Appendix P

WETLAND VALUE ASSESSMENT

MODIFICATIONS TO THE PROJECT

Since the completion of the Wetland Value Assessment analysis described in this appendix, Alternative B, which has been selected as the Recommended Plan, has been modified per the following.

Actions that have been removed from the project:

- CDF D/E marsh expansion has been eliminated
- CDF D/E upland expansion has been eliminated
- CDF 17/19 expansion into Calcasieu Lake has been eliminated

Actions that have been modified:

- CDFs 17 and 19 are expanded westward to the foreshore dike
- CDF 22 is expanded to the south
- CDF 22 is expanded westward to the foreshore dike

WETLAND VALUE ASSESSMENT Results and Methodology

Calcasieu River and Pass, Louisiana Project Dredged Material Management Plan/Supplemental Environmental Impact statement

1.0 INTRODUCTION

The Calcasieu River and Pass ("Calcasieu Ship Channel") spans 36 miles from Lake Charles, Louisiana, to the Gulf of Mexico and handles about 50 million tons of cargo through deep-draft and shallow-draft vessels and barges every year. Unfortunately, dredged material disposal capacity is inadequate for maintaining the channel to federally authorized dimensions. Therefore, under U.S. Army Corps of Engineers (USACE) guidance, an integrated DMMP/SEIS has been developed to identify and evaluate sites for the placement of material dredged from the ship channel.

The sites identified in the DMMP/SEIS include rehabilitated and/or expanded confined disposal facilities (CDFs) and beneficial use (BU) sites. BU sites are areas where dredged material would be used to restore coastal marsh that has been lost to open water due to erosion, subsidence, sealevel rise, and other factors. A CDF is an engineered structure for the containment of dredged material. Dredged material placed in CDFs is consolidated and de-watered to maximize capacity, resulting in the formation of upland habitat.

Wetland Value Assessments (WVAs) have been prepared for all BU and CDF sites in the DMMP/SEIS that are expected to create or impact wetlands in the project area. A WVA is a quantitative, habitat-based assessment developed to estimate anticipated environmental impacts and benefits to wetlands. The WVA is a modification of the Habitat Evaluation Procedure (HEP) developed by the U.S. Fish and Wildlife Service (USFWS). HEP is widely used by the USFWS and other federal and state agencies in evaluating the impact of development projects on fish and wildlife resources. A notable difference exists between the two methodologies, however, in that HEP generally uses a species-oriented approach, whereas the WVA uses a community or habitat-level approach.

The assessment found that a net benefit of 1,259.68 average annual habitat units (AAHUs) would result upon implementation of Plan B. Plan C would produce a net benefit of 2,035.08 AAHUs.

2.0 METHODOLOGY

The WVA methodology relies on the use of the Coastal Marsh Community Models, which were developed by the Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA) Environmental Work Group (EnvWG) to determine the suitability of marsh and open water habitats in the Louisiana coastal zone. The purpose of the WVA is to define an optimal combination of habitat conditions for all fish and wildlife species living in Louisiana coastal

marsh ecosystems. Sections 2.1 - 2.4 below explain the methodology used to derive the Coastal Marsh Community Models. They are excerpts from the CWPPRA EnvWG Wetland Value Assessment Methodology for Coastal Marsh Community Models (Roy, 2007, pages 2 - 9). Please refer to that document for more information.

2.1. Variable Selection

Variables for the coastal marsh models were selected through a two-part procedure. The first involved a listing of environmental variables thought to be important in characterizing fish and wildlife habitat in coastal marsh ecosystems. The second part of the selection procedure involved reviewing variables used in species-specific habitat suitability index (HSI) models published by the USFWS. Review was limited to HSI models for those fish and wildlife species known to inhabit Louisiana coastal wetlands, and included models for 10 estuarine fish and shellfish, 4 freshwater fish, 12 birds, 3 reptiles and amphibians, and 3 mammals (Table 1). The number of models included from each species group was dictated by model availability.

Selected HSI models were then grouped according to the marsh type(s) used by each species. Because most species are not restricted to one marsh type, most models were included in more than one marsh type group. Within each wetland type group, variables from all models were then grouped according to similarity (e.g., water quality, vegetation, etc.). Each variable was evaluated based on 1) whether it met the variable selection criteria; 2) whether another, more easily measured/predicted variable in the same or a different similarity group functioned as a surrogate; and 3) whether it was deemed suitable for the WVA application (e.g., some freshwater fish model variables dealt with riverine or lacustrine environments). Variables that did not satisfy those conditions were eliminated from further consideration. The remaining variables, still in their similarity groups, were then further eliminated or refined by combining similar variables and/or culling those that were functionally duplicated by variables from other models (i.e., some variables were used frequently in different models in only slightly different format).

Estuarine Fish and Shellfish	Birds	<u>Mammals</u>
pink shrimp	white-fronted goose	mink
white shrimp	clapper rail	muskrat
brown shrimp	great egret	swamp rabbit
spotted seatrout	northern pintail	
Gulf flounder	mottled duck	Freshwater Fish
southern flounder	American coot	channel catfish
Gulf menhaden	marsh wren	largemouth bass
juvenile spot	snow goose	red ear sunfish
juvenile Atlantic croaker	great blue heron	bluegill
red drum	laughing gull	
	red-winged blackbird	

 Table 1. HSI Models Consulted for Variables for Possible Use in the Coastal Marsh

 Models

Reptiles and Amphibians	roseate spoonbill	
bullfrog		
slider turtle		
American alligator		

Source: Roy (2007) for the CWPPRA Environmental Work Group

Variables selected from the HSI models were then compared to those identified in the first part of the selection procedure to arrive at a final list of variables to describe wetland habitat quality. That list includes six variables for each marsh type:

- 1. Percent of the wetland covered by emergent vegetation,
- 2. Percent of the open water covered by aquatic vegetation,
- 3. Marsh edge and interspersion,
- 4. Percent of the open water area ≤ 1.5 feet deep,
- 5. Salinity, and
- 6. Aquatic organism access.

2.2 Suitability Index (SI) Graph Development

A variety of resources was utilized to construct each SI graph, including the HSI models from which the final list of variables was partially derived, consultation with other professionals and researchers outside the EnvWG, published and unpublished data and studies, and personal knowledge of EnvWG members. An important "non-biological" constraint on SI graph development was the need to insure that graph relationships were not counter to the purpose of the CWPPRA, that is, the long term creation, restoration, protection, or enhancement of coastal vegetated wetlands. That constraint was most operative in defining SI graphs for Variable V_1 (percent emergent marsh). The process of SI graph development was one of constant evolution, feedback, and refinement; the form of each SI graph was decided upon through consensus among EnvWG members.

The Suitability Index graphs were developed according to the following assumptions.

Variable V_1 - Percent of wetland area covered by emergent vegetation. Persistent emergent vegetation plays an important role in coastal wetlands by providing foraging, resting, and breeding habitat for a variety of fish and wildlife species; and by providing a source of detritus and energy for lower trophic organisms that form the basis of the food chain. An area with no emergent vegetation (i.e., shallow open water) is assumed to have minimal habitat suitability in terms of this variable, and is assigned an SI of 0.1.

Optimal vegetative coverage is assumed to occur at 100 percent (SI=1.0). That assumption is dictated primarily by the constraint of not having graph relationships conflict with the CWPPRA's purpose of long term creation, restoration, protection, or enhancement of vegetated wetlands. The EnvWG had originally developed a strictly biologically-based graph defining optimal habitat conditions at marsh cover values between 60 and 80 percent, and sub-optimal habitat conditions outside that range. However, application of that graph, in combination with the time analysis used in the evaluation process (i.e., 20-year project life), often reduced project

benefits or generated a net <u>loss</u> of habitat quality through time with the project. Those situations arose primarily when: existing (baseline) emergent vegetation cover exceeded the optimum (> 80 percent); the project was predicted to maintain baseline cover values; and without the project the marsh was predicted to degrade, with a concurrent decline in percent emergent vegetation into the optimal range (60-80 percent). The time factor aggravated the situation when the without-project degradation was not rapid enough to reduce marsh cover values significantly below the optimal range, or below the baseline SI, within the 20-year evaluation period. In those cases, the analysis would show net negative benefits for the project, and positive benefits for letting the marsh degrade rather than maintaining the existing marsh. Coupling that situation with the presumption that marsh conditions are not static, and that Louisiana will continue to lose coastal emergent marsh; and taking into account the purpose of the CWPPRA, the EnvWG decided that, all other factors being equal, the models should favor projects that maximize emergent marsh creation, maintenance, and protection. Therefore, the EnvWG agreed to deviate from a strictly biologically-based habitat suitability index graph for V₁ and established optimal habitat conditions at 100 percent marsh cover.

Variable V₂ - Percent of open water area covered by aquatic vegetation. Fresh and intermediate marshes often support diverse communities of floating-leaved and submerged aquatic plants that provide important food and cover to a wide variety of fish and wildlife species. A fresh/intermediate open water area with no aquatics is assumed to have low suitability (SI=0.1). Optimal conditions (SI=1.0) are assumed to occur when 100 percent of the open water is dominated by aquatic vegetation. Habitat suitability may be assumed to decrease with aquatic plant coverage approaching 100 percent due to the potential for mats of aquatic vegetation to hinder fish and wildlife utilization; to adversely affect water quality by reducing photosynthesis by phytoplankton and other plant forms due to shading; and contribute to oxygen depletion spurred by warm-season decay of large quantities of aquatic vegetation. The EnvWG recognized, however, that those effects were highly dependent on the dominant aquatic plant species, their growth forms, and their arrangement in the water column; thus, it is possible to have 100 percent cover of a variety of floating and submerged aquatic plants without the abovementioned problems due to differences in plant growth form and stratification of plants through the water column. Because predictions of which species may dominate at any time in the future would be tenuous, at best, the EnvWG decided to simplify the graph and define optimal conditions at 100 percent aquatic cover.

Brackish marshes also have the potential to support aquatic plants that serve as important sources of food and cover for several species of fish and wildlife. Although brackish marshes generally do not support the amounts and kinds of aquatic plants that occur in fresh/intermediate marshes, certain species, such as widgeon-grass, and coontail and milfoil in lower salinity brackish marshes, can occur abundantly under certain conditions. Those species, particularly widgeon-grass, provide important food and cover for many species of fish and wildlife. Therefore, the V_2 Suitability Index graph in the brackish marsh model is identical to that in the fresh/intermediate model.

Some low-salinity saline marshes may contain beds of widgeon-grass and open water areas behind some barrier islands may contain dense stands of seagrasses (e.g., *Halodule wrightii* and *Thalassia testudinum*). However, saline marshes typically do not contain an abundance of aquatic vegetation as often found in fresh/intermediate and brackish marshes. Open water areas

in saline marshes typically contain sparse aquatic vegetation and are primarily important as nursery areas for marine organisms. Therefore, in order to reflect the importance of those open water areas to marine organisms, a saline marsh lacking aquatic vegetation is assigned a SI=0.3. It is assumed that optimal coverage of aquatic plants occurs at 100 percent.

Variable V₃ - Marsh edge and interspersion. This variable takes into account the relative juxtaposition of marsh and open water for a given marsh:open-water ratio, and is measured by comparing the project area to sample illustrations (Figures 1 - 4) depicting different degrees of interspersion. Interspersion is assumed to be especially important when considering the value of an area as foraging and nursery habitat for freshwater and estuarine fish and shellfish; the marsh/open water interface represents an ecotone where prey species often concentrate, and where post-larval and juvenile organisms can find cover. Isolated marsh ponds are often more productive in terms of aquatic vegetation than are larger ponds due to decreased turbidity, and, thus, may provide more suitable waterfowl habitat. However, interspersion can be indicative of marsh degradation, a factor taken into consideration in assigning suitability indices to the various interspersion classes.

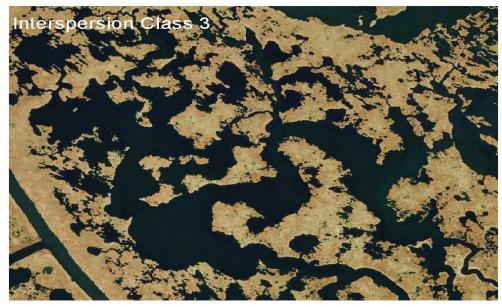

A relatively high degree of interspersion in the form of stream courses and tidal channels (Interspersion Class 1) is assumed to be optimal (SI=1.0); streams and channels offer interspersion, yet are not indicative of active marsh deterioration. Areas exhibiting a high degree of marsh cover are also ranked as optimal, even though interspersion may be low, to avoid conflicts with the premises underlying the SI graph for variable V_1 . Without such an allowance, areas of relatively healthy, solid marsh, or projects designed to create marsh, would be penalized with respect to interspersion. Numerous small marsh ponds (Interspersion Class 2) offer a high degree of interspersion, but are also usually indicative of the beginnings of marsh break-up and degradation, and are therefore assigned a more moderate SI of 0.6. Large ponds and other open water areas with little surrounding marsh (Interspersion Classes 3 and 4) offer lower interspersion values and usually indicate advanced stages of marsh loss, and are thus assigned SIs of 0.4 and 0.2, respectively. The lowest expression of interspersion, Class 5, is characterized by very small marsh islands (i.e., less then 5% emergent marsh) or areas made up entirely of open water. Class 5 is assumed to be least desirable and is assigned an SI=0.1.

Figure 1. Marsh edge and interspersion Class 1. Source: Roy (2007) for the CWPPRA Environmental Work Group

Figure 2. Marsh edge and interspersion Class 2. Source: Roy (2007) for the CWPPRA Environmental Work Group

Figure 3. Marsh edge and interspersion Class 3. Source: Roy (2007) for the CWPPRA Environmental Work Group

Figure 4. Marsh edge and interspersion Class 4. Source: Roy (2007) for the CWPPRA Environmental Work Group

Variable V₄ - Percent of open water area \leq 1.5 feet deep in relation to marsh surface.

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Also, shallower water provides greater bottom accessibility for certain species of waterfowl, better foraging habitat for wading birds, and more favorable conditions for aquatic plant growth. Optimal open water conditions in a fresh/intermediate marsh are assumed to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep. The value of deeper areas in providing

drought refugia for fish, alligators and other marsh life is recognized by assigning an SI=0.6 (i.e., sub-optimal) if all of the open water is less than or equal to 1.5 feet deep.

Shallow water areas in brackish marsh habitat are also important. However, brackish marsh generally exhibits deeper open water areas than fresh marsh due to tidal scouring. Therefore, the SI graph is constructed so that lower percentages of shallow water receive higher SI values relative to fresh/intermediate marsh. Optimal open water conditions in a brackish marsh are assumed to occur when 70 to 80 percent of the open water area is less than or equal to 1.5 feet deep.

The SI graph for the saline marsh model is similar to that for brackish marsh, where optimal conditions are assumed to occur when 70 to 80 percent of the open water area is less than or equal to 1.5 feet deep. However, at 100 percent shallow water, the saline graph yields an SI= 0.5 rather than 0.6 as for the brackish model. That change reflects the increased abundance of tidal channels and generally deeper water conditions prevailing in a saline marsh due to increased tidal influences, and the importance of those tidal channels to estuarine organisms.

Variable V₅ - **Salinity.** It is assumed that periods of high salinity are most detrimental in a fresh/intermediate marsh when they occur during the growing season (defined as March through November, based on dates of first and last frost contained in Natural Resource Conservation Service soil surveys for coastal Louisiana). Therefore, mean salinity during the growing season (March-November) is used as the salinity parameter for the fresh/intermediate marsh model. Optimal conditions in fresh marsh are assumed to occur when mean salinity during the growing season is 0.5 parts per thousand (ppt) or less. Optimal conditions in intermediate marsh are assumed to occur when mean salinity during the growing season is 2.5 ppt or less.

For the brackish and saline marsh models, average annual salinity is used as the salinity parameter. The SI graph for brackish marsh is constructed to represent optimal conditions when salinities are between 0 ppt and 10 ppt. The EnvWG acknowledges that average annual salinities below 5 ppt will effectively define a marsh as fresh or intermediate, not brackish. However, the SI graph makes allowances for lower salinities to account for occasions when there is a trend of decreasing salinities through time toward a more intermediate condition. Implicit in keeping the graph at optimum for salinities less than 5 ppt is the assumption that lower salinities are not detrimental to a brackish marsh. However, average annual salinities greater than 10 ppt are assumed to be progressively more harmful to brackish marsh vegetation. Average annual salinities greater than 16 ppt are assumed to be representative of those found in a saline marsh, and thus are not considered in the brackish marsh model.

The SI graph for the saline marsh model is constructed to represent optimal salinity conditions at between 0 ppt and 21 ppt. The EnvWG acknowledges that average annual salinities below 10 ppt will effectively define a marsh as brackish, not saline. However, the suitability index graph makes allowances for lower salinities to account for occasions when there is a trend of decreasing salinities through time toward a more brackish condition. Implicit in keeping the graph at optimum for salinities less than 10 ppt is the assumption that lower salinities are not detrimental to a saline marsh. Average annual salinities greater than 21 ppt are assumed to be slightly stressful to saline marsh vegetation.

Variable V₆ - Aquatic organism access. Access by aquatic organisms, particularly estuarinedependent fishes and shellfishes, is considered to be a critical component in assessing the quality of a given marsh system. Additionally, a marsh with a relatively high degree of access by default also exhibits a relatively high degree of hydrologic connectivity with adjacent systems, and therefore may be considered to contribute more to nutrient exchange than would a marsh exhibiting a lesser degree of access. The SI for V₆ is determined by calculating an "access value" based on the interaction between the percentage of the project area wetlands considered accessible by aquatic organisms during normal tidal fluctuations, and the type of man-made structures (if any) across identified points of ingress/egress (bayous, canals, etc.). Standardized procedures for calculating the Access Value have been established and are based on the structure ratings shown in Table XX. It should be noted that access ratings for man-made structures were determined by consensus among EnvWG members and that scientific research has not been conducted to determine the actual access value for each of those structures. Optimal conditions are assumed to exist when all of the study area is accessible and the access points are entirely open and unobstructed.

Structure Type	Structure Rating
Open system	1.0
Rock weir set at 1ft below marsh level (BML), w/ boat bay	0.8
Rock weir with boat bay	0.6
Rock weir set at ≥ 1 ft BML	0.6
Slotted weir with boat bay	0.6
Open culverts	0.5
Weir with boat bay	0.5
Weir set at ≥ 1 ft BML	0.5
Slotted weir	0.4
Flap-gated culvert with slotted weir	0.35
Variable crest weir	0.3
Flap-gated variable crest weir	0.25
Flap-gated culvert	0.2
Rock weir	0.15
Fixed crest weir	0.1
Solid plug	0.0001

Table 2. Structure Types for Determining Aquatic Organism Access Values

Source: Roy (2007) for the CWPPRA Environmental Work Group

A fresh marsh with no access is assigned an SI=0.3, reflecting the assumption that, while fresh marshes are important to some species of estuarine-dependent fishes and shellfish, such a marsh lacking access continues to provide benefits to a wide variety of other wildlife and fish species, and is not without habitat value. An intermediate marsh with no access is assigned an SI=0.2, reflecting that intermediate marshes are somewhat more important to estuarine-dependent organisms than fresh marshes. The general rationale and procedure behind the V_6 Suitability Index graph for the brackish marsh model is identical to that established for the fresh/intermediate model. However, brackish marshes are assumed to be more important as habitat for estuarine-dependent fish and shellfish than fresh/intermediate marshes. Therefore, a brackish marsh providing no access is assigned an SI of 0.1. The Suitability Index graph for aquatic organism access in the saline marsh model is the same as that in the brackish marsh model.

2.3 Habitat Suitability Index Formulas

In developing the HSI formulas, the EnvWG recognized that the primary focus of the CWPPRA is on vegetated wetlands, and that some marsh protection strategies could have adverse impacts to aquatic organism access. Therefore, the EnvWG made an *a priori* decision to emphasize variables V_1 , V_2 , and V_6 by grouping them together, when possible, and weighting them greater than the remaining variables. Weighting was facilitated by treating the grouped variables as a geometric mean. Variables V_3 , V_4 , and V_5 were grouped to isolate their influence relative to V_1 , V_2 , and V_6 .

For all marsh models, V_1 receives the strongest weighting. The relative weights of V_1 , V_2 , and V_6 differ by marsh model to reflect differing levels of importance for those variables between the marsh types. For example, the amount of aquatic vegetation was deemed more important in a fresh/intermediate marsh than in a saline marsh, due to the relative contributions of aquatic vegetation between the two marsh types in terms of providing food and cover. Therefore, V_2 receives more weight in the fresh/intermediate HSI formula than in the saline HSI formula. Similarly, the degree of aquatic organism access was considered more important in a saline marsh than a fresh/intermediate marsh, and V_6 receives more weight in the saline HSI formula than in the fresh/intermediate formula. As with the Suitability Index graphs, the Habitat Suitability Index formulas were developed by consensus among the EnvWG members.

For several years, 1991 through 1996, the EnvWG utilized one HSI formula specific to each marsh type. However, it was noted that variables V_2 and V_4 , which characterize open water areas only, often resulted in an "artificially inflated" HSI when those variable values were optimal (i.e., SI = 1.0) and open water comprised a very small portion of the project area. For example, Project Area A contains 90 percent marsh and 10 percent open water. Project Area B contains 10 percent marsh and 90 percent open water. Assume the open water in each project area is completely covered by submerged aquatic vegetation and is entirely less than 1.5 feet in depth. Under those conditions, the Suitability Index values for V_2 and V_4 would equal 1.0 for both project areas even though open water only accounts for 10 percent of Project Area A. The EnvWG has commonly referred to this as a "scaling" problem; the Suitability Index values for V_2 and V_4 are not "scaled" in respect to the proportion of the project area they characterize. This allows those variables to contribute disproportionately to the HSI in instances when open water constitutes a small portion of the project area.

