Denise Harrington: What Fish Do I Eat? October 3, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Monday, October 3, 2016

I asked Kevin Rademacher, Research Fisheries Biologist at the Pascagoula, Mississippi Lab, what fish I could eat and still support sustainable fisheries.  He answered with a question, “Have you read the book Four Fish?” When I finished reading the book by Paul Greenberg, I spoke to Kevin again. “What do you think now?” He asked.

I said “There is something about wild fish that makes me want to catch and eat them, but I worry about whether we are eating wild fish out of existence.”

img_2656

Yellowedge grouper (Epinephelus itajara). Photo: Matt Ellis/NOAA Fisheries

“Have you talked with Adam?  He’s the numbers guy,” Kevin said.  It seems like the good teachers are always sending students away in search of their own answers.

Adam Pollack is a contract Fisheries Biologist with Riverside Technology, Inc., and works on the night crew.  We sometimes cross paths at midnight or noon.  Catching him wouldn’t be easy.

OLYMPUS DIGITAL CAMERA

Here, Adam measures a shark too large to bring on deck.  Photo: NOAA Fisheries

During one of these transition times, we had a moment to talk.  I asked Adam about his earliest fish memory.  He smiled.  “At about five, I went fishing with my dad.  We had a house in the mountains surrounded by a bunch of lakes.”  Adam and his dad would sit by the lake with their lines in the water “watching the bobber disappear.”  He smiles again.  These little largemouth bass changed his life.

adam-fishing

Adam takes a selfie with a red drum (Sciaenops ocellatus).

At first, he was set on becoming a professional bass fisherman but made a practical switch to marine biology.  He took all the science electives and the hardest math classes he could.  He went on to Southampton College on Long Island, New York, where he got lots of hands-on experiences beginning in his freshman year.  He believes a good education should include lots of opportunities, as early as possible, for interactive learning in a real world environment.

Once he graduated, Adam got his dream job: working in the Gulf of Mexico during the field season and then crunching numbers the rest of the year.  He takes the data scientists collect to the SouthEast Data, Assessment, and Review (SEDAR).  SEDAR is a cooperative process through which scientists, fishermen, and policy makers look at the life history, abundance trends, and other data to determine how many fish we can catch sustainably.

Adam, and many others, also look at how catastrophic events like Hurricane Katrina and the Deepwater Horizon oil spill affect marine species in the Gulf of Mexico.  After Hurricane Katrina, he said, shrimping efforts died down by about 40%.  The effects of the oil spill are still a little murky.  Many of the biologists on board initially predicted dire and immediate effects.  Yet unlike the spill in Alaska, the warm Gulf of Mexico water is host to bacteria, plants, and other living things that might be eating up the oil.  Many questions, such as whether these living things will mitigate the effects of a spill, are still being asked. “Deepwater Horizon is always on our minds,” Adam says.  There are also naturally occurring events like harmful algal blooms and long term issues like climate change that affect fish populations.

img_1611

Oil rigs dot the horizon as Tim Martin, Chief Boatswain, gets ready to retrieve the longline. Photo: Matt Ellis/NOAA Fisheries

 

img_1372

Here, Paul Felts, Fisheries Biologist, weighs a yellowedge grouper (Hyporthodus flavolimbatus). Photo Matt Ellis/NOAA Fisheries

“Can you tell me about snapper?” I asked Adam.  Red snapper (Lutjanus campechanus), assessed every other year, is a hot button topic for commercial and recreational fishermen alike in the Gulf. The species was in decline. Recreational fishermen went from a 180 day season to catch fish to an 8 day season and from 10 to 2 fish a day per person.  Commercial fishermen weren’t happy either: they could only take 49% of the year’s quota for red snapper, while the recreational fishermen get to catch 51% of the quota.  Fairness is not just a second grade concern, it is a major sticking point in regulating fisheries world wide.

img_3226

Snapper is as tasty as it is beautiful.  Photo: Matt Ellis/NOAA Fisheries

Red snapper is a vulnerable species.  Snapper settle to the bottom of the water column from larvae.  They are at high risk of mortality from ages 0-5, the same time when they are close to human activity such as oil rigs, shrimping grounds and easy to access fishing areas.  Those who manage the fisheries are trying to get the snapper through that vulnerable stage.  Like money in the bank accruing interest, a 10 year old snapper can produce more eggs than a five year old.  Before we take snapper from the sea, we must make sure a healthy older population remains to reproduce.

img_3230

TAS Denise Harrington holds up two red snapper. Photo: Matt Ellis/NOAA Fisheries.

