
STELLER SEA LION (Eumetopias jubatus): Western U.S. Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Steller sea lions range along the North Pacific Rim from northern Japan to California (Loughlin et al. 1984), with centers of abundance and distribution in the Gulf of Alaska and Aleutian Islands (Fig. 1). numbers of individuals disperse widely outside of the breeding season (late May-early July), probably to access seasonally important prey resources. This results in marked seasonal patterns of abundance in some parts of the range and potential for intermixing in foraging areas of animals that were born in different areas (Sease and York 2003). Despite the wide-ranging movements of juveniles and adult males in particular, exchange between rookeries by breeding adult females and males (other than between adjoining rookeries) is low. although males have a higher tendency to disperse than females (NMFS 1995, Trujillo et al. 2004, Hoffman et al. 2006).

Loughlin (1997) and Phillips et al. (2009) considered the following

Figure 1. Generalized distribution (crosshatched area) of Steller sea lions in the North Pacific and major U.S. haulouts and rookeries (50 CFR 226.202, 27 August 1993), as well as active Asian and Canadian (British Columbia) haulouts and rookeries (points: Burkanov and Loughlin 2005; S. Majewski, Fisheries and Oceans Canada, personal communication). Black dashed line (144°W) indicates stock boundary (Loughlin 1997) and solid black line delineates U.S. Exclusive Economic Zone.

information when classifying stock structure based on the phylogeographic approach of Dizon et al. (1992): 1) Distributional data: geographic distribution continuous, yet a high degree of natal site fidelity and low (<10%) exchange rate of breeding animals between rookeries; 2) Population response data: substantial differences in population dynamics (York et al. 1996); 3) Phenotypic data: skull morphology (Phillips et al. 2009); and 4) Genotypic data: substantial differences in mitochondrial DNA (Bickham et al. 1996). Based on this information, two separate stocks of Steller sea lions were recognized within U.S. waters: an eastern U.S. stock, which includes animals born east of Cape Suckling, Alaska (144°W), and a western U.S. stock, which includes animals born at and west of Cape Suckling (Loughlin 1997; Fig. 1). However, Jemison et al. (2013) summarized that there is regular movement of Steller sea lions from the western DPS (males and females equally) and eastern DPS (almost exclusively males) across the DPS boundary.

Steller sea lions that breed in Asia are considered part of the western stock. Whereas Steller sea lions seasonally inhabit coastal waters of Japan in the winter, breeding rookeries outside of the U.S. are currently only located in Russia (Burkanov and Loughlin 2005). Analyses of genetic data differ in their interpretation of separation between Asian and Alaskan sea lions. Based on analysis of mitochondrial DNA, Baker et al. (2005) found evidence of a genetic split between the Commander Islands (Russia) and Kamchatka that would include Commander Island sea lions within the western U.S. stock and animals west of there in an Asian stock. However, Hoffman et al. (2006) did not support an Asian/western stock split based on their analysis of nuclear microsatellite markers indicating high rates of male gene flow. Berta and Churchill (2012) concluded that a putative Asian stock is "not substantiated by microsatellite data since the Asian stock groups with the western stock". All genetic analyses (Baker et al. 2005; Harlin-Cognato et al. 2006; Hoffman et al. 2006, 2009; O'Corry-Crowe et al. 2006) confirm a strong separation between western and eastern stocks, and there may be sufficient morphological differentiation to support elevating the two recognized stocks to subspecies (Phillips et al. 2009), although a recent review by Berta and Churchill (2012) characterized that status of these subspecies assignments as "tentative" and requiring further attention before their status can be determined. Recent work by Phillips et al. (2011) addressed the effect of climate change, in the

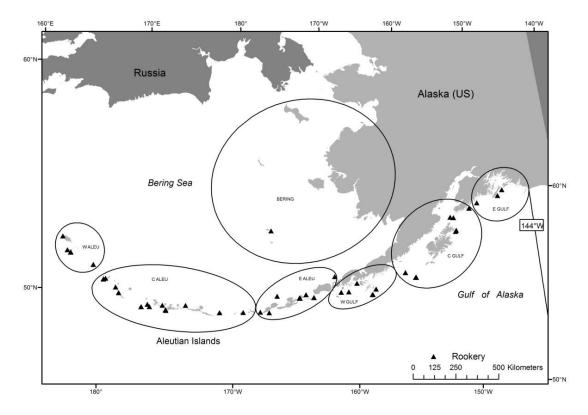
form of glacial events, on the evolution of Steller sea lions and reported that the effective population size at the time of the event determines the impact of change on the population. The results suggested that during historic glacial periods, dispersal events were correlated with historically low effective population sizes, while range fragmentation type events were correlated with larger effective population sizes. This work again reinforced the stock delineation concept by noting that ancient population subdivision likely led to the sequestering of most mtDNA haplotypes as DPS, or subspecies-specific (Phillips et al. 2011).

In 1998, a single Steller sea lion pup was observed on Graves Rock in northern Southeast Alaska, and by 2013, pup counts had increased to 551 (DeMaster 2014). Mitochondrial and microsatellite analysis of pup tissue samples collected in 2002 revealed that approximately 70% of the pups had mtDNA haplotypes that were consistent with those found in the western stock (Gelatt et al. 2007). Similarly, a rookery to the south on the White Sisters Islands where pups were first noted in 1990 was also sampled in 2002 and approximately 45% of those pups had western stock haplotypes. Collectively, this information demonstrates that these two most recently established rookeries in northern southeast Alaska have been partially to predominately established by western stock females. Movements of animals marked as pups in both stocks support these genetic results (Jemison et al. 2013). Overall, however, the observations of marked sea lion movements corroborate the extensive genetics research findings for a strong separation between the two currently recognized stocks. Although recent colonization events in the far northern part of the eastern DPS indicate movement of western sea lions into this area, the mixed part of the range remains small (Jemison et al. 2013), and the overall discreteness of the eastern from the western stock remains distinct. Hybridization among subspecies and species along a contact zone such as now occurs near the stock boundary is not unexpected as the ability to interbreed is a primitive condition whereas reproductive isolation would be derived. In fact, as stated by NMFS and FWS in a 1996 response to a previous comment regarding stock discreteness policy (61 FR 47222), "The Services do not consider it appropriate to require absolute reproductive isolation as a prerequisite to recognizing a distinct population segment" or stock. The fundamental concept overlying this distinctiveness is the collection of morphological, ecological and behavioral, and genetic evidence for stock differences initially described by Bickham et al. (1996) and Loughlin (1997), and supported by Baker et al. (2005), Harlin-Cognato et al. (2006), Hoffman et al. (2006, 2009), O'Corry-Crowe et al. (2006), and Phillips et al. (2009, 2011).