The EnvWG acknowledged that the scaling problem presented a flaw in the WVA methodology resulting in unrealistic HSI values for certain project areas and eventually resulting in inflated wetland benefits for those projects. During 1996 and 1997, Dr. Gary Shaffer of Southeastern Louisiana University assisted the EnvWG in developing potential solutions to the scaling problem. After several unsuccessful attempts to develop a single HSI formula for each marsh type which scaled the Suitability Index values for V₂ and V₄ based on the ratio of marsh to open water, the EnvWG decided to develop a "split" model for each marsh type. The split model utilizes two HSI formulas for each marsh type; one HSI formula characterizes the emergent habitat within the project area and another HSI formula characterizes the open water habitat. The HSI formula for the emergent habitat contains only those variables important in characterizing the open water HSI formula contains only those variables important in characterizing the open water habitat (i.e., V₂, V₃, V₄, V₅, and V₆). Individual HSI formulas were developed for marsh and open water habitats for each marsh type.

As with the development of a single HSI model for each marsh type, the split models follow the same conventions for weighting and grouping of variables as previously discussed.

2.4 Benefit Assessment

As previously discussed, the marsh models are split into marsh and open water components and an HSI is determined for both. Subsequently, net AAHUs are also determined for the marsh and open water habitats within the project area. Net AAHUs for the marsh and open water habitat components must be combined to determine total net benefits for the project.

The primary focus of the CWPPRA is on vegetated wetlands. Therefore, in order to place greater emphasis on wetland benefits to marsh, a weighted average of the net benefits (net AAHUs) for marsh and open water is calculated with the marsh AAHUs weighted proportionately higher than the open water AAHUs. The weighted formulas to determine net AAHUs for each marsh type are shown below:

Fresh Marsh: 2.1(Marsh AAHUs) + Open Water AAHUs 3.1

Brackish Marsh: <u>2.6(Marsh AAHUs) + Open Water AAHUs</u> 3.6

Saline Marsh: <u>3.5(Marsh AAHUs) + Open Water AAHUs</u> 4.5

3.0 FEATURES AND ASSUMPTIONS OF THE CURRENT PROJECT

WVAs were prepared for each of the 20 dredged material placement sites identified in the DMMP/SEIS that would affect marsh and estuarine habitat (Attachment 1). An explanation of assumptions specific to each of the 20 placement sites accompanies each WVA. Salinity, water

depth, and other characteristics specific to each site, such as nearby restoration projects that would impact aquatic organism access, are included in the assumption explanation for each site. The cubic yardage of dredged material allocated for each placement site (see Section 2 of the DMMP/SEIS) was used along with average water depth data to estimate the amount of marsh habitat that may be created as a result of the project. General features and assumptions that would apply to all of the 20 placement sites are explained below in Section 3.1.

3.1 Beneficial Use Sites

Most BU sites were, at the time of report preparation, privately owned. Four of the sites are located in the Sabine and Cameron Prairie National Wildlife Refuges (NWRs). Privately owned BU sites would be confined by dikes constructed to contain the dredged materials. An earthen containment dike would be constructed around an open-water area of a few hundred acres at a time to form a "cell." The cell would then be filled to capacity with dredged material, which would consolidate to form a substrate for the establishment of intertidal marsh. Additional cells would be constructed at the site for subsequent dredging cycles. A WVA was prepared for each cell to identify marsh and estuarine habitat improvements as a result of dredged material placement.

The dikes around the cells would be designed to slowly deteriorate and subside to the level of the adjacent marsh substrate, thereby promoting the tidal exchange of water. Earthen dikes may require mechanical degradation to the settled elevations of the disposal area if natural erosive processes do not degrade them sufficiently to meet fisheries and tidal access needs. Such breaches would be undertaken after consolidation of the dredged sediments and vegetative colonization of the exposed soil surface—approximately two to five years after pumping. For the purposes of the WVAs, it was assumed that dikes would be degraded 3 years after the last pumping event for the respective cell.

The WVAs assumed that dikes would not be constructed around the four BU sites in the NWRs. These include BU sites 5 and 18 (Sabine NWR) and BU sites 19 and 20 (Cameron Prairie NWR). Material would be allowed to flow unconfined to nourish existing marsh, create new marsh, and create shallow open water habitat.

The following features are applicable to both private and public BU sites:

- Dredge material slurry would be allowed to overflow existing emergent marsh vegetation within the project area, but would not be allowed to exceed a height of approximately one-foot above the existing marsh elevation. Tidal inlets and channels may be created during the pumping of dredge material and by natural tidal fluctuations.
- The target elevation of placed and consolidated fill at each BU site—both public and privately owned sites—would be determined through geotechnical analyses during the preparation of plans and specifications for the project. These analyses would consider long-term settlement of the dredged materials and placement area foundations, as well as elevation surveys of the nearby planned wetland habitat to determine the appropriate target range. These elevation targets would be coordinated with resource agencies prior

to construction.

• Vegetation of marsh areas would rely on natural recruitment. However, marsh vegetation, such as *Spartina alterniflora*, may be planted by other agencies and organizations as desired. Aerial photography would be used to monitor changes in emergent marsh acreage on a yearly basis. If necessary, trenasses would be constructed to ensure tidal flow and organism ingress and egress throughout the project area. However, these WVAs do not take the possibility of trenass construction into account.

3.2 CDF Expansions

In addition to BU sites, the placement sites identified in the DMMP/SEIS include rehabilitated and/or expanded CDFs. The goal of CDF construction/expansion is to maximize the available site capacity by improving surface drainage, desiccation, shrinkage, and consolidation of dredged material within the site. This would be accomplished by installing spillboxes, weirs, and other dewatering structures and constructing an extensive network of shallow ditches that would lower the water table within the dredged material. Once evaporation and shrinkage reaches the point where the material has dried to the bottom of the trenches, a dragline and ditcher would deepen the trenches. This procedure would be repeated until the material has dried and become entirely crust. Vegetation would not be planted and vegetative establishment of the upland area would rely on natural recruitment.

In order to sustain future maintenance and operation of the ship channel, it may be necessary to expand some of the existing CDFs identified in the DMMP/SEIS in areas where additional lands or beneficial use placement options are not available. The initial assessment of the 20-year dredged material disposal capacity does not indicate that expansion of CDF sites would be necessary in the near future. However, if additional placement capacity is needed, the following CDFs would be expanded into adjacent marsh and/or estuarine habitat: CDFs 17/19 and D/E.

Dredged sediments pumped into the horizontally expanded areas of the CDFs would be confined by an earthen containment dike constructed one year prior to pumping. It is estimated that the containment features would be approximately 250' wide to account for the possible inclusion of stability berms and a borrow canal. Actual footprints would be generated during geotechnical investigations. Once diked, the expanded areas would be filled to capacity with dredged material, which would consolidate to form an upland habitat. A WVA was prepared for each CDF expansion area to assess impacts to marsh and estuarine habitat.

4.0 RESULTS

The WVA models forecast the net marsh and estuarine habitat benefits of implementing Plans B and C starting the year project construction begins and ending 50 years after the start of the project. Tables 3 and 4 show a summary of the net benefits of Plans B and C.

Results show that in spite of habitat loss associated with CDF expansions into adjacent marsh and estuarine habitat, Plan B would cause a net increase of 1,259.68 AAHUs because of the

beneficial use of dredged material planned for this alternative. A total capacity of 9,550 acres would be potentially usable for the beneficial use of dredged material during the 20-year life of the project. The WVAs estimated the acreage of marsh that may be created as a result of the project based on cubic yardage allocated for each site in the DMMP/SEIS along with water depth data. Using the WVA methodology, it is estimated that approximately 6,306 acres of marsh and estuarine habitat would be created as a result of the plan. If, in the future, more dredged material becomes available for beneficial use, it is assumed that more habitat acreage would be created within the boundaries of the BU sites identified in the DMMP/SEIS.

Because Plan C involves no CDF expansions and more beneficial use sites than Plan B, Plan C would create more habitat benefits than Plan B. Plan C would cause a net increase of 2,035.08 AAHUs and would create an estimated 10,030 acres of marsh and estuarine habitat. A total of 17,901 acres would be potentially useable for the beneficial use of dredged material over the life of the project.

Site	Acreage Available for Beneficial Use of Dredged Material	Marsh Created (acres)	Marsh Converted to Uplands (acres)	Open Water/Estuarine Habitat Converted to Uplands (acres)	Total AAHU
BU 5	3,083	3,000	0	0	500.37
BU 18	1,572	1,000	0	0	129.83
BU 19	1,026	300	0	0	70.36
BU 20	1,867	300	0	0	63.33
BU 49	639	600	0	0	167.61
BU 50	887	640	0	0	251.67
CDF D/E marsh expansion	476	466	0	0	121.98
CDF D/E upland expansion	0	0	7	286	-21.31
CDF 17/19 upland expansion	0	0	61	157	-24.16
Totals	9,550	6,306	68	443	1,259.68

Table 3. Acreage and AAHU Impacts of Plan B

Table 4. Acreage and AAHU Impacts of Plan C

Site	Acreage Available for Beneficial Use of Dredged Material	Marsh Created (acres)	Marsh Converted to Uplands (acres)	Open Water/Estuarine Habitat Converted to Uplands (acres)	Total AAHU
BU 4	1,279	476	0	0	165.17
BU 5	3,083	3,000	0	0	500.37
BU 6	990	564	0	0	104.45
BU 7	2,498	1,694	0	0	246.39
BU 18	1,572	1,000	0	0	129.83
BU 19	1,026	300	0	0	70.36

BU 20	1,867	300	0	0	63.33
BU 24	2,327	490	0	0	97.01
BU 48	1,475	708	0	0	162.75
BU 49	639	600	0	0	167.61
BU 50	887	640	0	0	251.67
BU 52	258	258	0	0	76.14
Totals	17,901	10,030	0	0	2,035.08

5.0 **REFERENCES**

- Chabreck, R. and G. Linscombe. 1997. Vegetative type map of the Louisiana coastal marshes. Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana.
- Louisiana Coastal Wetlands Conservation and Restoration Task Force and the Wetlands Conservation and Restoration Authority. 1998. <u>Coast 2050: Toward a Sustainable Coastal</u> Louisiana. Louisiana Department of Natural Resources. Baton Rouge, Louisiana.
- Roy, K. 2007. Wetland Value Assessment Methodology Coastal Chenier/Ridge Community Model. Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA), Lafayette, Louisiana.
- Roy, K. 2007. Wetland Value Assessment Methodology Coastal Marsh Community Models. Coastal Wetlands Planning, Protection, and Restoration Act (CWPPRA), Lafayette, Louisiana.

Beneficial Use Site 4

Beneficial Use (BU) Site 4 (Palermo Property--Brown Lake)

I. Project Location/Area

This Wetland Value Assessment (WVA) focuses on BU Site 4 (Figure 1), which is owned by the Palermo family near Brown Lake. This 1280-acre area is located about one mile west of the ship channel and one mile south of the GIWW.

II. Goals

Approximately 1.9 million cubic yards of material would be dredged from the Calcasieu Ship Channel (between miles 16 and 21) and placed in the area through two pumping cycles to create approximately 475 acres of intertidal, brackish marsh and estuarine habitat in BU site 4. The marsh and estuarine habitat created would achieve a ratio of 85% marsh to 15% shallow open water.

III. Project Features

Previously, the Corps created several dredge material containment cells in the project area. These cells can be identified in aerial photographs as three linear uniform disposal cell features. The proposed cells will be positioned adjacent to existing marsh in open water and will not incorporate the previously constructed disposal cells.

Dredged sediments pumped into BU 4 would be confined by dikes constructed to contain the dredged materials. Approximately 950,000 cyds would be pumped in each cycle, creating two 238-acre cells. To assess habitat benefits, a WVA was prepared for both of the two pumping cycles. For the purposes of this assessment, it is assumed that dikes would be degraded 3 years after the last pumping event for the respective cell.

IV. WVA Variables and Assumptions

The following is a description of assumptions for both of the two dredging cycles (cells). The same assumptions apply to both cycles, but target years (i.e., years that dikes would be constructed and dredged material pumped) would differ between the two.

Cycle 1

Variable 1 – Emergent Vegetation

FWOP: There is no marsh in the open water areas where the cells would be constructed.

FWP: To estimate the potential amount of marsh acres that could be created with the dredged material, the CWPPRA Sabine Refuge Marsh Creation (CS-28), Cycle 1 project was used as a reference site. That project created marsh by pumping material into an area confined by earthen dikes. It was found that approximately 4,000 cyds of dredge material created 1 acre of marsh.

A total of 950,000 cyds of dredged material will be pumped into the Cycle 1 238-acre cell.

 \rightarrow 950,000 cyds / 4,000 cyds per acre = 238 acres

Based on USACE knowledge and experience of dredging operations, a maximum of 85% of this material will form into vegetated marsh, and the remaining 15% of the area would be shallow open water (also called mudflats). It would take several years for the dredged material to vegetate into marsh. Vegetation would not be planted, but would be allowed to form naturally. The following assumptions are used for marsh creation with natural recruitment:

Target Year (TY) 0: 0 acres of existing marsh
TY 9: 0 acres of existing marsh
TY 10 (dike and pump year): 10% of the dredged material would be marsh (.10*238ac=24ac of marsh)
TY 12 (2 years after pumping): 30% marsh (.3 * 238ac = 71ac of marsh)
TY 14 (4 years after pumping): 85% marsh (.85 * 238ac = 202ac. of marsh)

Marsh loss data was obtained from the Louisiana Coastal Area project report *Coast 2050: Toward a Sustainable Coastal Louisiana* (1998), Appendix F. The loss rate of -0.0045 is used for future-without-project (FWOP). Without the project, there would be no marsh restoration in this project area, so the loss rate would not apply. However, for the futurewith-project (FWP) scenario, loss rates would apply after the material is pumped and the dike degraded. Marsh created in a confined area would likely differ in some aspects from naturally occurring marsh: it would be slightly higher in elevation than natural marsh, and its density would differ from natural marsh due to consolidation and type of material. Therefore, the loss rate that would be applied would differ as well; it would be reduced by 50% to account for these attributes. Therefore, for FWP, a loss rate of -0.0023 was applied starting the year that the dike would be degraded (TY 13). Please see the attached land loss spreadsheet to see how acreage lost after dike degradation was determined.

TY 13 (or 3 years after pumping): dike degraded and land loss rate of -0.0023 was applied. TY 20: 84% marsh (199 acres) TY 50: 78% marsh (186 acres)

Variable 2 – Submerged Aquatic Vegetation (SAV)

Currently, large open water areas of the site allow increased wave fetch. In the past, the area has experienced higher levels of salt water intrusion causing the marsh to transition from an intermediate marsh to a more brackish marsh. This area is not known to support SAVs.

FWOP

TY 0: 0% TY 5: 0% TY 20: 0% TY 50: 0% Without any hydrologic restoration to control salinity, the project area will continue to experience salinity spikes. The project area is not expected to support a significant amount of SAV habitat.

FWP:

TY 1: 0% TY 10: 0% TY 12: 0% TY 14: 0% TY 20: 0% TY 50: 0%

Variable 3 – Interspersion

FWOP: The lowest expression of interspersion, Class 5, is characterized by open water and less than 5% of emergent marsh. Without marsh restoration efforts, 100% of the 238-acre project area in this cycle would fall into Class 5. Interspersion classifications are not expected to change within the 50-year time period for FWOP (i.e., marsh will not occur naturally).

FWP: Areas exhibiting a high degree of marsh cover are ranked as having a high degree of dispersion (Class 1 or Class 2). It is assumed that the confined area would achieve a Class 1 once the dredged material is pumped for this cycle. 100% of the project area would fall into Class 1 starting the first year it is pumped (TY 10) and throughout the remainder of the 20-year DMMP project life. By TY 50, the area falls to 78% marsh because of landloss rates. Therefore, in TY 50, the interspersion falls to a Class 2.

Target Year	Class 1		Class 2		Class 5	
					(open	
		%		%	water)	%
0 (FWOP)					200 ac	100
9					200 ac	100
10 (pump)	238 ac	100				
12	238 ac	100				
13 (dike	238 ac	100				
degraded)						
14	238 ac	100				
20	238 ac	100				
50			238 ac	100		

Table 1: FWP Interspersion Classification

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal conditions are expected to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep. A study by La Peyre et al. (2007) was conducted within the nearby

Sabine NWR which shows that a 3.28-foot (1 m) area waterward of the marsh edge has an average water depth less than 1.5 feet (NAVD 88). Subtidal, open water areas located 164.04 feet (50 m) from marsh edge have an average water depth of 1.7 feet (NAVD 88). Therefore, it was assumed that all water within 164 feet of existing emergent marsh is less than 1.5 feet deep.

FWOP:

Using ArcView, the perimeter of existing marsh was measured and multiplied by 164 feet. That value was converted into an acreage value. Based on this calculation, it was found that 10% (24 acres) of the 238 acres of open water in BU site 4, Cell 1, would be less than or equal to 1.5 ft.

FWOP (TY 0): 10% * 238ac of open water </= 1.5 ft =24acres

FWP:

TY 0 – shallow open water = 10% or same as FWOP TY 9 –Shallow open water = 10% or same as FWOP TY 10 – Pump year. 85 % of the 238-acres of material is expected to achieve marsh height. Any open water (15% of the area) would be shallow open water = 100%. TY 12 – Two years after pumping. Shallow open water = 100%. TY 13 – Dike degraded. Shallow open water = 100% TY 14 – Four years after pumping. Shallow open water = 100% TY 20 – Shallow open water = 80% As marsh is lost areas become shallow open water and water depths may gradually become deeper. TY 50 – Shallow open water = 60%

Variable 5 – Salinity

Hydrographic data was downloaded by station number from the Louisiana Department of Natural Resources SONRIS site (accessed April 28, 2008, GEC). All data has been corrected for biofouling, instrument drift, and/or instrument malfunction.

Hourly water salinity records collected during 2003 – 2004 show that average annual salinity for the station located in the project area (CS09-04) is 7.99 parts per thousand (ppt).

The average annual salinity is expected to remain constant throughout the life of this project.

Variable 6 – Fish Access

FWOP: A water control structure, known as the Crab Gully Structure, is present just west of Highway 27. The project structure includes an open culvert, resulting in a current access value of 0.5. The access value is expected to remain the same throughout the life of the project.

TY 0: 0.5 TY 1: 0.5 TY 20:0.5 TY 50: 0.5

FWP: The access value once the Brown Lake Hydrological Restoration Project is constructed is 0.5. During TY 9, the dike would be constructed, resulting in an access value of 0.0001. The access value is expected to remain at 0.0001 until the dike degrades in TY 13. The degree of access would then return to the original value of 0.5 and remain there throughout the life of the project.

TY 0: 0.5(with water control structures)TY 9: 0.5TY 10: 0.0001 (dike and pumping year)TY 13: 0.5(dike degradation)TY 20: 0.5(end of project)TY 50: 0.5

Cycle 2

The above assumptions, with the exception of Variable 4, were applied to Cycle 2 target years, which include the following. Variable 4 assumptions for Cell 2 are below.

FWOP:

TY 0, TY 1, TY 20, TY 50

FWP:

- TY 0 same as FWOP
- TY 10 same as FWOP
- TY 11 Dike and pump year. 10% credit given to marsh creation.
- TY 13 Two years after pumping. 30% credit given to marsh creation.
- TY 14 Dike degraded.
- TY 15 Four years after pumping. Marsh is fully vegetated (85% credit)
- TY 20 Landloss rates have reduced the amount of marsh from 85% of project area to 83%.
- TY 50 Landloss rates have reduced the amount of marsh from 85% of project area to 78%.

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

According to USDA's Natural Resources Conservation Service (NRCS) elevations, the water bottom is greater than 2' throughout most of the area in cell two. In the FWOP scenario, 3% of Cell 2 would be classified as </= 1.5'. Once the marsh is pumped, 100% of the water in Cell 2 would be shallow.


FWOP (TY 0): 3% * 238ac of open water </= 1.5 ft =7acres

FWP:

- TY 0 -shallow open water = 3% or same as FWOP
- TY 10 -shallow open water = 3% or same as FWOP
- TY 11 Pump year. 85 % of the 238-acres of material is expected to achieve marsh height.
- Any open water (15% of the area) would be shallow open water = 100%.
- TY 13 -Two years after pumping. Shallow open water = 100%.
- TY 14 Dike degraded. Shallow open water = 100%
- TY 15 Four years after pumping. Shallow open water = 100%
- TY 20 –Shallow open water = 80 %
- TY 50 –Shallow open water = 60 %

V. References

La Peyre, Megan K., Bryan Gossman, and John A. Nyman. Assessing functional equivalency of nekton habitat in enhanced habitats: Comparison of terraced and unterraced marsh ponds. *Estuaries and Coasts.* Vol. 30, No. 3, p. 526–536. June 2007.

USGS DOQQ 2005 WESTLAKE SW 3009354

Map Author: Moore 27585101-765

Brackish Marsh

WETLAND VALUE ASSESSMENT COMMUNITY MODEL

Project: Cycle 2, BU Site 4, Calcasieu DMMP

Project Area: 238

Condition: Future Without Project

				0	0 0 0 .					
20	SI	0.10	0.10	0.10		0.14	1.00	0.55	0.24	0.25
ΤY	Value	0	0	%	100	m	00	0.50	EM HSI =	= ISH MO
	SI	0.10	0.10	0.10		0.14	1.00	0.55	0.24	0.25
TY 1	Value	0	0	%	100	e	ω	0.50	EM HSI =	= ISH MO
	SI	0.10	0.10	0.10		0.14	1.00	0.55	0.24	0.25
ΤΥ 0	Value	0	0	%	100	n	ω	0.50	P HSI =	"
		% Emergent	% Aquatic	Interspersion Class 1	Class 2 Class 3 Class 4 Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	Emergent Marsh HSI	Open Water HSI
	Variable	٧1	V2	٨3		V4	V5	V6		

0.000

Project: Cycle 2, BU Site 4, Calcasieu DMMP FWOP

5		TY 50					
Variable		Value	SI	Value	SI	Value	SI
۲۱	% Emergent	0	0.10				
V2	% Aquatic	0	0.10				
V3	Interspersion Class 1	%	0.10	%		%	
	Class 2 Class 3 Class 4 Class 5	100					
V4	%OW <= 1.5ft	3	0.14				
V5	Salinity (ppt)	8	1.00				
V6	Access Value	0.50	0.55				
		EM HSI =	0.24	EM HSI =		EM HSI =	
	<u>, </u>	= ISH MO	0.25	= ISH MO		= ISH MO	

0000-..