Once an assessment is complete, scientists determine a maximum sustainable yield:  how many fish can be taken from the population and still keep enough around to make more fish for the future.  Take a look at a shark assessment and a snapper assessment. Looking at these long and complicated assessments, I am glad we have people like Adam who is willing to patiently work with the numbers.

Gathering the best data and making it available to people who collaborate to make informed decisions is an important part of Adam’s job. We all want fish and NOAA fisheries biologists are doing their best to make that happen for us, and for generations to come.

Personal Log

My time aboard the Oregon II has come to an end.  Bundled up in my winter clothes,  I look out over a rainy Oregon landscape filled with fishermen hoping to catch a fall Chinook salmon. Two places with different weather and many different fish species.  Yet many of our challenges are the same.

Back at school, students and teachers welcome me enthusiastically.  Instead of measuring desks and books as part of our Engage NY curriculum, we measured sharks and their jaws.  Many of these students have never been out of Oregon, many have not been to the beach, even though it is only 4 miles away.  With NOAA, South Prairie Elementary students were able to learn about faraway places and careers that inspire them.

Soon these seven year old children will be in charge. I am thankful to the NOAA crews and the Teacher at Sea program staff, as they’ve prepared generations of students of all ages to collaborate and creatively face the task that lies ahead.

 

 

Denise Harrington: First Day Jitters, September 21, 2016

NOAA Teacher at Sea

Denise Harrington

Aboard NOAA Ship Oregon II

September 16-30, 2016

Mission: Longline Survey

Geographic Area: Gulf of Mexico

Date: Wednesday, September 21, 2016

My first day on the longline cruise seems so long ago with three days of work under my belt. The night before my first shift, just like when school starts, I couldn’t sleep. Trying to prepare was futile. I was lost, lost in the wet lab, lost in my stateroom, lost in the mess. I needed to get some gloves on and get to work, learning the best way I know how: by doing.

At noon, I stepped out the fantail, life vest, gloves, hard hat, and sunscreen on, nervous, but ready to work. The Gulf of Mexico horizon was dotted with oil rigs, like a prairie full of farmhouses. Heat waves rose from the black deck.

Fifteen minutes before arriving at our first station, our science team, Field Party Chief Dr. Trey Driggers, Field Biologist Paul Felts, Research Biologist Kevin Rademacher, NOAA Science Writer Matt Ellis, and I began to prepare for our first station by baiting the hooks with mackerel (Scomber scombrus). I learned quickly that boots and grubby clothes are ideal for this task.

p1080831

Once all the hooks were baited, Chief Boatswain Tim Martin and Paul release a high flyer, a large pole with a buoy at the bottom and a reflective metal flag on top.

The buoy, connected to the boat by the longline, bobbed off toward the horizon.

p1080429

Tim attached the first of three weights to anchor the line to the sea floor.

p1080443

As the longline stretched across the sea, Kevin attached a numbered tag to the baited hook held by Paul.

p1080326

Paul passed the baited, tagged hook to Tim, who attached 100 hooks, evenly spaced, to the one mile longline.

p1080838

On another station, Paul attached numbers to the gangion (clip, short line, and baited hook) held by Trey.  Each station we change roles, which I appreciate.

Setting the longline is rather predictable, so with Rush and Van Halen salting the air, we talked about our kids, dogs, riots in the news, and science, of course. The tags will help us track the fish we catch. After a fish is released or processed, the data is entered in the computer and shared with the scientific community. Maybe one of these tagged fish will end up in one of the many scientific papers Trey publishes on sharks each year.

The line soaked for an hour waiting for snapper, tilefish, eels, sharks, and other fish to bite. While the line soaked, Mike Conway, skilled fisherman, and I lowered the CTD, a piece of equipment that measures conductivity (salinity), temperature, and depth, into the water.  Once the biologists know how salty, cold, and deep the water is, they can make better predictions about the species of fish we will find.

We attached a bag holding a few Styrofoam cups to see how the weight of the water above it would affect the cup.  Just imagine the adaptations creatures of the deep must have developed to respond to this pressure!

