Rebecca Kimport, JUNE 30, 2010 part2

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: June 30,  2010

What’s in your water?

Now that we are at sea, I work a shift each day (as do all members of the crew and science team). I began my shift this morning at 0400 and reported to the Acoustics Lab to meet with chief scientist, Neal Williamson. In addition to Neal, my shift includes Abigail McCarthy, NOAA research fisheries biologist, Katie Wurtzell, awesome biologist and my fellow TAS, Michele Brustolon.We began the shift by observing our first CTD (Conductivity Temperature Depth) profiler which will be deployed at least 10 times throughout our trip. The CTD measures conductivity, temperature, and depth (used to calculate salinity) and gathers samples to measure dissolved oxygen. In other words, it measures many of the physical properties of the seawater mixture in a specific column of water. In addition, fluorescence is measured to monitor chlorophyll up to a 100 m from the surface.How it works: The CTD is lowered down to the ocean floor, collecting data on the way down. Then, on the way back up, the survey tech stops the CTD at specific depths to collect water for the samples. Upon its return, the water is collected and treated for future analysis.

Here is our CTD sensor before its launch

After our first CTD, we completed our first Methot trawl. A Methot trawl is named after the scientist who designed the net used. Here is a picture of the methot getting hauled back on deck (please note, it does actually get dark here. I woke up in the dead of night and had to wait two hours for sunrise. Sunrise is at the “normal” time of 6:30 am and I think that’s because we are on the western edge of the time zone)

Here Comes the Methot

A Methot net grabs the creatures and collects them into a codend (to make it easier for us to process) at 30-40 m below the surface – our Methot collected jellies and euphausiids (also known as krill). My first duty was to sort through the “catch” to pick out jellies. Next, we measured the weight of the krill before counting a small sample. We also preserved a couple samples for use in larger studies.

Launching the XBT

Following our Methot, I assisted with the completion of an XBT (eXpenable Bathymetric Thermograph). At left, you will see that I actually “launched” the XBT overboard. The XBT is used to collect quick temperature data from the surface to the sea floor. The data are graphed at depth vs. temperature to highlight the thermocline, that is where colder water meets water warmed by the sun. Here in the Bering Sea, the thermocline is not always noticeable as the water column is subject to mixing from heavy winds and shallow depths.

Lucky for us, it was a calm day on the water and we were able to see a distinct thermocline:

The thermocline

I think the CTDs and XBTs are really cool because they are pretty routine. Both processes are conducted all over the globe at consistent locations year after year. As you can see from the chart below, the CTDs and XBTs are marked out for the area the Oscar Dyson covers throughout the summer. (As I mentioned in my blog description, theOscar Dyson must travel the same route year after year for the pollock survey to ensure consistency in data collection).

XBT CTD locations

Beyond the Oscar Dyson, these data are collected on every NOAA cruise that I read about and that data can be used to measure how a body of water is doing in general as well as how the water column of a specific location has changed over time. For example, longitudinal data are needed to note climate change within the Bering Sea. Pretty cool huh?

Vocabulary Note: I tried to define all the new terms I used in my entry. Did you notice a term I didn’t define? Ask me about it in the comments and I will make sure to provide you with a definition.

Thought Question: In the XBT data graph, why is the X axis labeled on the top rather than the bottom? (think about your coordinate plane)

Rebecca Kimport, JUNE 30, 2010

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: June 30,  2010

Weather Data from the Bridge 
Time: 1600 hrs
Latitude: 57.16 N
Longitude: 169.09 W
Cloud Cover: Dense fog
Wind: 11.56 knots
Air Temperature: 5.3°C (41.5°F)
Water Temperature: 5.09°C (41.16°F)
Barometric Pressure: 1005.02 mb

Did I mention I completed all the tasks in the previous post before lunch? That left us time to fish for pollock in the afternoon.

Fish face

Fish face

Why pollock? Walleye pollock (Theragra chalcogramma) is an important fish for Alaska (and the entire United States). Although you may not know it, you’ve probably eaten pollock when you have enjoyed fish sticks or a fish sandwich at a fast food restaurant. Also, sushi lovers, artificial crab is made from pollock surimi. Walleye pollock produce one of the largest catch of any single species within US waters and accounts for over half the groundfish catch in Alaska (see:http://www.afsc.noaa.gov/species/pollock.php for more information)

How the Oscar Dyson helps? By surveying the pollock populations within the Bering Sea, scientists can gather data on these important fish – including size, gender distribution, maturity, location, and diet.

