Rebecca Loy, Land, Sea and Flexibility! September 9, 2015

NOAA Teacher at Sea
Rebecca Loy
Aboard NOAA Ship Rainier
September 8 – 24 , 2015

Mission: Hydrographic Survey
Geographical area of Research: Kodiak Island, Alaska
Date: September 9, 2015

Current Location: Women’s Harbor, U.S. Coast Guard Base, Kodiak, Alaska

Science Log

Kodiak, Alaska is amazing and NOAA Ship Rainier is even more so.  When I arrived I learned that we were going to be in port for a few days.  Instead of leaving on Tuesday, September 08, 2015 we are scheduled to leave on Saturday.  Early in my planning and training I learned that FLEXIBILITY is very important and it has proven to be true.

NOAA TAS 2015 005

Rainier with the rising sun behind it at Women’s Bay

During this time at port, the entire crew is very busy with ship activities.  I thought this would be the perfect time to give some background on this amazing ship!  Here is a link to more detailed information Rainier information flyer.  An even more detailed, “let the geek out” link is   Rainier special details.

Rainier is named after Mount Rainier in Washington State and was put to work in 1968.  Do the math, how old is Rainier this year?  Rainier is a long 231 foot ship.  The breadth (width) is 42 feet and the draft, or how far down it sits in the water is 14 feet.  One of the most interesting facts about this vessel is the ice strengthened hull.  Rainier is one tough ship!!

To keep this unique ship running so well it has an incredible crew.  I have learned that there are 7 main areas of work.  I am only going to give a general overview so everyone can understand a little bit more about what happens here.  I will go into more detail with future blogs.

Wardroom – This is what the NOAA uniformed officers are called.  They can be seen wearing their blue uniforms.  The hydrographic officers have a more interesting job than the officers on other NOAA vessels because they act not only as officers getting the ship where it needs to go safely, but they also work right alongside the survey scientists making tidal observations and coastal maps.

The Rainier Officers working in the Plotting Room

Rainier Officers working in the Plotting Room

It makes a lot of sense for the people who are researching and creating the very important coastal maps to understand them.  There is no one better than the men and women who work with them every day!

Survey – These are the scientists who work with the officers to collect the data.  Collecting the data is just the beginning.  Once the data is collected they begin analyzing data and putting it to work.  Similar to students who have classwork, they get assignments that need to be met and deadlines to get the work done.  It can take weeks and months for the data to be put together to make the charts.

Engineering – The engineers are the inner working of the ship.  They are the men and women who keep Rainier going strong!  While here, there is a constant hum of mechanical parts (later the engines will be going and we will hear and feel those).

Just one of many areas the engineers work. This is an organized machine shop for repairs/fabricating.

Just one of many areas the engineers work. This is an organized machine shop for repairs/fabricating.

Everywhere you look inside the ship you can see something that the engineers are responsible for maintaining.  On my tour, I was amazed from top to bottom of the fans, gears, plumbing, wires, generators, motors, hydraulics, engines, heating/cooling, launch maintenance, refrigeration, distillers for water plus so much more that needs to be kept going.  As you can see, this is also a very busy department!

Deck – While the engineers maintain the inside of the ship, the deck crew maintains the outside or what is called the “weather deck”.   Here you will see the massive crane on the back of the ship and two smaller cranes at the front.

The large crane at the stern (back) of the ship.

The large crane at the stern (back) of the ship.

They work the two large anchors and the “windlass” or winch to pull them up along with the smaller launches (boats) that are attached to the ship and the davits (hoists) to put them in and out of the water.  The deck crew also make sure the ship is moored (tied up) properly plus so much more.

EET and ET – These are the two smallest departments, but they are needed to keep everyone working.  The EET is the electronics engineering technician.  He is an electrician that takes care of all the wiring throughout the ship.  The Rainier EET has been here for over 20 years.  The ET is the electronics technician and he builds, maintains and programs the computers and servers that are needed to run Rainier.

Steward – Have you heard the term “laughter is the best medicine?”  Here on Rainier the food is the best medicine and what keeps this crew connected and happy!

The incredibly clean and efficient galley on the Rainier

The incredibly clean and efficient galley on Rainier

The galley (kitchen) is incredibly clean, organized and delicious!  The selection of food has been healthy, varied and with just the right amount of sweet treats.  They are up very early and work later to keep this crew fed.  Every department has to come through here so they are the true backbone of the ship!

As I get to know the ship and crew more, I am continually amazed at the people here, how they communicate and work together and it all runs so smoothly.  I am looking forward to our upcoming adventures doing research around Kodiak Island.

Personal Log

Being chosen for this experience is a great honor for me.  I was here for only 24 hours and I had already seen so much of this beautiful area.  I was fortunate enough to get here the night before Labor Day so the crew and I had the day off.

One of the harbors in Kodiak, AK

One of the harbors in Kodiak, AK

I walked around the harbor town of Kodiak and then went hiking to Abercrombie State Park.  This now incredibly beautiful area of moss draped trees, cliffs and black rock/sand beaches was once a World War II gun site.  I saw the massive guns, the lookout that was half buried in the rock and the searchlight shelter.  Due to the northern site, there are times that the sun is not out for long so they had big searchlights that were rolled out of the structure to search for planes and ships out in the Pacific Ocean.  While there I got to see the resident Bald Eagles and other wildlife (no Kodiak bears yet but I keep looking).

Later, I was able to head to the southern shore of Kodiak Island to see where people surf on Surfer Beach.  Again, the sand is very dark and the waves were incredible.  I didn’t think Alaska was an area for surfing, but it is very popular.