The ship circled back to hook #1 to give each hook equal time in the water. After an hour, we all walked up to the well deck, toward the bow or front of the ship. We pulled in the first highflyer and weight.  We pulled in the hooks, some with bait, and some without.  After 50 hooks, the middle weight came up. We still didn’t have a fish.  I began to wonder if we’d catch anything at all.  No data is still data, I thought. “Fish on eighty three!” I heard someone yell.   I wake from my reverie, and get my gloves on.

p1080432

It was a blacknose shark (Carcharhinus acronotus), “pound for pound, the meanest shark in the water,” says Trey. He would know, he’s the shark expert. It came up fighting, but was no match for Kevin who carefully managed to get length, weight, and sex data before releasing it back into sea.

With one shark to process, the three scientists were able to analyze the sexual maturity of the male blacknose together. I learned that an adult male shark’s claspers are hard and rotate 180˚, allowing them to penetrate a female shark. An immature shark’s claspers are soft and do not rotate. For each male shark, we need to collect this data about its sex stage.

p1080172

Here, you can see Trey rotating the clasper 180 degrees.

Later, Paul talked about moments like these, where the field biologists work side by side with research biologists from all different units in the lab.  Some research biologists, he notes, never get into the field.  But Kevin, Trey, and others like them have a much more well-rounded understanding of the data collected and how it is done because of the time they spend in the field.

Fortunately, the transition from inexperienced to novice was gradual. The second line was just as easy as the first, we only brought in two fish, one shark and one red snapper (Lutjanus campechanus).

For the red snapper, we removed the otoliths, which people often call ear bones, to determine age, and gonads to determine reproductive status.  I say “we” but really the scientists accomplished this difficult feat. I just learned how to process the samples they collected and record the data as they dissected the fish.

We set the longline a third time. The highflyer bobbed toward the orange sun, low on the horizon. The ship turned around, and after an hour of soaking, we went to the well deck toward the front of the ship to pull in the longline.  The sky was dark, the stars spread out above us.

“One!” “Three!” “Seven!” “Nine!”  The numbers of tags with fish on the line were being called out faster than we could manage.  It seemed like every other hook had a shark on it.  Two hours later we had collected twenty-eight Atlantic sharpnose (Rhizoprionodon terraenovae) sharks and had one snapper to process. Too busy working to take pictures, I have nothing to document my transition from inexperienced to novice except this data sheet.  Guess who took all this data? Me!

p1080265

Personal Log

NOAA Ship Oregon II is small, every bunk is filled.  I share a stateroom with the second in command, Executive Officer (XO) Lecia Salerno, and am thankful she is such a flexible roommate, making a place for me where space is hard to come by.

Last night, as I lay in my bunk above XO Salerno and her office, I felt like Garth on Wayne’s World, the thought that “I’m not worthy” entering my head.  All members of the crew are talented, experienced, and hard-working, from the bridge, to the galley, to the engine room, and out on the deck where we work. I’ve made a few mistakes.   I took the nasty thought and threw it overboard, like the slimy king snake eels (Ophichthus rex) we pull from the deep.

o-rex

King Snake Eel (Ophichthus rex)

In the morning I grabbed a cup of coffee, facing the risk of being the least experienced, slowest crew member to learn, with curiosity and perseverance.  First day jitters gone, I’m learning by doing.

Barney Peterson: What Are We Catching? August 28, 2016

NOAA Teacher at Sea

Barney Peterson

Aboard NOAA Ship Oregon II

August 13 – 28, 2016

Mission: Long Line Survey

Geographic Area: Gulf of Mexico

Date: Sunday, August 28, 2016

Weather Data is not available for this post because I am writing from the Biloxi/Gulfport Airport.

WHAT ARE WE CATCHING?

This is a long-line survey.  That means we go to an assigned GPS point, deploy hi-flyer buoys, add weights to hold the line down, add 100 baited hooks, leave it in place for an hour, and retrieve everything.

mackerel-bait-fish

Mackerel is used to bait the hooks.

As the equipment is pulled in we identify, measure and record everything we catch.  Sometimes, like in the case of a really large, feisty shark that struggles enough to straighten or break a hook or the lines, we try to identify and record the one that got away.  We tag each shark so that it can be identified if it is ever caught again.  We tally each hook as it is deployed and retrieved, and the computer records a GPS position for each retrieval so scientists can form a picture of how the catch was distributed along the section we were fishing.  The target catch for this particular survey was listed as sharks and red snapper.  The reality is that we caught a much wider variety of marine life.

