NNI Program Component Areas


Program Component Areas (PCAs), which provide an organizational framework for categorizing the NNI's activities, are major subject areas under which related projects and activities are grouped. Progress in these areas is critical to achieving the NNI's goals and to realizing its vision. The investment for each PCA is reported in the annual NNI supplement to the President’s Budget.

The PCAs are:

  1. Nanotechnology Signature Initiatives
    - Water Sustainability through Nanotechnology
    - Nanoelectronics for 2020 and Beyond
    - Sustainable Nanomanufacturing
    - Nanotechnology Knowledge Infrastructure
    - Nanotechnology for Sensors and Sensors for Nanotechnology

  2. Foundational Research

  3. Nanotechnology-Enabled Applications, Devices, and Systems

  4. Research Infrastructure and Instrumentation

  5. Environment, Health, and Safety

PCA Definitions

These are the formal definitions of the PCAs as laid out in the 2014 NNI Strategic Plan.

1. Nanotechnology Signature Initiatives
NSIs serve to spotlight topical areas that exhibit particular promise, existing effort, and significant opportunity, and that bridge across multiple Federal agencies. They are intended to be dynamic, with topical areas rotating and evolving over time. This category includes foundational research and nanotechnology-enabled applications, devices, and systems within each NSI, as appropriate. Instrumentation that is specifically developed in support of a confined topical area covered by one of the NSIs is included here, but otherwise, the development or acquisition of more broadly applicable instrumentation (as well as resources devoted to facilities) falls under the separate PCA on Research Infrastructure and Instrumentation. Most research on Environment, Health, and Safety falls within the separate PCA described below, but activities directly pertinent to specific NSIs are reported in this section instead. Note that the NSIs are centered on focused thrust areas as described below, and that activity falling outside these areas is better characterized under other PCAs.
 

2. Foundational Research

Discovery and development of fundamental knowledge pertaining to new phenomena in the physical, biological, and engineering sciences that occur at the nanoscale. Elucidation of scientific and engineering principles related to nanoscale structures, processes, and mechanisms. Research aimed at discovery and synthesis of novel nanoscale and nanostructured materials and at a comprehensive understanding of the properties of nanomaterials ranging across length scales, and including interface interactions. Research directed at identifying and quantifying the broad implications of nanotechnology for society, including social, economic, ethical, and legal implications.

3. Nanotechnology-Enabled Applications, Devices, and Systems
R&D that applies the principles of nanoscale science and engineering to create novel devices and systems, or to improve existing ones. Includes the incorporation of nanoscale or nanostructured materials and the processes required to achieve improved performance or new functionality, including metrology, scale up, manufacturing technology, and nanoscale reference materials and standards. To meet this definition, the enabling science and technology must be at the nanoscale, but the applications, systems, and devices themselves are not restricted to that size.

4. Research Infrastructure and Instrumentation
Establishment and operation of user facilities and networks, acquisition of major instrumentation, workforce development, and other activities that develop, support, or enhance the Nation’s physical or human infrastructure for nanoscale science, engineering, and technology. Includes R&D pertaining to the tools needed to advance nanotechnology research and commercialization, including next generation instrumentation for characterization, measurement, synthesis, and design of materials, structures, devices, and systems. While student support to perform research is captured in other categories, dedicated educational and workforce efforts ranging from curriculum development to advanced training are included here as resources supporting the human infrastructure of the NNI.

5. Environment, Health, and Safety
R&D primarily directed at understanding the environmental, health, and safety impacts of nanotechnology development and corresponding risk assessment, risk management, and methods for risk mitigation.