00000

00000

Project: Cycle 2, BU Site 4, Calcasieu DMMP

Project Area: 238

Condition: Future With Project

		6	0		00	0	0	0.1	0	0	<u> </u>	2	2
Pump	SI	0.19	0.10		1.00				0.60	1.00	0.10	0.35	0.27
TY 11 dike & Pump	Value	10	0	%	100				100	8	0.00	EM HSI =	= ISH MO
	SI	0.10	0.10		0.10				0.14	1.00	0.55	0.24	0.25
TY 10	Value	0	0	%				100	m	8	0.50	EM HSI =	= ISH MO
	SI	0.10	0.10		0.10				0.14	1.00	0.55	0.24	0.25
TY 0	Value	0	0	%				100	ω	80	0.50	sh HSI =	SI =
		% Emergent	% Aquatic	Interspersion	Class 1 Class 2			Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	Emergent Marsh HSI	Open Water HSI
	Variable	٧1	V2	٧3					V4	V5	V6		

- 0 0 0 0

		TY 13		TY 14 Dike degraded	graded	TY 15	
Variable		Value	SI	Value	ิร	Value	SI
7	% Emergent	30	0.37	30	0.37	85	0.87
V2	% Aquatic	0	0.10	0	0.10	0	0.10
V 3	Interspersion Class 1 Class 2 Class 3 Class 4	100	1.00	100	1.00	100	0.60
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60
V5	Salinity (ppt)	ω	1.00	ω	1.00	ω	1.00
V6	Access Value	0.00	0.10	0.50	0.55	0.50	0.55
		EM HSI =	0.44	EM HSI =	0.54	EM HSI =	0.78
		= ISH MO	0.27	= ISH MO	0.35	= ISH MO	0.32

-0000

- 0 0 0 0

- 0 0 0 0

Project: Cycle 2, BU Site 4, Calcasieu DMMP FWP

		TY 20		ΤΥ 50			
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	84	0.86	78	0.80		
V2	% Aquatic	0	0.10	0	0.10		
٧3	Interspersion Class 1	%	1	%		%	
	Class 2 Class 2 Class 3 Class 5 Class 5	0 0 1	2	100			
V4	%OW <= 1.5ft	80	1.00	60	0.87		
V5	Salinity (ppt)	8	1.00	8	1.00		
V6	Access Value	0.50	0.55	0.50	0.55		
		EM HSI =	0.82	EM HSI =	0.68	EM HSI =	
		= ISH MO	0.38	= ISH MO	0.29	= ISH MO	

-0000

0 0 0 0 0 0 0

00000

AAHU CALCULATION - MARSH

Future Without Project	out Project		Total	Cummulative
ТΥ	Marsh Acres	x HSI	HUS	HUS
0	0	0.24	00.00	
1	0	0.24	00.0	00'0
20	0	0.24	00.0	00'0
20	0	0.24	0.00	00'0
			AAHUS =	0.00

		Ľ		
Future With Project	Project		Total	Cummulative
ТΥ	Marsh Acres	X HSI	HUS	HUS
0	0	0.24	00.00	
10	0	0.24	00.0	0.00
11	24	0.35	8.39	3.75
13	71	0.44	30.89	37.94
14	71	0.54	38.17	34.53
15	202	0.78	158.33	92.87
20	199	0.82	163.85	569.48
50	186	0.68	127.02	4984.13
			AAHUs	114.45

NE	NET CHANGE IN AAHUS DUE TO PROJECT	
Ă.	A. Future With Project Emergent Marsh AAHUs =	114.45
ы.	B. Future Without Project Emergent Marsh AAHUs =	00.00
Ne	Net Change (FWP - FWOP) =	114.45

AAHU CALCULATION - OPEN WATER Project: Cycle 2, BU Site 4, Calcasieu DMMP

Future Without Project	out Project		Total	Cummulative
ТҮ	Water Acres	X HSI	HUS	HUS
0	238	0.25	58.44	
1	238	0.25	58.44	58.44
20	238	0.25	58.44	1110.43
50	238	0.25	58.44	1753.32
			AAHUs =	58.44

Future With Project	Project		Total	Cummulative
ТҮ	Water Acres	X HSI	HUS	HUs
0	238	0.25	58.44	
10	238	0.25	58.44	584.44
11	36	0.27	9.73	34.92
13	36	0.27	9.73	19.47
14	36	0.35	12.47	11.10
15	36	0.32	11.40	11.94
20	39	0.38	14.67	65.03
50	52	0.68	35.51	786.83
			AAHUS	30.27

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	
B. Future Without Project Open Water AAHUs =	
Net Change (FWP - FWOP) =	

30.27 58.44 -28.17

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	114.45
B. Open Water Habitat Net AAHUs =	-28.17
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	74.84

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: Cycle 1, BU Site 4, Calcasieu DMMP

Project Area: 238

Condition: Future Without Project

		1Y 0		1 Y 1		ΥT	20
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	0	0.10	0	0.10	0	0.10
V2	% Aquatic	0	0.10	0	0.10	0	0.10
V3	Interspersion Class 1	%	0.10	%	0.10	%	0.10
	Class 2 Class 3 Class 4 Class 5	001		100		001	
V4	%OW <= 1.5ft	10	0.23	10	0.23	10	0.23
V5	Salinity (ppt)	8	1.00	8	1.00	8	1.00
V6	Access Value	0.50	0.55	0.50	0.55	0.50	0.55
	Emergent Marsh HS	sh HSI =	0.24	= ISH WE	0.24	EM HSI =	0.24
	Open Water HSI	= 10	0.25	= ISH MO	0.25	= ISH MO	0.25

FWOP	ſ						
		TY 50					
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	0	0.10				
V2	% Aquatic	0	0.10				
V3	Interspersion Class 1	%	0.10	%		%	
	Class 2 Class 3 Class 4 Class 5	100					
V4	%OW <= 1.5ft	10	0.23				
V5	Salinity (ppt)	8	1.00				
V6	Access Value	0.50	0.55				
		= ISH WE	0.24	EM HSI =		EM HSI =	
		= ISH MO	0.25	= ISH MO		= ISH MO	

Project Area: 238

Condition: Future With Project

		TY 0		TΥ 9		TY 10 Dike & Pump	Pump
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	0	0.10	0	0.10	10	0.19
V2	% Aquatic	0	0.10	0	0.10	0	0.10
٨3	Interspersion	%		%		%	00
	Class 1 Class 2		0.10		0.10	100	1.00
	Class 3						
	Class 4 Class 5	100		100			
V4	%OW <= 1.5ft	10	0.23	10	0.23	100	0.60
75	Salinity (ppt)	8	1.00	8	1.00	8	1.00
V6	Access Value	0.50	0.55	0.50	0.55	0.00	0.10
	Emergent Marsh HSI	sh HSI =	0.24	EM HSI =	0.24	EM HSI =	0.35
	Open Water HSI	SI =	0.25	OW HSI =	0.25	OW HSI =	0.27

нwР	Γ				-		
		TY 12		TY 13 Dike degraded	graded	TY 14	
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	30	0.37	30	0.37	85	0.87
V2	% Aquatic	0	0.10	0	0.10	0	0.10
V 3	Interspersion Class 1 Class 2 Class 3 Class 4	100	1.00	100	1.00	100	0.60
V4	Class 5 %OW <= 1.5ft	100	0.60	100	0.60	100	0.60
V5	Salinity (ppt)	8	1.00	8	1.00	8	1.00
V6	Access Value	0.00	0.10	0.50	0.55	0.50	0.55
		EM HSI =	0.44	EM HSI =	0.54	EM HSI =	0.78
		= ISH MO	0.27	= ISH MO	0.35	OW HSI =	0.32

1/10/2009

		SI										
		Value			%						EM HSI =	= ISH MO
		SI	0.80	0.10	00.0	5		0.87	1.00	0.55	0.68	0.29
	TY 50	Value	78	0	%	100		U U		0.50	EM HSI =	= ISH MO
		SI	0.86	0.10	1 00			1_00	1.00	0.55	0.82	0.38
	TY 20	Value	84	0	%	0 0 1		Cœ	0	0.50	EM HSI =	= ISH MO
			% Emergent	% Aquatic	Interspersion Class 1	Class 2 Class 2	Class 4	%OW <= 1.5ft	Salinity (ppt)	Access Value		
FWP		Variable	V1	V2	V3			V4	V5	V6		

AAHU CALCULATION - MARSH

Future Without Project	out Project		Total	Cummulative
ТҮ	Marsh Acres	x HSI	HUS	HUS
0	0	0.24	00.0	
1	0	0.24	00.0	0.00
20	0	0.24	00.0	0.00
50	0	0.24	00.0	00.00
			AAHUS =	0.00

⁻ uture With Project	Project		Total	Cummulative
ТΥ	Marsh Acres	X HSI	HUS	HUS
0	0	0.24	00.0	
6	0	0.24	00.0	00'0
10	24	0.35	8.39	3.75
12	71	0.44	30.89	37.94
13	71	0.54	38.17	34.53
14	202	0.78	158.33	28.26
20	199	0.82	163.85	66.439
50	186	0.68	127.02	5126.53
			SUHAA	119.20

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	119.20
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	119.20

AAHU CALCULATION - OPEN WATER Project: Cycle 1, BU Site 4, Calcasieu DMMP

Future With	uture Without Project		Total	Cummulative
ТҮ	Water Acres	X HSI	HUS	HUS
0	238	0.25	60.03	
-	238	0.25	60.03	60.03
20	238	0.25	60.03	1140.59
50	238	0.25	60.03	1800.93
			AAHUs =	60.03

uture With Project	Project		Total	Cummulative
ТΥ	Water Acres	X HSI	HUs	HUS
0	238	0.25	60.03	
6	238	0.25	60.03	540.28
10	36	0.27	9.73	35.49
12	36	0.27	9.73	19.47
13	36	0.35	12.47	11.10
14	36	0.32	11.40	11.94
20	39	0.38	14.67	20.87
50	52	0.68	35.51	16.908
			AAHUs	75.28

NEI CHANGE IN AAHUS DUE IO PROJECI	
A. Future With Project Open Water AAHUs =	75.28
B. Future Without Project Open Water AAHUs =	60.03
Net Change (FWP - FWOP) =	15.25

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	119.20
B. Open Water Habitat Net AAHUs =	15.25
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	90.33

roject:					Beginning	Ending	Rate Calcula Beginning Year	Ending Year		
Total Acres		TY0 Marsh Acres		TY0 Water Acres	Year 1974	Year 1990	Acreage 17,320		Loss Rate -0.004555	
238		0		238	E\/	Plandlo	ss Reduction	0.50		
230		FWOP		200	1.0		FWP	0.50		
TY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	TY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	Net Acre of Marsl
0		, ,	. ,	, ,	0		. ,	. ,	. ,	or mars
0	-0.004555	0	0% 0%	238 238	0	-0.002277	0	0% 0%	238 238	
2	-0.004555	0	0%	238		-0.002277	0	0%	230	
3	-0.004555	0	0%	238	3	-0.002277	0	0%	238	
4	-0.004555	0	0%	238		-0.002277	0	0%	238	
5	-0.004555	0	0%	238	5	-0.002277	0	0%	238	
6	-0.004555	0	0%	238	6	-0.002277	0	0%	238	
7	-0.004555	0	0%	238	7	-0.002277	0	0%	238	
8	-0.004555	0	0%	238	8	-0.002277	0	0%	238	
9	-0.004555	0	0%	238		-0.002277	0	0%	238	
10	-0.004555	0	0%	238	10	-0.002277	0	0%	238	
11	-0.004555	0	0%	238	11	-0.002277	0	0%	238	
12	-0.004555	0	0%	238	12	-0.002277	0	0%	238	
13	-0.004555	0	0%	238	13	-0.002277	0	0%	238	
14	-0.004555	0	0%	238	14	-0.002277	202	85%	36	2
15	-0.004555	0	0%	238	15	-0.002277	202	85%	36	2
16	-0.004555	0	0%	238		-0.002277	201	84%	37	2
17	-0.004555	0	0%	238	17	-0.002277	201	84%	37	2
18	-0.004555	0	0%	238	18	-0.002277	200	84%	38	2
19	-0.004555	0	0%	238	19	-0.002277	200	84%	38	2
20	-0.004555	0	0%	238	20	-0.002277	199	84%	39	1
21	-0.004555	0	0%	238		-0.002277	199	84%	39	1
22	-0.004555	0	0%	238	22	-0.002277	198	83%	40	1
23	-0.004555	0	0%	238	23	-0.002277	198	83%	40	1
24	-0.004555	0	0%	238	24	-0.002277	197	83%	41	1
25	-0.004555	0	0%	238	25	-0.002277	197	83%	41	1
26	-0.004555	0	0%	238	26	-0.002277	197	83%	41	1
27	-0.004555	0	0%	238	27	-0.002277	196	82%	42	1
28 29	-0.004555	0	0% 0%	238 238	28 29	-0.002277	196 195	82% 82%	42	1
30	-0.004555	0	0%	230	30	-0.002277 -0.002277	195	82%	43 43	1
30	-0.004555 -0.004555	0	0%	230	30	-0.002277	195	82%	43	1
32	-0.004555	0	0%	230	31	-0.002277	194	81%	44	1
	-0.004555									
33 34	-0.004555	0	0% 0%	238 238		-0.002277	193 193	<u>81%</u> 81%	45 45	1
35	-0.004555	0	0%	238		-0.002277	193	81%	45	1
36	-0.004555	0	0%	238	36	-0.002277	192	81%	46	1
37	-0.004555	0	0%	238		-0.002277	192	81%	46	1
38	-0.004555	0	0%	238		-0.002277	192	80%	47	1
39	-0.004555	0	0%	238	39	-0.002277	191	80%	47	1
40	-0.004555	0	0%	238		-0.002277	190	80%	48	
41	-0.004555	0	0%	238		-0.002277	190	80%	48	
42	-0.004555	0	0%	238		-0.002277	190	80%	48	
43	-0.004555	0	0%	238		-0.002277	189	79%	49	
44	-0.004555	0	0%	238		-0.002277	189	79%	49	
45	-0.004555	0		238		-0.002277	188	79%	50	
46	-0.004555	0	0%	238	46	-0.002277	188	79%	50	
47	-0.004555	0	0%	238		-0.002277	187	79%	51	
48	-0.004555	0	0%	238	48	-0.002277	187	79%	51	1
49	-0.004555	0	0%	238		-0.002277	187	78%	51	1
50	-0.004555	0		238	50	-0.002277	186	78%	52	

Beneficial Use Site 5

Beneficial Use (BU) Site 5 (Sabine National Wildlife Refuge)

Project Location/Area

For this WVA, an approximately 3,000-acre open water area in Unit 1 of the Sabine NWR, Cameron Parish, Louisiana, was delineated.

Variable 1 – Emergent Vegetation

Approximately 8.9 million cubic yards of material would be pumped in four dredging cycles to create approximately 3,000 acres of intertidal, brackish marsh and shallow open water habitat in BU site 5. Approximately 2,000 acres of marsh habitat potentially could be created.

Dredged sediments pumped into BU site 5 would be unconfined and earthen dikes would not be constructed to contain the dredged materials. Material would be pumped adjacent to existing wetland vegetation to allow sediments to stack to an elevation conducive for emergent marsh vegetation. Dredged material slurry would be allowed to overflow existing emergent marsh vegetation within the project area, but would not be allowed to exceed a height of approximately one-foot above the existing marsh elevation. Subsequent dredging cycles would be pumped adjacent to existing marsh and/or the marsh platform created during the previous pumping event. Tidal inlets and channels are expected to be created during the pumping of dredge material and by natural tidal fluctuations.

Because unconfined dredge material placement is a relatively unpracticed technique for marsh creation, several assumptions have been made using known values from the following Coastal Planning, Protection and Restoration Act (CWPPRA) projects within the vicinity of the BU site:

CWPPRA (CS-23) Cycle 1

- East Area: 450,000 cyds pumped to + 4.4 MLG = 125 acres
- West Area: 235,000 cyds pumped to + 4.0 MLG = 78 acres
- 834, 416 cyds of material pumped to create ~ 203 acres of marsh and 93 acres of mudflat. (assume 4,000 cyds = 1 acre of marsh)
- Mudflat south of cycle: 150,000 cyds = 93 acres (assume 1,612 cyds = 1 ac of mudflat in this area)
- Maximum initial target elevation +4.5' MLG (+ 3.0 NAVD 88)
- Target elevations +2.0' MLG

CWPPRA Cycle 3

- ~ 1,000,000 cyds of material pumped to create ~ 230 acres of marsh and ~100 acres of mudflat
- Maximum initial elevation +4.5' MLG
- Target elevation +2.5' MLG
- 2-3' pre-project water depths

For 3 of the 4 cycles, 2,434,500 cyds of material will be pumped in each cycle, and 1,596,500 cyds will be pumped for the 4th and final cycle. Approximately 2,225 acres (8.9 mcyds/4,000 cyds = 2,225 acres) of marsh could be created, provided that the marsh creation area were

confined with dikes and weirs. According to Corps engineers, where healthy marsh borders proposed unconfined marsh creation areas, material is likely to stack in a manner similar to confined BU marsh creation areas. Also, with beneficial use of dredge material projects, generally approximately 85% of marsh is created in confined marsh creation areas. It is assumed for this analysis that 75% of dredge material pumped adjacent to healthy marsh would create elevations conducive for marsh creation, and 25% would create shallow open water habitat (i.e., mudflats). Approximately 65 % of dredge material pumped in, and adjacent to, the interspersed marsh (i.e., northwestern corner) would create elevations conducive for marsh creation areas areas conducive for marsh creation, and 30% would create shallow open water habitat (i.e., mudflats). The remaining 5% would nourish the existing marsh.

The following is a description of assumptions of marsh acres created for each dredging event:

Cycle 1: 2,434,500 cyds (Pumped in TY 01)

For cycle 1, material will be pumped into the northwestern corner of BU site 5 into an area with interspersed marsh (50% marsh/open water). Material is expected to stack up where existing marsh allows; however, depending on pipe placement and movement, material is likely to create an abundance of mudflat/shallow open water. Because of the interspersed marsh and open water, it is assumed that 65 % of dredged material would stack to create marsh. Sediments would overflow ~215 acres of existing marsh which is interspersed through out an approximately 465-acre area of cycle 1, but would not exceed 1 foot above marsh elevation. Because this method of beneficial use of dredge material for marsh creation is not the standard or typical method, conservative assumptions have been made to quantify benefits.

Calculation for amount (cyds) of dredge material that would nourish existing marsh: 215 ac x 43,560 sq feet = 9,365,400 sq. ft x 1'= 9,365,400 cft/27 = 346,867 cyds

Therefore, (2,434,500 cyds - 346,867 cyds =) **1,740,767 cyds** remains to create marsh in open water areas of the 465-acre area of Cycle 1.

- **65% of 1,740,767 cyds** = 1,131,499/4,000cyds = **283 acres of marsh** (or: 1,740,767 cyds/4,000 = 435 ac; 65% of 435 acres = 283 ac)
- **30% of 1,740,767 cyds** = 522,230 cyds/1,600 = **326 acres of mudflat**
- 05% of 1,740,767 cyds = 87,038 cyds "lost" to the system (i.e., nourishment to surrounding marshes/loss of sediment to adjacent open water)

Cycle 2 (TY 3) & 3 (TY 6): 2,434,500 cyds

Cycle 2 materials would be pumped adjacent to cycle 1 or adjacent to "healthy" marsh along the southwestern corner of Sabine BU site 5. Cycle 3 materials would be pumped adjacent to cycle 2 or adjacent to "healthy" marsh along the southwestern corner of Sabine BU site 5.

- 80% of 2,434,500 cyds = 1,947,600 cyds/4,000 = 487 acres of marsh
- **20% of 2,434,500 cyds** = 486,900 cyds/1,600 = 304 acres of mudflat

Cycle 4 (TY 8): 1,596,500 cyds

Cycle 4 materials would be pumped in the remaining open water areas and adjacent to previously pumped cycles.

- 80% of 1,596,500 cyds = 1,277,200 cyds/4,000 = 319 acres
- **20% of 1,596,500 cyds** = 319,300 cyds/1,600 = 200 acres *minimal amount of wetlands nourished in EC portion of the 3,000-acre project area.

	able It Summar	y of Hubitut Of cutou				
Cycle	Marsh Acres	Shallow Open Water (V4)				
1	283 * (215)	326				
2	487	304				
3	487	304				
4	319	200				
Total						
1,576+1134 + 215 (existing marsh NW corner) =						
	2,925 a	c of habitat				
16067 1	1	C · · · · · · · · · · · · · · ·				

Table 1: Summary of Habitat Created

*346,867 cyds used to nourish 215 acres of existing marsh during cycle 1

	I UNIC 2				C DICC C	I ul get l	cui și	
TY	1	3	5	6	7	8	10	12
Cycle								
1	10%	30%	100					
2		10	30		100			
3				10		30	100	
4						10	30	100

Table 2: Timeline for Sabine BU site 5 Target Years.

Marsh loss data was obtained from the Louisiana Coastal Area project report *Coast 2050: Toward a Sustainable Coastal Louisiana* (1998), Appendix F. The 1974 to 1990 annual land loss rate for the Brown Lake area (-.45%) was used for FWOP. Material is not expected to stack and consolidate like confined material. Marsh loss rates for this area are intermediate, and sediments and nutrients will be added to the system through TY 8. Therefore, for the purpose of this WVA, loss rates were applied to FWP starting at TY 1, but were reduced by 25 % rather than the standard 50% reduction.

FWOP

8% (~ 250 acres of ~3,000 ac) defined project area is emergent marsh. This marsh is expected to continue to erode at a rate of -.45%/year. A portion of this is remnant interspersed marsh and "nourishment" credits were not applied in the WVA calculations. Approximately 215 acres of marsh in the northwestern corner is considered in the nourishment calculations.