The incredible Surfer Beach!

The incredible Surfer Beach!

After looking at Surfer Beach I was taken over to the Pacific Spaceport Complex Alaska.  I was able to let my Space Geek out.  Too bad I didn’t have my Blue Flight Suit, I could have had my picture taken there.  This is an active launch pad for launches over the Arctic.  They had an explosion here in November, 2014 (no one was hurt thankfully) so it is being repaired before more launches can take place.

An interesting sign at the Pacific Spaceport Alaska.

An interesting sign at the Pacific Spaceport Alaska.

On the ship, the crew is incredibly welcoming and helpful.  I am gradually learning my way around and how things work.  Off the ship, I used the time to connect with the local Kodiak High School and their award winning robotics team.  They are doing some pretty amazing things here with STEAM in this small coastal town.

More adventures to follow as we head out and I become a true Teacher At Sea, not just a Teacher In Port!

Rebecca Loy, Hello from land! August 12, 2015

NOAA Teacher at Sea
Rebecca Loy
Soon to be aboard NOAA Ship Rainier
September 8 – 24 , 2015

Mission: Hydrographic Survey
Geographical area of Research: Kodiak Island, Alaska
Date: August 12, 2015

Introduction

Personal Log:  Hello to everyone from Cicero, New York. Cicero is just outside of Syracuse in the middle of New York State surrounded by some very beautiful areas. My name is Becky Loy and I have been teaching special education for 24 years.

You might wonder, why is a special education teacher going to sea…? Well, I sort of joke that I am a special education teacher by day, STEAM (Science, Technology, Engineering, Arts and Math) enthusiast by night.

Caught by surprise having a laugh with some volunteers with our high powered rockets.

Caught by surprise having a laugh with some volunteers with our high powered rockets.

I love my job teaching at Minoa Elementary in the East Syracuse-Minoa School District. My district is extremely supportive of me, and I look for any way to incorporate STEAM activities into my day, but it is usually after school. From space education, launching large five foot high powered rockets, Lego robotics, NASA moon rocks, writing NASA curriculum to taking large groups to Washington, D.C. or Space Camp, Canada, I try to inspire students many ways! I am very excited about going to sea in Alaska on NOAA Ship Rainier!  This will give me many more experiences to bring back to my school and community. My dream is for kids to be inspired by me to follow their own STEAM paths and careers.

This slideshow requires JavaScript.

Some of my best adventures have been around water.  To begin, I grew up on the large St. Lawrence River in northern New York State and could practically swim before I walked.  A true passion of mine for over 10 years is sailing on the Maine-based, National Heritage schooner Isaac H. Evans.  While sailing, the wind takes you where it pleases and the chef cooks on a wood stove in a wooden galley.  This is where I learned that you sleep in a “berth”, go the to the bathroom in a “head” and you wash your hands in a “basin” (Think about it – you don’t want to use the word “sink” on a boat!).   Another water-based, but thrilling experience is when I went cage diving with Great White sharks off the coast of Africa!  Little did I know that the shark was going to grab the chum right in front of me – yikes!!

This slideshow requires JavaScript.

Being on water is natural for me and I love it! Having the experience of being on a hydrographic research vessel is very unique. Hydrographic research is the study of our coastal waters – updating charts, maybe checking tides or the bottom of a bay/strait or going on smaller boats to look closer at the shoreline. I look forward to learning all I can about it!

This is all very exciting for me, but I must admit I am a bit nervous. Who would think that someone who swam with sharks would be more nervous about this, but I am. Since my dream is to inspire more children and adults, I want to do a great job!

Blue Flight Suit fun with fellow Honeywell teachers Jacqui and Maria and astronaut Clay Anderson

Blue Flight Suit fun with fellow Honeywell teachers Jacqui and Maria and astronaut Clay Anderson

Some of my adventures that are not based on water are attending Honeywell’s Space and Advanced Space Academies for educators, getting VIP tours of various NASA facilities, sleeping in a car to see Space Shuttle Atlantis lift off (oooohh my back and neck hurt after that experience!), star gazing in Death Valley, CA, paragliding off a mountain in Africa and traveling in Europe.  Another passion (and something I get the strangest looks for) is showing off my Space Academy Blue Flight Suit at any appropriate occasion with other space enthusiasts!  We are like our own little family.

 

My son and I with Mythbuster Adam Savage! STEAM Awesomeness!

My son and I with Mythbuster Adam Savage! STEAM Awesomeness!

In my free time, I enjoy special time with my loving family. I have an incredibly supportive husband, an 18 year old son and 2 pugs! I enjoy reading, painting, gardening and a variety of

At the TACNY Outstanding Teacher awards with my husband and son, 2013

At the TACNY Outstanding Teacher awards with my husband and son, 2013

do-it-yourself projects. I take a great deal of pride in seeking new adventures to inspire both adults and children!

Thank you for following me on this latest adventure!

Jeanne Muzi: Science, Service and Stewardship, August 10, 2015

NOAA Teacher at Sea
Jeanne Muzi
Aboard NOAA Ship Thomas Jefferson
August 2 – 8, 2015

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic
Date: August 10, 2015

As I head home to New Jersey a few days ahead of schedule, I am reflecting on what I have learned aboard the Thomas Jefferson. From day one, I was asking questions and trying to understand the process of hydrographic surveying, the equipment used and the different roles of everyone involved in the process. I learned why hydrographic surveying is so important and why the mission of NOAA (Science, Service and Stewardship) is demonstrated in all the research and activities aboard the Thomas Jefferson.

