. McClintock, E. E. Moreland, J. M. London, M. F. Cameron, S. P. Dahle, and P. L. Boveng. 2014. Estimating multispecies abundance using automated detection systems: ice-associated seals in the Bering Sea. Methods in Ecology and Evolution 5:1280-1293. DOI 10.1111/2041-210X.12127
- Dizon, A. E., C. Lockyer, W. F. Perrin, D. P. DeMaster, and J. Sisson. 1992. Rethinking the stock concept: a phylogeographic approach. Conserv. Biol. 6:24-36.
- Fay, F. H. 1974. The role of ice in the ecology of marine mammals of the Bering Sea. Pp. 383-389 In D. W. Hood and E. J. Kelley (eds.), Oceanography of the Bering Sea. Univ. Alaska, Fairbanks, Inst. Mar. Sci. Occas. Publ. 2.
- Fedoseev, G. A. 2000. Population biology of ice-associated forms of seals and their role in the northern Pacific ecosystems. Center for Russian Environmental Policy, Russian Marine Mammal Council, Moscow, Russia. 271 p. (Translated from Russian by I. E. Sidorova, 271 p.).
- Fedoseev, G. A., Y. V. Razlivalov, and G. G. Bobrova. 1988. Distribution and abundance of the ice forms of pinnipeds on the ice of the Bering Sea in April and May 1987. Pages 42-59 in N. S. Chernysheva, editor. Scientific Research on Sea Mammals of the Northern Part of the Pacific Ocean in 1986-1987. All-Union Scientific Research Institute of Sea Fisheries and Oceanography (VNIRO), Moscow, Russia. (Translated from Russian by Canada Institute for Scientific and Technical Information, National Research Council, Ottawa, Canada, 189 p.).
- Frost, K. J., L. F. Lowry, and G. Carroll. 1993. Beluga whale and spotted seal use of a coastal lagoon system in the northeastern Chukchi Sea. Arctic 46:8-16.
- Georgette, S., M. Coffing, C. Scott, and C. Utermohle. 1998. The subsistence harvest of seals and sea lions by Alaska Natives in the Norton Sound-Bering Strait Region, Alaska, 1996-97. Technical Paper No. 242, Alaska Dep. Fish and Game, Division of Subsistence, Juneau.
- Ice Seal Committee. 2013. Northwest Arctic ice seal harvest survey for 2012. Ice Seal Committee Newsletter, 1(1):3.
- Laidre, K. L., I. Stirling, L. Lowry, Ø. Wiig, M. P. Heide-Jørgensen, and S. Ferguson. 2008. Quantifying the sensitivity of arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18(2):S97-S125.
- Lowry, L. F., V. N. Burkanov, K. J. Frost, M. A. Simpkins, A. Springer, D. P. DeMaster, and R. Suydam. 2000. Habitat use and habitat selection by spotted seals (*Phoca largha*) in the Bering Sea. Can. J. Zool. 78:1959-1971.

- Lowry, L. F., K. J. Frost, R. Davis, D. P. DeMaster, and R. S. Suydam. 1998. Movements and behavior of satellitetagged spotted seals (*Phoca largha*) in the Bering and Chukchi Seas. Polar Biol. 19:221-230.
- NOAA. 2012. Federal Register 77:3233. National Policy for Distinguishing Serious From Non-Serious Injuries of Marine Mammals. Available online: <u>http://www.nmfs.noaa.gov/op/pds/documents/02/238/02-238-01.pdf.</u>
- O'Corry-Crowe, G.M., and R.L. Westlake. 1997. Molecular investigations of spotted seals (*Phoca larhga*) and harbor seals (*P. vitulina*), and their relationships in areas of sympatry. Pages 291-304 in A.E. Dizon, S.J. Chivers, and W.F. Perrin, editors. Molecular Genetics of Marine Mammals. The Society of Marine Mammalogy, Special Publication 3.
- Porsild, A. E. 1945. Mammals of the Mackenzie Delta. Can. Field-Nat. 59:4-22.
- Quakenbush, L. T. 1988. Spotted seal, *Phoca largha*. Pp. 107-124 *In* J. W. Lentfer (ed.), Selected marine mammals of Alaska. Species accounts with research and management recommendations. Marine Mammal Commission, Washington, D.C.
- Rugh, D. J., K. E. W. Shelden, and D. E. Withrow. 1995. Spotted seal sightings in Alaska 1992-93: Final Report. Annual report to the MMPA Assessment Program, Office of Protected Resources, NMFS, NOAA, 1335 East-West Highway, Silver Spring, MD 20910.
- Shaughnessy, P. D., and F. H. Fay. 1977. A review of the taxonomy and nomenclature of North Pacific harbour seals. J. Zool. (Lond.) 182:385-419.
- Sherrod, G. K. 1982. Eskimo Walrus Commission's 1981 Research Report: The Harvest and Use of Marine Mammals in Fifteen Eskimo Communities. Kawerak, Inc., Nome.
- Simpkins, M. A., L. M. Hiruki-Raring, G. Sheffield, J. M. Grebmeier, and J. L. Bengtson. 2003. Habitat selection by ice-associated pinnipeds near St. Lawrence Island, Alaska in March 2001. Polar Biol. 26:577-586.
- Ver Hoef, J. M., M. F. Cameron, P. L. Boveng, J. M. London, and E. E. Moreland. 2014. A spatial hierarchical model for abundance of three ice-associated seal species in the eastern Bering Sea. Statistical Methodology 17:46-66. DOI: 10.1016/j.stamet.2013.03.001.
- Wade, P. R., and R. Angliss. 1997. Guidelines for assessing marine mammal stocks: report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 pp.
- Wolfe, R., and L. B. Hutchinson-Scarbrough. 1999. The subsistence harvest of harbor seal and sea lion by Alaska Natives in 1998. Technical Paper No. 250, Alaska Dep. Fish and Game, Division of Subsistence, Juneau.
- Wolfe, R. J., J. A. Fall, and M. Riedel. 2008. The subsistence harvest of harbor seals and sea lions by Alaska Natives in 2006. Alaska Dep. Fish and Game, Division of Subsistence Technical Paper No. 339. Juneau, AK.
- Wolfe, R. J., J. A. Fall, and M. Riedel. 2009. The subsistence harvest of harbor seals and sea lions by Alaska Natives in 2008. Alaska Native Harbor Seal Commission and Alaska Dep. Fish and Game, Division of Subsistence Technical Paper No. 347. Anchorage, AK.