FWP

Refer to Landloss Spreadsheet.

Variable 2 – Submerged Aquatic Vegetation (SAV)

Currently, large open water areas of the site allow increased wave fetch. Also, in the past the area has experienced higher levels of salt water intrusion causing the marsh to transition from an intermediate marsh to a more brackish marsh. No SAV has been observed in the area of Sabine BU site 5 during field inspections (Leonard 2008). Water control structures constructed under the CS-23 CWPPRA project were designed to reduce salinity spikes in the area. Also, marsh creation projects implemented and proposed in the area will help to reduce salinities and turbidity in adjacent marshes behind these projects, and would help to create suitable conditions for SAVs. Some SAVs are expected to colonize early on due to recent construction of CWPPRA marsh creation and marsh management projects and should gradually increase through time.

Wetland Value Assessments and monitoring reports conducted for the CWPPRA, PPL 8, Sabine Marsh Creation project were reviewed to determine the SAV potential.

FWOP

 $\begin{array}{l} TY \ 0 - 0\% \\ TY \ 5 - 5 \ \% \\ TY \ 20 - 5 \ \% \\ TY \ 20 - 5 \ \% \end{array}$

FWP

TY 1 – 0% TY 5 - 10% TY 12 – 15 % TY 20 – 20% TY 50 – 20%

Variable 3 – Interspersion

Interspersion was determined by reviewing 2005 aerial photography and knowledge of the areas.

FWOP

TY 0 -20: 1,494 acres of 3,000 ac project area = Class 3 (NW & SW corners of PA) 50 % 1,506 acres of 3,000 ac project area = Class 5 (open water) 50 % TY 50: 30 % = Class 4; 70% = Class 5

Iubic		merspersio	n clubbille	ation
Target	Cycles	Class 2	Class 3	Class 5
Year	Cycles	(%)	(%)	(%)
0 (FWOP)			50	50
		28	22	50
1	1			
3	2	34	20	46
5		34	20	46
6	3	30	50	20
7		30	50	20

Table 3: FWP Interspersion Classification

8	4	20	80	
10		20	80	
12		20	80	
20		100		
50		100		

Variable 4 – Shallow Open Water Habitat (percent of open water < 1.5 feet)

A study by La Peyre et al. (2007) was conducted within the Sabine NWR which shows that a 3.28-foot (1 m) area waterward of the marsh edge has an average water depth less than 1.5 feet (NAVD 88). Subtidal, open water areas located 164.04 feet (50 m) from marsh edge have an average water depth of 1.7 feet (NAVD 88). To be conservative for WVA purposes, it was assumed that all water within 164 feet of existing emergent marsh is shallow open water habitat (i.e., less than or equal to 1.5 feet deep). Total acreage was determined for this shallow-water habitat buffer as a percentage of the total open water area.

FWOP

Using ArcView, the perimeter of existing marsh around the project area was measured and multiplied by 164 feet. Areas of open water interspersed with broken marsh within the project area (e.g., northwestern corner) were considered shallow open water habitats, and those acres were extrapolated using ArcView and known acreages of existing marsh. Moreover, open water acres associated with marsh coves located around the marsh edge/project boundary were measured. The shallow open water areas created in CWPPRA Cycles 1 and 3 were also added to the total acreage.

Summary of shallow open water: 20 ac - SW Corner 455 ac - NW Corner = 670-215 28 ac - Broken marsh in the east central portion of area 27 ac - Coves along central western (CW) boundary (18 ac + 19 ac) 42 ac - CWPPRA Cycle 1 <u>93 ac - CWPPRA Cycle 3</u> 665 ac Total / 3000 acres = 22%

FWOP (TY 0) = 22% </= 1.5 ft (TY 0)

FWP

TY1 –

326 ac NW corner + 135 ac (CWPPRA cycles) + 20 + 28 + 27 = 536 ac mudflat Open water = 3,000 - 250 (215 + 35 = existing marsh ac) - 283 Cycle 1 marsh ac = 2,467 acres 536/2,467 = 22%

TY 3 –

326 +304 ac Cycle 2 + 135 ac + 18 ac (WC cove) + 28 ac (EC broken marsh) = 811ac mudflat 2,467-487 (Cycle 2 marsh created) = 1,980 ac open water 811/1,980 = **41%** TY 6 –

326 + 304+304+ 93 (CWPPRA cycle 3) + 18 (WC cove) = 1,045 ac mudflat 1,980 -487 = 1,493 ac open water 1,045/1,493 = **70%**

TY 8 –

CWPPRA cycle 1, shallow open water covered during last pump cycle. Assumed 1,134 acres of mudflat are expected to be create through proposed project (i.e., 30 % Cycle 1, 20% Cycle 2-4).

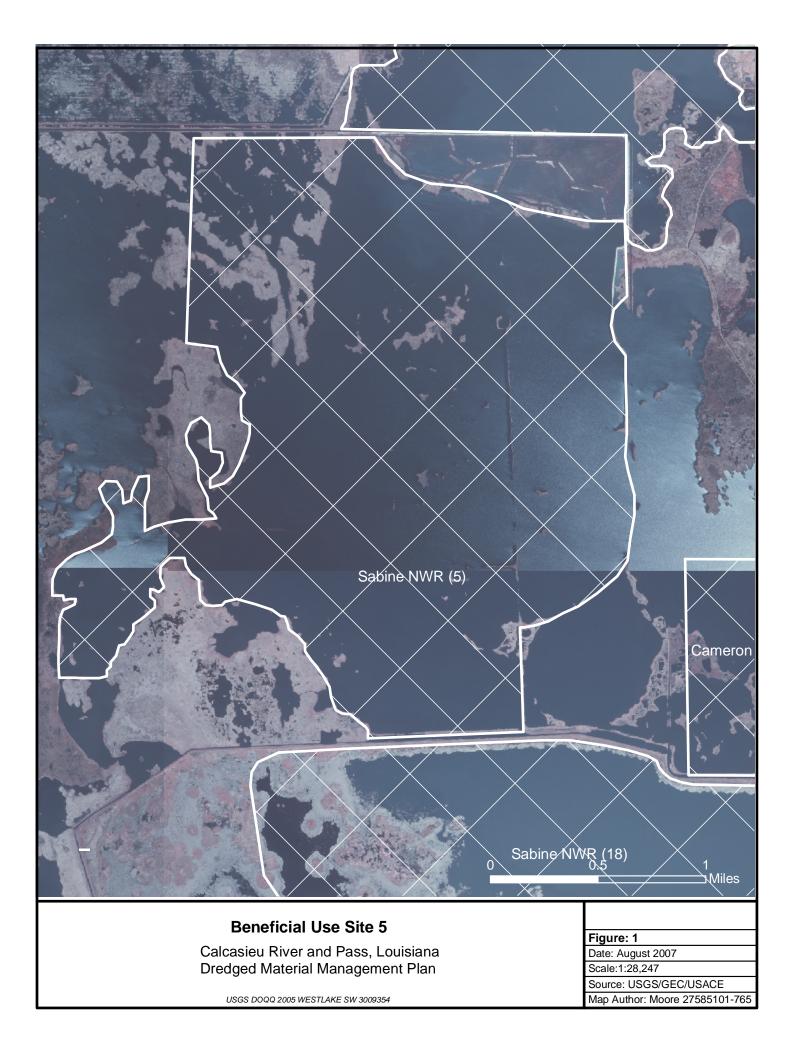
1,134 ac mudflat 1,493 – 319 = 1,174 ac open water 1,134/ 1,174 = **97%**

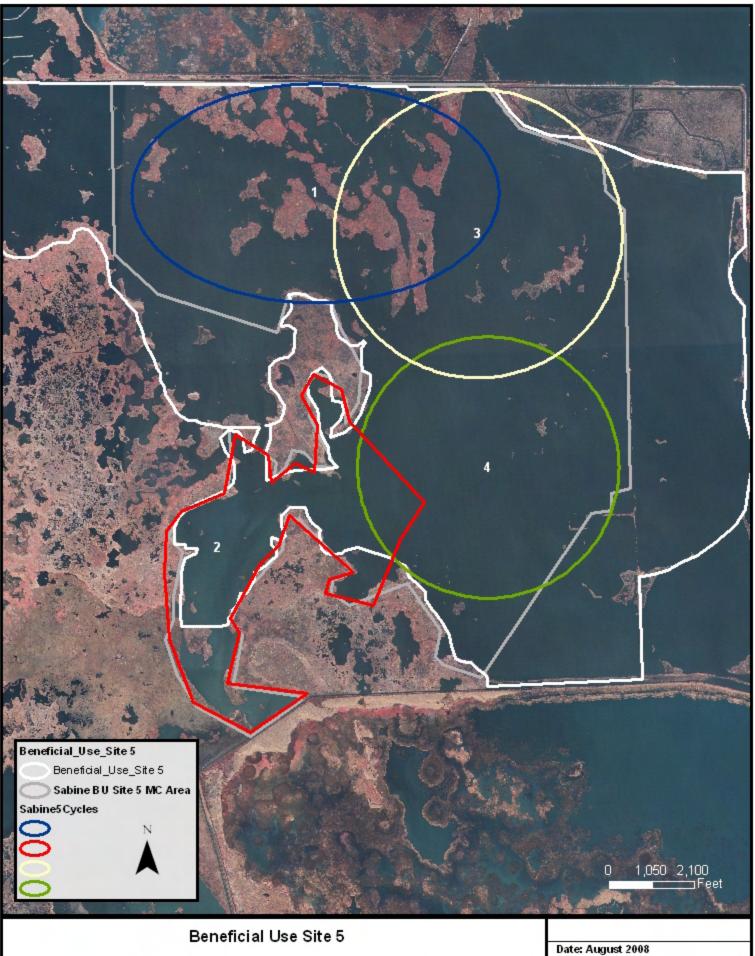
97 % of shallow open water seems a little high. Optimal conditions range from 70- 80 % shallow open water. However, because new construction methods (i.e., unconfined) are proposed, optimal conditions are not assumed. Despite being a high percentage, the SI value for 97 % shallow open water (0.5) is used for the purpose of this WVA because it does not represent optimal conditions. By TY 20, 90 % shallow open water is assumed, and by TY 50 it is reduced to 75%.

Variable 5 – Salinity

Hydrographic data was downloaded by station number from the Louisiana Department of Natural Resources SONRIS site (accessed April 28, 2008, GEC). All data has been corrected for biofouling, instrument drift, and/or instrument malfunction.

Water salinity records show that average annual salinity for the station located in the project area is 6.03 parts per thousand (ppt).


Variable 6 – Fish Access


CWPPRA project CS-23 replaced water control structures on three major waterways within the study area. The project structures include deep bays, culverts, and flapgates, resulting in a current access value of 0.35. The access value is expected to remain the same throughout the life of the project. Moreover, because material would be pumped unconfined for FWP, dikes would not be necessary and fish access would remain the same value through the project life for FWP.

TY 0-50: 0.35 (with existing water control structures from CWPPRA project CS-23)

References

La Peyre, Megan K., Bryan Gossman, and John A. Nyman. Assessing functional equivalency of nekton habitat in enhanced habitats: Comparison of terraced and unterraced marsh ponds. *Estuaries and Coasts.* Vol. 30, No. 3, p. 526–536. June 2007.

Calcasieu River and Pass, Louisiana Dredge Material Management Plan USGS DOQQ 2005

Scale: 1:28,428

Map Author: USFWS/ACT

Source: USGS/USFWS/USACE/GEC

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: Sabine BU Site 5, Calcasieu DMMP

Project Area: 3,000

Condition: Future Without Project (FWOP)

Value SI Value SI Nalue SI N 8 0.17 8 0.17 8 0.17 1 9 0.10 0.10 0 0 0.10 1 1 % 0.25 9 0.10 0 0.10 1 1 % 0.25 50 50 50 50 1 1 50 0.25 50 50 50 1			0 XT		ΤΥ 1		TΥ	2(
% Emergent 8 0.17 8 0.17 8 0.17 8 0.17 8 0.17 8 0.17 8 0.17 8 0.17 8 0.17 8 0.17 8 0.17 8 0.17 8 0.17 8 0.10 9 9 9 9 9 9 9 9 17 12	Variable		Value	SI	Value	SI	Value	SI
% Aquatic 0 0.10 0.25 0.26 <	۲1	% Emergent	8	0.17	8	0.17	8	0.17
Interspersion % 0.25 % 0.25 % 0.25 %<	V2	% Aquatic	0	0.10	0	0.10	5	0.15
Class 1 0.25 0.25 Class 2 50 0.25 Class 3 50 50 Class 4 50 50 Class 4 50 50 Class 4 50 50 Class 4 50 50 Salinity (ppt) 6 1.00 Access Value 0.35 0.35 Emergent Marsh HSI = 0.30 Chan Warsh HSI = 0.36	٨3	Interspersion	%		%		%	
Class 2 50 <t< td=""><td></td><td>Class 1</td><td></td><td>0.25</td><td></td><td>0.25</td><td></td><td>0.25</td></t<>		Class 1		0.25		0.25		0.25
Class 3 50 50 50 Class 4 50 50 50 Class 4 50 23 0.38 %OW <= 1.5ft		Class 2						
Class 4 50 <t< td=""><td></td><td>Class 3</td><td>50</td><td></td><td>50</td><td></td><td>50</td><td></td></t<>		Class 3	50		50		50	
Class 5 50 <t< td=""><td></td><td>Class 4</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Class 4						
%OW <= 1.5ft 22 0.38 22 0.38 22 0.38 23 0.38 23 0.38 23 0.38 23 0.38 23 0.38 23 0.38 23 0.38 23 0.38 23 0.38 23 0.38 23 0.42 0.44 <		Class 5	50		50		50	
Salinity (ppt) 6 1.00 6 1.00 6 1.00 7.00 <t< td=""><td>74</td><td>%OW <= 1.5ft</td><td>22</td><td>0.38</td><td>22</td><td>0.38</td><td>22</td><td>0.38</td></t<>	74	%OW <= 1.5ft	22	0.38	22	0.38	22	0.38
Sammy tpp) b 1.00 b 1.00 Access Value 0.35 0.42 0.35 0.42 Emergent Marsh HSI = 0.30 EM HSI 0.30 Onen Water HSI = 0.56 OW HSI 0.56	116	Colicity (2004)		•		•		•
Access Value 0.35 0.42 0.35 0.42 Emergent Marsh HSI = 0.30 EM HSI 0.30 Em HSI 0.30 CM HSI	67	odili liy (ppr)	0	00.1	ø	00.1	0	00.1
= 0.30 EM HSI= 0.30 = 0.26 OW HSI= 0.26	V6	Access Value	0.35	0.42	0.35	0.42	0.35	0.42
= 0.26 OW HSI = 0.26		Emergent Mars		0.30	EM HSI =	0.30	EM HSI =	0:30
		Open Water HSI	"	0.26	= ISH MO	0.26	= ISH MO	0.29

Sabine BU Site 5, Calcasieu DMMP Project:

Value
9
5
%
0 0 7 M
%OW <= 1.5ft 20
9
0.35
EM HSI =
= ISH MO

	-		-	
0	4	0	Σ.	
	0		0	

0

0.4 0.0 0.1 0.4 0 0.0

0 0 0 7 -

0 0 0 0 0

00000

Condition: Future With Project (FWP)

Variable Value SI Value SI Value SI V1 % Emergent 8 0.17 6 0.15 13 0.22 V2 % Aquatic 0 0 0.10 0 0.10 0 0.10 V3 Interspersion % 0.25 28 0.31 34 0.33 V3 Interspersion % 0.25 28 0.31 34 0.33 V3 Interspersion % 0.25 28 0.31 34 0.33 V3 Interspersion % 0.25 28 0.31 34 0.33 V3 Class 1 20 0.33 22 28 20 20 V4 $\%OW <= 1.5ft$ 22 0.38 22 20 41 0.63 V5 Salinity (ppt) 6 1.00 6 1.00 6 1.00 V5 Salinity (ppt) <th></th> <th></th> <th>0 A L</th> <th></th> <th>TY 1</th> <th></th> <th>ΤY</th> <th>3</th>			0 A L		TY 1		ΤY	3
% Emergent 8 0.17 6 0.15 13 % Aquatic 0 0 0.10 0	Variable		Value	SI	Value	SI	Value	SI
% Aquatic 0	٧1	% Emergent	8	0.17	9	0.15	13	0.22
Interspersion % 0.25 28 0.31 %	٧2	% Aquatic	0	0.10	0	0.10	0	0.10
Class 1 0.31 Class 2 0.31 Class 2 50 Class 3 50 Class 4 50 Class 4 50 Class 4 50 Class 4 50 Salinity (ppt) 6 Access Value 0.35 Access Value 0.35 Class 5 0.42 Access Value 0.35 Open Water HSI = Open Water HSI = Open Water HSI = Open Water HSI =	۶۸	Interspersion	%		%		%	
Class 2 50 28 34 <		Class 1		0.25		0.31		0.33
Class 3 50 22 22 20 Class 4 50 50 50 46 Class 5 50 50 50 41 %OW <= 1.5ft		Class 2			28		34	
Class 4 50 50 50 46 %OW <= 1.5ft		Class 3	50		22		20	
Class 5 50 50 50 46 %OW <= 1.5ft		Class 4						
%OW <= 1.5ft 22 0.38 22 0.38 41 41 Salinity (ppt) 6 1.00 6 1.00 6 0.35 9.35 0.42 0.35 0.30 EM HSI = 0.30 EM HSI = 0.30 EM HSI = 0.36 0WHSI = 0.35 0.4HSI = 0.35 0.4HSI = 0.35 0		Class 5	50		50		46	
Salinity (ppt) 6 1.00 6 1.00 6 1.00 6 Access Value 0.35 0.42 0.35 0.42 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.042 0.35 0.042 0.35 0.042 0.35 0.042 0.35 0.042 0.35 0.045 0.35 0.045 0.035 0 <td>V4</td> <td>%OW <= 1.5ft</td> <td>22</td> <td>0.38</td> <td>22</td> <td>0.38</td> <td>41</td> <td>0.63</td>	V4	%OW <= 1.5ft	22	0.38	22	0.38	41	0.63
Access Value 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0 42 0.35 0 42 0.35 0 42 0.35 0 42 0.35 0 42 0.35 0 43 0 43 0 43 0 43 43 44 <td>V5</td> <td>Salinity (nnt)</td> <td>v</td> <td>1 00</td> <td>ις</td> <td>1 00</td> <td>v</td> <td>1 00</td>	V5	Salinity (nnt)	v	1 00	ις	1 00	v	1 00
Access Value 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.35 0.35 0.42 0.35 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0.42 0.35 0 45 45			•		,		,	
= 0.30 EMHSI= 0.30 EMHSI= = 0.26 OWHSI= 0.26 OWHSI=	V6	Access Value	0.35	0.42	0.35	0.42	0.35	0.42
= 0.26 OW HSI = 0.26 OW HSI =		Emergent Mars	P HSI =	0:30	EM HSI =	0:30	EM HSI =	0.34
		Open Water HS	=	0.26	= ISH MO	0.26	= ISH MO	0.28

Project: Sabine BU Site 5, Calcasieu DMMP

				1	-								1	1	n –
	2	SI	0.41	0.19		0.40					1.00	1.00	0.42	0.47	0.38
		Value	34	10	%		30	50		20	70	9	0.35	EM HSI =	= ISH MO
	9	SI	0.31	0.19		0.40					1.00	1.00	0.42	0.41	0.38
		Value	23	10	%		30	50		20	20	9	0.35	EM HSI =	= ISH MO
	5	SI	0:30	0.19		0.33					0.63	1.00	0.42	0.40	0.35
		Value	22	10	%		34	20		46	41	9	0.35	EM HSI =	OW HSI =
			% Emergent	% Aquatic	Interspersion	Class 1	Class 2	Class 3	Class 4	Class 5	%OW <= 1.5ft	Salinity (pot)	Access Value		
FWP		Variable	17	V2	V3						7 4	75	V6		

0	0	0.4	0	0.1
		o.		o.