How do we find the fish? Scientists work around the clock gathering data through acoustics to identify the locations of aggregations (or schools). The Oscar Dyson has five transducers located across the bottom of the ship on its centerboard. These transducers send out signals and the data are graphed on large computer screens in our acoustics lab (more information on the acoustics lab will come in a later post) While on shift, we eagerly await word that a fish aggregation has been identified and await the trawl.

Large Jellyfish

Large Jellyfish

And the trawl… As mentioned above, we were lucky enough to spot fish during my first shift and we conducted the trawl in the afternoon. A trawl is a method where a large net is cast off the back and towed behind the boat until it fills with fish. The take varies based on the aggregations (or schools) identified and the net may be out for two minutes or an hour. This first trawl was out for 45 minutes before the crew hauled it in. It was amazing how many seabirds were swarming around the net as it was pulled up and how many jellyfish were caught in the lines. The first task, once the catch is brought on deck and placed in the fish table, is to sort the specimens. We had pollock, Pacific cod, and 2 types of jellies (including theChrysaora melanaster shown at right)

Once the catch was sorted, the fish were weighed and then sexed. After they were sorted into Blokes and Sheilas (males and females), the fish also had to be measured. A small sample was dissected to remove stomachs and otoliths (ear bones of pollock that are used by scientists to determine the age of the fish) for further study.

Animals Seen on First Shift
Euphausiids (krill)
Jellies
Pollock!!!
Pacific Cod

Michele Brustolon, June 30th, 2010 part 2

NOAA Teacher at Sea
Michele Brustolon
Onboard NOAA Oscar Dyson
June 28 – July, 2010

NOAA Ship Oscar Dyson
Mission: Pollock Survey
Geographical area of cruise: Eastern Bering Sea (Dutch Harbor)
Date: June 30th, 2010

Weather Data from the Bridge

Time: 1600 hrs
Latitude: 57.16 N
Longitude: 169.09 W
Cloud Cover: Dense fog
Wind: 11.56 knots
Air Temperature: 5.30 C/ 420 F
Water Temperature: 5.090 C/ 410 F
Barometric Pressure: 1005.02 mb

Science and Technology Log

Fishy Fish
Why Pollock?
Walleye Pollock (Theragra chalcogramma) is an important fish for Alaska (and the entire United States). Although you may not know it, you’ve probably eaten Pollock when you have enjoyed fish sticks, a fish sandwich at a fast food restaurant, or imitation crab meat. Walleye Pollock produce one of the largest catch of any single species within US waters and accounts for over half the groundfish catch in Alaska (see:http://www.afsc.noaa.gov/species/pollock.php for more information)

Acoustic Lab with Abigail McCarthy and Neal Williamson

How the Oscar Dyson helps? By surveying the Pollock populations within the Bering Sea, scientists can gather data on these important fish – including size, gender distribution, maturity rates, location, and diet.

How do we find the fish? Scientists work around the clock gathering data through acoustics to identify the locations of populations. The Oscar Dyson has five transducers located across the bottom of the ship on its centerboard. These transducers send out signals and the data are graphed on large computer screens in our Acoustics lab. While on shift, we eagerly await word that a fish population has been identified and await the trawl.

First trawl net to come up on Leg 2

Here I am getting ready to sort the first catch in my foul weather gear!

And the Trawl…
Luckily for me, fish were seen on my first shift and we conducted the trawl in the afternoon. The take varies based on the populations identified and the net may be out for two minutes or an hour. This first trawl was out for 45 minutes before the crew hauled it in. It was amazing how many seabirds were swarming around the net as it was pulled up and how many jellyfish were caught in the lines. The first task once the catch is brought on deck and placed in the fish table, is to sort the specimens. We had Pollock, Pacific cod, and 2 types of jellies. Once the catch was sorted, the fish were weighed and then sexed. After they were sorted into Blokes and Sheilas (males and females), the fish also had to be measured. A small sample was dissected to remove stomachs and otiliths (ear bones of Pollock that are used for aging the fish) for further study.

Abigail McCarthy and Kathy Hough taking samples of Pollock stomachs and otiliths

The wet lab

Personal Log

While this is a continuation of the first log (it was way too long!), it focuses on the why we are studying Pollock and how the first trawl went. No fishing was done until after lunch. When the net did come up, there were five of us in the wet lab where we processed the catch; Abigail McCarthy, Kathy Hough, Rebecca Kimport, Katie Wurtzell, and me. It was very interesting to see all the information that came from a sampling of Pollock: weight, length, sex, stomach contents, and otiliths (ear bones). This brought us to the end of our 12 hour shift at 1600 hours.