POPULATION SIZE

The most recent comprehensive aerial photographic and land-based surveys of western Steller sea lions in Alaska were conducted in 2008-2013 (Fritz et al. 2013, DeMaster 2014). An estimate of the total population size of western Steller sea lions in Alaska can be obtained by multiplying the best estimate of total pup production by 4.5 (Calkins and Pitcher 1982). Total pup production in Alaska in 2013 was estimated to be 12,316 (95% credible interval: 11,741-12,926) using a Bayesian hierarchical model, agTrend (Johnson and Fritz 2014), and 2013 survey results (DeMaster 2014). When multiplied by 4.5, this yields a total population estimate of 55,422 (95% credible interval: 52,834-58,167). This is not a minimum abundance estimate since it is an extrapolated total population size from pup counts based on survival and fecundity estimates for an assumed stable, mid-1970s central Gulf of Alaska population (Fig. 2; Calkins and Pitcher 1982) and may not be appropriate for use in estimating the abundance of the Alaskan western stock as a whole given the considerable regional variation in current trends: populations east of Samalga Pass are generally increasing, while those to the west are decreasing (Fig. 2; Fritz et al. 2013, DeMaster 2014). Vital rates of Steller sea lions in the central Gulf of Alaska may have changed considerably since the mid-1970s as the population declined through the 1980s and 1990s and has been slowly increasing in the 2000s (York 1994, Holmes and York 2003, Fay and Punt 2006, Pendleton et al. 2006, Winship and Trites 2006, Holmes et al. 2007, DeMaster 2014). For the increasing eastern stock of Steller sea lion, Pitcher et al. (2007) showed that the multiplier could range between 4.2 and 5.2 depending on the combination of changes to survival and natality.

Methods used to survey Steller sea lions in Russia differ from those used in Alaska, with less use of aerial photography and more use of skiff surveys and cliff counts for non-pups and ground counts for pups. The most recent counts of non-pup Steller sea lions in Russia were conducted in 2007-2011, and totaled ~12,700 (V. Burkanov, NMFS Alaska Fisheries Science Center, NMML, 7600 Sand Point Way NE, Seattle, WA 98115, pers. comm.). The most recent estimate of pup production in Russia is available from counts conducted in 2011 and 2012, which totaled 6,021 pups and yields a total population abundance estimate of 27,100 Steller sea lions using the 4.5 multiplier.


An estimate of the abundance of the entire (U.S. and Russia) western stock of Steller sea lions (pups and non-pups) can be made by adding the most recent estimates of U.S. and Russian pup production, and multiplying by $4.5 (12,316 + 6,021 = 18,337 \text{ pups} \times 4.5)$, which yields 82,516.

Minimum Population Estimate

Because of the uncertainty regarding the use of the pup multiplier to estimate N, we will use the best estimate of the total count of western Steller sea lions in Alaska as the minimum population estimate (N_{MIN}). The agTrend (Johnson and Fritz 2014) estimates (with 95% credible intervals) of western Steller sea lion pup and non-pup counts in 2013 in Alaska are 12,316 (11,741-12,926) and 36,360 (34,469-38,271), respectively, which total 48,676, and will be used as the minimum population estimate (N_{MIN}) for the U.S. portion of the western stock of Steller sea lion (Wade and Angliss 1997). This is considered a minimum estimate because it has not been corrected to account for animals that were at sea during the surveys.

Current Population Trend

The first reported trend counts (sums of counts at consistently surveyed, large sites used to examine population trends) of Steller sea lions in Alaska were made in 1956-1960. Those counts indicated that there were at least 140,000 (no correction factor applied) sea lions in the Gulf of Alaska and Aleutian Islands (Merrick et al. 1987). Subsequent surveys indicated a major population decrease, first detected in the eastern Aleutian Islands in the mid-1970s (Braham et al. 1980). Counts from 1976 to 1979 totaled about 110,000 sea lions (no correction factor applied). The decline appears to have spread eastward to Kodiak Island during the late 1970s and early 1980s, and then westward to the central and western Aleutian Islands during the early and mid-1980s (Merrick et al. 1987, Byrd 1989). During the late 1980s, counts in Alaska overall declined at ~15% per year (NMFS 2008) which prompted the listing (in 1990) of the species as threatened range-wide under the Endangered Species Act. Continued declines in counts of western sea lions in Alaska in the 1990s (Sease et al. 2001) led NMFS to change the ESA listing status to endangered in 1997 (NMFS 2008). Surveys in Alaska in 2002, however, were the first to note an increase in counts, which suggested that the overall decline of western Steller sea lions stopped in 2000-2002 (Sease and Gudmundson 2002).

Figure 2. Regions of Alaska used for western Steller sea lion population trend estimation. E GULF, C GULF, and W GULF are eastern, central, and western Gulf of Alaska regions, respectively. E ALEU, C ALEU, and W ALEU are eastern, central, and western Aleutian Islands regions, respectively.

Johnson and Fritz (2014) developed agTrend to estimate regional and overall trends in counts of pups and non-pups in Alaska using data collected at all sites with more than two non-zero counts, rather than relying solely on counts at 'trend' sites (see also Fritz et al. 2013). Using agTrend with data collected through 2013, there is strong evidence that non-pup counts of western stock Steller sea lions in Alaska increased between 2000 and 2013 (Table 1; DeMaster 2014). However, there are strong regional differences across the range in Alaska, with positive trends east of Samalga Pass (~170°W) and negative trends to the west (Table 1; Fig. 2).

Regional variation in trends in pup counts in 2000-2013 is similar to that of non-pups (Table 1). Overall, there is strong evidence that pup counts increased in the overall western stock in Alaska and that there is considerable regional variation west and east of Samalga Pass. West of Samalga Pass, pup counts are stable in the central Aleutian Islands but decreasing rapidly in the western Aleutian Islands. East of Samalga Pass, there is strong evidence that pup counts increased in three of the four regions, but were stable in the central Gulf of Alaska. Regional differences in pup trends cannot be explained by movement of pups during the breeding season. However, slower growth in pup counts in the central Gulf of Alaska than in the surrounding regions east of Samalga Pass could be due to movement of adult females out of the region (suggesting some level of permanent emigration) or poor local conditions, both of which suggest sea lions have responded to meso-scale (on the order of 100s of kms) variability in their environment.

Table 1. Trends (annual rates of change expressed as % y⁻¹ with 95% credible interval) in counts of western Steller sea lion non-pups (adults and juveniles) and pups in Alaska, by region, for the period 2000-2012 (Johnson and Fritz 2014).

		Non-pups			Pups			
Region	Latitude Range	Trend	-95%	+95%	Trend	-95%	+95%	
Western Stock in Alaska	144°W-172°E	1.67	1.01	2.38	1.45	0.69	2.22	
E of Samalga Pass	144°-170°W	2.89	2.07	3.80				
Eastern Gulf of Alaska	144°-150°W	4.51	1.63	7.58	3.97	1.31	6.50	
Central Gulf of Alaska	150°-158°W	0.87	-0.34	2.18	1.48	-0.56	3.30	
E-C Gulf of Alaska	144°-158°W	2.40	0.92	3.86				
Western Gulf of Alaska	158°-163°W	4.01	2.49	5.42	3.03	1.06	5.20	
Eastern Aleutian Islands	163°-170° W	2.39	0.92	3.94	3.30	1.76	4.83	
W Gulf & E Aleutians	158°-170°W	3.22	2.19	4.25				
W of Samalga Pass	170°W-172°E	-1.53	-2.35	-0.66				
Central Aleutian Islands	170°W-177°E	-0.56	-1.45	0.43	-0.46	-1.50	0.72	
Western Aleutian Islands	172°-177°E	-7.23	-9.04	-5.56	-9.36	-10.93	-7.78	

The distribution of sightings of branded animals during the breeding season from 2001 to 2011 indicates an average annual net movement of sea lions from the central to the eastern Gulf of Alaska, which could have depressed trend estimates in the former and increased trend estimates in the latter region (Fritz et al. 2013), but non-pup counts in the combined eastern-central Gulf of Alaska region increased at 3.23% y⁻¹ (2.00-4.50% y⁻¹) between 2000 and 2013 (Table 1). Although less is known about inter-regional movement west of Samalga Pass, including Russia, sea lion dispersal during the breeding season may have had a smaller influence on non-pup trends here than in the eastern-central Gulf of Alaska given the much larger area over which regional non-pup (and pup) trends are declining (see discussion of Russia below).