The ocean covers 71 percent of the Earth’s surface and contains 97 percent of the planet’s water, yet more than 95 percent of the underwater world remains unexplored.  NOAA protects, preserves, manages and enhances the resources found in 3.5 million square miles of coastal and deep ocean waters.

The oceans are our home. As active citizens, we must all become knowledgeable, involved stewards of our oceans.

http://oceanservice.noaa.gov/news/june14/our-ocean.pdf

Science and Technology Log

As my Teacher at Sea experience ends, I wanted to make sure I shared some of the conversations I had with the officers charged with leading the missions of the Thomas Jefferson and the hydrographic work it is involved in.

The Thomas Jefferson: Home to an amazing crew!

The Thomas Jefferson: Home to an amazing crew!

It is my honor to introduce to you:

Captain Shepard Smith (CO)

CO Smith

CO Smith

Captain Smith grew up on the water in Maine. He always enjoyed reading maps and charts. He received a Bachelor’s of Science degree in mechanical engineering from Cornell University and earned a Master’s of Science degree from the University of New Hampshire Ocean Engineering (Mapping) Program. He has worked at NOAA in many different capacities.

He served aboard NOAA Ship Rainier, NOAA R/V Bay Hydrographer and the Thomas Jefferson. He was also the chief of Coast Survey’s Atlantic Hydrographic Branch in Norfolk, Virginia. Captain Smith also served as Senior Advisor to Dr. Kathryn Sullivan, NOAA Deputy Administrator and as Chief of Coast Survey’s Marine Chart Division. Captain Smith explained how he has been involved in integrating many new technological innovations designed to improve the efficiency of NOAA’s seafloor mapping efforts. It was through Captain Smith’s endeavors that Americans enjoy open access to all NOAA charts and maps.

CO Smith on the Bridge

CO Smith on the Bridge

He enjoys being the CO very much and feels the best part of his job is developing the next generation of leadership in NOAA. He feels it is very important to have that influence on junior officers. The worst part of his job is the separation from his family.

Captain Smith’s advice to young students is to pay attention to the world around you and how things work. Try to ask lots of questions. He said, “There are loads of opportunities to be the best at something and so many things to learn about. There are new fields, new ideas and new ways to see and understand things. Never limit yourself.”

Lieutenant Commander Olivia Hauser (XO)

XO LCDR Hauser

XO LCDR Hauser 

LCDR Hauser grew up in New Jersey and always loved learning about the ocean. As a little girl, she thought she would like to study Marine Science but wasn’t sure how. She grew up and earned her Bachelor’s of Arts in Biology from Franklin and Marshall College and her Master’s of Science in Biological Oceanography from the University of Delaware’s College of Marine Studies. Before coming to NOAA, LCDR Hauser spent time working for a mortgage company, which provided her with different kinds of skills. She soon started officer training for NOAA and got to apply the sonar knowledge she developed in graduate school to her NOAA work. She has served on the NOAA ships Rainier and Thomas Jefferson. She has built her strong background in hydrography with both land and sea assignments. She has been Field Operations Officer, Field Support Liaison and Executive Officer. She explained that in the field of hydrographic surveying, experience is key to improving skills and she is always trying to learn more and share her knowledge. As XO, she is the second highest-ranking officer on the ship.

LCDR Hauser feels the best part of her job is that it never gets boring. Everyday is different and there are always new things to see and learn.

XO supervises the arrival of the launch

XO supervises the arrival of the launch

LCDR Hauser also explained that the hardest part of the job is the transitions, that come pretty frequently. She said, “You may find yourself leaving a ship or coming to a new job. There are always new routines to learn and new people to get to know. With so many transitions, it is often hard to find and keep community, but on the positive side, the transitions keep you adaptable and resilient, which are important skills too.”

Her advice to young students is “Take opportunities! Explore things you never heard of. Don’t give up easily! Even the rough parts of the road can work for you. Every experience helps you grow! Keep asking questions…especially about how and why!”

Lieutenant Joseph Carrier (FOO)

LT Carrier

LT Carrier

As a young boy, LT Carrier was the kind of kid who liked to take things apart and put them back together. He joined the Navy right out of high school. When he got out, he attended University of North Carolina at Wilmington and studied biology as an undergraduate and marine science in graduate school. He taught biology, oceanography, and earth science at a community college and worked at NOAA’s Atlantic Hydrographic Branch in Norfolk, VA before attending officer training. He served on other NOAA ships before coming to the Thomas Jefferson and has learned a lot about the technical aspects of hydrographic surveying, data collection and processing while onboard. He is currently the Field Operations Officer.

FOO on deck

FOO on deck

LT Carrier feels the best part of his job is the great people he works with. He explained that on a ship you are part of a close family that works together, lives together and helps each other.

He said the hardest parts of the job are the long hours and missing his family very much.

His advice to younger students is don’t get discouraged easily. He explained, “If you are not good at something at first, try again. Know that each time you try something…you have an opportunity to get better at it. Everyone can overcome challenges by working hard and sticking with it!

Personal Log:

Quick painting fromTJ Bow

Quick painting fromTJ Bow

The experience of living and learning on the Thomas Jefferson will stay with me and impact my teaching as I continue to encourage kids to stay curious, ask questions and work hard!