BEARDED SEAL (Erignathus barbatus nauticus): Alaska Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bearded seals are a boreoarctic species with a circumpolar distribution (Fedoseev 1965, Johnson et al. 1966, Burns 1967, Burns and Frost 1979, Burns 1981, Smith 1981, Kelly 1988). Their normal range extends from the Arctic Ocean (85°N) south to Sakhalin Island (45°N) in the Pacific, and south to Hudson Bay (55°N) in the Atlantic (Allen 1880, Ognev 1935, King 1983). Bearded seals inhabit the seasonally icecovered seas of the Northern Hemisphere where they whelp and rear their pups, and molt their coats on the ice in the spring and early summer. Bearded seals feed primarily on benthic organisms, including epifaunal and infaunal invertebrates, and demersal fishes and so are closely linked to areas where the seafloor is shallow (less than 200 m).

Two subspecies have been described: *E. b. barbatus* from the Laptev Sea, Barents Sea, North Atlantic Ocean, and Hudson Bay (Rice 1998); and *E. b. nauticus* from the remaining portions of the Arctic Ocean and the Bering and Okhotsk Seas (Ognev 1935, Scheffer 1958, Manning 1974, Heptner et al. 1976). The

Figure 1. Approximate distribution of bearded seals (shaded area) in Alaska. The combined summer and winter distribution are depicted.

geographic distributions of these subspecies are not separated by conspicuous gaps, and there are regions of intergrading generally described as somewhere along the northern Russian and central Canadian coasts. As part of a status review of the bearded seal for consideration of listing as threatened or endangered, Cameron et al. (2010) defined longitude $112^{\circ}W$ in the Canadian Arctic Archipelago as the North American delineation between the two subspecies and $145^{\circ}E$ as the Eurasian delineation between the two subspecies. Based on evidence for discreteness and ecological uniqueness of bearded seals in the Sea of Okhotsk, the *E. b. nauticus* subspecies was further divided into an Okhotsk Distinct Population Segment (DPS) and a Beringia DPS, so named because the continental shelf waters of the Bering, Chukchi, Beaufort, and East Siberian Seas that are the bearded seals range in this region overlie much of the land bridge that was exposed during the last glaciation and that has been referred to as Beringia. For the purposes of this stock assessment the Beringia DPS is considered the Alaska Stock of the bearded seal.

Spring surveys conducted in 1999 and 2000 along the Alaskan coast indicate that bearded seals tend to prefer areas of between 70% and 90% sea ice coverage, and are typically more abundant 20-100 nmi from shore than within 20 nmi of shore, with the exception of high concentrations nearshore to the south of Kivalina (Bengtson et al. 2000, Bengtson et al. 2005, Simpkins et al. 2003). Many of the seals that winter in the Bering Sea move north through the Bering Strait from late April through June, and spend the summer along the ice edge in the Chukchi Sea (Burns 1967, Burns 1981), although aerial surveys and tagging data suggest they spend time in open water with the loss of ice edge in the Chukchi in summer months. Bearded seal sounds (produced by adult males) have been recorded year-round at multiple locations in the Beaufort Sea and calling behavior is closely related to the presence of sea ice (MacIntyre et al. 2013). The overall summer distribution is quite broad, with seals rarely hauled out on land, and some seals, mostly juveniles, may not follow the ice northward but remain near the coasts of the Bering and Chukchi Seas (Burns 1967, Heptner et al. 1976, Burns 1981, Nelson 1981). As the ice forms again in the fall and winter, most seals move south with the advancing ice edge through the Bering Strait into the Bering Sea where they spend the winter (Burns and Frost 1979, Frost et al. 2005, Cameron and Boveng 2007, Frost et al. 2008, Cameron and Boveng 2009). This southward migration is less noticeable and predictable than the northward movements in late spring and early summer (Burns and Frost 1979, Burns 1981, Kelly 1988). During winter, the central and northern parts of the Bering Sea shelf have the highest densities of bearded seals (Fay 1974, Heptner et