Fritz et al. (2013) estimated the magnitude of cross-boundary movement of Steller sea lions between the western and eastern stocks using transition probabilities of individually marked sea lions by sex, age and region estimated by Jemison et al. (2013); survival rates by age, sex, and region estimated by Hastings et al. (2011) and Fritz et al. (2014); and pup production by region based on aerial surveys conducted in 2009. There was an estimated average net annual movement of only ~200 sea lions from southeast Alaska (eastern stock) to the western stock during the breeding season. Given that only approximately 60% of sea lions are hauled out and available to be

counted during breeding season aerial surveys (see summary of sightability by age and sex in Holmes et al. 2007), an average net movement of this magnitude represents a very small (<0.5%) percentage of the total count of sea lions in the western stock or southeast Alaska, and would have a negligible impact on non-pup trend estimates in either area. However, there were significant differences by sex and age in the cross-boundary movement, with a net increase of ~400 females in southeast Alaska (eastern stock) and a net increase of ~600 males in the western stock. The pattern of movement is supported by mitochondrial DNA evidence that indicated that the newest rookeries in northern southeast Alaska (eastern stock) were colonized in part by western females (Gelatt et al. 2007).

Burkanov and Loughlin (2005) estimated that the Russian Steller sea lion population (pups and non-pups) declined from about 27,000 in the 1960s to 13,000 in the 1990s, and increased to approximately 16,000 in 2005. Data collected through 2012 (V. Burkanov, pers. comm.) indicates that overall Steller sea lion abundance in Russia has continued to increase and is now similar to the 1960s (27,100 based on life table multiplier of 4.5 on the most recent total pup count). Between 1995 and 2011/12, pup production has increased overall in Russia by 3.1% per year (V. Burkanov, pers. comm., 27 February 2013.). However, just as in the U.S. portion of the stock, there are significant regional differences in population trend in Russia. Pup production in the combined Kuril Islands and the Sea of Okhotsk areas increased 59% between 1995 and 1997 (3,596 pups) and 2011 (5,729 pups), while non-pup counts increased 87% over the same time period (6,205 to 11,576). However, Steller sea lion population trends in eastern Kamchatka, the Commander Islands, and the western Bering Sea have been quite different. In eastern Kamchatka; pup production at the single rookery (Kozlova Cape) declined 50% between the mid-1980s (~200 pups) and 2012 (101 pups), while non-pup counts were 80% lower in 2010 than in the early 1980s. On the Commander Islands, non-pup counts increased between 1930 and the late 1970s, when the rookery became re-established. Pup production on the Commanders increased to a maximum of 280 in 1998 and has varied between 180 and 228 since then (through 2012). Non-pup counts on the Commanders also reached a maximum in 1998-1999 (mean of 880), and since then have ranged between 581 and 797 (through 2010). The largest decline in Steller sea lions in Russia has been in the western Bering Sea (which has no rookeries), where non-pup counts declined 98% between 1982 and 2010. The overall increase in the abundance of Steller sea lions in Russia is due entirely to recovery and increases in abundance in the Kuril Islands and Sea of Okhotsk. Regions in Russia that are either stable or declining (eastern Kamchatka, Commander Islands, and the western Bering Sea) border regions in the United States where sea lion trends are similar (Aleutian Islands west of 170°W).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

There are no estimates of maximum net productivity rate for Steller sea lions. Hence, until additional data become available, it is recommended that the theoretical maximum net productivity rate (R_{MAX}) for pinnipeds of 12% be employed for this stock (Wade and Angliss 1997).

POTENTIAL BIOLOGICAL REMOVAL

Under the 1994 reauthorized Marine Mammal Protection Act (MMPA), the potential biological removal (PBR) is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor: $PBR = N_{MIN} \times 0.5 R_{MAX} \times F_R$. The recovery factor (F_R) for this stock is 0.1, the default value for stocks listed as "endangered" under the Endangered Species Act (Wade and Angliss 1997). Thus, for the U.S. portion of the western stock of Steller sea lions, PBR = 292 animals (48,676 \times 0.06 \times 0.1).

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

New Serious Injury Guidelines

NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998, Andersen et al. 2008, NOAA 2012). NMFS defines serious injury as an "injury that is more likely than not to result in mortality." Injury determinations for stock assessments revised in 2013 or later incorporate the new serious injury guidelines, based on the most recent 5-year period for which data are available.

Fisheries Information

Between 2008 and 2012, there were incidental serious injuries and mortalities of western Steller sea lions observed in the following 7 fisheries of the 22 federally regulated commercial fisheries in Alaska monitored for incidental mortality by fisheries observers: Bering Sea/Aleutian Islands Atka mackerel trawl, Bering Sea/Aleutian

Islands flatfish trawl, Bering Sea/Aleutian Islands Pacific cod trawl, Bering Sea/Aleutian Islands pollock trawl, Gulf of Alaska Pacific cod trawl, Gulf of Alaska Pacific cod trawl, Gulf of Alaska Sablefish longline (Table 2).

Observers also monitored the Prince William Sound salmon drift gillnet fishery in 1990 and 1991, recording 2 mortalities in 1991, extrapolated to 29 (95% CI: 1-108) kills for the entire fishery (Wynne et al. 1992). No mortalities were observed during 1990 for this fishery (Wynne et al. 1991), resulting in a mean kill rate of 14.5 (CV = 1.0) animals per year for 1990 and 1991. In 1990, observers boarded 300 (57.3%) of the 524 vessels that fished in the Prince William Sound salmon drift gillnet fishery, monitoring a total of 3,166 sets, or roughly 4% of the estimated number of sets made by the fleet. In 1991, observers boarded 531 (86.9%) of the 611 registered vessels and monitored a total of 5,875 sets, or roughly 5% of the estimated sets made by the fleet (Wynne et al. 1992). The Alaska Peninsula and Aleutian Islands salmon drift gillnet fishery was also monitored during 1990 (roughly 4% observer coverage) and no Steller sea lion mortalities were observed. It is not known whether these incidental mortality levels are representative of the current incidental mortality levels in these fisheries.

An observer program for the Cook Inlet salmon set and drift gillnet fisheries was implemented in 1999 and 2000 in response to the concern that there may be significant numbers of marine mammal injuries and mortalities that occur incidental to these fisheries. Observer coverage in the Cook Inlet drift gillnet fishery was 1.75% and 3.73% in 1999 and 2000, respectively. The observer coverage in the Cook Inlet set gillnet fishery was 7.3% and 8.3% in 1999 and 2000, respectively (Manly 2006). There were no mortalities of Steller sea lions observed in the set or drift gillnet fisheries in either 1999 or 2000 (Manly 2006). An observer program conducted for a portion of the Kodiak drift gillnet fishery in 2002 did not observe any serious injuries or mortalities of Steller sea lions, although Steller sea lions were frequently observed in the vicinity of the gear (Manly et al. 2003).

Combining the mortality estimates from the Bering Sea groundfish trawl and Gulf of Alaska longline fisheries presented above (17.0) with the mortality estimate from the Prince William Sound salmon drift gillnet fishery (14.5) results in an estimated mean annual mortality rate in the observed fisheries of 31.5 (CV = 0.46) sea lions per year from this stock (Table 2).

