Lynn Kurth: Time and Tide Wait For No Man, June 28, 2016

 

NOAA Teacher at Sea

Lynn M. Kurth

Aboard NOAA Ship Rainier

June 20-July 1, 2016

Mission: Hydrographic Survey

Geographical area of cruise:  Latitude:  57˚57.486 N   Longitude:  152˚55.539 W  (Whale Pass)

Date:  June 28, 2016

Weather Data from the Bridge
Sky:  Overcast
Visibility: 15 Nautical Miles
Wind Direction: 164
Wind Speed: 8 Knots
Sea Wave Height: 1 ft. (no swell)
Sea Water Temperature: 8.3° C (46.94° F)
Dry Temperature: 12.° C (53.6° F)
Barometric (Air) Pressure: 1019.6 mb


Science and Technology Log

The ocean supports many ecosystems which contain a diversity of living things ranging in size from tiny microbes to whales as long as 95 feet.  Despite the fact that I am working on a hydrographic ship, when out on a skiff or while in port, I have had the opportunity to view some of these ecosystems and a number of the species found in them.

While the Rainier was in port in Homer, I spent some time at the Kachemak Bay National Estuarine Research Reserve which, like other estuaries, is among the most productive ecosystems in the world.  An estuary, with accompanying wetlands, is where the freshwater from a river meets and mixes with the salt water of the sea.  However, there are some estuaries that are made entirely from freshwater.  These estuaries are special places along the Great Lakes where freshwater from a river, with very different chemical and physical characteristics compared to the water from the lake, mixes with the lake water.

Because estuaries, like the Kachemak Bay Estuary, are extremely fragile ecosystems with so many plants and animals that rely on them, in 1972 Congress created the National Estuarine Research Reserve System which protects more than one million estuarine acres.

ESTRE

Kachemak Bay National Estuarine Research Reserve

All estuaries, including the freshwater estuaries found on the Great Lakes, are affected by the changing tides.  Tides play an important part in the health of an estuary because they mix the water and are therefore are one of several factors that influence the properties (temperature, salinity, turbidity) of the water

Prior to my experience in Alaska, I had never realized what a vital role tides play in the life of living things, in a oceanic region.  Just as tides play an important role in the health and function of estuaries, they play a major role in the plants and animals I have seen and the hydrographic work being completed by the Rainier.  For example, the tides determine when and where the skiffs and multi beam launch boats will be deployed.  Between mean low tide and high tide the water depth can vary by as much as 12 feet and therefore low tide is the perfect time to send the skiffs out in to document the features (rocks, reefs, foul areas) of a specific area.

DSCN0069 (2)

Rock feature in Uganik Bay (actually “the foot” mentioned in previous blog) Notice tidal line, anything below the top of that line would be underwater at high tide!

In addition to being the perfect time to take note of near shore features, low tide also provides the perfect opportunity to see some amazing sea life!  I have seen a variety of species while working aboard the Rainier, including eagles, deer, starfish, dolphins, whales, seals, cormorants, sea gulls, sea otters and puffins.  Unfortunately, it has been difficult to capture quality photos of many of these species, but I have included some of my better photos of marine life in the area and information that the scientists aboard the Rainier have shared with me:

Tufted Puffins:  Tufted Puffins are some of the most common sea birds in Alaska.  They have wings that propel them under water and a large bill which sheds its outer layer in late summer.

puff2

Double Crested Cormorants:  Dark colored birds that dive for and eat fish, crabs, shrimp, aquatic plants, and other marine life.  The birds nest in colonies and can be found in many inland areas in the United States.  The cormorants range extends throughout the Great Lakes and they are frequently considered to be a nuisance because they gorge themselves on fish, possibly decimating local fish populations.

cormor

Cormorant colony with gulls

Pisaster Starfish:  The tidal areas are some of the favorite areas starfish like to inhabit because they have an abundance of clams, which the starfish love to feed on.  To do so, the starfish uses powerful little suction cups to pull open the clam’s shell.

Kurthstar1

Teacher at Sea Kurth with a starfish that was found during a shore lunch break while working on a skiff.

tidestarfish

Starfish found in tidal zone

Glaucous-winged Gull:  The gulls are found along the coasts of Alaska and Washington State.  The average lifespan of Glaucous-winged Gull is approximately 15 years.

birdstheword285

Glaucous-winged Gull watching the multi beam sonar boat

The hydrographic work in Uganik Bay continues even though there are moments to view the wildlife in the area.  I was part of the crew on board a boat equipped with multi beam sonar which returned to scan the “foot feature” meticulously mapped by the skiff.  During this process, the multi beam sonar is driven back and forth around the feature as close as the boat can safely get.  The multi beam does extend out to the sides of the boat which enables the sonar to produce an image to the left and right of the boat.  The sonar beam can reach out four times the depth of the water that the boat is working in.  For example, if we are working in six feet of water the multi beam will reach out a total of 24 feet across. Think of the sonar as if it was a beam coming from a flashlight, if you shine the light on the floor and hold the flashlight close to the floor, the beam will be small and intense.  On the other hand, if you hold the flashlight further from the floor the beam of light will cover a wider area but will not be as intense. The sonar’s coverage is similar, part of why working close to the shore is long and tedious work: in shallow water the multi beam does not cover a very wide area.

foot3

“The foot” feature (as discussed in previous blog) being scanned by multi beam sonar

 

thefoot

Image of “the foot” after processing in lab. The rocks are the black areas that were not scanned by the multi beam sonar.


All Aboard!

I met Angelica on one of the first days aboard the Rainier and later spent some time with her, asking questions as she worked .  Angelica is very friendly, cheerful and a pleasure to talk with!  She graciously sat down with me for an interview when we were off shore of Kodiak, AK before returning to Uganik Bay.

IMG_1835

Assistant Survey Technician Angelica Patyten works on processing data from the multi beam sonar

Tell us a little about yourself:

I’m Angelica Patyten originally from Sacramento, CA and happy to be a part of NOAA’s scientific mission!  I have always been very interested in marine science, especially marine biology, oceanography and somewhat interested in fisheries.  Ever since I was a little kid I’ve always been interested in whales and dolphins.  My cousin said that when I was really young I was always drawing whales on paper and I’d always be going to the library to check out books on marine life.  I remember one of the defining moments was when I was in grade school, we took a trip to see the dolphins and orca whales and I thought they were amazing creatures.