Exercise was next…running on the treadmill was by far the weirdest feeling as the boat is rolling you feel as though the incline is moving up and down on its own and you have to hold on at different times. This is with pretty calm seas too! Dinner was fabulous as always. We have been spoiled here on the boat with meals like king crab legs, salmon, prime rib, Jamaican jerk chicken. Now do you see why I have to try to exercise EVERYDAY!!! I think the hardest part right now is trying to get to bed early enough so when 0315 arrives, I can get up and going.

Workout room

Animals Seen on First Shift
Euphausiids
Jellies
Pollock!!!
Pacific Cod

New Vocabulary
Blokes: male Pollock
Sheilas: female Pollock
Otiliths: ear bones of Pollock that help age the fish (they have rings that are counted much like trees)

Michele Brustolon, June 30th, 2010

NOAA Teacher at Sea
Michele Brustolon
Onboard NOAA Oscar Dyson
June 28 – July, 2010

NOAA Ship Oscar Dyson
Mission: Pollock Survey  
Geographical area of cruise: Eastern Bering Sea (Dutch Harbor)  
Date: June 30th, 2010  

Weather Data from the Bridge

Time: 1600 hrs
Latitude: 57.16 N
Longitude: 169.09 W
Cloud Cover: Dense fog
Wind: 11.56 knots
Air Temperature: 5.30  C/ 420 F
Water Temperature: 5.090 C/ 410 F
Barometric Pressure: 1005.02 mb

Science and Technology Log

Time with Birds and Mammals
Once we finally left Dutch Harbor behind, I spent some time on the bow with birder, Nate Jones.

As I know very little about birds, I quizzed him on every flying specimen we encountered and used his binoculars to observe the birds up close. After a few sightings, I was able to identify the Fulmar by its unique wing movement (quick quick quick soar). We also saw tufted puffins and a black footed albatross. There are two birders on this leg who are responsible for scanning the horizon and counting and identifying the sea birds they observe from the bridge.  We were distracted from our bird watching by a call of orcas. I hustled up to the “flying bridge” to join the marine mammal observers. There are three “mammals” on this leg and they are constantly scanning the horizon with their “big eyes” to observe and identify cetaceans. I was able to observe two separate groups of orcas and heard that porpoises were also spotted.

Although I am technically on the fish shift, I hope to check in with the “birds” and “mammals” later in the cruise.

What’s in your water?
I began my shift this morning at 0400 and reported to the Acoustics Lab to meet with head scientist, Neal Williamson. In addition to Neal, my shift includes Abby McCarthy, a NOAA research fisheries biologist, Katie Wurtzell, awesome biologist and my fellow TAS Rebecca. We began the shift by observing our first CTD (Conductivity Temperature Depth)  profiler which will be deployed approximately 10 times throughout our trip. The CTD measures conductivity, temperature, and depth (used to calculate salinity) and gathers samples to measure dissolved oxygen. In addition, fluorescence is measured to monitor chlorophyll up to a 100 m from the surface.

The CTD – measures Conductivity, Temperature, and Depth

After our first CTD, we completed our first Methot trawl. A Methot trawl is named after the scientist who designed the net used. A Methot grabs the creatures and collects them into a codend (to make it easier for us to process) at 30-40 m below the surface – our Methot collected jellies and euphausiids (also known as krill). My first duty was to sort through the “catch” to pick out jellies. Next, we measured the weight of the krill before counting a small sample. We also preserved a couple samples for use in larger studies.

Following our Methot, I observed the deployment of an XBT (eXpenable Bathymetric Thermograph). The XBT is used to measure quick temperature data from the surface to the sea floor. The data are graphed at depth vs. temperature to highlight the thermocline, which is where colder water meets water warmed by the sun. Here in the Bering Sea, the thermocline is not always noticeable as the water column is subject to mixing from heavy winds and shallow depths.

Methot – graphing temperature vs. depth – shift in graph shows thermocline.