I would like to thank everyone at NOAA’s Teacher at Sea program for enabling me to come on this adventure! My time as a TAS has provided me with authentic learning experiences and a new understanding of science and math in action. I would like to thank every person serving on the Thomas Jefferson who took the time to talk with me and shared his or her area of expertise. I appreciated everyone’s patience, kindness and friendly help as they welcomed me into their home. Every crewmember has given me stories, knowledge and information that I can now share with others.

Print

Conserving our ocean and coasts. Image courtesy of http://oceanservice.noaa.gov/topics/

http://oceanservice.noaa.gov/topics/

 

In my last blog entry the Question of the Day and Picture of the Day was:

What is this and what do the letters mean?

What is this? What do the letters mean?

What is this?
What do the letters mean?

These containers are life rafts. The letters “SOLAS” stand for “Safety of Life at Sea.”

The First SOLAS Treaty was issued in 1914, just two years after the Titanic disaster. The Treaty was put in place so countries all around the world would make ship safety a priority. The SOLAS Treaty ensures that ships have safety standards in construction, in equipment onboard and in their operation. Many countries have turned these international requirements into national laws. The first version of the treaty developed in response to the sinking of the Titanic. It stated the number of lifeboats and other emergency equipment that should be available on every ship, along with safety procedures, such as having drills and continuous radio watch. Newer versions of the SOLAS Treaty have been adopted and the guidelines are always being updated so people at sea remain safe. If there was an emergency on the Thomas Jefferson, the crew is prepared because they have practiced many different drills. If these lifeboats were needed they would be opened, inflated and used to bring everyone to safety.

Many thanks for reading about my Teacher at Sea Adventure! 

Learning to be safe at sea!

Learning to be safe at sea!

 

Jeanne Muzi: STEM in Action, August 8, 2015

NOAA Teacher at Sea
Jeanne Muzi
Aboard NOAA Ship Thomas Jefferson
August 2 – 8, 2015

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic
Date: August 8, 2015

Weather Data From the Bridge:
Temperature: 73°F (23°C) Fair
Humidity: 59%
Wind Speed: N 10 mph
Barometer: 29.94 in (1013.6 mb)
Dewpoint: 58°F (14°C)
Visibility: 10.00 mi

Science and Technology Log:

It is amazing that with hydrography, scientists can “look” into the ocean to “see” the sea floor by using sound.

All the data collected by the TJ, and other NOAA Hydro ships, is used to update nautical charts and develop hydrographic models.

 

blogelipsoid

 

This is important work because the charts are used to warn mariners of dangers to navigation, which can mean everything from rocks to ship wrecks. They also record tide or water level measurements to provide information about water depths. Surveys also help determine if the sea floor is made up of sand, mud or rock, which is important for the anchoring of boats, dredging, construction, and laying pipeline or cables. Hydrography also provides important information for fishery habitats.

The work being done on the Thomas Jefferson is a great example of STEM in action since hydrographic surveying combines science, lots of technology, the engineering of new devices and procedures, and the application of mathematical computations.

Here are two amazing survey images:

A crane discovered underwater

A crane discovered underwater

 

Image of the sunken ship, USS Monitor

Image of the sunken ship, USS Monitor

A few of my students emailed me yesterday to ask how does the information gathered out on the launch become a chart. That’s a great question!

My XO (Executive Officer) LCDR Olivia Hauser provided me with a great explanation of how the data becomes a chart. She explained it this way:

It starts with deciding where to survey, and ends with an updated chart that is published and available for mariners to use. The decision where to survey is steered by a document called the National Hydrographic Survey Priorities document. It outlines where the top priorities to survey are based on the type of ship traffic that travels the area, the age of the survey in the area, how often the seafloor changes in the area, and specific requests from port authorities, the US Coast Guard, and other official maritime entities. Please see the following link for more information. http://www.nauticalcharts.noaa.gov/hsd/NHSP.htm

The operations branch of the Hydrographic Surveys Division of the Office of Coast Survey in NOAA (where Patrick works-see below) uses this document to decide where the ship will survey next. This branch then provides the ship with project instructions that identifies where the work will be done and divides the survey area into manageable chunks.

The data is raw when we first acquire it, and once it comes back to the ship, we need to apply some correctors to it, to improve the data quality.

Working in the survey room

Working in the survey room

One corrector we apply to the data is tide information. The water gets shallower and deeper depending on the stage of tide, and we need to make sure the depths on the chart are all relative to the same stage of tide.

Another corrector we apply to the data is vessel motion. When we acquire depth data with the sonar, the boat is moving with the waves, and the raw data looks like it has waves in the seafloor, too. We know that is not the case, so we take the motion data of the boat out of our depth data.

A third corrector we apply to the data is sound speed. The sonar finds the depth of the seafloor by sending a pulse of sound out and listening for its return, measuring the time it takes to complete that trip. We also measure the speed of sound through the water so we can calculate the depth (see the picture of ENS Gleichauf deploying the CTD to measure sound speed). Speed =Distance/Time. Speed of sound through typical seawater is 1500 meters per second. The speed of sound changes with water temperature and salinity (the saltiness of the water) .If we measure the time it takes for the sound to get to the seafloor and back, 1 second for example, and the sound speed is 1500 meters per second we know the seafloor is 750 meters away from the sonar. (the sound is traveling two ways).

Once all of the correctors are applied to the data, a digital terrain model (DTM) is created from the data to make a grid showing the depths and hazards in the area. A report is written about the survey, and it is submitted to the Atlantic Hydrographic Branch (Where Jeffrey works- See below). This branch reviews the data and makes sure it meets NOAA’s specifications for data quality. They also make a preliminary chart, picking the important depths and hazards that should be shown on the chart.