As far as hobbies, I love anything that has to do with water sports, like diving and kayaking.  I also want to learn how to surf or try paddle boarding as well.

How did you discover NOAA?:

I just kind of “stumbled upon” NOAA right after I had graduated from college and knew that I wanted to work in marine science.  I was googling different agencies and saw that NOAA allows you to volunteer on some of their vessels.  So, I ended up volunteering for two weeks aboard the NOAA ship Rueben Lasker and absolutely loved it.  When I returned home, I applied online for employment with NOAA and it was about six months before I heard from back from them.  It was at that point that they asked me if I wanted to work for them on one of their research vessels.  It really was all good timing!

What are your primary responsibilities when working on the ship? 

My responsibilities right now include the processing of the data that comes in from the multi beam sonar.  I basically take the data and use a computer program to apply different settings to produce the best image that I can with the sonar data that I’m given.

What do you love about your work with NOAA?

I love the scenery here in Alaska and the people I work with are awesome!  We become like a family because we spend a lot of time together.  Honestly, working aboard the Rainier is a perfect fit for me because I love to travel, the scenery is amazing and the people I work with are great!


Personal Log:

Geoffrey Chaucer wrote, “time and tide wait for no man.”  Chaucer’s words are so fitting for my time aboard the Rainier which is going so quickly and continues to revolve around the tides.

Jeanne Muzi: Science, Service and Stewardship, August 10, 2015

NOAA Teacher at Sea
Jeanne Muzi
Aboard NOAA Ship Thomas Jefferson
August 2 – 8, 2015

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic
Date: August 10, 2015

As I head home to New Jersey a few days ahead of schedule, I am reflecting on what I have learned aboard the Thomas Jefferson. From day one, I was asking questions and trying to understand the process of hydrographic surveying, the equipment used and the different roles of everyone involved in the process. I learned why hydrographic surveying is so important and why the mission of NOAA (Science, Service and Stewardship) is demonstrated in all the research and activities aboard the Thomas Jefferson.

The ocean covers 71 percent of the Earth’s surface and contains 97 percent of the planet’s water, yet more than 95 percent of the underwater world remains unexplored.  NOAA protects, preserves, manages and enhances the resources found in 3.5 million square miles of coastal and deep ocean waters.

The oceans are our home. As active citizens, we must all become knowledgeable, involved stewards of our oceans.

http://oceanservice.noaa.gov/news/june14/our-ocean.pdf

Science and Technology Log

As my Teacher at Sea experience ends, I wanted to make sure I shared some of the conversations I had with the officers charged with leading the missions of the Thomas Jefferson and the hydrographic work it is involved in.

The Thomas Jefferson: Home to an amazing crew!

The Thomas Jefferson: Home to an amazing crew!

It is my honor to introduce to you:

Captain Shepard Smith (CO)

CO Smith

CO Smith

Captain Smith grew up on the water in Maine. He always enjoyed reading maps and charts. He received a Bachelor’s of Science degree in mechanical engineering from Cornell University and earned a Master’s of Science degree from the University of New Hampshire Ocean Engineering (Mapping) Program. He has worked at NOAA in many different capacities.

He served aboard NOAA Ship Rainier, NOAA R/V Bay Hydrographer and the Thomas Jefferson. He was also the chief of Coast Survey’s Atlantic Hydrographic Branch in Norfolk, Virginia. Captain Smith also served as Senior Advisor to Dr. Kathryn Sullivan, NOAA Deputy Administrator and as Chief of Coast Survey’s Marine Chart Division. Captain Smith explained how he has been involved in integrating many new technological innovations designed to improve the efficiency of NOAA’s seafloor mapping efforts. It was through Captain Smith’s endeavors that Americans enjoy open access to all NOAA charts and maps.

CO Smith on the Bridge

CO Smith on the Bridge

He enjoys being the CO very much and feels the best part of his job is developing the next generation of leadership in NOAA. He feels it is very important to have that influence on junior officers. The worst part of his job is the separation from his family.

Captain Smith’s advice to young students is to pay attention to the world around you and how things work. Try to ask lots of questions. He said, “There are loads of opportunities to be the best at something and so many things to learn about. There are new fields, new ideas and new ways to see and understand things. Never limit yourself.”

Lieutenant Commander Olivia Hauser (XO)

XO LCDR Hauser

XO LCDR Hauser 

LCDR Hauser grew up in New Jersey and always loved learning about the ocean. As a little girl, she thought she would like to study Marine Science but wasn’t sure how. She grew up and earned her Bachelor’s of Arts in Biology from Franklin and Marshall College and her Master’s of Science in Biological Oceanography from the University of Delaware’s College of Marine Studies. Before coming to NOAA, LCDR Hauser spent time working for a mortgage company, which provided her with different kinds of skills. She soon started officer training for NOAA and got to apply the sonar knowledge she developed in graduate school to her NOAA work. She has served on the NOAA ships Rainier and Thomas Jefferson. She has built her strong background in hydrography with both land and sea assignments. She has been Field Operations Officer, Field Support Liaison and Executive Officer. She explained that in the field of hydrographic surveying, experience is key to improving skills and she is always trying to learn more and share her knowledge. As XO, she is the second highest-ranking officer on the ship.

LCDR Hauser feels the best part of her job is that it never gets boring. Everyday is different and there are always new things to see and learn.

XO supervises the arrival of the launch

XO supervises the arrival of the launch

LCDR Hauser also explained that the hardest part of the job is the transitions, that come pretty frequently. She said, “You may find yourself leaving a ship or coming to a new job. There are always new routines to learn and new people to get to know. With so many transitions, it is often hard to find and keep community, but on the positive side, the transitions keep you adaptable and resilient, which are important skills too.”

Her advice to young students is “Take opportunities! Explore things you never heard of. Don’t give up easily! Even the rough parts of the road can work for you. Every experience helps you grow! Keep asking questions…especially about how and why!”