Table 2. Summary of incidental mortality of Steller sea lions (western U. S. stock) due to fisheries from 2008 through 2012 (or most recent data available) and calculation of the mean annual mortality rate (Breiwick 2013). Mean annual mortality in brackets represents a minimum estimate from stranding data. The most recent 5 years of available data, or best available information, are used in the mortality for a particular fishery. N/A indicates that data are not available. Details of how percent observer coverage is measured are included in Appendix 6.

Fishery name	Years	Data	Observer	Observed	Estimated	Mean
		type	coverage	mortality (in	mortality (in	annual mortality
				given yrs.)	given yrs.)	
Bering Sea/Aleutian Is.	2008	obs	100	0	0	0.20
Atka mackerel trawl	2009	data	99	0	0	(CV = 0.05)
	2010		100	1	1.0	
	2011		100	0	0	
	2012		100	0	0	
Bering Sea/Aleutian Is.	2008	obs	100	11	11.0	6.41
flatfish trawl	2009	data	100	3	3.0	(CV = 0.01)
	2010		100	4 (+1)*	4.0 (+1)**	
	2011		100	7	7.0	
	2012		100	6	6.0	
Bering Sea/Aleutian Is.	2008	obs	59	0	0	0.4
Pacific cod trawl	2009	data	63	0	0	(CV = 0.06)
	2010		66	1	1.0	
	2011		60	1	1.0	
	2012		68	0	0	
Bering Sea/Aleutian Is.	2008	obs	85	8	10.1	8.18
pollock trawl	2009	data	86	6	6.2	(CV = 0.09)
	2010		86	5	8.2	
	2011		98	9	9.3	
	2012		98	7	7.0	

Fishery name	Years	Data type	Observer coverage	Observed mortality (in given yrs.)	Estimated mortality (in given yrs.)	Mean annual mortality
Gulf of Alaska Pacific cod	2008	obs	15	1	1.6	0.54
longline	2009	data	21	0	0	(CV = 0.39)
	2010		28	1	1.1	
	2011		30	0	0	
	2012		13	0	0	
Gulf of Alaska Pacific cod	2008	obs	15	0	0	0.2
trawl	2009	data	29	0	0	(CV = 0.0)
	2010		31	0	0	
	2011		41	0	0	
	2012		25	1	1.0	
Gulf of Alaska sablefish	2008	obs	16	0	0	1.1
longline	2009	data	16	0	0	(CV = 0.91)
_	2010		15	0	0	
	2011		14	0	0	
	2012		14	1	5.5	
Prince William Sound	1990-	obs	4-5%	0	0	14.5
salmon drift gillnet	1991	data		2	29	(CV = 1.0)
Prince William Sound	1990	obs	3%	0	0	0
salmon set gillnet		data				
Alaska Peninsula/Aleutian	1990	obs	4%	0	0	0
Islands salmon drift gillnet		data				
Cook Inlet salmon set	1999-	obs	2-5%	0	0, 0	0
gillnet	2000	data		0		
Cook Inlet salmon drift	1999-	obs	2-5%	0	0, 0	0
gillnet	2000	data		0		
Kodiak Island salmon set	2002	obs	6.0%	0	0	0
gillnet		data				
Minimum total annual mortality 31.5 (CV = 0.4) Total mortalities observed in unsampled houls						

^{*}Total mortalities observed in unsampled hauls.

Reports from the NMFS stranding database of Steller sea lions entangled in fishing gear or with injuries caused by interactions with gear are another source of mortality data. During the 5-year period from 2008 to 2012, there were six confirmed fishery-related Steller sea lion strandings in the range of the western stock. Five sightings involved a Steller sea lion that was reported to be in bad body condition and observed with a flasher lure hanging from its mouth; it was believed to have ingested the hook (Table 3). Another had a string leader line hanging out its mouth with a hook apparently inside the mouth. Fishery-related strandings during 2008-2012 resulted in an estimated annual mortality of 1.2 animals from this stock. This estimate is considered a minimum because not all entangled animals strand and not all stranded animals are found or reported. Steller sea lions reported in the stranding database as shot are not included in this estimate, as they may result from animals struck and lost in the Alaska Native subsistence harvest.

^{**}Total mortalities observed in sampled and unsampled hauls is in parentheses. In cases where the total known mortality exceeds the estimated mortality for a fishery in a given year, the sum of observed mortalities (both in sampled and unsampled hauls) will be used as a minimum estimate for that year.

Table 3. Summary of western Steller sea lion mortalities and serious injuries by year and type reported to the NMFS Alaska Regional Office, marine mammal stranding database, and Alaska Department of Fish and Game for the 2008-2012 period (Allen et al. 2014, Helker et al. 2015).

Cause of Injury		2009	2010	2011	2012	Mean Annual Mortality
Swallowed troll gear	0	1	0	1	3	1
Ring neck entanglement (packing band)	5	1	2	0	1	1.8
Ring neck entanglement (unknown marine debris/gear)	1	0	3	1	1	1.2
Swallowed unknown fishing gear	0	0	1	0	0	0.2
Minimum total annual mortality						

NMFS studies using satellite tracking devices attached to Steller sea lions suggest that they rarely go beyond the U.S. Exclusive Economic Zone into international waters. Given that the high-seas gillnet fisheries have been prohibited and other net fisheries in international waters are minimal, the probability that Steller sea lions are taken incidentally in commercial fisheries in international waters is very low. NMFS concludes that the number of Steller sea lions taken incidental to commercial fisheries in international waters is insignificant.

The minimum estimated mortality rate incidental to U.S. commercial fisheries is 31.5 sea lions per year. Based on observer data (31.5) and stranding data (1.2), the minimum estimated mortality rate incidental to commercial and recreational fisheries, as well as other marine debris, is 32.7. Observer data on state fisheries dates as far back as 1990; however, these are the best data available to estimate takes in these fisheries. No observers have been assigned to several fisheries that are known to interact with this stock making the estimated mortality likely an underestimate of the actual mortality level.

Subsistence/Native Harvest Information

Information on the subsistence harvest of Steller sea lions comes via two sources: the Alaska Department of Fish and Game (ADFG) and the Ecosystem Conservation Office (ECO) of the Aleut Community of St. Paul. The ADFG conducted systematic interviews with hunters and users of marine mammals in approximately 2,100 households in about 60 coastal communities within the range of the Steller sea lion in Alaska (Wolfe et al. 2005). The interviews were conducted once per year in the winter (January to March) and covered hunter activities for the previous calendar year. As of 2009, annual statewide data on community subsistence harvests are no longer being collected. Data are being collected periodically in subareas. Therefore, the most recent 5-years of data (2004-2008) will be retained and used for estimating an annual mortality estimate for all areas except St. Paul. Data from St. Paul are still being collected and will be updated with the most recent 5-year period available. The ECO collects data on the harvest in near real-time on St. Paul Island, and records hunter activities within 36 hours of the harvest (Zavadil 2010). Information on subsistence harvest levels is provided in Table 4; data from ECO (e.g., Zavadil 2010) are relied upon as the source of data for St. Paul Island and all other data are from the ADFG (e.g., Wolfe et al. 2005). Data were collected on Alaska Native harvest of Steller sea lions for 7 communities on Kodiak Island for 2011; the Alaska Native Harbor Seal Commission and ADFG estimated a total of 20 adult sea lions were harvested, with a 95% confidence range between 15 to 28 animals (Wolfe et al. 2012). This estimate does not represent a comprehensive statewide estimate; therefore, the best available statewide subsistence harvest estimates for a 5-year period are those from 2004 to 2008.