Once the data has been reviewed, it goes to the Marine Charting Division. This group takes the preliminary chart of the area surveyed, and adds it to the official chart that is being updated. These charts are then distributed to the public.

I had a chance to talk with some of the Survey Techs and project scientists who work on the TJ to find out more about their jobs.

Allison Stone

Allison Stone

Allison Stone is the Hydro Senior Survey Technician (HSST). When Allison was 12 years old she clearly remembers her school’s Career Day, when lots of parents came in to talk about their jobs. She recalls there was one mom who had a sparkle in her eye when she talked about her job. She was an Oceanographer. That mom became her advisor when she attended the College of Charleston. Allison had an internship at the Atlantic Hydrography Branch in Norfolk and she first came to the TJ as a Student Scientist. She later became a full time technician. She enjoys her job because she gets the opportunity to observe the seafloor like no one has ever seen it before. She gets to solve problems and think outside the box. When she is going through raw data, she is able to make connections and interpret information. The work is interesting and challenging. Allison’s advice for young students is to keep being passionate about things you are interested in. Try to find out more and stay flexible. Try to volunteer as much as possible as you grow up so you can find out what you like to do and love to work on.

Jeffery Marshall

Jeffery Marshall

Jeffery Marshall was visiting the TJ for a project during my time aboard. Jeffery is a Physical Scientist with the Office of Coast Survey as a member of the Hydrographic Surveys Division, Atlantic Hydrographic Branch in Norfolk, Virginia. Jeffery grew up on the Jersey Shore and loved being out on the water, down at the beach and learning about the ocean. He loved surfing and was always wondering what the weather would be like so he could plan for the waves and the tides. So when he went to college, he studied meteorology. Following graduation, he taught middle school science and loved being a teacher. When he was ready for a change, he decided to attend graduate school and got his masters degree in Coastal Geology. He really enjoys having the opportunity to get out on the ships. His job is usually applying the processed data to charts, what he calls “Armchair Hydrography.” When he gets a chance to work on a NOAA ship mission, he has more opportunities to collect and analyze data. Jeff’s advice to young students is to read a lot and think about lots of different things, like how we use maps. He thinks everyone should take a look at old maps and charts, and think about how they were made. He encourages students to look for patterns in nature and to think about how rocks and sand change over time.

Patrick Keown

Patrick Keown

Patrick Keown is also a Physical Scientist. He was also working on a project on the TJ. Patrick works at the Operations Branch of the Hydrographics Survey Division in Silver Spring, Maryland. Patrick is usually working on plans for where surveying needs to take place. He started college as an Anthropology major but ended up in a Geographic Information Systems class and found that it came easily to him. Geographic Information Systems are designed to capture, store, manipulate, analyze, manage, and present all types of spatial or geographical data. He had an internship with the Army Corp of Engineers which provided some “on the job learning” of hydrography. When Patrick was young, he didn’t have the chance to travel much, so he spent a lot of time looking at maps and wondering, “What else is out there?” Now he loves to travel and likes to look at what he calls “Social Geography.” Patrick thinks the best part of his job is the chance to experience new things. He has had opportunities to try the latest technology and is inspired by all the new types of equipment, like drones and the Z boats. Patrick’s advice to young learners is “Never be afraid to explore! Never be afraid to ask questions! Most importantly, stay curious!!”

Cassie Bongiovanni

Cassie Bongiovanni

Cassie Bongiovanni is a GIS Specialist who works at The Center for Coastal and Ocean Mapping/Joint Hydrographic Center. The center is a partnership between the University of New Hampshire and NOAA, and it has two main objectives: to develop tools to advance ocean mapping and hydrography, and to train the next generation of hydrographers and ocean mappers. Cassie grew up in Texas and did not like science at all when she was young. She attended the University of Washington in Seattle and fell in love with the ocean. She received her Bachelors of Science in Geology with a focus in Oceanography. She is now working with NOAA’s Integrated Ocean and Coastal Mapping group on processing lidar and acoustic data for post Hurricane Sandy research efforts. Cassie explained that she loves her work because she loves to learn! She has lots of opportunities to ask questions and discover new things. The kid in her loves making maps and then coloring them with bright colors to create 3-D images of things like shipwrecks.

 

Personal Log:

IMG_4023

The launch headed out again today to try to find a ship that sank earlier in the summer. Information was gathered and lines were surveyed, but so far no shipwreck was found. The day ended with a beautiful sunset.

Setting lines to survey

Setting lines to survey

Looking out from the cabin of the launch

Looking out from the cabin of the launc

 

 

 

 

 

 

 

 

 

sunset

 

In my last blog entry the Question of the Day was:

How was the ocean floor mapped before sonar was invented?

Mariners have used many different methods to map the ocean floor to try to “see” what was under the water. For thousands of years a stick was used to see how deep the water was. Eventually, the stick was marked with measurements. Once ships started exploring the oceans, sticks were no longer good options for finding out the depth of water or if anything was under the water that could harm the ship. Sailors started tying a rope around a heavy rock and throwing it over board. In the 1400’s, mariners began using lead lines, which were marked lengths of rope attached to a lead weight. The lead line was good for measuring depth and providing information about the sea floor. The standard lead line was 20 fathoms long–120 feet–and the lead weighed 7 pounds. In the early 20th century, the wire drag was invented. This meant two ships had a set system of wires hung between them and it enabled mariners to find hidden rocks, shipwrecks or other hazards hidden in the water.