We list our catch in two categories: Bony fish, and Sharks.  The major difference is in the skeletons.  Bony fish have just that: a skeleton made of hard bone like a salmon or halibut.  Sharks, on the other hand, have a cartilaginous skeleton, rigid fins, and 5 to 7 gill openings on each side.  Sharks have multiple rows of sharp teeth arranged around both upper and lower jaws.  Since they have no bones, those teeth are embedded in the gums and are easily dislodged.  This is not a problem because they are easily replaced as well.  There are other wonderful differences that separate sharks from bony fish.

Bony Fish we caught:

The most common of the bony fish that we caught were Red Groupers (Epinephelus morio), distinguished by of their brownish to red-orange color, large eyes and very large mouths.  Their dorsal fins, especially, have pointed spikes.

chrissy-with-enormous-grouper

Chrissy holding an enormous grouper

We also caught Black Sea Bass (Centropristus striata) which resemble the groupers in that they also have large mouths and prominent eyes.

sea-bass

Black Sea Bass

A third fish that resembles these two is the Speckled Hind (Epinephelus drummondhayi).  It has a broad body, large mouth and undershot jaw giving the face a different look.  Yes, we did catch several Red Snapper (Lutjanus campechanus), although not as many as I expected.  Snappers are a brighter color than the Red Groupers, and have a more triangular shaped head, large mouth and prominent canine teeth.

red-snapper

Red Snapper

The most exciting bony fish we caught was barracuda (Sphyraena barracuda).  We caught several of these and each time I was impressed with their sleek shape and very sharp teeth!

barracuda

TAS Barney Peterson with a barracuda

Most of the bony fish we caught were in fairly deep water.

 

Sharks:

We were fortunate to catch a variety of sharks ranging from fairly small to impressively big!

The most commonly caught were Sandbar Sharks (Carcharhinus plumbeus): large, dark-gray to brown on top and white on the bottom.

sandbar-shark

Sandbar Shark

Unless you really know your sharks, it is difficult for the amateur to distinguish between some of the various types.  Experts look at color, nose shape, fin shape and placement, and distinguishing characteristics like the hammer-shaped head of the Great Hammerhead (Sphyrna mokarran) and Scalloped Hammerhead (Sphyrna lewini) sharks that were caught on this trip.

great-hammerhead

Great Hammerhead Shark

The beautifully patterned coloring of the Tiger Shark (Galeocerdo cuvier) is fairly easy to recognize and so is the yellowish cast to the sides of the Lemon Shark (Negaprion brevirostris).

Other sharks we caught were Black-nose (Carcharhinus acrontus), Atlantic Sharp-nosed (Rhizoprionodon terraenovae), Nurse Shark (Ginglymostoma cirratum), Blacktip (Carcharhinus limbatus) and Bull Sharks (Carcharhinus leucus).

Several of the sharks we caught were large, very close to 3 meters long, very heavy and very strong!  Small sharks and bony fish were brought aboard on the hooks to be measured against a scaled board on the deck then weighed by holding them up on a spring scale before tagging and releasing them.  Any shark larger than about 1.5 meters was usually heavy and strong enough that it was guided into a net cradle that was lifted by crane to deck level where it could be measured, weighed and tagged with the least possibility of harm to either the shark or the crew members.  Large powerful sharks do not feel the force of gravity when in the water, but once out of it, the power of their weight works against them so getting them back into the water quickly is important.  Large powerful sharks are also pretty upset about being caught and use their strength to thrash around trying to escape.  The power in a swat from a shark tail or the abrasion from their rough skin can be painful and unpleasant for those handling them.

PERSONAL LOG

The Night Sky

I am standing alone on the well deck; my head is buzzing with the melodies of the Eagles and England Dan.  A warm breeze brushes over me as I tune out the hum of the ship’s engines and focus on the rhythm of the bow waves rushing past below me.  It is dark! Dark enough and clear enough that I can see stars above me from horizon to horizon: the soft cloudy glow of the Milky Way, the distinctive patterns of familiar favorites like the Big Dipper and the Little Dipper with its signature bright point, the North Star.  Cassiopeia appears as a huge “W” and even the tiny cluster of the “Seven Sisters” is distinct in the black bowl of the night sky over the Gulf of Mexico.  The longer I look the more stars I see.