0.0 0.6 0.1 0.0

0.6 0.6 0.4 0.1 0 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.1 0.1

0.0 0.4 0.1 0.1

Project: Sabine BU Site 5, Calcasieu DMMP FWP

			8		10		12
Variable		Value	IS	Value	SI	Value	SI
٧1	% Emergent	38	0.44	51	0.56	58	0.62
V2	% Aquatic	10	0.10	10	0.19	15	0.24
٨3	Interspersion Class 1	%	0.44	%	0.44	%	0.44
	Class 2 Class 2 Class 4 Class 5	80	5	20 80		80	5
V4	%OW <= 1.5ft	79	0.66	26	0.66	26	0.66
V5	Salinity (ppt)	9	1.00	9	1.00	9	1.00
90	Access Value	0.35	0.42	95.0	0.42	9:35	0.42
		EM HSI =	0.50	EM HSI =	0.57	= ISH W3	09.0
		= ISH MO	0.29	= ISH MO	0.36	= ISH MO	0.39

Project: Sabine BU Site 5, Calcasieu DMMP

LVP	ſ				Ī		
			20		50		
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	56	0.60	51	0.56		
V2	% Aquatic	20	0.28	20	0.28		
V3	Interspersion	%		%		%	
	Class 1		0.40		0.40		
	Class 2 Class 3	100		100			
	Class 4						
	Class 5						
V4	%OW <= 1.5ft	06	0.80	75	1.00		
V5	Salinity (ppt)	9	1.00	9	1.00		
077					010		
V6	Access value	0.35	0.42	0.35	0.42		
		EM HSI =	0.59	EM HSI =	0.56	EM HSI =	
		= ISH MO	0.42	= ISH MO	0.43	= ISH MO	

- 0.0 0.6 0 0
- 0.0 0.6 0 0
- 0.6 0.6 0

- 0 0 4 0 0
- 0.0000

AAHU CALCULATION - MARSH Project: Sabine BU Site 5, Calcasieu DMN

≿	Marsh Acres	X HSI	HUs	HUs
0	250	0.30	75.82	
1	249	0:30	75.51	75.67
20	228	0.30	69.15	1374.28
50	111	0.28	47.22	1737.71
			AAHUS =	63.75

Future With Project	Project		Total	Cummulative
ТY	Marsh Acres	X HSI	HUS	HUS
0	250	0.30	75.82	
1	170	0:30	50.34	62.98
3	381	0.34	131.19	178.14
5	670	0.40	267.10	393.06
9	682	0.41	281.15	274.10
7	1014	0.47	480.45	377.39
8	1139	0.50	569.22	524.29
10	1530	0.57	867.54	1427.99
12	1739	0.60	1046.64	1911.76
20	1692	0.59	994.14	8162.23
50	1525	0.56	856.21	27733.46
			AAHUS	820.91
		1		

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	820.91
B. Future Without Project Emergent Marsh AAHUs =	63.75
Net Change (FWP - FWOP) =	757.15

AAHU CALCULATION - OPEN WATER Project: Sabine BU Site 5, Calcasieu DMMP

Future Without Project	out Project		Total	Cummulative
ΥT	Water Acres	X HSI	HUs	HUs
0	2750	0.26	712.37	
1	2751	0.26	712.63	712.50
20	2772	0.29	813.67	14497.57
50	2829	0.28	797.53	24171.30
			AAHUs =	787.63

Future With Project	Project		Total	Cummulative
тү	Water Acres	X HSI	HUS	HUs
0	2750	0.26	712.37	
1	2469	0.26	649.82	681.29
3	2471	0.28	699.47	1349.28
5	2475	0.35	861.15	1560.53
9	2511	0.38	956.03	908.39
L	2513	0.38	956.79	956.41
8	2038	0.29	598.45	770.72
10	1565	0.36	561.07	1169.75
12	1575	0.39	608.14	1169.12
20	1308	0.42	548.17	4636.97
50	1480	0.43	640.36	17816.24
			AAHUS	620.37

A. Future With Project Open Water AAHUs =	
	620.37
B. Future Without Project Open Water AAHUs =	787.63
Net Change (FWP - FWOP) =	-167.25

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	757.15
B. Open Water Habitat Net AAHUs =	-167.25
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	500.37

									Total Acres Check		824	824	824	824	824	824	824	824	824	824	824	824	824	824	824
									Net Acres of Marsh		-79	-78	85	85	280	280	279	278	277	277	276	275	275	270	249
							FWP Totals		% Marsh (V1)		16%	16%	36%	36%	60%	59%	59%	29%	29%	58%	58%	58%	58%	57%	51%
							- AWF		Marsh (acres)		135	135	297	296	490	489	487	485	484	482	480	479	477	466	420
									Water (acres)		328	328	330	332	334	335	337	339	340	342	344	345	347	358	404
		Loss Rate		-0.0046			FWP - Nourished Marsh	215	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3		107	107	213	212	211	211	210	209	208	208	207	206	206	201	181
		-					- Nourisl	Nourished Marsh =	Nourished Marsh Acreage	0	214	214	213	212	211	211	210	209	208	208	207	206	206	201	181
ation		Ending Year	Acreage	16,100		0.25	FWP	Nourishe	FWP Loss Rate		-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345
I ace Date Calculation	Posipping		Acreage	17,320		duction	Marsh	283	Adjusted Marsh Acreage (10% @ TY2; 30% @ TY4 and 100% @ TY6)		28	28	84	84	279	278	277	276	275	274	273	272	272	265	239
200	EC28	Ending	rear	1990		FWP Land Loss Reduction	FWP - Created Marsh	Created Marsh =	Created Marsh Acreage	0	282	282										272	272	265	239
		Beginning	rear	1974			- GWP -	Created	FWP Loss Rate		-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345	-0.00345
				TY0 Water	Acres	609			Water (acres)	609	610	611	612	613	614	615	616	617	618	619	620	621	622	628	653
ž									% Marsh (V1)	26%	26%	26%	26%	26%	25%	25%	25%	25%	25%	25%	25%	25%	25%	24%	21%
		5, Cycle 1		TY0 Marsh	Acres	215	FWOP		Marsh (acres)	215	214	213	212	211	210	209	208	207	206	205	204	203	202	196	171
		Sabine BU 5, Cycle 1							FWOP Loss Rate		-0.0046	-0.0046	-0.0046	-0.0046	-0.0046	-0.0046	-0.0046	-0.0046	-0.0046	-0.0046	-0.0046	-0.0046	-0.0046	-0.0046	-0.0046
5		Project:		Total Acres		824			ΤY	0	-	2	3	4	5	9	7	8	6	10	11	12	13	20	50

(E	
15	~
Jnit	ion
J	at
18	сu
site	Ca
BU	Acre
oine	ter /
Sat	wa

-														0	_	~	~
															-	~	~
vvaler acres	2750	2469	2471	2473	2475	2511	2513	2038	1565	1575	1308	1480		Total M % TY	170	170	381
× v v	-	2	3	4	5	9	7	8	10	12	20	50		To			
		496	979	976	972	696	996	962	1,435	1,425	1,692	1,520					
Cycle 4								318	316	314	305	275		Cycle 4			
						185	484	482	479	475	463	412					
Cycle 3				_									ions %	Cycle 3			_
Cycle 2			485	484	482	480	475	477	474	471	456	413	Calculat	Cycle 2			49
Cycle1 C	496	496	494	492	490	489	487	485	482	479	466	420	Marsh Acre Calculations %	Cycle1 C	135	135	297

larsh Acre	Calculati	ions %				
ycle1 C	Cycle 2	Cycle 3	Cycle 4	Total M % TY	ш %	% marsh
135				170	-	6%
135				170	2	6%
297	49			381	3	13%
296	48			379	4	13%
490	145			670	2	22%
489	144		6	682	9	23%
487	479		89	1,014	7	34%
485	477		145 32	1,139	8	38%
482	474			1,530	10	51%
479	471		5 314	1,739	12	58%
466	458			1,692	20	56%
420	413			1,525	50	51%

						Los	Loss Rate Calculation	lation							
Sabine BU 5 Cycle 2		Beginni Year	Beginni Year	Beginni Year	bu	Ending Year	Beginning Year Acreage	Ending Year Acreage	Loss Rate	Rate					
TY0 TY0 Marsh Water 1974 Acres Acres	TY0 Water Acres			1974		1990	17,320	16,100		-0.0046					
0	0	791	5	FWP I	מ ו	FWP Land Loss Reduction	eduction	0.25							
FWOP FWD		FWP	FWP	FWP		FWP - Created Marsh	Marsh	FWP - No	FWP - Nourished Marsh	Marsh		FWP	FWP Totals		
Creat	Creat	Creat	Creat	Creat	ē	Created Marsh =	487	Nourished Marsh	ed Marsh =	0					
FWOP Marsh % Marsh Water FWP Loss Loss Rate (acres) (V1) (acres) Rate	Marsh % Marsh Water (acres) (V1) (acres)	Water (acres)		FWP Loss Rate		Created Marsh Acreage	Adjusted Marsh Acreage (10% @ TY1; 30% @ TY3 and 100% @ TY5)	FWP Loss Rate	Nourished Marsh Acreage	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3	Water (acres)	Marsh (acres)	% Marsh (V1)	Net Acres of Marsh	
0 0% 791	%0		791		-	0			0						
0 0% 791	0% 791	791		-0.0034161		0	0	-0.00341607	0		791	0	0%	0	
0 0% 791	0% 791	791		-0.0034161		0		-0.00341607	0	0	791			0	
0 0% 791	0% 791	791	-	-0.0034161	_	485	49	-0.00341607	0	0	306	49	6%	49	-
0 0% 791	0% 791	791		-0.0034161	_	484	48	-0.00341607	0	0	307	48	6%	48	
0 0% 791	0% 791	791		-0.0034161	_	482	145	-0.00341607	0	0	309	145	18%	145	
0 0% 791	0% 791	791		-0.0034161		480	144	-0.00341607	0	0	311	144	18%	144	
0 0% 791	0% 791	791		-0.003416	1	479	479	-0.00341607	0	0	312	479	61%	479	
0 0% 791	0% 791	791		-0.003416	1	477	477	-0.00341607	0	0	314	477	60%	477	
0 0% 791	0% 791	791		-0.0034161		475	475	-0.00341607	0	0	316	475	%09	475	
0 0% 791	0% 791	791		-0.0034161		474	474	-0.00341607	0	0	317	474	60%	474	
0 0% 791	0% 791	791	-	-0.003416	-	472	472	-0.00341607	0	0	319	472	60%	472	
0 0% 791	0% 791	791		-0.003416	31	471	471	-0.00341607	0	0	320	471	59%	471	
0 0% 791	0% 791	791		-0.00341	61	469	469	-0.00341607	0	0	322	469	59%	469	
0 0% 791	0% 791	791		-0.00341(31	458	458	-0.00341607	0	0	333	458	58%	458	
-0.00455 0 0% 791 -0.0034161	0% 791	791		-0.00341	61	413	413	-0.00341607	0	0	378	413	52%	413	

Total Acres Check

Project: Sabine Total Acres 791						LOSS	Rate Calcul	ation						
Total Acres 791	BU 5, Cycle 3	ycle 3			Beginning	Ending	ding Year Ending	Ending Year Acreade	Loss Rate	Rate				
791	T Ma Ac	TY0 Marsh Acres		TY0 Water Acres	1974	1990	17,320	16,100		-0.0046				
		0		791	FWP La	FWP Land Loss Reduction	duction	0.25						
	Ρ	FWOP			- PWP -	FWP - Created Marsh	Marsh	FWP - Nourished Marsh	ourished	Marsh		FWP Totals	Fotals	
					Created	Created Marsh =	487	Nourished	Nourished Marsh =	0				
TY FWOP Loss Rate		Marsh % (acres)	% Marsh (V1)	Water (acres)	FWP Loss Rate	Created Marsh Acreage	Adjusted Marsh Acreage (10% @ TY1; 30% @ TY3 and 100% @ TY5)	FWP Loss Rate	Nourished Marsh Acreage	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3	Water (acres)	Marsh (acres)	% Marsh (V1)	Net Acres of Marsh
0		•	%0	791		0			0					
6 -0.00455		0	0%	791	-0.0034161	485	49	-0.00341607	0	0	306	49	%9	49
7 -0.00455 8 -0.00455			0%0 0%7	18/	-0.0034161	484	48 1.45	-0.00341607		-	307	48 145	18%	48
Ľ		0	%0	791	-0.0034161	480	144	-0.00341607	0	,	311	144	18%	144
		0	%0	791	-0.0034161	479	479	-0.00341607	0	0	312	479	61%	479
	55	0	%0	791	-0.0034161	477	477	-0.00341607	0	0	314	477	%09	477
12 -0.00455		0	%0	791	-0.0034161	475	475	-0.00341607	0	0	316	475	60%	475
	55	0	%0	791	-0.0034161	474	474	-0.00341607	0	0	317	474	%09	474
14 -0.00455 15 0.00455	55		%0	791	-0.0034161	471	472	-0.00341607	0 0	0 0	319	472	60% E0%	472
T			%_D	181	-0.0034161	4/ 1	4/1	-0.00341607			020	4/1	29/20	4/ 1
t			%0	161	-0.0034161	467	467	-0.00341607	0 0	0 0	324	467	%65	467
T		0	%0	791	-0.0034161	466	466	-0.00341607	0	0	325	466	26%	466
	55	0	%0	791	-0.0034161	464	464	-0.00341607	0	0	327	464	29%	464
20 -0.00455	55	0	%0	791	-0.0034161	463	463	-0.00341607	0	0	328	463	58%	463
·	55	0	%0	791	-0.0034161	461	461	-0.00341607	0	0	330	461	58%	461
22 -0.00455	55	0	%0	791	-0.0034161	459	459	-0.00341607	0	0	332	459	58%	459
- -	22		%0	L6/	-0.0034161	408	458	-0.00341607			333	458	28%	458
25 -0.00455	55		%0	18/	-0.0034161	450	456	-0.00341607		•	326	456	%20C	455
٩٩	22		%0	701	-0.0034161	453	453	-0.00341607		•	338	453	21.10	453
T	55	, o	%0	791	-0.0034161	452	452	-0.00341607	0	0	339	452	57%	452
28 -0.0045	55	0	%0	791	-0.0034161	450	450	-0.00341607	0	0	341	450	57%	450
	55	0	%0	791	-0.0034161	449	449	-0.00341607	0	0	342	449	57%	449
	55	0	%0	791	-0.0034161		447	-0.00341607	0	0	344	447	57%	447
31 -0.00455	55	0	%0	791	-0.0034161		446	-0.00341607	0	0	345	446	56%	446
	55	0	%0	791	-0.0034161		444	-0.00341607	0	0	347	444	56%	444
	55	0	%0	791	-0.0034161	443	443	-0.00341607	0	0	348	443	56%	443
	55	0	%0	791	-0.0034161	441	441	-0.00341607	0	0	350	441	26%	441
	C C	0	0%0	18/	-0.0034161	439	439	-0.0034160/	0	0	352	439	26%	439
1	0	0	%0	16/	-0.0034161	438	438	-0.00341607	0	0	353	438	25%	438
3/ -0.0045	0 4		020	18/	0.0034161	430	430	-0.00341607			300 256	4.30	0222 0/222	430
Ī	0.0		0 ² 0	191	-0.0034101	400	400	1001 +000.0-	0		000	400	0/00	400
40 0.00455	20		02/0	181	0.0034161	404	404	-0.00341607			100	404	202/0	404
	200		0%0	701	-0.0034161	434	434	-0.00341607			360	434	20/00	434
ľ	200		0/ 0	701	-0.0034161	100	1004	-0.00341607			367	100	04 /0 E A0/2	104
T	20		02/0	181	0.0034161	429	429	-0.00341607			202	429	04-20 24/0/	429
T	20		0.0	701	0.0034161	924	176	-0.00341607			265	126	04.V0	176
T	2 4		0/0	101	0.0004101		420	-0.00341007			200	105	04/0	475
45 -0.00455	222		0/0	121	-0.0034161	173	423	-0.00341007			368	423	24 /0/2	423
T	20		000	101	-0.0004161		122	00140000-			260	122	12/10	122
40 0.00404	2 4		0/0	101	0.0004101	124	420	-0.00341007			202	120	0/00	420
P o	202		0.0	121	0.0034161	440	420	-0.00341607			1/0	440	0.00	440
ç	20		040	181	-0.0034161	411	410	-0.00341607			212	413	0.02%	410
1	00	0	0.20	181	-0.0034101	41/	41/	-0.0034 1007	0	0	5/4 014	41/	02%	417
51 -0.0045	22		%0	1.67	-0.0034161	410	415	-0.00341607		0 0	3/5	410	53%	410
	55		%0	16/	-0.0034161	415	415	-0.00341607	0 0	0 0	3/6	415	97.Q	415
53 -0.00455	55	0	%0	791	-0.0034161	413	413	-0.00341607	0	0	3/8	413	22%	413
54 -0.0045	55	0	%0	791	-0.0034161	412	412	-0.00341607	0	0	379	412	52%	412