The mean annual subsistence take from this stock over the 5-year period from 2004 through 2008, combined with the mean take over the 2007-2011 period from St. Paul, was 199 Steller sea lions/year (Table 4).

Table 4. Summary of the subsistence harvest data for the western U. S. stock of Steller sea lions. As of 2009, data on community subsistence harvests are no longer being collected. Therefore, the most recent 5-years of data (2004-2008) will be retained and used for estimating an annual mortality estimate for all areas except St. Paul. Data from St. Paul are still being collected and will be updated with the most recent 5-year period available (2007-2011).

	All are	as except St. Pau	l Island	St. Paul Island	
Year	Number harvested	Number struck and lost	Total	Number harvested + struck and lost	Total take
2004	136.8	49.1	185.9 ¹		
2005	153.2	27.6	180.8 ²		
2006	114.3	33.1	147.4^3		
2007	165.7	45.2	210.9^4	34 ⁶	245
2008	114.7	21.6	136.3 ⁵	22 ⁷	158
2009	N/A	N/A	N/A	26 ⁸	N/A
2010	N/A	N/A	N/A	20 ⁹	N/A
2011	N/A	N/A	N/A	32 ¹⁰	N/A
Mean annual take	136.9	35.3	172.3	26.8	199

¹Wolfe et al. 2005; ²Wolfe et al. 2006; ³Wolfe et al. 2008; ⁴Wolfe et al. 2009a; ⁵Wolfe et al. 2009b; ⁶Lestenkof et al. 2008, ⁷Jones 2009, ⁸Zavidil 2010, ⁹Lestenkof 2011, ¹⁰Lestenkof 2012.

Other Mortality

Reports from the NMFS stranding database of Steller sea lions entangled in marine debris or with injuries caused by other types of human interaction are another source of mortality data. During the 5-year period from 2008 to 2012, 15 animals were observed with circumferential neck entanglements from packing bands or other unknown marine debris (Table 3). The mean annual mortality and serious injury from other sources of human interactions for 2008-2012 is 3.0.

Mortalities may occasionally occur incidental to marine mammal research activities authorized under MMPA permits issued to a variety of government, academic, and other research organizations. Between 2008 and 2012, there was a total of 0 mortalities resulting from research on the western stock of Steller sea lions (T. Adams, Permits, Conservation, and Education Division, Office of Protected Resources, NMFS, 1315 East-West Highway, Silver Spring, MD 20910).

STATUS OF STOCK

The current annual level of incidental U.S. commercial fishery-related mortality (31.5) exceeds 10% of the PBR (29) and, therefore, cannot be considered insignificant and approaching a zero mortality and serious injury rate. Based on available data, the estimated annual level of total human-caused mortality and serious injury (31.5 [commercial fisheries] + 4.2 [unknown fisheries and marine debris] + 199 [Alaska Native harvest] + 3.0 [other human-interaction] = 237.7) is below the PBR level (292) for this stock. The western U.S. stock of Steller sea lion is currently listed as "endangered" under the ESA, and therefore designated as "depleted" under the MMPA. As a result, the stock is classified as a strategic stock. However, the population previously declined for unknown reasons that are not explained by the level of direct human-caused mortality.

Demographic criteria for down- and de-listing western Steller sea lions under the ESA are based primarily on population trend estimates rather than absolute abundance thresholds (NMFS 2008). This is due to the uncertainties related to estimating total population size based on a life table (e.g., a multiplier of total pup production) or using a proportion hauled out to estimate animals at sea during surveys. For down-listing to threatened status, the western stock in Alaska should have had a significantly positive trend in abundance for 15 years (beginning in 2000), trends in 5 of the 7 sub-regions (three each in the Aleutian Islands and Gulf of Alaska plus all of Russia) should be consistent with the overall Alaska western stock trend, and no two adjacent sub-regions should have significant negative abundance trends. Using data collected through 2012, Fritz et al. (2013) concluded that the western stock in Alaska may be on a trajectory to satisfy the first demographic criterion for down-listing if the overall counts continue to increase through 2015. The second and third demographic criteria, however, involve regional population performance, which has varied across the range. The western stock may satisfy the second criterion if counts in the eastern, central and western Gulf of Alaska, eastern Aleutian Islands, and Russia (overall)

continue to increase through 2015, but satisfying the third criterion by 2015 will likely depend on an improvement in central Aleutian Island trends.

Habitat Concerns

Many factors have been suggested as causes of the steep decline in abundance of western Steller sea lions observed in the 1980s, including competitive effects of fishing, environmental change, disease, killer whale predation, incidental take, illegal and legal shooting (Atkinson et al. 2008, NMFS 2008). Potential threats to Steller sea lion recovery are shown in Table 5. A number of management actions have been implemented between 1990 and 2011 to promote the recovery of the western U.S. stock of Steller sea lions, including 3 nautical mile (nmi) noentry zones around rookeries, prohibition of shooting at or near sea lions, and regulation of fisheries for sea lion prey species (e.g., walleye pollock, Pacific cod, and Atka mackerel; see reviews by Fritz et al. 1995, McBeath 2004, Atkinson et al. 2008, NMFS 2008).

Table 5. Potential threats and impacts to Steller sea lion recovery and associated references. Threats and impact to recovery as described by the Revised Steller Sea Lion Recovery Plan (NMFS 2008). Reference examples identify research related to corresponding threats and may or may not support the underlying hypotheses.

Threat	Impact on Recovery	Reference Examples
Environmental variability	Potentially high	Fritz and Hinckley 2005, Trites and Donnelly 2003
Competition with fisheries	Potentially high	Dillingham et al. 2006, Fritz and Brown 2005, Hennen 2004, Fritz and Ferrero 1998
Predation by killer whales	Potentially high	DeMaster et al. 2006, Trites et al. 2007, Williams et al. 2004, Springer et al. 2003
Toxic substances	Medium	Albers and Loughlin 2003, Lee et al. 1996, Calkins et al. 1994
Incidental take by fisheries	Low	Perez 2006, Nikulin and Burkanov 2000, Wynne et al. 1992
Subsistence harvest	Low	Wolfe et al. 2005, Loughlin and York 2000, Haynes and Mishler 1991
Illegal shooting	Low	NMFS 2001, Loughlin and York 2000
Entanglement in marine debris	Low	Calkins 1985
Disease and parasitism	Low	Burek et al. 2005
Disturbance from vessel traffic and tourism	Low	Kucey and Trites 2006
Disturbance or mortality due to research activities	Low	Atkinson et al. 2008, Kucey and Trites 2006, Kucey 2005, Loughlin and York 2000, Calkins and Pitcher 1982, Wilson et al. 2012

CITATIONS

- Albers, P. H., and T. R. Loughlin. 2003. Effects of PAHs on marine birds, mammals, and reptiles. Pp. 243-261 *In*: P. E. T. Douben (ed.) PAHs: An ecotoxicological perspective. John Wiley and Sons, London.
- Allen, B. M., V. T. Helker, and L. A. Jemison. 2014. Human-caused injury and mortality of NMFS-managed Alaska marine mammal stocks, 2007-2011. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-274, 84 p.
- Andersen, M. S., K. A. Forney, T. V. N. Cole, T. Eagle, R. Angliss, K. Long, L. Barre, L. Van Atta, D. Borggaard, T. Rowles, B. Norberg, J. Whaley, and L. Engleby. 2008. Differentiating Serious and Non-Serious Injury of Marine Mammals: Report of the Serious Injury Technical Workshop, 10-13 September 2007, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-39, 94 p.
- Angliss, R. P., and D. P. DeMaster. 1998. Differentiating serious and non-serious injury of marine mammals taken incidental to commercial fishing operations. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-13, 48 p.
- Atkinson, S., D. P. DeMaster, and D. G. Calkins. 2008. Anthropogenic causes of the western Steller sea lion *Eumetopius jubatus* population decline and their threat to recovery. Mammal Rev. 38(1):1-18.
- Baker, A. R., T. R. Loughlin, V. Burkanov, C. W. Matson, T. G. Trujillo, D. G. Calkins, J. K. Wickliffe, and J. W. Bickham. 2005. Variation of mitochondrial control region sequences of Steller sea lions: the three-stock hypothesis. J. Mammal. 86:1075-1084.