This is one of the first really cloudless nights of this cruise so far.  Mike Conway, a member of the deck crew came looking for me to be sure I didn’t miss out on an opportunity to witness this amazingly beautiful show.  As I first exited the dry lab and stumbled toward the bow all I could pick out were three faint stars in the bowl of the Big Dipper.  The longer I looked, the more my eyes grew accustomed to the dark, and the more spectacular the show became.  Soon there were too many stars for me to pick out any but the most familiar constellations.

As a child I spent many summer nighttime hours on a blanket in our yard as my father patiently guided my eyes toward constellation after constellation, telling me the myths that explained each one. Many years have passed since then.  I have gotten busy seeing other sights and hearing other stories.  I had not thought about those long ago summer nights for many years.  Tonight, looking up in wonder, I felt very close to Pop again and to those great times we shared.

 

Barney Peterson: What is NOAA? August 20, 2016

Barney Peterson
Aboard NOAA Ship OREGON II
August 13 – 28, 2016

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: August 20, 2016

Weather Data from the Bridge:

Latitude: 28 10.999 N

Longitude:  084 09.706 W

Air temperature: 90.68 F

Pressure: 1020.05 Mb

Sea Surface Temperature: 32.6 C

Wind Speed: 4.74 Kt

Science Log:

Teacher at Sea

Teacher at Sea Barney Peterson working on line long deployment aboard the OREGON II.

 

NOAA is a big organization!  To say I am working for NOAA this summer is like saying I am visiting the USA…way too non-specific to mean much.

NOAA (National Oceanic and Atmospheric Administration) is a part of the US Department of Commerce.  The NOAA mission: Science, Service and Stewardship, is further stated simply as to understand and predict changes in climate, weather, oceans and coasts; to share that knowledge and information with others; to conserve and manage coastal and marine ecosystems and resources.

To carry out that mission NOAA is further split into divisions that use a broadly diverse set of skills and abilities including satellite systems, ships, buoys, aircraft, research, high performance computing, and information management and distribution systems.*  In later posts I will introduce you to some of the people who use those resources as they perform their jobs.

As a Teacher at Sea I am working under NOAA Fisheries.  This program (TAS) “is designed to give teachers a clearer insight into our ocean planet, a greater understanding of maritime work and studies and to increase their level of environmental literacy by fostering an interdisciplinary research experience.”*

This summer I am assigned to NOAA Ship Oregon II, a fisheries research vessel of the National Marine Fisheries Service.  We are conducting a long-line survey of fish in the Gulf of Mexico.  The information we gather on species diversity and abundance will help the Service make decisions for management of our marine resources. What this boils down to for the average citizen may seem like what you are allowed to catch where, when, and how many; really the results are much, much more important.  These decisions will be part of a plan to respond to changes in the health of our planet and the needs of all of us who inhabit it.  “There is just one big ocean.”*

To understand what that last statement means, find a globe or an inflatable Earth Ball™.  Put your index finger on a point in the Arctic Ocean.  Now move your finger around the globe, always moving to your right, maybe a little up or down sometimes, until you get back to where you started.  Your finger should never leave the “water” as it moves around the world.  See!  JUST ONE BIG OCEAN!

one ocean

There is just one big ocean.

*1) ppi.noaa.gov              *2)teacheratsea.noaa.gov           *3)oceanexplorer.noaa.gov/facts/bigocean.html

Barney Peterson: Rescue at Sea, August 23, 2016

NOAA Teacher at Sea
Barney Peterson

Aboard NOAA Ship OREGON II
August 13 – 28, 2016

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: Tuesday, August 23, 2016

Weather Data from the Bridge:

Latitude: 28 10.999 N

Longitude:  084 09.706 W

Air temperature: 90.68 F

Pressure: 1020.05 Mb

Sea Surface Temperature: 32.6 C

Wind Speed: 4.74 Kt

Science Log:

Rescue At Sea!

About mid-morning today the ship’s electrician found me to tell me that the night shift crew had just reported seeing a Sea Turtle near the line that they were currently deploying.  The turtle swam over the line and then dove toward the baited hooks some 30 meters down near the bottom.  Nobody is supposed to catch Sea Turtles; the stress of being on the hook can be fatal so immediate recovery and release is required in the case of an accidental catch.  The crew went into immediate pro-active rescue mode!

Loggerhead Turtle

File photo of a Loggerhead Turtle.