Lieutenant Joseph Carrier (FOO)

LT Carrier

LT Carrier

As a young boy, LT Carrier was the kind of kid who liked to take things apart and put them back together. He joined the Navy right out of high school. When he got out, he attended University of North Carolina at Wilmington and studied biology as an undergraduate and marine science in graduate school. He taught biology, oceanography, and earth science at a community college and worked at NOAA’s Atlantic Hydrographic Branch in Norfolk, VA before attending officer training. He served on other NOAA ships before coming to the Thomas Jefferson and has learned a lot about the technical aspects of hydrographic surveying, data collection and processing while onboard. He is currently the Field Operations Officer.

FOO on deck

FOO on deck

LT Carrier feels the best part of his job is the great people he works with. He explained that on a ship you are part of a close family that works together, lives together and helps each other.

He said the hardest parts of the job are the long hours and missing his family very much.

His advice to younger students is don’t get discouraged easily. He explained, “If you are not good at something at first, try again. Know that each time you try something…you have an opportunity to get better at it. Everyone can overcome challenges by working hard and sticking with it!

Personal Log:

Quick painting fromTJ Bow

Quick painting fromTJ Bow

The experience of living and learning on the Thomas Jefferson will stay with me and impact my teaching as I continue to encourage kids to stay curious, ask questions and work hard!

I would like to thank everyone at NOAA’s Teacher at Sea program for enabling me to come on this adventure! My time as a TAS has provided me with authentic learning experiences and a new understanding of science and math in action. I would like to thank every person serving on the Thomas Jefferson who took the time to talk with me and shared his or her area of expertise. I appreciated everyone’s patience, kindness and friendly help as they welcomed me into their home. Every crewmember has given me stories, knowledge and information that I can now share with others.

Print

Conserving our ocean and coasts. Image courtesy of http://oceanservice.noaa.gov/topics/

http://oceanservice.noaa.gov/topics/

 

In my last blog entry the Question of the Day and Picture of the Day was:

What is this and what do the letters mean?

What is this? What do the letters mean?

What is this?
What do the letters mean?

These containers are life rafts. The letters “SOLAS” stand for “Safety of Life at Sea.”

The First SOLAS Treaty was issued in 1914, just two years after the Titanic disaster. The Treaty was put in place so countries all around the world would make ship safety a priority. The SOLAS Treaty ensures that ships have safety standards in construction, in equipment onboard and in their operation. Many countries have turned these international requirements into national laws. The first version of the treaty developed in response to the sinking of the Titanic. It stated the number of lifeboats and other emergency equipment that should be available on every ship, along with safety procedures, such as having drills and continuous radio watch. Newer versions of the SOLAS Treaty have been adopted and the guidelines are always being updated so people at sea remain safe. If there was an emergency on the Thomas Jefferson, the crew is prepared because they have practiced many different drills. If these lifeboats were needed they would be opened, inflated and used to bring everyone to safety.

Many thanks for reading about my Teacher at Sea Adventure! 

Learning to be safe at sea!

Learning to be safe at sea!

 

Jeanne Muzi: STEM in Action, August 8, 2015

NOAA Teacher at Sea
Jeanne Muzi
Aboard NOAA Ship Thomas Jefferson
August 2 – 8, 2015

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic
Date: August 8, 2015

Weather Data From the Bridge:
Temperature: 73°F (23°C) Fair
Humidity: 59%
Wind Speed: N 10 mph
Barometer: 29.94 in (1013.6 mb)
Dewpoint: 58°F (14°C)
Visibility: 10.00 mi

Science and Technology Log:

It is amazing that with hydrography, scientists can “look” into the ocean to “see” the sea floor by using sound.

All the data collected by the TJ, and other NOAA Hydro ships, is used to update nautical charts and develop hydrographic models.

 

blogelipsoid

 

This is important work because the charts are used to warn mariners of dangers to navigation, which can mean everything from rocks to ship wrecks. They also record tide or water level measurements to provide information about water depths. Surveys also help determine if the sea floor is made up of sand, mud or rock, which is important for the anchoring of boats, dredging, construction, and laying pipeline or cables. Hydrography also provides important information for fishery habitats.

The work being done on the Thomas Jefferson is a great example of STEM in action since hydrographic surveying combines science, lots of technology, the engineering of new devices and procedures, and the application of mathematical computations.

Here are two amazing survey images:

A crane discovered underwater

A crane discovered underwater

 

Image of the sunken ship, USS Monitor

Image of the sunken ship, USS Monitor

A few of my students emailed me yesterday to ask how does the information gathered out on the launch become a chart. That’s a great question!

My XO (Executive Officer) LCDR Olivia Hauser provided me with a great explanation of how the data becomes a chart. She explained it this way:

It starts with deciding where to survey, and ends with an updated chart that is published and available for mariners to use. The decision where to survey is steered by a document called the National Hydrographic Survey Priorities document. It outlines where the top priorities to survey are based on the type of ship traffic that travels the area, the age of the survey in the area, how often the seafloor changes in the area, and specific requests from port authorities, the US Coast Guard, and other official maritime entities. Please see the following link for more information. http://www.nauticalcharts.noaa.gov/hsd/NHSP.htm

The operations branch of the Hydrographic Surveys Division of the Office of Coast Survey in NOAA (where Patrick works-see below) uses this document to decide where the ship will survey next. This branch then provides the ship with project instructions that identifies where the work will be done and divides the survey area into manageable chunks.

The data is raw when we first acquire it, and once it comes back to the ship, we need to apply some correctors to it, to improve the data quality.

Working in the survey room

Working in the survey room

One corrector we apply to the data is tide information. The water gets shallower and deeper depending on the stage of tide, and we need to make sure the depths on the chart are all relative to the same stage of tide.

Another corrector we apply to the data is vessel motion. When we acquire depth data with the sonar, the boat is moving with the waves, and the raw data looks like it has waves in the seafloor, too. We know that is not the case, so we take the motion data of the boat out of our depth data.