Personal Log

As I approached Dutch Harbor, I began taking photos from the plane. It sounds crazy, but the landscape is like nothing I have ever seen. Once I was off the plane, my smile grew because of the crisp air and the smell of saltwater. After two days of travel I had finally made it to Dutch Harbor and my luggage made it with me! I was brought to the boat to drop off my bags and then into town to catch up with others on Leg 2. The Oscar Dyson was having work done on its large generator so we didn’t leave port until June 29 at 1430 hours. It actually gave me time to get to know a good portion of the people on this leg (the crew, scientists, “birders,” mammalian observers, and the stewards). I was also able to explore Dutch Harbor, Unalaska (we tried to find wild horses…no luck!), and take some walks from the Oscar Dyson. Some of the most common flowers and birds seen are the lupines, orchids, and bald eagles EVERYWHERE! They are incredibly loud too! They remind me of seagulls and squirrels back home because there are so many! Wednesday, June 30 was the first day of our 0400- 1600 work shift so we won’t see everyone until we are transiting back because of the different shifts. The Oscar Dyson has 40 bunks and we are occupying 39 of them-talk about a full ship! For information about what happens during our shift, take a look in the science and technology log. I am truly enjoying my time and there are plenty of people to make me laugh which is the best medicine when you are a tyro!

Dutch Harbor at low tide from the dock of
the Oscar Dyson

Dutch Harbor during a typical day

Animals Seen in Dutch Harbor

Bald eagles
Ground Squirrel
Sea Urchin
Sea Stars
Sea Cucumber
Pigeon Guillemont
Oyster Catchers
Mussels
Chiton
Limpets
Hermit Crabs
Snails
(but no horses…)

A Bald Eagle named “Charlie” sitting outside the Unisea Restaurant

Animals Seen in Transit

Orcas
Fulmars
Black Footed Albatross
Tufted Puffin

Animals Seen on First Shift

Euphausiids
Jellies
Pollock!!!
Pacific Cod

Word of the Day

Tyro: a novice or beginner

New Vocabulary:

CTD: (Conductivity Temperature Depth) A device used to measure conductivity, temperature and depth at specific locations within the Bering Sea

Methot: A net used for shallow trawls, named after the scientist

XBT: eXpendable Bathymetric Thermograph

Thermocline: the point when the temperature drops

Kimberly Lewis, June 30, 2010

NOAA Teacher at Sea Kimberly Lewis
NOAA Ship: Oregon II
July 1 -July  16 2010

Mission: SEAMAP Summer Groundfish Survey
Geographical Area of Cruise: Gulf of Mexico
Date: Sunday, June 30, 2010

My Ship Awaits

Well I arrived in Houston safely under humid and rainy skies. The ride to Galveston was longer than I thought but Bruce, an environmental teacher from New Jersey, and I talked about where we taught, classes, and the excitement about our upcoming adventure. Normally there is one teacher per leg, but since our mission on the Oregon II went from 3 legs to 2 legs it changed things up a bit, including our new departure date.

Arriving on the ship tonight we noticed a sign on the door “Friday 7/2 shipping out 10:00 am”. The newly upgraded hurricane Alex has delayed our departure by one day, at least for now. This will give me time to explore the ship a little without waking the sleeping crew. This is a 24-hour workstation so it is very important that everyone is quiet in the halls. Speaking of quiet, I am turning in, in my next to the kitchen stateroom.

Rebecca Kimport, JUNE 29, 2010 part2

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: June 29,  2010

Time with Birds and Mammals

On our way out of Dutch Harbor and Captain’s Bay, I spent some time on the bow with Katie, Michele and birder Nate Jones. As I know very little about birds, I quizzed him on every flying specimen we encountered and used his binoculars to observe the birds up close. After a few sightings, I was able to identify the Fulmar by its unique wing movement (quick quick quick soar). We also saw tufted puffins and a black-footed albatross. There are two birders (Nate and Marty from US Fish and Wildlife Service) on this leg who are responsible for scanning the horizon and counting and identifying the seabirds they observe from the bridge.Here is bird observer Nate Jones scanning the horizon for seabirds:

Nate Jones observing

Nate Jones observing

We were distracted from our bird watching by a call of orcas. We hustled up to the “flying bridge” to join the marine mammal observers. There are three “mammals” (Paula, Yin and Ernesto from the National Marine Mammal Laboratory) on this leg and they are constantly scanning the horizon with their “big eyes” to observe and identify cetaceans. I was able to observe two separate groups of orcas and heard that porpoises were also spotted.Here is marine mammalian observer Ernesto Vazquez looking through the big eyes on the flying bridge:

Ernesto observing mammals

Ernesto observing mammals

Although I am technically on the fish shift, I hope to check in with the “birds” and “mammals” later in the cruise. After spotting birds and mammals, it’s time for the first installment of the “animals seen” list:Animals Seen in Dutch Harbor
Bald eagles
Ground Squirrel
Sea Urchin
Sea Stars
Sea Cucumber
Pigeon Guillemot
Oyster Catchers
Mussels
Chiton
Limpets
Hermit Crabs
Snails
(but no horses…)Animals Seen in Transit
Orcas
Fulmars
Black Footed Albatross
Tufted Puffin