The deployment was stopped. The line was cut and a final weight and a second hi-flyer were deployed to mark the end of the set for retrieval.  The Captain altered course to bring the ship back around to a point where we began retrieving the line.  Crew moved to the well deck and prepared the sling used to retrieve large sharks; it would be used to bring a turtle gently to the deck in the event that we had to remove a hook.

As retrieval started and gangions were pulled aboard, it became obvious that this set was in a great location for catching fish.  8 or 9 smallish Red Grouper were pulled in, one after another. Many of the other hooks were minus their bait.  The crew worked the lines with a sense of urgency much more intense than on a normal retrieval!  If a turtle was caught on a hook they wanted it released as quickly as possible to minimize the trauma.

As the final hi-flyer got closer and the last of the gangions was retrieved, a sense of relief was obvious among the crew and observers on the deck.  The turtle they spotted had gone on by without sampling the baited hooks.

On this ship there are routines to follow and plans in place for every emergency.  The rescue of an endangered animal is attended to with the same urgency and purpose as any other rescue.  The science and deck crews know those routines and slip into them seamlessly when necessary to ensure the best possible result.  This is all part of how they carry out NOAA’s mission of stewardship in our oceans.

Personal Log:

Here is Where I Live

I am assigned a bunk in a stateroom shared with another science crew member.  I am assigned to the top bunk and my roomie, Chrissie Stepongzi, is assigned to the bottom.  Climbing the ladder to the top bunk when the ship is rolling back and forth is like training to be an Olympic gymnast!  But, I seem to have mastered it!  Making my bed each morning takes determination and letting go of any desire for perfection: you just can’t get to “no wrinkles!”

stateroom

Find the Monroe Eagle in my nest aboard the OREGON II

Chrissie works the midnight to noon shift and I work noon to midnight so the only time we really see each other is at shift change.  Together, we are responsible for keeping our space neat and clean and respecting each other’s privacy and sleep time.

I eat in the galley, an area open to all crew 24/7. Meals are served at 3 regular times each day.  The food is excellent!  If you are on shift, working and can’t break to eat at meal time, you can request that a plate be saved for you.  The other choice for those off-times is to eat a salad, sandwich, fruit or other snack items whenever you need an energy boost.  We are all responsible for cleaning up after ourselves in the galley.  Our Chief Steward Valerie McCaskill and her assistant, Chuck Godwin, work hard to keep us well-fed and happy.

Galley

Everyone on the ship shares space in the galley where seats are decorated with the symbol of the New Orleans Saints… somebody’s favorite team.

There is a lounge, open to everyone for reading, watching movies, or hanging out during down time.  There is a huge selection of up-to-date videos available to watch on a large screen and a computer for crew use.  Another place to hang out and talk or just chill, is the flying deck.  Up there you can see for miles across the water while you sit on the deck or in one of two Adirondack chairs.  Since the only shade available for relaxing is on this deck it can be pretty popular if there is a breeze blowing.

Lounge

During off-duty times we can read, play cards or watch movies in the lounge.

Flying Bridge

The flying bridge is a place to relax and catch a cool breeze when there is a break in the work.

My work area consists of 4 stations: the dry lab which has computers for working with data, tracking ship movements between sample sites, and storing samples in a freezer for later study;

Dry Lab

The dry lab where data management and research are done between deployments

the wet lab which so far on this cruise, has been used mainly for getting ready to work on deck, but has equipment and storage space for processing and sampling our catch; the stern deck where we bait hooks and deploy the lines and buoys; the well deck at the front of the ship where lines and buoys are retrieved, catch is measured and released or set aside for processing, and the CTD is deployed/stored for water sampling.

We move between these areas in a rhythm dictated by the pace of our work.  In between deployments we catch up on research, discuss procedures, and I work on interviews and journal entries.  I am enjoying shipboard life.  We usually go to bed pretty tired, that just helps us to sleep well.  The amazing vistas of this ocean setting always help to restore my energy and recharge my enthusiasm for each new day.

sunset

Beautiful sunsets are the payoff for hot days on the deck.