A third corrector we apply to the data is sound speed. The sonar finds the depth of the seafloor by sending a pulse of sound out and listening for its return, measuring the time it takes to complete that trip. We also measure the speed of sound through the water so we can calculate the depth (see the picture of ENS Gleichauf deploying the CTD to measure sound speed). Speed =Distance/Time. Speed of sound through typical seawater is 1500 meters per second. The speed of sound changes with water temperature and salinity (the saltiness of the water) .If we measure the time it takes for the sound to get to the seafloor and back, 1 second for example, and the sound speed is 1500 meters per second we know the seafloor is 750 meters away from the sonar. (the sound is traveling two ways).

Once all of the correctors are applied to the data, a digital terrain model (DTM) is created from the data to make a grid showing the depths and hazards in the area. A report is written about the survey, and it is submitted to the Atlantic Hydrographic Branch (Where Jeffrey works- See below). This branch reviews the data and makes sure it meets NOAA’s specifications for data quality. They also make a preliminary chart, picking the important depths and hazards that should be shown on the chart.

Once the data has been reviewed, it goes to the Marine Charting Division. This group takes the preliminary chart of the area surveyed, and adds it to the official chart that is being updated. These charts are then distributed to the public.

I had a chance to talk with some of the Survey Techs and project scientists who work on the TJ to find out more about their jobs.

Allison Stone

Allison Stone

Allison Stone is the Hydro Senior Survey Technician (HSST). When Allison was 12 years old she clearly remembers her school’s Career Day, when lots of parents came in to talk about their jobs. She recalls there was one mom who had a sparkle in her eye when she talked about her job. She was an Oceanographer. That mom became her advisor when she attended the College of Charleston. Allison had an internship at the Atlantic Hydrography Branch in Norfolk and she first came to the TJ as a Student Scientist. She later became a full time technician. She enjoys her job because she gets the opportunity to observe the seafloor like no one has ever seen it before. She gets to solve problems and think outside the box. When she is going through raw data, she is able to make connections and interpret information. The work is interesting and challenging. Allison’s advice for young students is to keep being passionate about things you are interested in. Try to find out more and stay flexible. Try to volunteer as much as possible as you grow up so you can find out what you like to do and love to work on.

Jeffery Marshall

Jeffery Marshall

Jeffery Marshall was visiting the TJ for a project during my time aboard. Jeffery is a Physical Scientist with the Office of Coast Survey as a member of the Hydrographic Surveys Division, Atlantic Hydrographic Branch in Norfolk, Virginia. Jeffery grew up on the Jersey Shore and loved being out on the water, down at the beach and learning about the ocean. He loved surfing and was always wondering what the weather would be like so he could plan for the waves and the tides. So when he went to college, he studied meteorology. Following graduation, he taught middle school science and loved being a teacher. When he was ready for a change, he decided to attend graduate school and got his masters degree in Coastal Geology. He really enjoys having the opportunity to get out on the ships. His job is usually applying the processed data to charts, what he calls “Armchair Hydrography.” When he gets a chance to work on a NOAA ship mission, he has more opportunities to collect and analyze data. Jeff’s advice to young students is to read a lot and think about lots of different things, like how we use maps. He thinks everyone should take a look at old maps and charts, and think about how they were made. He encourages students to look for patterns in nature and to think about how rocks and sand change over time.

Patrick Keown

Patrick Keown

Patrick Keown is also a Physical Scientist. He was also working on a project on the TJ. Patrick works at the Operations Branch of the Hydrographics Survey Division in Silver Spring, Maryland. Patrick is usually working on plans for where surveying needs to take place. He started college as an Anthropology major but ended up in a Geographic Information Systems class and found that it came easily to him. Geographic Information Systems are designed to capture, store, manipulate, analyze, manage, and present all types of spatial or geographical data. He had an internship with the Army Corp of Engineers which provided some “on the job learning” of hydrography. When Patrick was young, he didn’t have the chance to travel much, so he spent a lot of time looking at maps and wondering, “What else is out there?” Now he loves to travel and likes to look at what he calls “Social Geography.” Patrick thinks the best part of his job is the chance to experience new things. He has had opportunities to try the latest technology and is inspired by all the new types of equipment, like drones and the Z boats. Patrick’s advice to young learners is “Never be afraid to explore! Never be afraid to ask questions! Most importantly, stay curious!!”

Cassie Bongiovanni

Cassie Bongiovanni

Cassie Bongiovanni is a GIS Specialist who works at The Center for Coastal and Ocean Mapping/Joint Hydrographic Center. The center is a partnership between the University of New Hampshire and NOAA, and it has two main objectives: to develop tools to advance ocean mapping and hydrography, and to train the next generation of hydrographers and ocean mappers. Cassie grew up in Texas and did not like science at all when she was young. She attended the University of Washington in Seattle and fell in love with the ocean. She received her Bachelors of Science in Geology with a focus in Oceanography. She is now working with NOAA’s Integrated Ocean and Coastal Mapping group on processing lidar and acoustic data for post Hurricane Sandy research efforts. Cassie explained that she loves her work because she loves to learn! She has lots of opportunities to ask questions and discover new things. The kid in her loves making maps and then coloring them with bright colors to create 3-D images of things like shipwrecks.

 

Personal Log:

IMG_4023

The launch headed out again today to try to find a ship that sank earlier in the summer. Information was gathered and lines were surveyed, but so far no shipwreck was found. The day ended with a beautiful sunset.

Setting lines to survey

Setting lines to survey

Looking out from the cabin of the launch

Looking out from the cabin of the launc

 

 

 

 

 

 

 

 

 

sunset

 

In my last blog entry the Question of the Day was:

How was the ocean floor mapped before sonar was invented?

Mariners have used many different methods to map the ocean floor to try to “see” what was under the water. For thousands of years a stick was used to see how deep the water was. Eventually, the stick was marked with measurements. Once ships started exploring the oceans, sticks were no longer good options for finding out the depth of water or if anything was under the water that could harm the ship. Sailors started tying a rope around a heavy rock and throwing it over board. In the 1400’s, mariners began using lead lines, which were marked lengths of rope attached to a lead weight. The lead line was good for measuring depth and providing information about the sea floor. The standard lead line was 20 fathoms long–120 feet–and the lead weighed 7 pounds. In the early 20th century, the wire drag was invented. This meant two ships had a set system of wires hung between them and it enabled mariners to find hidden rocks, shipwrecks or other hazards hidden in the water.