UPDATE
As many of you know, I am a horrible speller. When I went to check the spelling for the birds I had seen, I spotted a Thick-billed Murre from the bridge. Okay, in reality, the observation and identification went more like this:

Me: “Hey that’s a bird”
Nate: “Yes, it was a Thick-billed Murre”

I am impressed by the seabird and marine mammal observers’ abilities to spot and identify birds and mammals from such far distances. Like any recall-related skill, I recognize that animal identification takes both an innate talent and years of practice. But the animal observers also need to have extreme patience to maintain a clear focus, a methodologically-sound routine and a sense of possibility (as the weather is not always in their favor). We’re lucky to have such talented scientists counting species in the Bering Sea.

As we say goodbye to land, we know the real adventure is about to begin

Goodbye Land

Goodbye Land

More soon!

Mechelle Shoemake, June 29, 2010

NOAA Teacher at Sea
Mechelle Shoemake
Onboard NOAA Ship Oregon II
June 19 – 30, 2010

Mission: SEAMAP Groundfish Survey
Geographical Area of Cruise: Northwestern Gulf of Mexico
Date: Tuesday, June 29, 2010

Weather Data from the Bridge
Time: 0000 hours (12:00pm)
Position: Latitude = 28.45.067 N; Longitude = 091.35.189 W
Present Weather: cloudy
Visibility: 6 nautical miles
Wind Speed: 8 knots
Wave Height: 4-6 foot swells
Sea Water Temp: 29.8 degrees Celsius
Air Temperature: Dry bulb = 27.3 degrees Celsius;
Wet bulb = 26.2 degrees Celsius

Science and Technology Log

The Groundfish Survey’s purpose is to find out what species are here in the Gulf how many, and their size, sex, and maturity status. On average the trawl produces at least 20-40 different species on each tow. The type of trawl used on the Oregon II is the Bottom Otter Trawl. The deck hands put the net out, it trawls for around 30 minutes, and it is then pulled back in by the deck hands. The catch is then placed in basket where it is weighed and then separated by species Each species is then individually weighed, measured, and sexed.

This is a red snapper I’m sorting out of the catch

We caught a nice red snapper that will be sent back to the lab for testing. It will also be determined if the oil spill had any effect on the fish, shrimp, crabs, and other species we caught. We also took some more water samples using the CTD to determine how much oil is in the water. We We used the Neuston net and the Bongo nets to gather plankton, which is also being collected for testing. The Neuston gathers plankton on the surface while the Bongo nets gather plankton all the way from the bottom of the gulf to the surface. This plankton is then placed inglass jars with a preservative Twenty-four hours later the plankton is transferred to a lesser preservative. The initial set sample is too strong for long storage. The plankton samples are then sent to Poland to a specialized plankton lab. In this lab, the plankton is identified to the family level. It is then sent back to the NOAA labs where it is identified to the species level. It was amazing to see all the little critters in the jar. There were so many of them.

Deploying the bongo net

Later in the day, we did another trawl….the catch of the day. Well it was a tire! It did have two little critters living in it, though. They were both identified and weighed and then frozen and packaged for the lab. The speculated reason for the trawl producing so few specis what’s called hypoxia. Hypoxia is the depletion of the oxygen in the water. If there is no oxygen,the fish and many other species cannot live. You can read more about hypoxia at http://www.ncddc.gov.

A frog fish

To the right is a frog fish that we found living in the tire. It has a trick to catch its food. The tentacle on the top of the head acts as a lure to attracts its prey. When a smaller fish comes by to eat what it thinks is food at the end of the frog fish’s lure…..well it gets caught and the frog fish eats the little fish. This frog fish still had its dinner in its mouth.

To the left is a picture of the last trawl that my shift made. You can see that this catch was full of shrimp and little crabs. We had to turn back towards Texas due to Tropical Storm Alex, which is forecasted by NOAA’s National Weather Service to become a hurricane by tomorrow. It’s too dangerous for the ship to be out in weather like that.

Some of the critters from out last trawl

Personal Log

Well, I can say that this has definitely been an adventure of a lifetime. I have enjoyed my voyage with all of my new NOAA friends. They have taught me a lot. As I am writing this, we are sailing back to port in Galveston, TX. As I said earlier, we had to cut our trip short due to Tropical Storm Alex. Believe me, I know he is out there. Our ship is rolling with the waves. I had a quick lesson in securing my belongings. You never know what you might encounter when you go to sea. Thanks to NOAA for giving me this opportunity.