 

Barney Peterson: Cut Bait and Fish! August 17, 2016

NOAA Teacher at Sea
Barney Peterson

Aboard NOAA Ship OREGON II
August 13 – 28, 2016

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: Wednesday, August 17, 2016

Weather Data from the Bridge:

Latitude: 25 29.664 N

Longitude: 082 02.181 W

Air temperature: 84.56 F

Pressure: 1018.13 Mb

Sea Surface Temperature: 30.5 C

Wind Speed: 13.54 Kt    East 12.72 degrees

Science Log:

The fishing process on the ship repeats itself in a well-defined cycle: cut bait, bait 100 hooks, drop hi-flyer, drop weight,  attach 50 tags and baited hooks, drop weight, attach 50 more tags and hooks, drop weight, deploy hi-flyer.  Put the CTD over the side and retrieve for water quality data.  Wait an hour.  Retrieve hi-flyer, retrieve weight, pull in first 50 hooks and detach tags logging any catch as they come in, retrieve weight, pull in next 50 hooks and detach tags logging any catch as they come in, retrieve last weight, retrieve last hi-flyer.  Process the catch as it comes in, logging tag number, gender, species, lengths at 3 points, life stage, and tag number if the catch is a shark that gets tagged, return catch to water alive as quickly as possible. Transit to the next sample site.  Wash, rinse and repeat.

That boils it down to the routine, but long line fishing is much more interesting and exciting than that!  Bait we use is Atlantic Mackerel, caught farther north and frozen, thawed just before use and cut into 3 pieces per fish.  A circle hook is inserted through each piece twice to ensure it will not fall off the hook…this is a skill that takes a bit of practice.  Sometimes hooks are pulled in with bait still intact. Other times the bait is gone and we don’t know if it was eaten without the hook catching, a poor baiting job, or more likely eaten by smaller fish, too little to be hooked.  When we are successful we hear the call “FISH ON!” and the deck comes alive.

The line with a catch is pulled up as quickly and carefully as possible.  Some fish are not securely hooked and are lost between the water and the deck…not what we want to happen.  If the catch is a large shark (generally 4 feet or longer) it is raised to the deck in a sling attached to the forward crane to minimize the chance of physical injury.  For large sharks a camera with twin lasers is used to get a scaled picture for estimating length.  There is a dynamometer on the line between the sling and the crane which measures pressure and converts it to weight.  Both of these processes help minimize the time the shark needs to be out of water with the goal of keeping them alive to swim away after release.  A tag is quickly attached to the shark, inserted under the skin at the base of the second dorsal fin.  A small clip is taken from a fin, preferably from the pelvic fin, for DNA studies. The sling is lowered back to the water and the shark is free to swim away.  All data collected is recorded to the hook-tag number which will identify the shark as to geographic location of the catch.

Shark in sling

A sandbar shark being held in the sling for measurements.

Sometimes the catch is a smaller shark or a bony fish:  a Grouper, a Red Snapper, or any one of many different types of fish that live in this area.  Each of these is brought onto the deck and laid on a measuring board. Species, length, and weight are recorded. Fin clips are taken.  Many of them are on the list of species of recreational and commercial importance.  These fish are retained for life history studies which will inform future management decisions.  In the lab they are dissected to retrieve otoliths (ear stones) by which their age is determined.  Depending upon the species, gonads (the reproductive organs) may be saved for study to determine the possibilities of future reproductive success.  For certain species a good-sized piece of flesh is cut from the side for fraudulent species voucher library use.

After the smaller sharks are measured, fin clipped, gender identified, life stage is determined and weight is taken, they are tagged and returned to the water as quickly as possible.  Tags on these sharks are a small, numbered plastic tag attached by a hole through the first dorsal fin.

This is a lot to get done and recorded and it all happens several times each shift.  The routine never varies.  The amount of action depends upon the success of the catch from any particular set.  This goes on 24 hours per day.  The only breaks come as we travel between the sites randomly selected for our sets and that time is generally spent in the lab.

(Thanks go to Kevin Rademacher, Trey Driggers and Lisa Jones, Research Fisheries Biologists, for contributing to this entry.  File photo NOAA/NMFS)

Personal Log:

I do not need 12 hours of sleep.  That means I have several hours at the start or end of each shift to write in my journal, talk to the other members of the crew, take care of personal business such as laundry and communicate with home via email.  Even so, every day seems to go by very quickly and I go to bed thinking of all the things I have yet to learn.  In my next posts I will tell more about the different kinds of sharks and introduce you to some of the other people on the ship.  Stay tuned.