 

leadline

Find out more about the history of navigation tools at http://www.vos.noaa.gov/MWL/aug_08/navigation_tools.shtml

In my last entry, The Picture of the Day showed Ensign Gleichauf lowering an instrument into the water. That is a CTD, which stands for conductivity, temperature, and depth. A CTD is made up of electronic instruments that measure these properties. The CTD detects how the conductivity and temperature of the water column changes as it goes deeper into the water. Conductivity is a measure of how well a solution conducts electricity. Conductivity is directly related to salinity, which is how salty the seawater is.

What is that?

This is a CTD

Today’s Question of the Day and Picture of the Day: What is this and what do the letters mean?

What is this? What do the letters mean?

What is this?
What do the letters mean?

 

Thanks for reading this entry!

Safety first!

Safety first!

 

Jeanne Muzi: Out on the Launch! August 7, 2015

NOAA Teacher at Sea
Jeanne Muzi
Aboard NOAA Ship Thomas Jefferson
August 2 – 8, 2015

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic
Date: August 7, 2015

Weather Data From the Bridge:
Temperature:79°F (26°C) Partly Cloudy
Humidity: 41%
Wind Speed: W 9 mph
Barometer: 29.89 in (1012.0 mb)
Dewpoint: 53°F (12°C)
Visibility: 10.00 mi
Heat Index: 79°F (26°C)

Science and Technology Log:

The Thomas Jefferson is in port at the naval base at Newport so the small launch boats are being used for hydrographic survey training.

Last minute instructions on deck.

Last minute instructions on deck.

Lifting the Launch into the water!

Lowering the Launch into the water!

Onto the launch

Onto the launch..

And we are off!

…and we are off!

On my two trips out, I have absorbed an enormous amount of information about how to set up all the computer equipment so each part “talks” to the other, how to know if the underwater multi-beam sonar is set correctly, how to lengthen or shorten the swath of the beams so the “pings” travel the correct distance/speed and how to examine the survey data and discuss what is seen (for example, is that disturbance we see the wake from a passing ship? Are we running the lines too close to the jetty? Is that an underwater cable? Do you see that large school of fish moving?).

Coordinating all the tasks on all the screens is important

Coordinating all the tasks on all the screens is important.

Learning about multi-beam sonar

Learning about multi-beam sonar

Examining data

Examining data

Doug Wood, a senior hydrographic survey technician, explained how to start the generator on the launch, turn on all the surveying and charting technology and created different scenarios so that we could set various lines to survey. Once we had our location, the Coxswain (the person in charge of steering and navigating the boat) could guide the launch along that line and we could begin logging data. As the sonar began delivering data to the screen, we were able to see rocks, buoys and even large fish that appeared along with their shadows. The multi-beam sonar was capable of picking up lots of information about what was on the sea floor.

Gassing up the launch

Gassing up the launch. Photo credit: Stephanie Stabile

Returning to the ship!

Returning to the ship!

If you are interested in finding out more about how NOAA maps with sound, take a look at this article by clicking on this link:

Seeing the ocean floor clip 2 copy

http://www.noaa.gov/features/monitoring_1008/seafloormapping.html

Look at how detailed NOAA’s nautical charts must be:

noaa chart copy

Personal Log:

One of the most interesting parts of being on the Thomas Jefferson has been having conversations with everyone onboard. It seems that every officer, engineer, seaman or steward has a remarkable story about the path that brought him or her to serve on NOAA’s TJ.

Yesterday, I had a chance to ask three Junior Officers and a Lieutenant J.G. some questions about their work. Ensign Katie Seberger, Ensign Marybeth Head and Ensign Max Andersen were kind enough to let me chat with them as they worked in the chartroom updating checklists and working to improve safety routines. LTJG Matthew Forrest took a minute to talk with me in the mess. When I asked what the best thing about their job was, each answered that they really enjoyed their work.

Ensign Katie Seberger and Ensign Marybeth Head

Ensign Katie Seberger and Ensign Marybeth Head

Ensign Seberger explained that she had loved the ocean and wanted to study marine science her whole life and the best part of her job is being out on the water. Ensign Head said that doing something for the big picture is the best and it is easy to get really excited about her work. Ensign Andersen said the best part of his job has been getting a chance work with the Z boats; the newest surveying tool the crew of the TJ will begin using soon. LT.JG Forrest said that it was the opportunity to be a part of something much bigger than you, and contribute every day to something important. He also said an enjoyable part of his job is working with a great team.

Ensign Max Andersen

Ensign Max Andersen

Each of the officers had to think about what the worst part of their job was. Ensign Seberger said that while it is exciting to travel, it is sometimes hard not knowing where you are going next. Ensign Head said that for her, it is difficult to be disconnected from the water, and that even though she is sailing on a ship, she grew up on small boats with the salt spray on her face, and she misses that. Ensign Andersen said the worst thing is the uncertainty of the ship’s schedule and not knowing where you will be next. LTJG Forrest said the worst thing is the lack of sleep because it is not unusual for them to be up working for 16 hours sometimes. He also said it was hard to be so far from his family and disconnected from everything going on at home.