 

leadline

Find out more about the history of navigation tools at http://www.vos.noaa.gov/MWL/aug_08/navigation_tools.shtml

In my last entry, The Picture of the Day showed Ensign Gleichauf lowering an instrument into the water. That is a CTD, which stands for conductivity, temperature, and depth. A CTD is made up of electronic instruments that measure these properties. The CTD detects how the conductivity and temperature of the water column changes as it goes deeper into the water. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is how salty the seawater is.

What is that?

This is a CTD

Today’s Question of the Day and Picture of the Day: What is this and what do the letters mean?

What is this? What do the letters mean?

What is this?
What do the letters mean?

 

Thanks for reading this entry!

Safety first!

Safety first!

 

Jeanne Muzi: Problem Solving on the Thomas Jefferson! August 5, 2015

NOAA Teacher at Sea
Jeanne Muzi
Aboard NOAA Ship Thomas Jefferson|
August 2 – 13, 2015

Mission: Hydrographic Survey
Geographical area of cruise
: North Atlantic
Date: August 5, 2015

Weather Data From the Bridge:
Temperature: 71° F (22° C)
Humidity: 84%
Wind Speed: S 5 mph
Barometer: 29.89 in (1012.1 mb)
Dewpoint: 66° F (19° C)
Visibility: 10.00 mi

Hello again!

Science and Technology Log:

One important thing that every single person has to face, no matter how old they are or what kind of job they have, is what to do when things go wrong. We are always happy when things are going smoothly—but what do you do when they don’t?

I found out about how important it is to be a thinker and problem solver on the Thomas Jefferson because we are experiencing engine problems. First the launches were not running. Then the TJ’s engines were having difficulties and it was discovered that we had water in our fuel. The engineers and officers all started to ask questions: Where is the water coming from? Is there a problem with the tanks? How are we going to fix this situation? What is the best solution right now? It was determined that we should sail into the Naval Base in Newport, Rhode Island so the fuel could be pumped out and the fuel tanks examined. This is a big job!

Heading to Newport

Lighthouse

Jamestown Bridge

Jamestown Bridge

We sailed into Newport on a beautiful sunny afternoon. I got to spend some time on the bridge and watched as Ensign Seberger and GVA (General Vessel Assistant) Holler steered our large ship around obstacles like lobster pots and small sailboats. AB (Ablebodied Seaman) Grains acted as the look out, peering through binoculars and calling out directions in degrees (instead of feet or yards), and port and starboard (instead of left and right). LTJG Forrest explained how to chart the route to Newport using a compass, slide rule and mathematical calculations. His computations were right on as he plotted the course of the Thomas Jefferson. 

Charting TJ's course to Newport

Charting TJ’s course to Newport

When we arrived at Newport, the tugboat, Jaguar, needed to help us dock and then the gangway was lifted into place using a crane.

The tugboat arrives to assist the TJ.

The tugboat arrives to assist the TJ.

The tugboat Jaguar helping the TJ dock at Newport

The tugboat Jaguar helping the TJ dock at Newport

The walkway is lowered from ship to shore.

The gangway is lowered from ship to shore.

Now we are waiting in Newport to see how the ship will be repaired, and how that will impact the surveying mission and the work of all the scientists on board. The fuel is currently being pumped out of the tanks so the engineering department can figure out what is going on.

Personal Log:

Some of my students have emailed to ask where am I sleeping. When you are aboard a ship, you sleep in a stateroom. I have the bottom bunk and my roommate has the top. We have storage lockers and shelves to hold our stuff. The bathroom (called the head) connects our stateroom with another room.

Bunks in our stateroom

Bunks in our stateroom

Everyone eats in the Mess. You pick up your hot food on a plate in front of the galley and then sit down to eat at a table. Some of our meals so far have been omelets and cereal for breakfast, shrimp, rice and vegetables for lunch, and fish and potatoes for dinner. There is always a salad bar. Yogurt and ice cream are available, along with lots of different drinks.

Everyone eats meals together in the mess.

Everyone eats meals together in the mess.

The passageways are pretty narrow around the ship and the stairs going from one deck to another are steep whether you are inside or outside.

Lots of ups and downs outside...

Lots of ups and downs outside…

Lots of ups and downs inside

Lots of ups and downs inside…

 

Everything on a ship must be well-organized so equipment can be found quickly and easily.

Equipment must be organized so everyone can get what they need.

Equipment must be organized so everyone can get what they need.

The view from the outside deck has been beautiful…

There is always something to see on the TJ

There is always something to see on the TJ

The last Question of the Day was: What do the letters XO mean on the hardhat of the person in the center of this picture?

XO Stands for Executive Officer

XO Stands for Executive Officer

XO stands for Executive Officer. Our Executive Officer is Lieutenant Commander Olivia Hauser. She is the second in command on board.

The last Picture of the Day showed this image:

Whale caught with sonar

Whale caught with sonar

This image was captured with sonar and shows a whale swimming in the ocean. Amazing!

Today’s Question of the Day is:

Why is surveying the ocean floor so important?

Today’s Picture of the Day is:

What is this and what is it used for?

What is this and what is it used for?

What is this?

Thanks for reading this entry.

Windy day on the deck of the TJ

Windy day on the deck of the TJ

Emily Whalen: Station 381–Cashes Ledge, May 1, 2015

NOAA Teacher at Sea
Emily Whalen
Aboard NOAA Ship Henry B. Bigelow
April 27 – May 10, 2015

Mission: Spring Bottom Trawl Survey, Leg IV
Geographical Area of Cruise: Gulf of Maine

Date: May 1, 2015

Weather Data from the Bridge:
Winds:  Light and variable
Seas: 1-2ft
Air Temperature:   6.2○ C
Water Temperature:  5.8○ C

Science and Technology Log:

Earlier today I had planned to write about all of the safety features on board the Bigelow and explain how safe they make me feel while I am on board.  However, that was before our first sampling station turned out to be a monster haul!  For most stations I have done so far, it takes about an hour from the time that the net comes back on board to the time that we are cleaning up the wetlab.  At station 381, it took us one minute shy of three hours! So explaining the EEBD and the EPIRB will have to wait so that I can describe the awesome sampling we did at station 381, Cashes Ledge.