readsheet	
Sp	
Loss (
-and	

S. Cycle 4 Eeginning Endining Endining <thendining< th=""> Endining Endit Endining <thendining< th=""> <</thendining<></thendining<>	100 100 100 0.25 0.25 0.25 0.15 0.25 0.15 0.25 0.15 0.01 0.15 0.025 0.15 0.025 0.15 0.01 0.15 0.01 0.15 0.01 0.16 0.25 0.25 <th>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</th> <th>Water (acres) 202 203 203</th> <th>FWP Totals Marsh & Mar (acres) (V1)</th> <th>otals</th> <th></th> <th></th>	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Water (acres) 202 203 203	FWP Totals Marsh & Mar (acres) (V1)	otals		
Sabine BLI 5, Cycles 4 Tyo Tyo Year Year<	Instruction Instruction Instruction 16,100 16,100 16,100 16,100 0.25 Marsh WP - Nourrishe Nourrishe Marsh Rate Nourrishe Acreage 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 00341607 0 0 <	-0.0046 -0.004			otals		
TY0 TY00 TY0 TY1 TY1 </th <th>16,100 10</th> <th>-0.0046</th> <th></th> <th></th> <th>otals</th> <th></th> <th></th>	16,100 10	-0.0046			otals		
Image: constraint of the constrated of the constraint of the constraint of the constraint of the	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.20 0.23 0.20 0.23 0.20	Adjusted Adjusted Adjusted Adjusted Ty3 Ty3 Ty3 Ty3			otals		
FWOP FWP- Created Marsh State Adultated Marsh Water Water Marsh Adultated Marsh Water Marsh Adultated Marsh Marsh Water Marsh Marsh Marsh (V1) Kares FVV-Loss Marsh Marsh (V1) Kares Marsh TV1; 30% PV (V1) Kares Marsh TV1; 30% PV (V1) Kares Marsh PV PV PV (V1) Kares PV Areage PV PV PV (V1) Kares PV PV PV PV PV PV (V1) Kares PV	WP - Nourrishe Nourrished Marsh Rate Mourrishe Marsh Acreage NP - Loss Nourrishe Marsh Acreage 00341607 0	Adjusted Marsh = 0 ad Adjusted Marsh 100% @ T/3 100% @ 0 0 0 0 0 0 0 0 0 0 0 0 0 0			otals		
Creation Advalues State Advalues PVP. State Advalues PVI:: 30% FVI:: 30% <th>Nourished Marsh Rate Acreage Rate Acreage 00341607 0 00341607 0 000341607 0 00034100000000000000000000000000000000</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Nourished Marsh Rate Acreage Rate Acreage 00341607 0 00341607 0 000341607 0 00034100000000000000000000000000000000						
Marsh Marsh (stress) Waresh (stress) Puyr Loss Marsh Marsh Marsh (10% @ Adveted Marsh Marsh Marsh Marsh Marsh Marsh (10% @ Adveted Marsh							
0 0% 519 0.0034161 318 22 0 0% 519 0.0034161 317 32 0 0% 519 0.0034161 316 95 0 0% 519 0.0034161 315 32 0 0% 519 0.0034161 315 34 0 0% 519 0.0034161 313 313 0 0% 519 0.0034161 310 313 0 0% 519 0.0034161 303 305 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 293		• • • • • • • • • • • •	201 202 203 204		% Marsh N (V1) c	Net Acres of Marsh	Total Acres Check
0 0% 519 0.0034161 318 32 0 0% 519 0.0034161 315 95 0 0% 519 0.0034161 315 95 0 0% 519 0.0034161 315 95 0 0% 519 0.0034161 313 313 0 0% 519 0.0034161 309 309 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 203 303 0 0% 519 0.0034161 203 303 0 0% 519 0.0034161 203			201 202 203 204			0	ł
0 0% 519 0.0034161 315 95 0 0% 519 0.0034161 315 94 0 0% 519 0.0034161 314 94 0 0% 519 0.0034161 314 314 0 0% 519 0.0034161 314 314 0 0% 519 0.0034161 314 314 0 0% 519 0.0034161 309 309 0 0% 519 0.0034161 301 301 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 301 301 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 291 201 0 0% 519 0.0034161 291 201 0 0% 519 0.0034161 292			202 203 204	32	6% 6%	32	Ω ŭ
0 0% 519 -0.0034161 315 94 0 0% 519 -0.0034161 314 314 0 0% 519 -0.0034161 314 314 0 0% 519 -0.0034161 310 313 0 0% 519 -0.0034161 303 303 0 0% 519 -0.0034161 307 307 0 0% 519 -0.0034161 303 303 0 0% 519 -0.0034161 303 303 0 0% 519 -0.0034161 304 304 0 0% 519 -0.0034161 303 303 0 0% 519 -0.0034161 203 304 0 0% 519 -0.0034161 293 299 0 0% 519 -0.0034161 293 293 0 0% 519 -0.0034161 <td< td=""><td></td><td></td><td>204</td><td>32 95</td><td>18%</td><td>32 95</td><td><u>0</u> 0</td></td<>			204	32 95	18%	32 95	<u>0</u> 0
0 0% 519 0.0034161 314 314 0 0% 519 0.0034161 311 313 0 0% 519 0.0034161 310 310 0 0% 519 0.0034161 310 313 0 0% 519 0.0034161 309 309 0 0% 519 0.0034161 306 307 0 0% 519 0.0034161 307 307 0 0% 519 0.0034161 307 307 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161 293		• • • • • • • • •	Í	94	18%	94	51
0 0% 519 0.0034161 311 311 311 0 0% 519 0.0034161 301 310 0 0% 519 0.0034161 301 310 0 0% 519 0.0034161 307 307 0 0% 519 0.0034161 306 306 0 0% 519 0.0034161 307 307 0 0% 519 0.0034161 306 306 0 0% 519 0.0034161 307 307 0 0% 519 0.0034161 306 306 0 0% 519 0.0034161 203 303 0 0% 519 0.0034161 299 299 0 0% 519 0.0034161 291 291 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161			205	314	60%	314	510
0 0% 519 0.0034161 310 310 0 0% 519 0.0034161 309 309 0 0% 519 0.0034161 309 309 0 0% 519 0.0034161 307 307 0 0% 519 0.0034161 305 306 0 0% 519 0.0034161 305 306 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 304 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161 281			208	313	60%	311	ο k
0 0% 519 0.0034161 309 309 0 0% 519 0.0034161 307 307 0 0% 519 0.0034161 306 306 0 0% 519 0.0034161 305 306 0 0% 519 0.0034161 305 306 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 203 303 0 0% 519 0.0034161 293 239 0 0% 519 0.0034161 293 239 0 0% 519 0.0034161 293 239 0 0% 519 0.0034161 293 239 0 0% 519 0.0034161 284		000	209	310	60%	310	51
0 0% 519 -0.0034161 308 308 0 0% 519 -0.0034161 306 308 0 0% 519 -0.0034161 306 306 0 0% 519 -0.0034161 306 306 0 0% 519 -0.0034161 307 307 0 0% 519 -0.0034161 303 303 0 0% 519 -0.0034161 301 301 0 0% 519 -0.0034161 303 303 0 0% 519 -0.0034161 203 303 0 0% 519 -0.0034161 203 209 0 0% 519 -0.0034161 203 203 0 0% 519 -0.0034161 203 203 0 0% 519 -0.0034161 203 203 0 0% 519 -0.0034161 <t< td=""><td></td><td>00</td><td>210</td><td>309</td><td>60%</td><td>309</td><td>51</td></t<>		00	210	309	60%	309	51
0 0% 519 0.0034161 306 306 0 0% 519 0.0034161 305 305 0 0% 519 0.0034161 304 305 0 0% 519 0.0034161 304 305 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 301 301 0 0% 519 0.0034161 299 299 0 0% 519 0.0034161 296 299 0 0% 519 0.0034161 296 299 0 0% 519 0.0034161 296 296 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161 281 281 0 0% 519 0.0034161 281			211	308	59%	308	5
0 0% 519 0.0034161 305 305 0 0% 519 0.0034161 304 304 0 0% 519 0.0034161 304 304 0 0% 519 0.0034161 301 301 0 0% 519 0.0034161 301 301 0 0% 519 0.0034161 302 302 0 0% 519 0.0034161 299 299 0 0% 519 0.0034161 299 299 0 0% 519 0.0034161 299 296 0 0% 519 0.0034161 291 296 0 0% 519 0.0034161 291 291 0 0% 519 0.0034161 291 291 0 0% 519 0.0034161 291 291 0 0% 519 0.0034161 291		c	212	306	29%	306	<u> </u>
0 0% 519 0.0034161 304 304 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 301 301 0 0% 519 0.0034161 303 303 0 0% 519 0.0034161 299 299 0 0% 519 0.0034161 293 299 0 0% 519 0.0034161 293 299 0 0% 519 0.0034161 293 293 0 0% 519 0.0034161 293 293 0 0% 519 0.0034161 293 293 0 0% 519 0.0034161 293 293 0 0% 519 0.0034161 284 284 0 0% 519 0.0034161 281	607 5007 5007 5007 5007 5007 5007 5007 5	0	214	305	59%	305	510
0 0% 519 -0.0034161 303 303 0 0% 519 -0.0034161 301 301 0 0% 519 -0.0034161 301 301 0 0% 519 -0.0034161 301 301 0 0% 519 -0.0034161 299 299 0 0% 519 -0.0034161 291 299 0 0% 519 -0.0034161 295 296 0 0% 519 -0.0034161 295 296 0 0% 519 -0.0034161 295 289 0 0% 519 -0.0034161 293 293 0 0% 519 -0.0034161 281 284 0 0% 519 -0.0034161 282 282 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 <t< td=""><td>607 607 607 607 607 607</td><td>0</td><td>215</td><td>304</td><td>59%</td><td>304</td><td>5</td></t<>	607 607 607 607 607 607	0	215	304	59%	304	5
0 0% 519 0.0034161 301 301 0 0% 519 0.0034161 301 301 0 0% 519 0.0034161 300 300 0 0% 519 0.0034161 298 289 0 0% 519 0.0034161 293 289 0 0% 519 0.0034161 295 286 0 0% 519 0.0034161 295 286 0 0% 519 0.0034161 292 283 0 0% 519 0.0034161 292 284 0 0% 519 0.0034161 283 283 0 0% 519 0.0034161 281 289 0 0% 519 0.0034161 281 289 0 0% 519 0.0034161 281 289 0 0% 519 0.0034161 281	607 607 607 708 607	о с	216	303	58%	303	<u>م</u> م
0 0% 519 -0.0034161 200 200 0 0% 519 -0.0034161 291 209 0 0% 519 -0.0034161 297 297 0 0% 519 -0.0034161 297 297 0 0% 519 -0.0034161 296 298 0 0% 519 -0.0034161 295 298 0 0% 519 -0.0034161 294 294 0 0% 519 -0.0034161 293 289 0 0% 519 -0.0034161 293 289 0 0% 519 -0.0034161 293 289 0 0% 519 -0.0034161 281 288 0 0% 519 -0.0034161 281 288 0 0% 519 -0.0034161 281 288 0 0% 519 -0.0034161 <t< td=""><td>607 607 607 607</td><td>0</td><td>218</td><td>301</td><td>58%</td><td>301</td><td>5</td></t<>	607 607 607 607	0	218	301	58%	301	5
0 519 -0.0034161 239 239 0 0% 519 -0.0034161 239 239 0 0% 519 -0.0034161 239 239 0 0% 519 -0.0034161 239 239 0 0% 519 -0.0034161 236 236 0 0% 519 -0.0034161 239 239 0 0% 519 -0.0034161 239 233 0 0% 519 -0.0034161 239 239 0 0% 519 -0.0034161 239 239 0 0% 519 -0.0034161 289 289 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 282 <		0	219	300	58%	300	51
U D/K 519 -0.0034161 236 236 0 0% 519 -0.0034161 295 259 0 0% 519 -0.0034161 295 256 0 0% 519 -0.0034161 295 256 0 0% 519 -0.0034161 294 285 0 0% 519 -0.0034161 293 285 0 0% 519 -0.0034161 293 283 0 0% 519 -0.0034161 291 291 0 0% 519 -0.0034161 281 289 0 0% 519 -0.0034161 289 289 0 0% 519 -0.0034161 281 284 0 0% 519 -0.0034161 281 284 0 0% 519 -0.0034161 281 284 0 0% 519 -0.0034161 <		0	220	299	58%	299	5
0 0% 519 -0.0034161 296 296 0 0% 519 -0.0034161 296 285 0 0% 519 -0.0034161 294 285 0 0% 519 -0.0034161 293 233 0 0% 519 -0.0034161 293 233 0 0% 519 -0.0034161 293 232 0 0% 519 -0.0034161 281 289 0 0% 519 -0.0034161 289 289 0 0% 519 -0.0034161 289 289 0 0% 519 -0.0034161 281 289 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 286 284 0 0% 519 -0.0034161 281 284 0 0% 519 -0.0034161 <t< td=""><td></td><td>- c</td><td>222</td><td>2982</td><td>57%</td><td>298</td><td>ດີດ</td></t<>		- c	222	2982	57%	298	ດີດ
0 0% 519 -0.0034161 295 259 0 0% 519 -0.0034161 293 234 0 0% 519 -0.0034161 293 234 0 0% 519 -0.0034161 292 289 0 0% 519 -0.0034161 292 289 0 0% 519 -0.0034161 289 289 0 0% 519 -0.0034161 289 288 0 0% 519 -0.0034161 289 288 0 0% 519 -0.0034161 281 287 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 287 287 0 0% 519 -0.0034161 282 284 0 0% 519 -0.0034161 282 284 0 0% 519 -0.0034161 <t< td=""><td>0 20311000</td><td>0</td><td>223</td><td>296</td><td>57%</td><td>296</td><td>5.0</td></t<>	0 20311000	0	223	296	57%	296	5.0
0 0% 519 -0.0034161 294 294 0 0% 519 -0.0034161 293 293 0 0% 519 -0.0034161 293 293 0 0% 519 -0.0034161 293 293 0 0% 519 -0.0034161 291 291 0 0% 519 -0.0034161 289 289 0 0% 519 -0.0034161 289 288 0 0% 519 -0.0034161 289 288 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 281 283 0 0% 519 -0.0034161 <t< td=""><td>JU3410U/</td><td>0</td><td>224</td><td>295</td><td>57%</td><td>295</td><td>51</td></t<>	JU3410U/	0	224	295	57%	295	51
0 0% 519 -0.0034161 243 243 0 0% 519 -0.0034161 291 291 0 0% 519 -0.0034161 291 291 0 0% 519 -0.0034161 291 291 0 0% 519 -0.0034161 289 289 0 0% 519 -0.0034161 286 288 0 0% 519 -0.0034161 287 287 0 0% 519 -0.0034161 287 286 0 0% 519 -0.0034161 285 286 0 0% 519 -0.0034161 283 283 0 0% 519 -0.0034161 283 283 0 0% 519 -0.0034161 281 282 0 0% 519 -0.0034161 281 282 0 0% 519 -0.0034161 <t< td=""><td>0.00341607 0</td><td>0</td><td>225</td><td>294</td><td>57%</td><td>294</td><td>ۍ ت</td></t<>	0.00341607 0	0	225	294	57%	294	ۍ ت
0 0% 519 0.0034161 231 231 0 0% 519 0.0034161 280 280 0 0% 519 0.0034161 289 289 0 0% 519 0.0034161 289 289 0 0% 519 0.0034161 281 288 0 0% 519 0.0034161 286 288 0 0% 519 0.0034161 286 286 0 0% 519 0.0034161 286 286 0 0% 519 0.0034161 286 284 0 0% 519 0.0034161 282 284 0 0% 519 0.0034161 282 284 0 0% 519 0.0034161 281 283 0 0% 519 0.0034161 281 284 0 0% 519 0.0034161 281	0.00341607 0		220	282	20% 26%	282	n ù
0 0% 519 -0.0034161 290 280 0 0% 519 -0.0034161 289 289 0 0% 519 -0.0034161 289 289 0 0% 519 -0.0034161 287 287 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 286 284 0 0% 519 -0.0034161 282 283 0 0% 519 -0.0034161 282 283 0 0% 519 -0.0034161 281 283 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 <t< td=""><td></td><td>0</td><td>228</td><td>291</td><td>56%</td><td>291</td><td>5</td></t<>		0	228	291	56%	291	5
0 0% 519 -0.0034161 289 289 0 0% 519 -0.0034161 287 289 0 0% 519 -0.0034161 287 289 0 0% 519 -0.0034161 287 288 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 283 283 0 0% 519 -0.0034161 283 283 0 0% 519 -0.0034161 283 283 0 0% 519 -0.0034161 281 282 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 <t< td=""><td>-0.00341607 0</td><td>0</td><td>229</td><td>290</td><td>56%</td><td>290</td><td>51</td></t<>	-0.00341607 0	0	229	290	56%	290	51
0 0% 519 -0.0034151 288 288 0 0% 519 -0.0034151 287 288 0 0% 519 -0.0034151 287 288 0 0% 519 -0.0034151 285 286 0 0% 519 -0.0034151 285 286 0 0% 519 -0.0034151 285 285 0 0% 519 -0.0034151 283 283 0 0% 519 -0.0034151 282 283 0 0% 519 -0.0034151 282 282 0 0% 519 -0.0034151 281 281 0 0% 519 -0.0034161 280 284 0 0% 519 -0.0034161 280 280 0 0% 519 -0.0034161 280 280 0 0% 519 -0.0034161 <t< td=""><td>0.00341607 0</td><td>0</td><td>230</td><td>289</td><td>56%</td><td>289</td><td>1<u>0</u>1</td></t<>	0.00341607 0	0	230	289	56%	289	1 <u>0</u> 1
0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 286 286 0 0% 519 -0.0034161 285 286 0 0% 519 -0.0034161 285 286 0 0% 519 -0.0034161 283 283 0 0% 519 -0.0034161 283 283 0 0% 519 -0.0034161 282 282 0 0% 519 -0.0034161 281 282 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 289 0 0% 519 -0.0034161 281 289 0 0% 519 -0.0034161 277 279 0 0% 519 -0.0034161 <t< td=""><td>00341607 0</td><td></td><td>231</td><td>282</td><td>25%</td><td>282</td><td>ο ŭ</td></t<>	00341607 0		231	282	25%	282	ο ŭ
0 0% 519 -0.0034161 285 285 286 0 0% 519 -0.0034161 284 284 284 0 0% 519 -0.0034161 283 284 284 0 0% 519 -0.0034161 282 282 284 0 0% 519 -0.0034161 282 282 282 0 0% 519 -0.0034161 281 281 281 0 0% 519 -0.0034161 281 282 282 0 0% 519 -0.0034161 281 281 281 0 0% 519 -0.0034161 281 289 289 0 0% 519 -0.0034161 279 279 279 0 0% 519 -0.0034161 277 278 278	0.00341607 0	• c	233	286	55%	286	л с
0 0% 519 -0.0034161 284 284 0 0% 519 -0.0034161 283 283 0 0% 519 -0.0034161 283 283 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 280 280 0 0% 519 -0.0034161 280 280 0 0% 519 -0.0034161 279 279 0 0% 519 -0.0034161 279 279 0 0% 519 -0.0034161 277 277	0.00341607 0	0	234	285	55%	285	ο Ω
0 0% 519 -0.0034161 283 283 0 0% 519 -0.0034161 281 283 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 280 280 0 0% 519 -0.0034161 279 279 0 0% 519 -0.0034161 279 279 0 0% 519 -0.0034161 279 279	-0.00341607 0	0	235	284	55%	284	5
0 0% 519 -0.0034161 282 282 0 0% 519 -0.0034161 281 284 0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 280 280 0 0% 519 -0.0034161 279 279 0 0% 519 -0.0034161 279 279 0 0% 519 -0.0034161 279 279 0 0% 519 -0.0034161 277 278	0.00341607 0	0	236	283	55%	283	5
0 0% 519 -0.0034161 281 281 0 0% 519 -0.0034161 280 280 0 0% 519 -0.0034161 279 289 0 0% 519 -0.0034161 279 279 0 0% 519 -0.0034161 279 279 0 0% 519 -0.0034161 279 278 0 0% 519 -0.0034161 277 278 0 0% 519 -0.0034161 277 278	00341607 0	0 0	23/	787	54%	787	5
0 0% 519 -0.0034101 200 200 0 0% 519 -0.0034101 279 279 0 0% 519 -0.0034161 278 279 0 0% 519 -0.0034161 278 279 0 0% 519 -0.0034161 278 279	00341607 0	0	238	281	54%	281	5
0 0% 519 -0.0034161 278 278 0 0% 519 -0.0034161 277 278	0.00341607 0		240	020	54%	270	n k
0 0% 519 -0.0034161 277 277	0.00341607 0	o c	241	278	54%	278	ο ία
	0.00341607 0	0	242	277	53%	277	οù i
0 0% 519 -0.0034161 276 276	00341607 0	0	243	276	53%	276	5
0% 519 -0.0034161 275 275	-0.00341607 0	0	244	275	53%	275	à

Beneficial Use Site 6

Beneficial Use (BU) Site 6 (Bel Property)

I. Project Location/Area

This wetland value assessment (WVA) focuses on BU Site 6 (Figure 1), also known as the Bel Property. This 990-acre area is located north of Unit 1 of the Sabine NWR in Cameron Parish, Louisiana.

II. Goal

The project goal is to create fish and wildlife habitat, including intertidal marsh, shallow mud flat and open water habitat within this 990-acre project area. Approximately 2.3 million cubic yards of material would be dredged from the Calcasieu Ship Channel (between miles 16 and 21) in two pumping cycles to create approximately 564 acres of intertidal, brackish marsh habitat in BU Site 6. Two 282-acre marsh creation cells would be designed and constructed to achieve a ratio of 85% marsh to 15% shallow open water.

III. Project Features

For the 2 cycles, a total of 2,258,700 cyds of material would be pumped, with 1,129,350 cyds in both cycles. Two 282-acre cells would be created to accommodate the two pumping cycles. To assess habitat benefits, a WVA was prepared for both of the two pumping cycles.

For the purposes of this assessment, it is assumed that dikes would be degraded 3 years after the last pumping event for the respective cell.

IV. WVA Variables and Assumptions

The following is a description of assumptions created for the two dredging cycles (cells). The same assumptions apply to both cycles, but target years (i.e., years that dikes would be constructed and dredged material pumped) would differ.

Cycle 1

Variable 1 – Emergent Vegetation

FWOP: There is 0% emergent marsh in the open water areas where the cells would be contructed.

FWP: A total of 1,129,350 cyds of dredged material will be pumped into this 282-acre cell. To estimate the potential amount of marsh acres that could be created with the dredged material, the CWPPRA Sabine Refuge Marsh Creation (CS-28), Cycle 1 project was used as a reference site. That project created marsh by pumping material into an area confined by earthen dikes. It was found that approximately 4,000 cyds of dredge material created 1 acre of marsh.

 \rightarrow 1,129,350 cyds / 4,000 cyds per acre = 282 acres

Based on USACE knowledge and experience of dredging operations, a maximum of 85% of this material will form into vegetated marsh, and the remaining 15% of the area would be shallow open water (also called mudflats).

Target Year (TY) 0: ~ 0 acres of existing marsh (0%) TY 9 – 0% TY 10 (dike & pump year) –10% of the dredged material would be marsh (.10*282 ac=28.2 ac of marsh) TY 11 (2 years after pumping) – 30% marsh (.3 * 282 ac = 84.6 ac of marsh) TY 14 (4 years after pumping) – 85% marsh (.85 * 282 ac = 239.7 ac of marsh)

Marsh loss data was obtained from the Louisiana Coastal Area project report *Coast 2050: Toward a Sustainable Coastal Louisiana* (1998), Appendix F. The loss rate of -0.0045 is used for future-without-project (FWOP). Without the project, there would be no marsh restoration in this project area, so the loss rate would not apply. However, for the futurewith-project (FWP) scenario, loss rates would apply after the material is pumped and the dike degraded. Marsh created in a confined area would likely differ in some aspects from naturally occurring marsh: it would be slightly higher in elevation than natural marsh, and its density would differ from natural marsh due to consolidation and type of material. Therefore, the loss rate that would be applied would differ as well; it would be reduced by 50% to account for these attributes. Therefore, for FWP, a loss rate of -0.0023 was applied starting the year that the dike would be degraded.

TY 13 (or 3 years after pumping): dike degraded and land loss rate of -0.0023 was applied. TY 20: 84% marsh TY 50: 78% marsh

Variable 2 – Submerged Aquatic Vegetation (SAV)

Currently, large open water areas of the site allow increased wave fetch. In the past, the area has experienced higher levels of salt water intrusion causing the marsh to transition from an intermediate marsh to a more brackish marsh. According to Billy Leonard, Oil and Gas Specialist / Wildlife Biologist with the Southwest Louisiana National Wildlife Refuge Complex, no SAV has been observed on the Sabine NWR, which is adjacent to proposed BU Site 6 and within the same marsh complex (Personal communication, April 2008). This marsh complex is influenced by the Rycade Canal water control structure (CS-02) to the north, as well as the Sabine Refuge Water Control Structures (CS-23). Once the BU site is constructed, salinity and turbidity will be reduced, and the area should support SAVs. Some SAVs are expected to colonize early on and should gradually increase over time.

FWOP

TY 0: 0% TY 1: 0% TY 20: 5% TY 50: 7%

FWP: TY 0: 0% TY 12: 10% TY 20: 15% TY 50: 25%

Variable 3 – Interspersion

FWOP: The lowest expression of interspersion, Class 5, is characterized by open water and less than 5% of emergent marsh. Without marsh restoration efforts, 100% of the 847-acre cell in this cycle falls into Class 5. Interspersion classifications are not expected to change within the 50-year assessment period for FWOP (i.e., marsh will not occur naturally).

FWP: Areas exhibiting a high degree of marsh cover are ranked as having a high degree of dispersion (Class 1 or Class 2). It is assumed that the confined area would achieve a Class 1 once the dredged material is pumped for this cycle because of the ratio of marsh to open water (85% marsh/15% open water). 100% of the 282-acre cell would fall into Class 1 starting the first year it is pumped (TY 1) and throughout the remainder of the 20-year DMMP project life. By TY 50, the area falls to Class 2 due to landloss rates.

Target Year	Class 1	%	Class 2	%	Class 5	%
0					282 ac	100
9					282 ac	100
10 (dike & pump)	282 ac	100				
13 (dike degraded)	282 ac	100				
20	282 ac	100				
50			282 ac	100		

Table 1: FWP Interspersion Classification

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal conditions are expected to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep. According to DNR Sonris data, the average water depth in the project area is 2.4'. In the FWOP scenario, 10% of Cell 1 would be classified as </= 1.5'. Once the dredged material is pumped into the area, 100% of the water in the cell would be shallow.

FWOP:

(TY 0): 10% * 282 ac of open water </= 1.5 ft

FWP:

TY 0 (shallow open water) = 10% or same as FWOP TY 9 = 10%TY 10 (dike & pump year) = 100%. TY 20 = 80 % TY 50 = 60%

Variable 5 – Salinity

Hydrographic data was downloaded by station number from the Louisiana DNR SONRIS site (accessed July 30, 2008, GEC). All data has been corrected for biofouling, instrument drift, and/or instrument malfunction.

Monthly water salinity records collected during 2002 show that average annual salinity for the station located in the project area is 4.2 parts per thousand (ppt).

The salinity is expected to remain constant throughout the life of this project.

Variable 6 – Fish Access

Access by aquatic organisms is considered to be a critical component in assessing the quality of a given marsh system. The suitability index (SI) for this variable is determined by calculating an "access value" based on the percentage of the project area wetlands considered accessible by aquatic organisms during normal tidal fluctuations, and the type of man-made structures (if any) across identified points of ingress/egress (e.g., bayous, canals, etc.). A brackish marsh with no access is assigned an SI of .2. A solid plug is assigned an SI of .0001. A completely open system is assigned an SI of 1.0.