LT.J.G. Matthew Forrest

LTJG Matthew Forrest

Each of the officers had great advice for young students who would like to one day do the type of work they do. Ensign Seberger suggested that its important to volunteer doing what you think you would like to work at so you can find out if it is for you. Ensign Head’s advice to students was to be “persistent and memorable.” She explained that you need to keep at whatever you are doing and not give up. The people that quit will be forgotten. The people that keep working will not. Ensign Andersen’s advice to young students is to make your own path and don’t settle for the status quo. He thinks you might have to work harder to make your way, but it’s worth it. LTJG Forrest felt that kids should understand that all the work done on the Thomas Jefferson is built on a foundation of the fundamentals of math and science so all kids should try to soak up as much math and science as they can. He also said to always be ready to work hard.

Each of the officers said they enjoy their work very much and could not imagine doing anything else!

 

In my last blog entry the Question of the Day was:

Why is surveying the ocean floor so important?

The ocean floor is covered with all sorts of things including natural things, like rocks, reefs, hills and valleys, and manmade objects, such as cables, docks, shipwrecks and debris. If ships don’t know where things are it can be very dangerous. Storms often change the position of things underwater so it is very important that charts are accurate and updated. Hydrographers capture the data from the seafloor using sonar, process the data and utilize the information to create precise and informative ocean charts.

In my last entry, The Picture of the Day showed an anchor ball. An anchor ball is a round, black shape that is hoisted in the forepart of a vessel to show that it is anchored. It must be taken down when the ship is underway.

Anchor Ball

Anchor Ball

 

Today’s Question of the Day is:

How was the ocean floor mapped before sonar was invented?

Today’s Picture of the Day: What is Ensign Gleichauf lowering into the water?

What is that?

What is that?

Thanks for reading this entry!

Heading out to the deck!

Heading out to the deck!

Jeanne Muzi: Problem Solving on the Thomas Jefferson! August 5, 2015

NOAA Teacher at Sea
Jeanne Muzi
Aboard NOAA Ship Thomas Jefferson|
August 2 – 13, 2015

Mission: Hydrographic Survey
Geographical area of cruise
: North Atlantic
Date: August 5, 2015

Weather Data From the Bridge:
Temperature: 71° F (22° C)
Humidity: 84%
Wind Speed: S 5 mph
Barometer: 29.89 in (1012.1 mb)
Dewpoint: 66° F (19° C)
Visibility: 10.00 mi

Hello again!

Science and Technology Log:

One important thing that every single person has to face, no matter how old they are or what kind of job they have, is what to do when things go wrong. We are always happy when things are going smoothly—but what do you do when they don’t?

I found out about how important it is to be a thinker and problem solver on the Thomas Jefferson because we are experiencing engine problems. First the launches were not running. Then the TJ’s engines were having difficulties and it was discovered that we had water in our fuel. The engineers and officers all started to ask questions: Where is the water coming from? Is there a problem with the tanks? How are we going to fix this situation? What is the best solution right now? It was determined that we should sail into the Naval Base in Newport, Rhode Island so the fuel could be pumped out and the fuel tanks examined. This is a big job!

Heading to Newport

Lighthouse

Jamestown Bridge

Jamestown Bridge

We sailed into Newport on a beautiful sunny afternoon. I got to spend some time on the bridge and watched as Ensign Seberger and GVA (General Vessel Assistant) Holler steered our large ship around obstacles like lobster pots and small sailboats. AB (Ablebodied Seaman) Grains acted as the look out, peering through binoculars and calling out directions in degrees (instead of feet or yards), and port and starboard (instead of left and right). LTJG Forrest explained how to chart the route to Newport using a compass, slide rule and mathematical calculations. His computations were right on as he plotted the course of the Thomas Jefferson. 

Charting TJ's course to Newport

Charting TJ’s course to Newport

When we arrived at Newport, the tugboat, Jaguar, needed to help us dock and then the gangway was lifted into place using a crane.

The tugboat arrives to assist the TJ.

The tugboat arrives to assist the TJ.

The tugboat Jaguar helping the TJ dock at Newport

The tugboat Jaguar helping the TJ dock at Newport

The walkway is lowered from ship to shore.

The gangway is lowered from ship to shore.

Now we are waiting in Newport to see how the ship will be repaired, and how that will impact the surveying mission and the work of all the scientists on board. The fuel is currently being pumped out of the tanks so the engineering department can figure out what is going on.

Personal Log:

Some of my students have emailed to ask where am I sleeping. When you are aboard a ship, you sleep in a stateroom. I have the bottom bunk and my roommate has the top. We have storage lockers and shelves to hold our stuff. The bathroom (called the head) connects our stateroom with another room.

Bunks in our stateroom

Bunks in our stateroom

Everyone eats in the Mess. You pick up your hot food on a plate in front of the galley and then sit down to eat at a table. Some of our meals so far have been omelets and cereal for breakfast, shrimp, rice and vegetables for lunch, and fish and potatoes for dinner. There is always a salad bar. Yogurt and ice cream are available, along with lots of different drinks.

Everyone eats meals together in the mess.

Everyone eats meals together in the mess.

The passageways are pretty narrow around the ship and the stairs going from one deck to another are steep whether you are inside or outside.

Lots of ups and downs outside...

Lots of ups and downs outside…

Lots of ups and downs inside

Lots of ups and downs inside…

 

Everything on a ship must be well-organized so equipment can be found quickly and easily.

Equipment must be organized so everyone can get what they need.

Equipment must be organized so everyone can get what they need.

The view from the outside deck has been beautiful…

There is always something to see on the TJ

There is always something to see on the TJ

The last Question of the Day was: What do the letters XO mean on the hardhat of the person in the center of this picture?

XO Stands for Executive Officer

XO Stands for Executive Officer

XO stands for Executive Officer. Our Executive Officer is Lieutenant Commander Olivia Hauser. She is the second in command on board.