This is a screen that shows the boats track around the Gulf of Maine.  The colored lines represent the sea floor as determined by the Olex multibeam.  This information will be stored year after year until we have a complete picture of the sea floor in this area!

This is a screen that shows the boats track around the Gulf of Maine. The colored lines represent the sea floor as determined by the Olex multibeam. This information will be stored year after year until we have a complete picture of the sea floor in this area!

Before I get to describing the actual catch, I want to give you an idea of all of the work that has to be done in the acoustics lab and on the bridge long before the net even gets into the water.

The bridge is the highest enclosed deck on the boat, and it is where the officers work to navigate the ship.  To this end, it is full of nautical charts, screens that give information about the ship’s location and speed, the engine, generators, other ships, radios for communication, weather data and other technical equipment.  After arriving at the latitude and longitude of each sampling station, the officer’s attention turns to the screen that displays information from the Olex Realtime Bathymetry Program, which collects data using a ME70 multibeam sonar device attached to bottom of the hull of the ship .

Traditionally, one of the biggest challenges in trawling has been getting the net caught on the bottom of the ocean.  This is often called getting ‘hung’ and it can happen when the net snags on a big rock, sunken debris, or anything else resting on the sea floor.  The consequences can range from losing a few minutes time working the net free, to tearing or even losing the net. The Olex data is extremely useful because it can essentially paint a picture of the sea floor to ensure that the net doesn’t encounter any obstacles.  Upon arrival at a site, the boat will cruise looking for a clear path that is about a mile long and 300 yards wide.  Only after finding a suitable spot will the net go into the water.

Check out this view of the seafloor.  On the upper half of the screen, there is a dark blue channel that goes between two brightly colored ridges.  That's where we dragged the net and caught all of the fish!

Check out this view of the seafloor. On the upper half of the screen, there is a dark blue channel that goes between two brightly colored ridges. We trawled right between the ridges and caught a lot of really big fish!

The ME70 Multibeam uses sound waves to determine the depth of the ocean at specific points.  It is similar to a simpler, single stream sonar in that it shoots a wave of sound down to the seafloor, waits for it to bounce back up to the ship and then calculates the distance the wave traveled based on the time and the speed of sound through the water, which depends on temperature.  The advantage to using the multibeam is that it shoots out 200 beams of sound at once instead of just one.  This means that with each ‘ping’, or burst of sound energy, we know the depth at many points under the ship instead of just one.  Considering that the multibeam pings at a rate of 2 Hertz to 0.5 Herts, which is once every 0.5 seconds to 2 seconds, that’s a lot of information about the sea floor contour!

This is what the nautical chart for Cashes Ledge looks like. The numbers represent depth in fathoms.  The light blue lines are contour lines.  The places where they are close together represent steep cliffs.  The red line represents the Bigelow’s track. You can see where we trawled as a short jag between the L and the E in the word Ledge

The stations that we sample are randomly selected by a computer program that was written by one of the scientists in the Northeast Fisheries Science Center, who happens to be on board this trip.  Just by chance, station number 381 was on Cashes Ledge, which is an underwater geographical feature that includes jagged cliffs and underwater mountains.  The area has been fished very little because all of the bottom features present many hazards for trawl nets.  In fact, it is currently a protected area, which means the commercial fishing isn’t allowed there.  As a research vessel, we have permission to sample there because we are working to collect data that will provide useful information for stock assessments.

My watch came on duty at noon, at which time the Bigelow was scouting out the bottom and looking for a spot to sample within 1 nautical mile of the latitude and longitude of station 381.  Shortly before 1pm, the CTD dropped and then the net went in the water.  By 1:30, the net was coming back on board the ship, and there was a buzz going around about how big the catch was predicted to be.  As it turns out, the catch was huge!  Once on board, the net empties into the checker, which is usually plenty big enough to hold everything.  This time though, it was overflowing with big, beautiful cod, pollock and haddock.  You can see that one of the deck crew is using a shovel to fill the orange baskets with fish so that they can be taken into the lab and sorted!

You can see the crew working to handling all of the fish we caught at Cashes Ledge.  How many different kinds of fish can you see?

You can see the crew working to handling all of the fish we caught at Cashes Ledge. How many different kinds of fish can you see? Photo by fellow volunteer Joe Warren

 

At this point, I was standing at the conveyor belt, grabbing slippery fish as quickly as I could and sorting them into baskets.  Big haddock, little haddock, big cod, little cod, pollock, pollock, pollock.  As fast as I could sort, the fish kept coming!  Every basket in the lab was full and everyone was working at top speed to process fish so that we could empty the baskets and fill them up with more fish!  One of the things that was interesting to notice was the variation within each species.  When you see pictures of fish, or just a few fish at a time, they don’t look that different.  But looking at so many all at once, I really saw how some have brighter colors, or fatter bodies or bigger spots.  But only for a moment, because the fish just kept coming and coming and coming!

Finally, the fish were sorted and I headed to my station, where TK, the cutter that I have been working with, had already started processing some of the huge pollock that we had caught.  I helped him maneuver them up onto the lengthing board so that he could measure them and take samples, and we fell into a fish-measuring groove that lasted for two hours.  Grab a fish, take the length, print a label and put it on an envelope, slip the otolith into the envelope, examine the stomach contents, repeat.

Cod, pollock and haddock in baskets

Cod, pollock and haddock in baskets waiting to get counted and measured. Photo by Watch Chief Adam Poquette.