Barney Peterson:Welcome to OREGON II, August 14, 2016

NOAA Teacher at Sea
Barney Peterson

Aboard NOAA Ship OREGON II
August 13 – 28, 2016

 

Mission: Shark/Red Snapper Longline Survey

Geographic Area of Cruise: Gulf of Mexico

Date: August 14, 2016

Weather Data from the Bridge:

Latitude: 25 23.297 N

Longitude: 083 40 .794 W

Air temperature: 87.6 F

Pressure: 1017.04 Mb

Sea Surface Temperature: 30.6 C

Wind Speed: 16.6 Kt    East 86.74 degrees

Science Log:

We will set clocks tonight SHIP WIDE.  At 0100 it will become 0000.  Please plan accordingly.

What this translates to is that when we moved into the Gulf of Mexico we went to the Central Time Zone.  That means only a 2-hour difference between the ship and my home in the Pacific Northwest.  That also means I, who am on the noon-to-midnight shift, got one more hour to sleep (or whatever) Sunday night.

I am busy learning about schedules on the ship. The science group is split into 2 shifts.  We work days: noon to midnight; or nights: midnight to noon.  These hours rule our lives. Meals are served at 0630, 1100, and 1700.  You eat your first meal before you go on shift and your last at shift’s end.  During the 12 hours you are off shift your stateroom is yours and your roommate is expected to stay away and let you sleep.  The opposite is true for your time on: take everything you may need with you when you leave.  Showers, laundry and personal business are fit into your 12 hours off.  Shipboard courtesy requires that we keep voices low in the passageways and be careful not to let doors slam.  Somebody is always trying to sleep.  There is always a quiet spot somewhere to relax for a moment if you get the time: on the flying bridge, at the table on the stern, in the lounge or at a galley table.

Sunday, at 1230 hours, we had safety drills, required for all personnel within 24 hours of departure and once a week thereafter on every cruise.  Reporting stations for 3 different types of drills are posted in staterooms and throughout the ship.  Nobody is exempt from participation.

The signal sounds: a 10 second ringing of the bell: FIRE!  The PA announces a drill: “All hands report to assigned stations.”  Members of the science team quickly make their way to the stern.  By the galley stands a crew member with a sign reading: Fire ahead – detour.  After we arrive at our station, get checked off and, when all crew have been accounted for, return to our staterooms.

Next – 7 short and one long ring on the bell: ABANDON SHIP!  Announcement: “Drill.  All hands report to the bow with PFD’s and survival suits.”  We grab our life jackets and “Gumby suits” and head to the bow where we are checked off as we arrive.  We are required to don our “Gumbies” in 2 minutes or less – not impossible, but not simple either.  I’ve done it before.  The hardest part is getting the hood on and zipping up with your hands jammed into the lobster-claw gloves and your shoes and hat crammed into the suit with you…that’s when you discover just how much too long the arms and legs are.  It isn’t pretty, but if we actually end up in the water, those neoprene suits will be our best protection against the deadly, energy-sapping effects of hypothermia!

Just after we have stripped out of the “Gumby” suits, rolled them up and stowed them and our life jackets back in staterooms, we get the next signal.

3 long bells: “MAN OVERBOARD!” This drill is important too, but feels almost like an anti-climax.  It could mean the difference between life and death to a fellow crew member who falls into the water when the ship is moving.  Science team reports again to the stern and, in a real emergency, would receive instructions for participating in spotting or assisting in a rescue.  This time we stay and listen to a safety talk about our work with long lines, hooks, bait, and our possible catch which could include all kinds of fish and sharks.  There are very definite rules and procedures to ensure crew are safe and our catch is handled with care and respect.  If all goes well…our first lines will be set Monday night!

Personal Log:

Sitting on the flying bridge about 1900 Sunday evening, 3 of us spotted a small boat about ½ mile away that seemed to be drifting aimlessly.  There were two enormous cruise ships coming up behind us and they went around it on either side after cutting their engines to reduce their wake.  A crew member from the bridge watched from our deck as somebody on the boat fired a flare.  We were informed that radio contact was established: the boat was adrift, out of fuel, and we would stand by until the Coast Guard arrived. The OREGON II cut speed and circled back to stay closer to the small boat.  One of the cruise ships was also standing by while the other went on its way.  After about 20 minutes the white and red Coast Guard ship appeared and, when it reached the small boat, we were released to go on our way.

Seeing this response to another vessel in need of help put emphasis upon the importance of participating fully in our drills and understanding the measures in place to keep us safe and aid other ships sharing this big ocean.

Did You Know?  What is the largest shark found in the Gulf of Mexico?

going aboard

Teacher at Sea Barney Peterson about to board NOAA ship OREGON II