- Berta, A., and M. Churchill. 2012. Pinniped taxonomy: review of currently recognized species and subspecies, and evidence used for their description. Mammal Review. 42(2):207–234.
- Bickham, J. W., J. C. Patton, and T. R. Loughlin. 1996. High variability for control-region sequences in a marine mammal: Implications for conservation and biogeography of Steller sea lions (*Eumetopias jubatus*). J. Mammal. 77:95-108.
- Braham, H. W., R. D. Everitt, and D. J. Rugh. 1980. Northern sea lion decline in the eastern Aleutian Islands. J. Wildl. Manage. 44:25-33.
- Breiwick, J. M. 2013. North Pacific marine mammal bycatch estimation methodology and results, 2007-2011. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-260, 40 p.
- Burek, K. A., F. M. D. Gulland, G. Sheffield, K. B. Beckmen, E. Keyes, T. R. Spraker, A. W. Smith, D. E. Skilling, J. F. Evermann, J. L. Stott, J. T. Saliki, and A. W. Trites. 2005. Infectious disease and the decline of the Steller sea lions (*Eumetopias jubatus*) in Alaska, USA: insights from serologic data. J. Wildl. Dis. 41(3):512-524.
- Burkanov, V., and T. R. Loughlin. 2005. Distribution and abundance of Steller sea lions on the Asian coast, 1720's 2005. Mar. Fish. Rev. 67(2):1-62.
- Byrd, G. V. 1989. Observations of northern sea lions at Ugamak, Buldir, and Agattu Islands, Alaska in 1989. Unpubl. rep., U.S. Fish and Wildlife Service. Alaska Maritime National Wildlife Refuge, P.O. Box 5251, NSA Adak, FPO Seattle, WA 98791.
- Calkins, D. G., and K. W. Pitcher. 1982. Population assessment, ecology and trophic relationships of Steller sea lions in the Gulf of Alaska. Environmental Assessment of the Alaskan Continental Shelf. Final reports 19:455-546.
- Calkins, D. G. 1985. Steller sea lion entanglement in marine debris. Pp. 308-314 *In* R. S. Shomura and H. O. Yoshida (editors), Proceedings of the workshop on the fate and impact of marine debris, 27-29 November 1984, Honolulu, Hawaii. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFC-54.
- Calkins, D. G., E. Becker, T. R. Spraker, and T. R. Loughlin. 1994. Impacts on Steller sea lions. Pp. 119-139 *In* T. R. Loughlin (ed.), Marine Mammals and the *Exxon Valdez*. Academic Press, N.Y.
- DeMaster, D. P. 2014. Results of Steller sea lion surveys in Alaska, June-July 2013. Memorandum to J. Balsiger, J. Kurland, B. Gerke, and L. Rotterman, January 27, 2014. Available from Alaska Fisheries Science Center, NMFS, 7600 Sand Point Way NE, Seattle, WA 98115.
- DeMaster, D. P., A. W. Trites, P. Clapham, S. Mizroch, P. Wade, R. J. Small, and J. V. Hoef. 2006. The sequential megafaunal collapse hypothesis: Testing with existing data. Prog. Oceanogr. 68(2-4): 329-342.
- Dillingham, P. W., J. R. Skalski, and K. E. Ryding. 2006. Fine-scale geographic interactions between Steller sea lion (*Eumetopias jubatus*) trends and local fisheries. Can. J. Fish. Aquat. Sci. 63:107-119.
- Dizon, A. E., C. Lockyer, W. F. Perrin, D. P. DeMaster, and J. Sisson. 1992. Rethinking the stock concept: a phylogeographic approach. Conserv. Biol. 6:24-36.
- Fay, G., and A. E. Punt 2006. Modeling spatial dynamics of Steller sea lions (*Eumetopias jubatus*) using maximum likelihood and Bayesian methods: evaluating causes for population decline. Sea Lions of the World, A.W. Trites, S.K. Atkinson, D.P. DeMaster, L.W. Fritz, T.S. Gelatt, L.D. Rea, and K.M. Wynne (eds.). Fairbanks, AK, Alaska Sea Grant College Program. AK-SG-06-01: 405-433.
- Fritz, L. W., and E. S. Brown. 2005. Survey-and fishery-derived estimates of Pacific cod (*Gadus macrocephalus*) biomass: implications for strategies to reduce interactions between groundfish fisheries and Steller sea lions (*Eumetopias jubatus*). Fish. Bull. 103:501-515.
- Fritz, L. W., and Ferrero, R. C. 1998. Options in Steller sea lion recovery and groundfish fishery management. Biosphere Conserv. 1(1): 7–19.
- Fritz, L. W., R. C. Ferrero, and R. J. Berg. 1995. The threatened status of Steller sea lions, *Eumetopias jubatus*, under the Endangered Species Act: effects on Alaska groundfish fisheries management. Mar. Fish. Rev. 57(2): 14-27.
- Fritz, L. W., and S. Hinckley. 2005. A critical review of the regime shift -"junk food"- nutritional stress hypothesis for the decline of the western stock of Steller sea lion. Mar. Mammal. Sci. 21(3):476-518.
- Fritz, L., K. Sweeney, D. Johnson, M. Lynn, and J. Gilpatrick. 2013. Aerial and ship-based surveys of Steller sea lions (*Eumetopias jubatus*) conducted in Alaska in June-July 2008 through 2012, and an update on the status and trend of the western stock in Alaska. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-251, 91 p.