The last Picture of the Day showed this image:

Whale caught with sonar

Whale caught with sonar

This image was captured with sonar and shows a whale swimming in the ocean. Amazing!

Today’s Question of the Day is:

Why is surveying the ocean floor so important?

Today’s Picture of the Day is:

What is this and what is it used for?

What is this and what is it used for?

What is this?

Thanks for reading this entry.

Windy day on the deck of the TJ

Windy day on the deck of the TJ

Jeanne Muzi: Aboard the Thomas Jefferson! August 3, 2015

NOAA Teacher at Sea
Jeanne Muzi
Aboard NOAA Ship Thomas Jefferson
August 2 – 13, 2015

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic
Date: August 3, 2015

Weather Data From the Bridge:

Temperature                     Fair 81°F (27°C)

Humidity 65%
Wind Speed SW 12 mph
Barometer 29.87 in (1011.4 mb)
Dewpoint 68°F (20°C)
Visibility 10.00 mi
Heat Index 84°F (29°C)

Greetings from the Thomas Jefferson!

Science and Technology Log:

Now that I am onboard, I am trying to learn as much as possible. The TJ is a busy place and there are lots of jobs to be done. Basically there are separate groups working in different ways, like the Wardroom (which means all the officers on board), Engineering, Deck, Survey and Stewards, but everyone always comes together to work as a team.When one of the small launches returned to the ship late yesterday afternoon, everyone worked together to get it back on board safely. The launch had been surveying and now that data had to be processed in the survey dept.

One of the small launches returning

One of the small launches returning

 

Lifting the launch

Lifting the launch

 

 

 

 

 

 

 

In the survey dept. there are different scientists working on different projects. This is a station for “Data Acquisition” so there are multiple computers and cameras sharing images, data and information from around the ship and from the sonars.

Information Acquisition Station

Information Acquisition Station

Survey Technician Stephanie Stabile created this “big picture” diagram, which explains how the different scanning tools communicate with each other to provide the most accurate scans of the ocean floor.

Diagram of TJ's Hydro System

Diagram of TJ’s Hydro System

 

 

ST Stabile explains her diagram to me.

ST Stabile explains her diagram to me.

 

 

 

 

 

 

 

 

This picture shows how a survey ship uses its multi-beam sonar.

Survey ship with multi-beam Sonar

Survey ship with multi-beam Sonar

If you would like to learn more about sonar, check out this video:

http://oceanservice.noaa.gov/facts/sonar.html

I also had a chance to visit the bridge today as the anchor was lifted. I learned how orders are given clearly and information communicated accurately. Lieutenant Commander Hauser gave me a tour of the ship and answered many of my questions. She explained how the national flag is hoisted to the highest position when the ship gets underway.

Lieutenant Commander Hauser and Ensign Anderson with the American Flag.

Lieutenant Commander Hauser (right) and Ensign Anderson with the American Flag.

View from the bow of the Thomas Jefferson

View from the bow of the Thomas Jefferson

Personal Log:

One of the most important things I learned about today was safety!

Think about why we have fire and evacuation drills at school…It is important to be prepared just in case something happens! It is exactly the same here on the Thomas Jefferson! I was part of a group that was trained on safety issues like fire, abandoning ship and what to do in any emergency. Ensign Perry walked us around the ship and showed us where life jackets, fire extinguishers, steel-toed shoes and hard hats are located. She also taught me how to get in and out of a survival suit. Survival suits (also called “Gumby suits”) are made of foam rubber and are designed to be watertight. They help protect against hypothermia and can keep a person alive and floating until rescuers can find them.

An example of a survival suit

An example of a survival suit

For dinner, everyone on board came to a cookout on the deck near the bow of the ship! Delicious burgers, hotdogs, chicken, sausages and brisket were grilled up and enjoyed. What a great setting for some terrific food!

A cookout on the Thomas Jefferson

A cookout on the Thomas Jefferson

In my first blog entry the Question of the Day was:

Think about what you know about President Thomas Jefferson…What does he have to do with the Atlantic Ocean?

Thomas Jefferson

Thomas Jefferson

Here is some interesting information about Thomas Jefferson and the ocean:

As most people know, Thomas Jefferson was a writer, an artist, an architect, a statesmen and a lawyer. He was also one of our most scientific presidents. In 1807, President Jefferson established the Survey of the Coast to produce the nautical charts necessary for maritime safety, defense, and the establishment of national boundaries. The United States Coast and Geodetic Survey is the oldest scientific organization in the U.S. Other agencies that became part of NOAA in 1970 include the Weather Bureau, formed in 1870, and the Bureau of Commercial Fisheries, formed in 1871. Much of America’s scientific heritage resides in these agencies. They brought their cultures of scientific accuracy and precision, stewardship of resources, and protection of life and property to NOAA.

The first Picture of the Day shows a side sonar “fish”. Here is some information about side scan sonars.

Side Scan Sonar Information

Side Scan Sonar Information

Go to this website to find out more!

http://oceanservice.noaa.gov/education/seafloor-mapping/how_sidescansonar.html

 

Today’s Question of the Day is:

What do the letters XO mean on the hardhat of the person in the center of this picture?

XO?

XO?

Today’s Picture of the Day is:

Look carefully...What do you think?

Look carefully…What do you think?

What do you see in the scan?

Learning more each day! photo credit: Dan Connors

Learning more each day! photo credit: Dan Connors

Thanks for reading this blog entry!