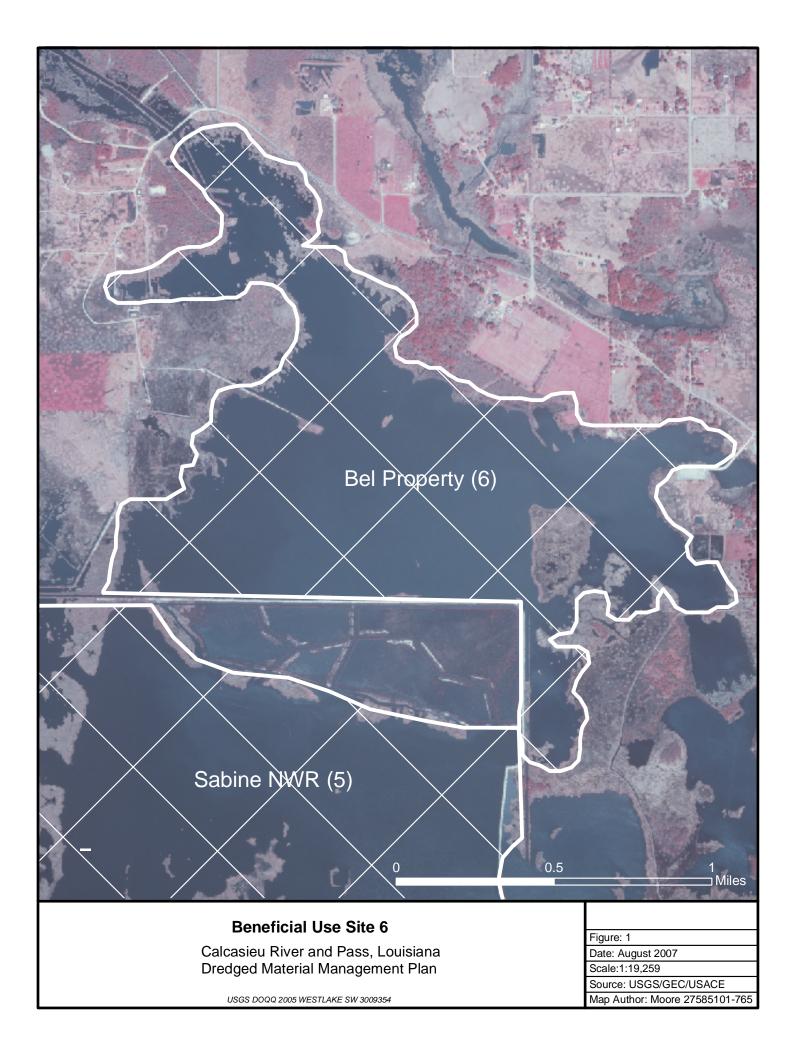
FWOP: Efforts to control salinity and water levels in this area have been conducted through the implementation of the Rycade Canal marsh management project (CS-02) and the Sabine Refuge Water Control Structures (CS-23). Therefore, the area is assigned an access value of 0.35.

TY 0: 0.35 TY 1: 0.35 TY 20: 0.35 TY 50: 0.35

FWP: The current access value, as noted previously, is 0.35. During target year TY 10, the dike would be constructed, resulting in an access value of 0.0001. The access value is expected to remain at 0.0001 until the dike degrades in TY 13. The degree of access would then return to the original value of 0.35 and remain there throughout the 50 year assessment period.

TY 0 0.35 TY 9 0.35 TY 10 (dike & pump year) 0.0001 TY 13 (dike degradation) 0.35 TY 20 0.35 TY 50 0.35

Cycle 2


The above assumptions were applied to Cycle 2 Target Years, which include the following:

FWOP:

TY 0, TY 1, TY 20, TY 50

FWP:

- TY 0: Same as FWOP
- TY 11: Same as TY 0
- TY 12: Dike construction and pump year. 10% credit given to marsh creation.
- TY 14: Two years after pumping. 30% credit given to marsh creation.
- TY 15: Dike degradation (3 years after pumping)
- TY 16: Four years after pumping. 85% credit given to fully vegetated marsh
- TY 20: Land loss rates have reduced the amount of marsh from 85% of project area to 84%
- TY 50: Land loss rates have reduced the amount of marsh from 84% of project area to 79%

Project: Cycle 1 BU Site 6, Calcasieu DMMP

Project Area:

282

Condition: Future Without Project

		TY 0		TY 1		TY 20				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	0	0.10			
V2	% Aquatic	0	0.10	0	0.10	5	0.15			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	%	0.10	0 0 0 0.1	0 0 0 0.1	
V4	%OW <= 1.5ft	10	0.23	10	0.23	10	0.23			
V5	Salinity (ppt)	4.2	1.00	4.2	1.00	4.2	1.00			
V6	Access Value	0.35	0.42	0.35	0.42	0.35	0.42			
	Emergent Marsh H	SI =	0.23	EM HSI =	0.23	EM HSI =	0.23			
	Open Water HSI	=	0.24	OW HSI =	0.24	OW HSI =	0.27			

Project: FWOP	Cycle 1 BU Sit	e 6, Calcasieu	I DMMP						
1] [TY 50						1	
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	0	0.10						
V2	% Aquatic	7	0.16						
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%		%		0 0 0 0 0.1	0 0 0 0
V4	%OW <= 1.5ft	10	0.23						
V5	Salinity (ppt)	4.2	1.00						
V6	Access Value	0.35	0.42						
		EM HSI = OW HSI =	0.23 0.28	EM HSI = OW HSI =		EM HSI = OW HSI =			

Project: Cycle 1 BU Site 6, Calcasieu DMMP

Project Area:

282

Condition: Future With Project

		TY 0		TY 9		TY 10				
Variable		Value	SI	Value	SI	(dike & pump year) Value	SI			
variable		value	51	value	31	value	31			
V1	% Emergent	0	0.10	0	0.10	10	0.19			
V2	% Aquatic	0	0.10	0	0.10	0	0.10			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	% 100	1.00	0 0 0 0.1	0 0 0 0 0.1	((((
V4	%OW <= 1.5ft	10	0.23	10	0.23	100	0.60			
V5	Salinity (ppt)	4.2	1.00	4.2	1.00	4.2	1.00			
V6	Access Value	0.35	0.42	0.35	0.42	0.00	0.10			
	Emergent Marsh H	HSI =	0.23	EM HSI =	0.23	EM HSI =	0.35			
	Open Water HSI	=	0.24	OW HSI =	0.24	OW HSI =	0.27			

Project: Cycle 1 BU Site 6, Calcasieu DMMP FWP

		TY 12		TY 13 (dike degraded)		TY 14			
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	30	0.37	30	0.37	85	0.87	1	
V2	% Aquatic	10	0.19	10	0.19	10	0.19		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	1.00	% 100	0.60	1 0 0 0	1 0 0 0
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60		
V5	Salinity (ppt)	4.2	1.00	4.2	1.00	4.2	1.00		
V6	Access Value	0.00 EM HSI =	0.10 0.44	0.35 EM HSI =	0.42 0.52	0.35 EM HSI =	0.42 0.75		
	-	OW HSI =	0.31	OW HSI =			0.36		

Project: Cycle 1 BU Site 6, Calcasieu DMMP FWP

V1 % Eme V2 % Aq V3 Intersp Clas Clas Clas Clas Clas Clas Clas Clas	ergent uatic ersion is 1	/alue	SI 0.86 0.24	Value 78 25 %	SI 0.80 0.33	Value	SI
V2 % Aq V3 Intersp Clas Clas Clas Clas Clas	uatic ersion is 1	15 %	0.24	25			
V3 Intersp Clas Clas Clas Clas Clas Clas	ersion is 1	%			0.33		
Clas Clas Clas Clas Clas Clas	is 1		1.00	%			
V4 %OW <	is 3 is 4		1.00	100	0.00	%	
	= 1.5ft	80	1.00	60	0.87		
V5 Salinity	/ (ppt)	4.2	1.00	4.2	1.00		
V6 Access	Value	0.35	0.42	0.35	0.42		
		EM HSI =	0.79	EM HSI = OW HSI =	0.65	EM HSI = OW HSI =	

Future With	uture Without Project		Total	Cummulative
ΤY	Marsh Acres	x HSI	HUs	HUs
0	0	0.23	0.00	
1	0	0.23	0.00	0.00
20	0	0.23	0.00	0.00
50	0	0.23	0.00	0.00
			AAHUs =	0.00

Future With	Future With Project		Total	Cummulative
TY	Marsh Acres	x HSI	HUs	HUs
0	0	0.23	0.00	
9	0	0.23	0.00	0.00
10	28	0.35	9.79	4.34
12	85	0.44	36.98	45.15
13	85	0.52	44.01	40.49
14	240	0.75	178.96	105.59
20	236	0.79	185.39	1093.22
50	221	0.65	142.97	3350.66
			AAHUs	92.79

NET CHANGE IN AAHUS DUE TO PROJECT	1
A. Future With Project Emergent Marsh AAHUs =	92.79
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	92.79

AAHU CALCULATION - OPEN WATER

Project: Cycle 1 BU Site 6, Calcasieu DMMP

uture Witho	uture Without Project		Total	Cummulative	
TY	Water Acres	x HSI	HUs	HUs	
0	282	0.24	66.51		
1	282	0.24	66.51	66.51	
20	282	0.27	76.19	1355.59	
50	282	0.28	79.71	2338.43	
			AAHUs =	75.21	

Future With	Future With Project		Total	Cummulative
TY	Water Acres	x HSI	HUs	HUs
0	282	0.24	66.51	
9	282	0.24	66.51	598.57
10	254	0.27	68.68	67.76
12	197	0.31	60.47	129.84
13	197	0.39	77.73	69.10
14	42	0.36	15.33	45.76
20	46	0.45	20.78	107.97
50	61	0.42	25.46	728.21
			AAHUs	34.94

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	34.94
B. Future Without Project Open Water AAHUs =	75.21
Net Change (FWP - FWOP) =	-40.27

TOTAL BENEFITS IN AAHUS DUE TO PROJECT							
A. Emergent Marsh Habitat Net AAHUs =	92.79						
B. Open Water Habitat Net AAHUs =	-40.27						
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	55.83						

Project: Cycle 1 BU Site 6, Calcasieu DMMP

Project Area:

282

Condition: Future Without Project

		TY 0		TY 1		TY 20				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	0	0.10			
V2	% Aquatic	0	0.10	0	0.10	5	0.15			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	%	0.10	0 0 0 0.1	0 0 0 0.1	
V4	%OW <= 1.5ft	10	0.23	10	0.23	10	0.23			
V5	Salinity (ppt)	4.2	1.00	4.2	1.00	4.2	1.00			
V6	Access Value	0.35	0.42	0.35	0.42	0.35	0.42			
	Emergent Marsh H	SI =	0.23	EM HSI =	0.23	EM HSI =	0.23			
	Open Water HSI	=	0.24	OW HSI =	0.24	OW HSI =	0.27			

Project: FWOP	Cycle 1 BU Sit	e 6, Calcasieu	I DMMP						
1] [TY 50						1	
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	0	0.10						
V2	% Aquatic	7	0.16						
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%		%		0 0 0 0 0.1	0 0 0 0
V4	%OW <= 1.5ft	10	0.23						
V5	Salinity (ppt)	4.2	1.00						
V6	Access Value	0.35	0.42						
		EM HSI = OW HSI =	0.23 0.28	EM HSI = OW HSI =		EM HSI = OW HSI =			

Project: Cycle 1 BU Site 6, Calcasieu DMMP

Project Area:

282

Condition: Future With Project

	1	TY 0		TY 11		TY 12				
Variable		Value	SI	Value	SI	(dike & pump year) Value	SI			
variable	<u> </u>	Value	31	value	31	value	31			
V1	% Emergent	0	0.10	0	0.10	10	0.19			
V2	% Aquatic	0	0.10	0	0.10	0	0.10			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	% 100	1.00	0 0 0 0.1	0 0 0 0	1 0 0 0 0
V4	%OW <= 1.5ft	100	0.23	100	0.23	100	0.60	0.1	011	
V5	Salinity (ppt)	4.2	1.00	4.2	1.00	4.2	1.00			
V6	Access Value	0.35	0.42	0.35	0.42	0.00	0.10			
	Emergent Marsh I	HSI =	0.23	EM HSI =	0.23	EM HSI =	0.35			
	Open Water HSI	=	0.24	OW HSI =	0.24	OW HSI =	0.27			

Project: Cycle 1 BU Site 6, Calcasieu DMMP FWP

		TY 14		TY 15 (dike degraded)		TY 16		
Variable		Value	SI	Value	SI	Value	SI	
V1	% Emergent	30	0.37	30	0.37	85	0.87	
V2	% Aquatic	10	0.19	10	0.19	10	0.19	
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	1.00	% 100	0.60	1 1 0 0 0 0 0 0 0 0
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60	
V5	Salinity (ppt)	4.2	1.00	4.2	1.00	4.2	1.00	
V6	Access Value	0.00 EM HSI =	0.10 0.44	0.35 EM HSI =	0.42 0.52	0.35 EM HSI =	0.42 0.75	
		OW HSI =	0.44					

Project: Cycle 1 BU Site 6, Calcasieu DMMP FWP

		TY 20		TY 50			
/ariable		Value	SI	Value	SI	Value	SI
V1 % Ei	mergent	84	0.86	79	0.81		
V2 % A	Aquatic	15	0.24	25	0.33		
CI CI CI CI	spersion ass 1 ass 2 ass 3 ass 4 ass 5	% 100	1.00	% 100	0.00	%	
V4 %OW	/ <= 1.5ft	80	1.00	60	0.87		
V5 Salir	nity (ppt)	4.2	1.00	4.2	1.00		
V6 Acces	ss Value	0.35	0.42	0.35	0.42		
	_	EM HSI = OW HSI =	0.79	EM HSI = OW HSI =	0.65	EM HSI = OW HSI =	

Future With	uture Without Project		Total	Cummulative
ΤY	Marsh Acres	x HSI	HUs	HUs
0	0	0.23	0.00	
1	0	0.23	0.00	0.00
20	0	0.23	0.00	0.00
50	0	0.23	0.00	0.00
			AAHUs =	0.00

Future With	Project		Total	Cummulative
TY	TY Marsh Acres		HUs	HUs
0	0	0.23	0.00	
11	0	0.23	0.00	0.00
12	28	0.35	9.79	4.34
14	85	0.44	36.98	45.15
15	85	0.52	44.01	40.49
16	240	0.75	178.96	105.59
20	238	0.79	186.96	731.90
50	222	0.65	144.64	3194.37
			AAHUs	82.44

NET CHANGE IN AAHUS DUE TO PROJECT	1
A. Future With Project Emergent Marsh AAHUs =	82.44
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	82.44

AAHU CALCULATION - OPEN WATER

Project: Cycle 1 BU Site 6, Calcasieu DMMP

uture Witho	out Project		Total	Cummulative		
TY	Water Acres	x HSI	HUs	HUs		
0	282	0.24	66.51			
1	282	0.24	66.51	66.51		
20	282	0.27	76.19	1355.59		
50	282	0.28	79.71	2338.43		
			AAHUs =	75.21		

Future With	Project		Total	Cummulative
ΤY	Water Acres	x HSI	HUs	HUs
0	282	0.24	66.51	
11	282	0.24	66.51	731.58
12	254	0.27	68.68	67.76
14	197	0.31	60.47	129.84
15	197	0.39	77.73	69.10
16	42	0.36	15.33	45.76
20	44	0.45	19.87	70.29
50	60	0.42	25.04	680.96
			AAHUs	35.91

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	35.91
B. Future Without Project Open Water AAHUs =	75.21
Net Change (FWP - FWOP) =	-39.30

TOTAL BENEFITS IN AAHUS DUE TO PROJECT							
A. Emergent Marsh Habitat Net AAHUs =	82.44						
B. Open Water Habitat Net AAHUs =	-39.30						
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	48.62						

Land Loss Spreadsheet

						LOSS	Rate Calcula Beginning	Ending	
Project:	BU 6, Cycle	e 1			Beginning	Ending	Beginning Year	Year	
	_, _, si		· · · ·	_	Year	Year	Acreage		Loss Rate
Total Acres		TY0 Marsh Acres		TY0 Water Acres	1974	1990	17,320	16,100	-0.004555
282		0		236	FV	/P Land Los	ss Reduction	0.50	
	11	FWOP					FWP		
TY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	TY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)
0		0	0%	282	0		0	0%	282
1 2	-0.004555	0	0% 0%	282 282	10 11	0	28 28	10%	254 254
3	-0.004555	0	0%	282	12	0	28 85	30%	254
4	-0.004555	0	0%	282	13	-0.002277	85	30%	197
5	-0.004555	0	0%	282	14	-0.002277	240	85%	42
6 7	-0.004555	0	0% 0%	282 282	15 16	-0.002277	239 239	<u>85%</u> 85%	43 43
8	-0.004555	0	0%	282	16	-0.002277	239	85% 84%	43
9	-0.004555	0	0%	282	18	-0.002277	238	84%	44
10	-0.004555	0	0%	282	19	-0.002277	237	84%	45
11 12	-0.004555	0	0%	282 282	20 21	-0.002277	236 236	84% 84%	46
12	-0.004555 -0.004555	0	0%	282	21	-0.002277	236	84%	46 47
14	-0.004555	0	0%	282	23	-0.002277	235	83%	47
15	-0.004555	0	0%	282	24	-0.002277	234	83%	48
16	-0.004555	0	0%	282	25	-0.002277	234	83%	48
17 18	-0.004555 -0.004555	0	0% 0%	282 282	26 27	-0.002277 -0.002277	233 233	<u>83%</u> 83%	49 49
19	-0.004555	0	0%	282	28	-0.002277	232	82%	50
20	-0.004555	0	0%	282	29	-0.002277	232	82%	50
21	-0.004555	0	0%	282	30	-0.002277	231	82%	51
22 23	-0.004555 -0.004555	0	0% 0%	282 282	31 32	-0.002277	231 230	<u>82%</u> 82%	51 52
24	-0.004555	0		282	33	-0.002277	230	81%	52
25	-0.004555	0	0%	282	34	-0.002277	229	81%	53
26 27	-0.004555 -0.004555	0		282 282	35 36	-0.002277	228 228	<u>81%</u> 81%	54 54
28	-0.004555	0		282	30	-0.002277	220	81%	55
29	-0.004555	0		282	38	-0.002277	227	80%	55
30	-0.004555	0		282	39	-0.002277	226	80%	56
31 32	-0.004555 -0.004555	0		282 282	40 41	-0.002277	226 225	<u>80%</u> 80%	56 57
33	-0.004555	0		282	42	-0.002277	225	80%	57
34	-0.004555	0	0%	282	43	-0.002277	224	80%	58
35	-0.004555	0		282	44	-0.002277	224	79%	58
36 37	-0.004555 -0.004555	0		282 282	45 46	-0.002277 -0.002277	223 223	<u>79%</u> 79%	59 59
38	-0.004555	0		282	47	-0.002277	223	79%	60
39	-0.004555	0	0%	282	48	-0.002277	222	79%	60
40	-0.004555	0		282	49	-0.002277	221	78%	61
41 42	-0.004555	0	0%	282 282	50 51	-0.002277	221 220	78%	61 62
42	-0.004555	0		282	51	-0.002277	220	78%	62
44	-0.004555	0		282	53	-0.002277	219	78%	63
45	-0.004555	0		282	54	-0.002277	219	78%	63
46	-0.004555	0		282	55	-0.002277	218	77%	64
47 48	-0.004555 -0.004555	0		282 282	56 57	-0.002277	218 217	<u>77%</u> 77%	64 65
49	-0.004555	0		282	58	-0.002277	217	77%	65
50	-0.004555	0		282	59	-0.002277	216	77%	66

Land Loss Spreadsheet

						Loss	Rate Calcula	ation		
							Beginning	Ending		
roject:	BU 6, Cycle	e 2			Beginning	Ending	Year	Year		
	· · · ·				Year	Year	Acreage	Acreage	Loss Rate	
Total		TY0 Marah		TY0 Water	4074	1000	47.000	40.400	0.004555	
Acres		Marsh		Water	1974	1990	17,320	16,100	-0.004555	
		Acres		Acres						
282		0		236	F۷	VP Land Los	ss Reduction	0.50		
	•	FWOP		-			FWP		•	
		Moreh	% Marah	Motor			Marah	% Marsh	Water	
ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	TY	Loss Rate	Marsh (acres)	(V1)	Water (acres)	Net Acre of Marsh
		(acres)	(*1)	(40103)			(acres)	(VI)	(40103)	011010131
0		0	0%	282	0		0	0%	282	
1	-0.004555	0	0%	282	12	0	28	10%	254	2
2	-0.004555	0	0%	282	13	0	28	10%	254	2
3	-0.004555	0	0%	282	14	0	85	30%	197	8
4	-0.004555	0	0%	282	15	-0.002277	85	30%	197	8
5	-0.004555	0	0%	282	16	-0.002277	240	85%	42	24
6	-0.004555	0	0%	282	17	-0.002277	239	85%	43	23
7 8	-0.004555	0	0% 0%	282	18 19	-0.002277	239	85% 84%	43	23 23
9	-0.004555 -0.004555	0	0%	282 282	19 20	-0.002277	238 238	84%	44 44	23
10	-0.004555	0	0%	282	21	-0.002277	237	84%	45	23
11	-0.004555	0	0%	282	22	-0.002277	236	84%	46	23
12	-0.004555	0	0%	282	23	-0.002277	236	84%	46	23
13	-0.004555	0	0%	282	24	-0.002277	235	83%	47	23
14	-0.004555	0	0%	282	25	-0.002277	235	83%	47	23
15	-0.004555	0	0%	282	26	-0.002277	234	83%	48	23
16 17	-0.004555 -0.004555	0	0% 0%	282 282	27 28	-0.002277	234 233	83% 83%	48 49	23 23
18	-0.004555	0	0%	282	20	-0.002277	233	83%	49	23
19	-0.004555	0	0%	282	30	-0.002277	232	82%	50	23
20	-0.004555	0	0%	282	31	-0.002277	232	82%	50	23
21	-0.004555	0	0%	282	32	-0.002277	231	82%	51	23
22	-0.004555	0	0%	282	33	-0.002277	231	82%	51	23
23	-0.004555	0	0%	282	34	-0.002277	230	82%	52	23
24	-0.004555	0	0%	282	35	-0.002277	230	81%	52	23
25 26	-0.004555 -0.004555	0	0% 0%	282 282	36 37	-0.002277	229 228	81% 81%	53 54	22 22
20	-0.004555	0	0%	282	38	-0.002277	220	81%	54	22
28	-0.004555	0	0%	282	39	-0.002277	227	81%	55	22
29	-0.004555	0	0%	282	40	-0.002277	227	80%	55	22
30	-0.004555	0	0%	282	41	-0.002277	226	80%	56	22
31	-0.004555	0	0%	282	42	-0.002277	226	80%	56	22
32 33	-0.004555 -0.004555	0	0% 0%	282 282	43 44	-0.002277	225 225	80% 80%	57 57	22 22
33	-0.004555	0	0%	282	44	-0.002277	225	80% 80%	57	22
35	-0.004555	0	0%	282	46	-0.002277	224	79%	58	22
36	-0.004555	0	0%	282	47	-0.002277	223	79%	59	22
37	-0.004555	0	0%	282	48	-0.002277	223	79%	59	22
38	-0.004555	0	0%	282	49	-0.002277	222	79%	60	22
39	-0.004555	0	0%	282	50	-0.002277	222	79%	60	22
40	-0.004555	0	0%	282	51	-0.002277	221	78%	61	22
41 42	-0.004555 -0.004555	0	0% 0%	282 282	52 53	-0.002277 -0.002277	221 220	78% 78%	61 62	22 22
42	-0.004555	0	0%	282	53 54	-0.002277	220	78%	62	22
43	-0.004555	0	0%	282	54 55	-0.002277	220	78%	63	22
45	-0.004555	0	0%	282	56	-0.002277	219	78%	63	21
46	-0.004555	0	0%	282	57	-0.002277	218	77%	64	21
47	-0.004555	0	0%	282	58	-0.002277	218	77%	64	21
48 49	-0.004555	0	0%	282	59	-0.002277	217	77%	65	21
	-0.004555	0	0%	282	60	-0.002277	217	77%	65	21

Beneficial Use Site 7

Beneficial Use (BU) Site 7 (Bel Property)

I. Project Location/Area

This wetland value assessment (WVA) focuses on BU Site 7 (Figure 1), which is owned by the Bel family. This 2498-acre area is located in Cameron Parish approximately six miles southwest of Hackberry, Louisiana.