- Fritz, L. W., R. Towell, T. S. Gelatt, D. S. Johnson, and T. R. Loughlin. 2014. Recent increases in survival of western Steller sea lions in Alaska and implications for recovery. Endang. Species Res. 26(1):13-24. DOI: 10.3354/esr00634.
- Gelatt, T. S., A. W. Trites, K. Hastings, L. Jemison, K. Pitcher, and G. O'Corry-Crow. 2007. Population trends, diet, genetics, and observations of Steller sea lions in Glacier Bay National Park, *in* Piatt, J.F., and Gende, S.M., eds., Proceedings of the Fourth Glacier Bay Science Symposium, October 26–28, 2004: U.S. Geological Survey Scientific Investigations Report 2007-5047, p. 145-149.
- Harlin-Cognato, A., J. W. Bickham, T. R. Loughlin, and R. L. Honeycutt. 2006. Glacial refugia and the phylogeography of Steller's sea lion (*Eumetopias jubatus*) in the North Pacific. J. Evol. Biol. 19:955-969. doi:10.1111/j.1420-9101.2005.01052.x.
- Hastings, K. K., L. A. Jemison, T. S. Gelatt, J. L. Laake, G. W. Pendleton, J. C. King, A. W. Trites, and K. W. Pitcher. 2011. Cohort effects and spatial variation in age-specific survival of Steller sea lions from southeastern Alaska. Ecosphere 2(11): 1-21.
- Haynes, T. L., and C. Mishler. 1991. The subsistence harvest and use of Steller sea lions in Alaska. Alaska Dep. Fish and Game Technical Paper No. 198. 44 p.
- Helker, V. T., B. A. Allen, and L. A. Jemison. 2015. Human-caused injury and mortality of NMFS-managed Alaska marine mammal stocks, 2009-2013. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-300, 94 p.
- Hennen, D. R. 2004. The Steller sea lion (*Eumetopias jubatus*) decline and the Gulf of Alaska/Bering Sea commercial fishery. Unpubl. Ph.D. dissertation, Montana State University, Bozeman, MT. 224 pp.
- Hoffman, J. I., K. K. Dasmahapatra, W. Amos, C. D. Phillips, T. S. Gelatt, and J. W Bickham. 2009. Contrasting patterns of genetic diversity at three different genetic markers in a marine mammal metapopulation. Molec. Ecol. 18:2961–2978.
- Hoffman, J. I., C. W. Matson, W. Amos, T. R. Loughlin, and J. W. Bickham. 2006. Deep genetic subdivision within a continuously distributed and highly vagile marine mammal, the Steller's sea lion (*Eumetopias jubatus*). Molec. Ecol. 15:2821-2832.
- Holmes, E. E., L. W. Fritz, A. E. York, K. Sweeney. 2007. Age-structured modeling provides evidence for a 28-year decline in the birth rate of western Steller sea lions. Ecolog. Appl. 17(8):2214-2232.
- Holmes, E. E., and A. E. York. 2003. Using age structure to detect impacts on threatened populations case study using Steller sea lions. Conserv. Biol. 17:1794-1806.
- Jemison, L. A., G. W. Pendleton, L. W. Fritz, K. K. Hastings, J. M. Maniscalco, A. W. Trites, and T. S. Gelatt. 2013. Inter-population movements of Steller sea lions in Alaska, with implications for population separation. PLoS One 8(8): e70167.
- Johnson, D.S., and L. W. Fritz. 2014. agTrend: a Bayesian approach for estimating trends of aggregated abundance. Methods Ecol. Evol. DOI: 10.1111/2041-210X.12231.
- Jones, D. J. 2009. 2008 subsistence harvest of Steller sea lion on St. Paul Island. Memorandum for the Record, April 27, 2009, Aleut Community of St. Paul, Tribal Government, Ecosystem Conservation Office. St. Paul Island, Pribilof Islands, Alaska.
- Kucey, L. 2005. Human disturbance and the hauling out behaviour of Steller sea lions (*Eumetopias jubatus*). M.Sc. thesis, University of British Columbia, Vancouver. 67 p.
- Kucey, L., and A.W. Trites. 2006. A review of the potential effects of disturbance on sea lions: assessing response and recovery. *In* A.W. Trites, S. Atkinson, D.P. DeMaster, L.W. Fritz, T.S. Gelatt, L.D. Rea, and K. Wynne (eds.) Sea Lions of the World, Alaska Sea Grant Program AK-SG-06-01.
- Lee, J. S., S. Tanabe, H. Umino, R. Tatsukawa, T. R. Loughlin and D. C. Calkins. 1996. Persistent organochlorines in Steller sea lion (*Eumetopias jubatus*) from the bulk of Alaska and the Bering Sea, 1976-1981. Mar. Pollut. Bull. 32(7):535-544.
- Lestenkof, A. D. 2011. 2010 subsistence harvest of Steller sea lion on St. Paul Island. Memorandum for the Record, March 7, 2011, Aleut Community of St. Paul, Tribal Government, Ecosystem Conservation Office. St. Paul Island, Pribilof Islands, Alaska.
- Lestenkof, A. D. 2012. 2011 subsistence harvest of Steller sea lion on St. Paul Island. Memorandum for the Record, May 30, 2012, Aleut Community of St. Paul, Tribal Government, Ecosystem Conservation Office. St. Paul Island, Pribilof Islands, Alaska.
- Lestenkof, A. D., P. A. Zavadil, and D. J. Jones. 2008. 2007 subsistence harvest of Steller sea lion on St. Paul Island. Memorandum for the Record, March 4, 2008, Aleut Community of St. Paul, Tribal Government, Ecosystem Conservation Office. St. Paul Island, Pribilof Islands, Alaska.

- Loughlin, T. R. 1997. Using the phylogeographic method to identify Steller sea lion stocks. Pp. 329-341 *In* A. Dizon, S. J. Chivers, and W. Perrin (eds.), Molecular genetics of marine mammals, incorporating the proceedings of a workshop on the analysis of genetic data to address problems of stock identity as related to management of marine mammals. Soc. Mar. Mammal., Spec. Rep. No. 3.
- Loughlin, T. R., D. J. Rugh, and C. H. Fiscus. 1984. Northern sea lion distribution and abundance: 1956-1980. J. Wildl. Manage. 48:729-740.
- Loughlin, T.R., and A.E. York. 2000. An accounting of the sources of Steller sea lion mortality. Mar. Fish. Rev. 62(4):40-45.
- Manly, B. F. J. 2006. Incidental catch and interactions of marine mammals and birds in the Cook Inlet salmon driftnet and setnet fisheries, 1999-2000. Report to the NMFS Alaska Region. 98 pp. Available online: http://www.fakr.noaa.gov/protectedresources/observers/bycatch/1999-2000cookinlet.pdf
- Manly, B. F. J., A. S. Van Atten, K. J. Kuletz, and C. Nations. 2003. Incidental catch of marine mammals and birds in the Kodiak Island set gillnet fishery in 2002. Final report to NMFS Alaska Region. 91 p.
- McBeath, J. 2004. Greenpeace v. National Marine Fisheries Service: Steller Sea Lions and Commercial Fisheries in the North Pacific. Alaska Law. Rev. 21: 1.
- Merrick, R. L., T. R. Loughlin, and D. G. Calkins. 1987. Decline in abundance of the northern sea lion, *Eumetopias jubatus*, in 1956-86. Fish. Bull., U.S. 85:351-365.
- National Marine Fisheries Service. 1995. Status review of the United States Steller sea lion (*Eumetopias jubatus*) population. Prepared by the National Marine Mammal Laboratory, AFSC, NMFS, NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. 61 p.
- National Marine Fisheries Service. 2001. Endangered Species Act, Section 7 Consultation Biological Opinion and Incidental Take Statement on the authorization of the Bering Sea/Aleutian Islands and Gulf of Alaska Groundfish Fishery Management Plan Amendments 61 and 70. NMFS Alaska Region, Protected Resources Division, Juneau, AK.
- National Marine Fisheries Service. 2008. Recovery Plan for the Steller sea lion (*Eumetopias jubatus*). Revision. National Marine Fisheries Service, Silver Spring, MD. 325 p.
- Nikulin, V. S., and V. N. Burkanov. 2000. Species composition of marine mammal by-catch during Japanese driftnet salmon fishery in southwestern Bering Sea. Unpubl. manuscript, 2 pp. Available from National Marine Mammal Laboratory, AFSC, 7600 Sand Point Way NE, Seattle, WA 98115.
- NOAA. 2012. Federal Register 77:3233. National Policy for Distinguishing Serious From Non-Serious Injuries of Marine Mammals. Available online: http://www.nmfs.noaa.gov/op/pds/documents/02/238/02-238-01.pdf.
- O'Corry-Crowe, G., B. L. Taylor, and T. Gelatt. 2006. Demographic independence along ecosystem boundaries in Steller sea lions revealed by mtDNA analysis: implications for management of an endangered species. Can. J. Zool. 84:1796-1809.
- Pendleton, G. W., K. W. Pitcher, L. W. Fritz, A. E. York, K. L. Raum-Suryan, T. R. Loughlin, D. G. Calkins, K. K. Hastings, and T. S. Gelatt. 2006. Survival of Steller sea lions in Alaska: a comparison of increasing and decreasing populations. Can. J. Zool. 84(8): 1163-1172.
- Perez, M. A. 2006. Analysis of marine mammal bycatch data from the trawl, longline, and pot groundfish fisheries of Alaska, 1998-2004, defined by geographic area, gear type, and target groundfish catch species. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-167, 194 p.
- Phillips, C. D., J. W. Bickham, J. C. Patton, and T. S. Gelatt. 2009. Systematics of Steller sea lions (*Eumetopias jubatus*): Subspecies recognition based on concordance of genetics and morphometrics. Occas. Papers, Museum of Texas Tech University 283:1-15.
- Phillips, C. D., T. S. Gelatt, J. C. Patton, and J. W. Bickham. 2011. Phylogeography of Steller sea lions: relationships among climate change, effective population size, and genetic diversity. J. Mammal. 92(5):1091–1104.
- Pitcher, K. W., P. F. Olesiuk, R. F. Brown, M. S. Lowry, S. J. Jeffries, J. L. Sease, W. L. Perryman, C. E. Stinchcomb, and L. F. Lowry. 2007. Status and trends in abundance and distribution of the eastern Steller sea lion (*Eumetopias jubatus*) population. Fish. Bull. 107(1):102-115.
- Sease, J. L., and C. J. Gudmundson. 2002. Aerial and land-based surveys of Steller sea lions (*Eumetopias jubatus*) from the western stock in Alaska, June and July 2001 and 2002. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-131, 54 p.
- Sease, J. L., W. P. Taylor, T. R. Loughlin, and K. W. Pitcher. 2001. Aerial and land-based surveys of Steller sea lions (*Eumetopias jubatus*) in Alaska, June and July 1999 and 2000. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-122, 52 p.