Some of you have asked about the fish that we have seen and so here is a list of the species that we saw at just this one site:

  • Pollock
  • Haddock
  • Atlantic wolffish
  • Cod
  • Goosefish
  • Herring
  • Mackerel
  • Alewife
  • Acadian redfish
  • Alligator fish
  • White hake
  • Red hake
  • American plaice
  • Little skate
  • American lobster
  • Sea raven
  • Thorny skate
  • Red deepsea crab

 

 

 

 

I think it’s human nature to try to draw conclusions about what we see and do.  If all we knew about the state of our fish populations was based on the data from this one catch, then we might conclude that there are tons of healthy fish stocks in the sea.  However, I know that this is just one small data point in a literal sea of data points and it cannot be considered independently of the others.  Just because this is data that I was able to see, touch and smell doesn’t give it any more validity than other data that I can only see as a point on a map or numbers on a screen.  Eventually, every measurement and sample will be compiled into reports, and it’s that big picture over a long period of time that will really allow give us a better understanding of the state of affairs in the ocean.

Sunset from the deck of the Henry B. Bigelow

Sunset from the deck of the Henry B. Bigelow

Personal Log

Lunges are a bit more challenging on the rocking deck of a ship!

Lunges are a bit more challenging on the rocking deck of a ship!

It seems like time is passing faster and faster on board the Bigelow.  I have been getting up each morning and doing a Hero’s Journey workout up on the flying bridge.  One of my shipmates let me borrow a book that is about all of the people who have died trying to climb Mount Washington.  Today I did laundry, and to quote Olaf, putting on my warm and clean sweatshirt fresh out of the dryer was like a warm hug!  I am getting to know the crew and learning how they all ended up here, working on a NOAA ship.  It’s tough to believe but a week from today, I will be wrapping up and getting ready to go back to school!

Jennifer Petro: Mapping the Unknown, July 12, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA Ship Pisces
July 1 — 14, 2013 

Mission: Marine Protected Area Surveys
Geographic area of cruise: Southern Atlantic
Date: July 12, 2013

Weather Data
Air temperature: 26.3°C (79.3°F)
Barometer: 1011.30 mb
Humidity: 78%
Wind direction: 194°
Wind speed: 17 knots
Water temp: 26.9° C (80.4°F)
Latitude: 32 32.84 N
Longitude: 78 34.76 W

Science and Technology Log

There is a team aboard the vessel whose job is to map the ocean floor.  On this cruise we are diving in known locations but we are also diving in new proposed areas where there is little or no mapping data.  This team is a critical component of this mission.  Without their hard work we would have no clue as to where we are sending the ROV to search for the target fish species or find very cool benthic invertebrates.  The type of mapping they are using is called multibeam mapping.  Multibeam mapping has been used for years but the technology and software is becoming very cutting edge.  All of the mapping was done at night so my hat comes off to the survey team for pulling a lot of all nighters!

Graphic of how a multibeam survey works.   ©Wessex Archaeology

Graphic of how a multibeam survey works. ©Wessex Archaeology

The mapping occurs in several stages.  First we have to get an idea of what the sea floor looks like.  Multibeam mapping uses many signals of beams that sweep the sea floor and bounce back up to the ship.  It is a very computer-heavy science.  First we need to test the water, literally.  The survey team, consisting of Laura Kracker from the National Ocean Service, NOAA Marine Research Lab, Charleston, SC, Friedrich Knuth from the College of Charleston and Marta Ribera from Boston University, use an expendable probe to test the density of the water.  This is important because water density changes due to water temperature and salinity.  One the probe is deployed, the survey team can calibrate the beam width to get the most accurate reading of the multibeam signal.

Survey team member Friedrich Knuth send an XBT expendable probe over the side.

Survey team member Friedrich Knuth sends an XBT expendable probe over the side.

As the beams travel through the water, sea floor depth is determined by the amount of time it take for the beams to leave the vessel and then come back.  The intensity of the sound tells you the probable type of sea floor bottom.

  • Low intensity equals a softer bottom
  • High intensity equals a harder bottom

The one piece of information that the beams cannot tell us is the geomorphology or the type of bottom features and rock that make up the sea floor. That we can only see through the lens of the ROV but the mutlibeam mapping gives up a good idea of the locations in the MPA that would have the most amount of fish.  We want to look in areas of high relief; i.e. rock ledges, rubble, etc., because that is where we will most likely see the target species of fish.

At the point that the beams get back to the Pisces, it is still “raw data”.  It needs to be processed so that it can be read in map form.  This is where the computer programs and the long nights came into play.  It is not a simple process.  The data is manipulated through 5 programs consisting of many steps to produce a map that can be used in a program called ArcGIS.  ArcGIS is a GIS, Geographical Information System, program that is relatively user-friendly, The maps produced during this cruise were amazing.  Stacey Harter, the Chief Scientist, used these maps to determine features that the ROV would dive on.  The ROV drivers used them to “see” where the ROV was in relationship to those features in real-time.  The research teams are able to embed the maps into their cruise notes and cross-reference the maps with still photos.  I was truly amazed.

Evidence of ancient iceburg scours off of North Carolina as detected by multibeam mapping.

Evidence of ancient iceburg scours off of North Carolina as detected by multibeam mapping Courtesy of NOAA.

Laura shows me the raw data from the multi-beam mapping.

Laura shows me the raw data from the multi-beam mapping.

Friedrich points to a monitor that keeps track of the Pisces as it follows grid lines for mutlibeam mapping.

Computer monitor that shows the intensity of the multibeams as they are leaving the ship.

Computer monitor that shows the intensity of the multibeams as they are leaving the ship.

Personal Log

I am sad that this incredible experience is coming to an end.  I cannot gush enough about the scientist and the crew.  I was able to witness a few “firsts” and I enjoyed seeing these scientists, some who have been doing this for 30 years, get excited about seeing something new.  I loved how the lab had an open door policy and crew members, from the CO to engineers, would come in and check out what was happening during the dive.  If it was after their shift, they would stay for hours. Everyone shared stories and I was made to feel like I was part of the science team.  I have a distinct advantage over other Teachers at Sea because I was able to cruise with a team that is located right here at home.  I look forward to the possibility of creating a true partnership and bringing NOAA right into my classroom.  I have so many ideas for lessons and activities from this experience and have found a massive amount of NOAA resources to use from pictures to data.