- Sease, J. L., and A. E. York. 2003. Seasonal distribution of Steller's sea lions at rookeries and haul-out sites in Alaska. Mar. Mammal Sci. 19(4): 745-763.
- Springer, A. M., J. A. Estes, G. B. van Vliet, T. M. Williams, D. F. Doak, E. M. Danner, K.A. Forney and B. Pfister. 2003. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling? Proc. Natl. Acad. Sci. 100: 12223-12228.
- Trites, A. W., and C. P. Donnelly. 2003. The decline of Steller sea lions in Alaska: a review of the nutritional stress hypothesis. Mammal Rev. 33: 3-28.
- Trites, A. W., V. B. Deecke, E. J. Gregr, J. K. B. Ford, and P. F. Olesiuk. 2007. Killer whales, whaling and sequential megafaunal collapse in the North Pacific: a comparative analysis of the dynamics of marine mammals in Alaska and British Columbia following commercial whaling. Mar. Mammal Sci. 23(4):751-765.
- Trujillo, R. G., T. R. Loughlin, N. J. Gemmell, J. C. Patton, and J. W. Bickham. 2004. Variation in microsatellites and mtDNA across the range of the Steller sea lion, *Eumetopias jubatus*. J. Mammal. 85(2):338-346.
- Wade, P. R., and R. Angliss. 1997. Guidelines for assessing marine mammal stocks: report of the GAMMS workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12, 93 p.
- Williams, T. M., J. A. Estes, D. F. Doak, and A. M. Springer. 2004. Killer appetites: assessing the role of predators in ecological communities. Ecology 85(12):3373-3384.
- Wilson, K., L. Fritz, E. Kunisch, K. Chumbley, and D. Johnson. 2012. Effects of research disturbance on the behavior and abundance of Steller sea lions (*Eumetopias jubatus*) at two rookeries in Alaska. Mar. Mammal Sci. 28(1): E58-E74.
- Winship, A. J., and A. W. Trites 2006. Risk of extirpation of Steller sea lions in the Gulf of Alaska and Aleutian Islands: a population viability analysis based on alternative hypotheses for why sea lions declined in western Alaska. Mar. Mammal Sci. 22(1): 124-155.
- Wolfe, R. J., J. A. Fall, and M. Riedel. 2008. The subsistence harvest of harbor seals and sea lions by Alaska Natives in 2006. Alaska Dep. Fish and Game, Juneau, AK, Subsistence Div. Tech. Paper No. 339. Juneau, AK.
- Wolfe, R. J., J. A. Fall, and M. Riedel. 2009a. The subsistence harvest of harbor seals and sea lions by Alaska Natives in 2007. Alaska Dep. Fish and Game, Juneau, AK, Subsistence Div. Tech. Paper No. 345. Juneau, AK.
- Wolfe, R. J., J. A. Fall, and M. Riedel. 2009b. The subsistence harvest of harbor seals and sea lions by Alaska Natives in 2008. Alaska Dep. Fish and Game, Juneau, AK, Subsistence Div. Tech. Paper No. 347. Juneau, AK.
- Wolfe, R. J., J. A. Fall, and R. T. Stanek. 2005. The subsistence harvest of harbor seals and sea lions by Alaska Natives in 2004. Alaska Dep. Fish and Game, Juneau, AK, Subsistence Div. Tech. Paper No. 303. Juneau, AK.
- Wolfe, R. J., J. A. Fall, and R. T. Stanek. 2006. The subsistence harvest of harbor seals and sea lions by Alaska Natives in 2005. Alaska Dep. Fish and Game, Juneau, AK, Subsistence Div. Tech. Paper No. 319. Juneau, AK
- Wolfe, R. J., L. Hutchinson-Scarbrough, and M. Riedel. 2012. The subsistence harvest of harbor seals and sea lions on Kodiak Island in 2011. Alaska Dep. Fish and Game, Juneau, AK, Subsistence Div. Tech. Paper No. 374, Anchorage, AK.
- Wynne, K. M., D. Hicks, and N. Munro. 1991. 1990 salmon gillnet fisheries observer programs in Prince William Sound and South Unimak Alaska. Annual Rept. NMFS/NOAA Contract 50ABNF000036. 65 pp. NMFS, Alaska Region, Office of Marine Mammals, P.O. Box 21668, Juneau, AK 99802.
- Wynne, K. M., D. Hicks, and N. Munro. 1992. 1991 Marine mammal observer program for the salmon driftnet fishery of Prince William Sound Alaska. Annual Rept. NMFS/NOAA Contract 50ABNF000036. 53 pp. NMFS, Alaska Region, Office of Marine Mammals, P.O. Box 21668, Juneau, AK 99802.
- York, A. E. 1994. The population dynamics of northern sea lions, 1975-1985. Marine Mammal Science 10(1): 38-51.
- York, A. E., R. L. Merrick, and T. R. Loughlin. 1996. An analysis of the Steller sea lion metapopulation in Alaska. Chapter 12, Pp. 259-292 *In* D. R. McCullough (ed.), Metapopulations and wildlife conservation. Island Press, Covelo, California.

NOAA-TM-AFSC-301 Allen, B. M., and R. P. Angliss

Zavadil, P. A. 2010. 2009 subsistence harvest of Steller sea lion on St. Paul Island. Memorandum for the Record, April 2010, Aleut Community of St. Paul, Tribal Government, Ecosystem Conservation Office. St. Paul Island, Pribilof Islands, Alaska.