This has been so eye opening that I am now a big proponent of NOAAs MPA program as I have seen first hand how the closing of these areas has benefited the recovery of fish populations.

Thank you so much for stopping by and sharing in my adventure.

Fair weather and calm seas.

We are all dreamers creating the next world, the next beautiful world for ourselves and for our children. ~Yoko Ono

Kaitlin Baird: The Importance of Sound, September 16, 2012

NOAA Teacher at Sea
Kaitlin Baird
Aboard NOAA Ship Henry B. Bigelow
September 4 – 20, 2012

Mission: Autumn Bottom Trawl Survey with NOAA’s Northeast Fisheries  Science Center
Geographical Area: Off the Coast of Maryland
Date: September 16th
.

Location Data:
Latitude: 37’72.10
Longitude: 75′ 17.02

Weather Data:
Air Temperature: 21.0 (approx.70°F)
Wind Speed: 8.71 kts
Wind Direction:  West
Surface Water Temperature: 22.99 °C (approx. 73°F)
Weather conditions: overcast

Science and Technology Log:

It’s day 13 aboard the Henry B. Bigelow and we have made the turn at our southern stations off the coast of North Carolina and are working our way back to port at some of our inshore stations off the coast of Maryland. You may wonder how each of the stations we sample at sea are chosen? The large area of Cape May to Cape Hatteras are broken into geographic zones that the computer will assign a set amount of stations to, marking them with geographic coordinates. The computer picks a set number of stations within each designated area so all the stations don’t end up all being within a mile of each other. Allowing the computer system to pick the points removes human bias and truly keeps the sampling random. The vessel enters the geographic coordinates of the stations into a chartplotting program in the computer, and uses GPS, the Global Positioning System to navigate to them.  The GPS points are also logged on a nautical chart by the Captain and mate so that they have a paper as well as an electronic copy of everywhere the ship has been.

You may wonder, how does the captain and fishermen know what the bottom looks like when they get to a new point? How do they know its OK to deploy the net? Great question. The Henry B. Bigelow is outfitted with a multibeam sonar system that maps the ocean floor.  Some of you reading this blog might remember talking about bathymetry this summer. This is exactly what the Bigelow is doing, looking at the ocean floor bathymetry. By sending out multiple pings the ship can accurately map an area 2.5-3 times as large as its depth. So if the ship is in 20 meters of water it can make an accurate map of a 60 meter swath beneath the boats track. The sonar works by knowing the speed of sound in water and the angle and time that the beam is received back to the pinger . There are a number of things that have to be corrected for as the boat is always in motion. As the ship moves through the water however, you can see the projection of the bathymetry on their screen below up in the wheelhouse. These images help the captain and the fisherman avoid any hazards that would cause the net or the ship any harm.  A good comparison to the boats multibeam sonar, is a dolphins ability to use echolocation. Dolphins send their own “pings” or in this case “echos” and can tell the location and the size of the prey based on the angle and time delay of receiving them back. One of the main differences in this case is a dolphin has two ears that will receive and the boat just has one “receiver”. Instead of finding prey and sizing them like dolphins, the ship is using a similar strategy to survey what the bottom of the sea floor looks like!

bathymetric data being collected by multibeam sonar technology on the Bigelow

Bathymetric data being collected by multibeam sonar technology on the Bigelow

Bigelow multibeam sonar (NOAA)

echolocation schematic courtesy of the Smithsonian Institute

Echolocation schematic courtesy of the Smithsonian Institute

Personal Log:

The last few days I have been trying my hand at removing otoliths from different species of fish. The otoliths are the ear bones of the fish. Just like the corals we have been studying in Bermuda, they are made up of calcium carbonate crystals. They are located in the head of the bony fish that we are analyzing on the cruise. A fish uses these otoliths for their balance, detection of sound and their ability to orient in the water column.

If you remember, at BIOS, we talk a lot about the precipitation of calcium carbonate in corals and how this animal deposits bands of skeleton as they grow. This is similar in bony fish ear bones, as they grow, they lay down crystalized layers of calcium carbonate. Fisheries biologist use these patterns on the otolith to tell them about the age of the fish. This is similar to the way coral biologists age corals.

I have been lucky enough to meet and learn from scientists who work specifically with age and growth at the Northeast Fisheries Science Center Fishery Biology Program. They have been teaching about aging fish by their ear bones. These scientist use a microscope with reflected light to determine the age of the fish by looking at the whole bone or making slices of parts of the bone depending on what species it is. This data, along with lengths we have been recording, contribute to an age-length key. The key allows biologists to track year classes of the different species within a specific population of fish. These guys process over 90,000 otoliths a year! whew!

The information collected by this program is an important part of the equation because by knowing the year class biologists can understand the structure of the population for the stock assessment.  The Fishery Biology program is able to send their aging and length data over to the Population Dynamics Branch where the data are used in modeling. The models, fed by the data from the otoliths and length data,  help managers forecast what fisheries stocks will do. It is a manager’s job to the take these predictions and try to balance healthy fish stocks and the demands of both commercial and recreational fishing. These are predictive models, as no model can foresee some of the things that any given fish population might face any given year (ie food scarcity, disease etc.), but they are an effective tool in using the science to help aid managers in making informed decision on the status of different fish stocks. To learn more about aging fish please visit here.

otoliths (fish ear bones) that i removed from a Butterfish

Otoliths (fish ear bones) that I removed from a Butterfish

You can see here is an otolith that is 1+ years old. It was caught in September and that big 1st band is its Year 0. You can see that the black dot demarks the fish turning 1. You can then see the Summer growth but not yet the winter growth. This fish has not yet turned 2, but it will Jan 1st of the next year.

You can see here an otolith that is 1+ years old. It was caught in September and that big 1st band is its Year 0. You can see that the black dot demarks the fish turning 1. You can then see the Summer growth but not yet the winter growth. This fish has not yet turned 2, but it will be Jan 1st of the next year.

I have to end with a critter photo! This is a Cobia (Rachycentron canadum).

Me and a Cobia caught off the coast of Maryland

Cobia caught off the coast of Maryland

Thanks for reading!