II. Goals

The project goal is to create intertidal marsh and shallow open water habitat within this 2498acre project area. There are 2267 acres of open water found in the project area. Approximately 6.7 million cubic yards of material would be dredged from the Calcasieu Ship Channel (between miles 16 and 21) in two pumping cycles to create approximately 1694 acres of intertidal, brackish marsh habitat in BU Site 7. The marsh and estuarine habitat created would achieve a ratio of 85% marsh to 15% shallow open water.

III. Project Features

For the two pumping cycles, a total of 6,776,000 cyds of material would be pumped, with 3,388,000 cyds in both cycles. Two 847-acre cells would be created to accommodate the two pumping cycles. To assess habitat benefits, a WVA was prepared for both of the two pumping cycles. It was assumed that containment dikes would be degraded three years after the last pumping cycle.

IV. WVA Variables and Assumptions

The following is a description of assumptions created for the two dredging cycles (cells). The same assumptions apply to both cycles, but target years (i.e., years that dikes would be constructed and dredged material pumped) would differ.

Cycle 1

Variable 1 – Emergent Vegetation

FWOP: There is 0% emergent marsh in the open water areas where the cells would be constructed.

FWP: To estimate the potential amount of marsh acres that could be created with the dredged material, the CWPPRA Sabine Refuge Marsh Creation (CS-28), Cycle 1 project was used as a reference site. That project created marsh by pumping material into an area confined by earthen dikes. It was found that approximately 4,000 cyds of dredge material created 1 acre of marsh.

A total of 3,388,000 cyds of dredged material will be pumped into this 847-acre cell.

 \rightarrow 3,388,000 cyds / 4,000 cyds per acre = 847 acres

Based on USACE knowledge and experience of dredging operations, a maximum of 85% of this material will form into vegetated marsh, and the remaining 15% of the area would be shallow open water (also called mudflats).

Target Year (TY) 0: ~ 0 acres of existing marsh (0%) TY 16 – 0% TY 17(dike & pump year) –10% of the dredged material would be marsh (.10*847 ac = 84.7 ac of marsh) TY 19 (2 years after pumping) – 30% marsh (.3 * 847 ac = 254.1 ac of marsh) TY 21 (4 years after pumping) – 85% marsh (.85 * 847 ac = 719.95 ac of marsh)

Marsh loss data was obtained from the Louisiana Coastal Area project report *Coast 2050: Toward a Sustainable Coastal Louisiana* (1998), Appendix F. The loss rate of -0.0045 is used for future-without-project (FWOP). Without the project, there would be no marsh restoration in this project area, so the loss rate would not apply. However, for the futurewith-project (FWP) scenario, loss rates would apply after the material is pumped and the dike degraded. Marsh created in a confined area would likely differ in some aspects from naturally occurring marsh: it would be slightly higher in elevation than natural marsh, and its density would differ from natural marsh due to consolidation and type of material. Therefore, the loss rate that would be applied would differ as well; it would be reduced by 50% to account for these attributes. Therefore, for FWP, a loss rate of -0.0023 was applied starting the year that the dike would be degraded.

TY 20 (or 3 years after pumping): dike degraded and land loss rate of -0.0023 was applied. TY 50: 80% marsh

Variable 2 – Submerged Aquatic Vegetation (SAV)

Currently, large open water areas of the site allow increased wave fetch. In the past, the area has experienced higher levels of salt water intrusion causing the marsh to transition from an intermediate marsh to a more brackish marsh. According to Billy Leonard, Oil and Gas Specialist / Wildlife Biologist with the Southwest Louisiana National Wildlife Refuge Complex, no SAV has been observed in the area of BU Site 7 during field inspections and no significant populations are expected to occur in the future (Personal communication, April 2008).

FWOP

TY 0: 0% TY 1: 0 % TY 20: 2 % TY 50: 2%

FWP:

TY 1: 0% TY 5: 10% TY 12: 15 % TY 20: 20% TY 50: 20%

Variable 3 – Interspersion

FWOP: The lowest expression of interspersion, Class 5, is characterized by open water and less than 5% of emergent marsh. Without marsh restoration efforts, 100% of the 2267-acre open water area falls into Class 5. Interspersion classifications are not expected to change within the 50-year assessment period for FWOP (i.e., marsh will not occur naturally).

FWP: Areas exhibiting a high degree of marsh cover are ranked as having a high degree of dispersion (Class 1 or Class 2). It is assumed that the confined area would achieve a Class 1 once the dredged material is pumped for this cycle because of the ratio of marsh to open water (85% marsh/15% open water). 100% of the project area would fall into Class 1 starting the first year it is pumped (TY 1) and throughout the remainder of the 20-year DMMP project life. By TY 50, the area falls to Class 2 due to landloss rates.

Target Year	Class 1	%	Class 2	%	Class 5	%
0					847 ac	100
16					847 ac	100
17 (dike & pump)	847 ac	100				
20	847 ac	100				
50			847 ac	100		

Table 1: FWP Interspersion Classification

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal conditions are expected to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep. According to DNR Sonris data, the average water depth in the project area is 2.3'. In the FWOP scenario, 10% of Cell 1 would be classified as </= 1.5'. Once the dredged material is pumped into the area, 100% of the water in the cell would be shallow.

FWOP:

(TY 0): 10% * 847 ac of open water </= 1.5 ft

FWP:

TY 0 (shallow open water) = 10% or same as FWOP TY 16 = 10% TY 17 (dike & pump year) = 100%. TY 20 = 80% TY 50 = 60%

Variable 5 – Salinity

Hydrographic data was downloaded by station number from the Louisiana DNR SONRIS site (accessed July 30, 2008, GEC). All data has been corrected for biofouling, instrument drift, and/or instrument malfunction.

Monthly water salinity records collected during 2007-2008 show that average annual salinity for the Coastal Restoration Monitoring Station located near the project area is 7.3 parts per thousand (ppt).

The salinity is expected to remain constant throughout the life of this project.

Variable 6 – Fish Access

Access by aquatic organisms is considered to be a critical component in assessing the quality of a given marsh system. The suitability index (SI) for this variable is determined by calculating an "access value" based on the percentage of the project area wetlands considered accessible by aquatic organisms during normal tidal fluctuations, and the type of man-made structures (if any) across identified points of ingress/egress (e.g., bayous, canals, etc.). A brackish marsh with no access is assigned an SI of .2. A solid plug is assigned an SI of .0001. A completely open system is assigned an SI of 1.0.

FWOP: This area is considered an open system, and is therefore assigned an access value of 1.0.

TY 0: 1.0 TY 1: 1.0 TY 20: 1.0 TY 50: 1.0

FWP: The current access value, as noted previously, is 1.0. During target year TY 17, the dike would be constructed, resulting in an access value of 0.0001 and is expected to remain at 0.0001 until the dike degrades in TY 20. The degree of access would then return to the original value of 1.0 and remain there throughout the 50 year assessment period.

TY 0: 1.0 TY 16: 1.0 TY 17 (dike & pump year): 0.0001 TY 20 (dike degradation): 1.0 TY 50: 1.0

Cycle 2

The above assumptions were applied to Cycle 2 Target Years, which include the following:

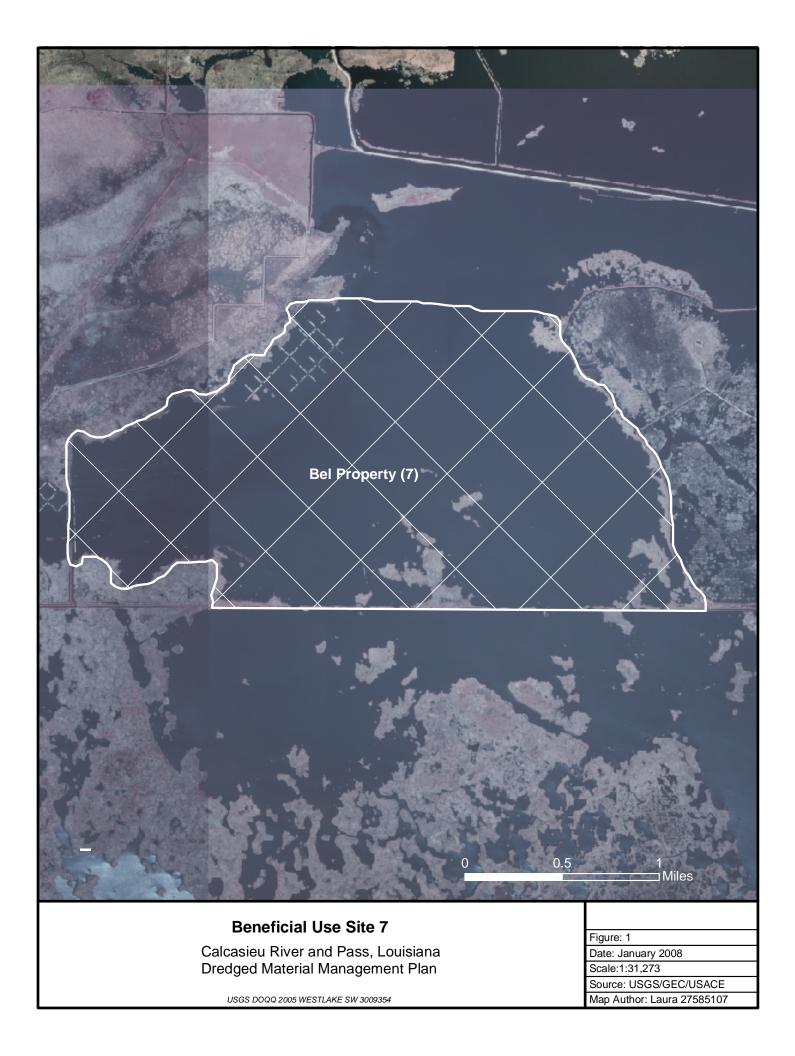
FWOP:

TY 0, TY 1, TY 20, TY 50

FWP:

TY 0: Same as FWOP

TY 17: Same as TY 0


TY 18: Dike construction and pump year. 10% credit given to marsh creation.

TY 20: Two years after pumping. 30% credit given to marsh creation.

TY 21: Dike degradation (3 years after pumping)

TY 22: Four years after pumping. 85% credit given to fully vegetated marsh

TY 50: Land loss rates have reduced the amount of marsh from 85% of project area to 80%

Project: Cycle 1, BU Site 7, Calcasieu DMMP

```
Project Area:
```

847

Condition: Future Without Project

	1	TY 0		TY 1		TY 20				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	0	0.10			
V2	% Aquatic	0	0.10	0	0.10	2	0.12			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	%	0.10	0 0 0 0.1	0 0 0 0	0.
V4	%OW <= 1.5ft	10	0.23	10	0.23	10	0.23			
V5	Salinity (ppt)	7.3	1.00	7.3	1.00	7.3	1.00			
V6	Access Value	1.00	1.00	1.00	1.00	1.00	1.00			
	Emergent Marsh	HSI =	0.25	EM HSI =	0.25	EM HSI =	0.25			
	Open Water HSI	=	0.29	OW HSI =	0.29	OW HSI =	0.31			

Project: FWOP	Cycle 1, BU S	ite 7, Calcasie	u DMMP						
	1	TY 50							
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	0	0.10						
V2	% Aquatic	2	0.12						
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%		%		0 0 0 0 0.1	0 0 0 0
V4	%OW <= 1.5ft	10	0.23						
V5	Salinity (ppt)	7.3	1.00						
V6	Access Value	1.00	1.00						
		EM HSI =	0.25	EM HSI =		EM HSI =			
		OW HSI =	0.31	OW HSI =		OW HSI =		l	

Project: Cycle 1, BU Site 7, Calcasieu DMMP

Project Area:

847

Condition: Future With Project

		TY 0		TY 16		TY 17				
						(dike & pump year)				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	10	0.19			
V2	% Aquatic	0	0.10	0	0.10	0	0.10			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	% 100	1.00	0 0 0 0.1	0 0 0 0.1	1 0 0 0
V4	%OW <= 1.5ft	10	0.23	10	0.23	100	0.60			
V5	Salinity (ppt)	7.3	1.00	7.3	1.00	7.3	1.00			
V6	Access Value	1.00	1.00	1.00	1.00	0.00	0.10			
	Emergent Marsh I	HSI =	0.25	EM HSI =		EM HSI =	0.35			
	Open Water HSI	=	0.29	OW HSI =	0.29	OW HSI =	0.27			

Project: Cycle 1, BU Site 7, Calcasieu DMMP FWP

		TY 19		TY 20		TY 21			
			01	(dike degraded)				-	
Variable		Value	SI	Value	SI	Value	SI	ļ	
V1	% Emergent	30	0.37	30	0.37	85	0.87		
V2	% Aquatic	10	0.19	15	0.24	20	0.28		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	1.00	% 100	0.60	1 0 0 0 0	1 0 0 0
V4	%OW <= 1.5ft	100	0.60	100	0.60	80	1.00		
V5	Salinity (ppt)	7.3	1.00	7.3	1.00	7.3	1.00		
V6	Access Value	0.00	0.10	1.00	1.00	1.00	1.00		
		EM HSI = OW HSI =	0.44	EM HSI = OW HSI =					

Project: Cycle 1, BU Site 7, Calcasieu DMMP FWP

]	TY 50							
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	80	0.82						
V2	% Aquatic	20	0.28						
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.60	%		%		0 0.6 0 0 0	
V4	%OW <= 1.5ft	60	0.87						
V5	Salinity (ppt)	7.3	1.00						
V6	Access Value	1.00	1.00						
		EM HSI = OW HSI =	0.85 0.55	EM HSI = OW HSI =		EM HSI = OW HSI =			

Future With	out Project		Total	Cummulative
ΤY	Marsh Acres	x HSI	HUs	HUs
0	0	0.25	0.00	
1	0	0.25	0.00	0.00
20	0	0.25	0.00	0.00
50	0	0.25	0.00	0.00
			AAHUs =	0.00

Future With	Project		Total	Cummulative
TY	TY Marsh Acres		HUs	HUs
0	0	0.25	0.00	
16	0	0.25	0.00	0.00
17	85	0.35	29.72	13.51
19	254	0.44	110.50	135.42
20	254	0.58	148.39	129.45
21	720	0.87	628.89	366.17
50	674	0.85	569.83	10224.72
			AAHUs	217.39

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	217.39
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	217.39

AAHU CALCULATION - OPEN WATER

Project: Cycle 1, BU Site 7, Calcasieu DMMP

Future Witho	out Project		Total	Cummulative
TY	Water Acres	x HSI	HUs	HUs
0	847	0.29	248.83	
1	847	0.29	248.83	248.83
20	847	0.31	266.11	4891.99
50	847	0.31	266.11	7983.36
			AAHUs =	262.48

Future With	Project		Total	Cummulative
TY	Water Acres	x HSI	HUs	HUs
0	847	0.29	248.83	
16	847	0.29	248.83	3981.36
17	762	0.27	206.04	227.11
19	593	0.31	182.02	390.12
20	593	0.52	307.65	244.84
21	127	0.55	70.48	191.87
50	173	0.55	94.36	2392.34
			AAHUs	148.55

NET CHANGE IN AAHUS DUE TO PROJECT		
A. Future With Project Open Water AAHUs	=	148.55
B. Future Without Project Open Water AAHUs	=	262.48
Net Change (FWP - FWOP) =		-113.93

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	217.39
B. Open Water Habitat Net AAHUs =	-113.93
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	125.35

Project: Cycle 2, BU Site 7, Calcasieu DMMP

```
Project Area:
```

847

Condition: Future Without Project

	1	TY 0		TY 1		TY 20				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	0	0.10			
V2	% Aquatic	0	0.10	0	0.10	2	0.12			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	%	0.10	0 0 0 0.1	0 0 0 0.1	0.
V4	%OW <= 1.5ft	10	0.23	10	0.23	10	0.23			
V5	Salinity (ppt)	7.3	1.00	7.3	1.00	7.3	1.00			
V6	Access Value	1.00	1.00	1.00	1.00	1.00	1.00			
	Emergent Marsh	HSI =	0.25	EM HSI =	0.25	EM HSI =	0.25			
	Open Water HSI	=	0.29	OW HSI =	0.29	OW HSI =	0.31			

	1	TY 50							
Variable	ļ	Value	SI	Value	SI	Value	SI	i	
V1	% Emergent	0	0.10						
V2	% Aquatic	2	0.12						
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%		%		0 0 0 0 0.1	
V4	%OW <= 1.5ft	10	0.23						
V5	Salinity (ppt)	7.3	1.00						
V6	Access Value	1.00	1.00						
		EM HSI =	0.25	EM HSI =		EM HSI =			

Project: Cycle 2, BU Site 7, Calcasieu DMMP

Project Area:

847

Condition: Future With Project

		TY 0		TY 17		TY 18 (dike & pump year)				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	10	0.19			
V2	% Aquatic	0	0.10	0	0.10	0	0.10			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	% 100	0.10	% 100	1.00	0 0 0 0.1	0 0 0 0 0.1	
V4	%OW <= 1.5ft	10	0.23	10	0.23	100	0.60			
V5	Salinity (ppt)	7.3	1.00	7.3	1.00	7.3	1.00			
V6	Access Value	1.00	1.00	1.00	1.00	0.00	0.10			
	Emergent Marsh H Open Water HSI	SI = =	0.25 0.29	EM HSI = OW HSI =	0.25 0.29	EM HSI = OW HSI =	0.35 0.27			

Project: Cycle 2, BU Site 7, Calcasieu DMMP FWP

		TY 20		TY 21		TY 22			
				(dike degraded)					
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	30	0.37	30	0.37	85	0.87		
V2	% Aquatic	10	0.19	15	0.24	15	0.24		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	1.00	% 100	0.60	1 0 0 0	1 0 0 0
V4	%OW <= 1.5ft	100	0.60	100	0.60	80	1.00		
V5	Salinity (ppt)	7.3	1.00	7.3	1.00	7.3	1.00		
V6	Access Value	0.00 EM HSI =	0.10 0.44	1.00 EM HSI =	1.00 0.58	1.00 EM HSI =	1.00	1	
		OW HSI =	0.44	OW HSI =					

Project: Cycle 2, BU Site 7, Calcasieu DMMP FWP

		TY 50							
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	80	0.82						
V2	% Aquatic	20	0.28						
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	0.60	%		%		0 0.6 0 0 0	
V4	%OW <= 1.5ft	60	0.87						
V5	Salinity (ppt)	7.3	1.00						
V6	Access Value	1.00	1.00						
		EM HSI =	0.85	EM HSI =		EM HSI =		l	
		OW HSI =	0.55	OW HSI =		OW HSI =			

Future With	out Project		Total	Cummulative
ΤY	Marsh Acres	x HSI	HUs	HUs
0	0	0.25	0.00	
1	0	0.25	0.00	0.00
20	0	0.25	0.00	0.00
50	0	0.25	0.00	0.00
			AAHUs =	0.00

Future With	Project		Total	Cummulative
ΤY	Marsh Acres	x HSI	HUs	HUs
0	0	0.25	0.00	
17	0	0.25	0.00	0.00
18	85	0.35	29.72	13.51
20	254	0.44	110.50	135.42
21	254	0.58	148.39	129.45
22	720	0.87	628.89	366.17
50	50 675		570.67	9894.89
			AAHUs	210.79

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	210.79
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	210.79

AAHU CALCULATION - OPEN WATER

Project: Cycle 2, BU Site 7, Calcasieu DMMP

Future Witho	out Project		Total	Cummulative		
TY	Water Acres	x HSI	HUs	HUs		
0	847	0.29	248.83			
1	847	0.29	248.83	248.83		
20	847	0.31	266.11	4891.99		
50	847	0.31	266.11	7983.36		
			AAHUs =	262.48		

Future With	Project		Total	Cummulative		
TY	Water Acres	x HSI	HUs	HUs		
0	847	0.29	248.83			
17	847	0.29	248.83	4230.19		
18	762	0.27	206.04	227.11		
20	593	0.31	182.02	390.12		
21	593	0.52	307.65	244.84		
22	127	0.52	65.89	186.77		
50	50 172		93.82	2230.28		
			AAHUs	150.19		

NET CHANGE IN AAHUS DUE TO PROJECT		
A. Future With Project Open Water AAHUs	=	150.19
B. Future Without Project Open Water AAHUs	=	262.48
Net Change (FWP - FWOP) =		-112.30

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	210.79
B. Open Water Habitat Net AAHUs =	-112.30
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	121.04

Land Loss Spreadsheet

						Loss	Rate Calcula			
							Beginning	Ending		
Project:	BU 7, Cycle	e 1			Beginning	Ending	Year	Year		
	· · · · ·				Year	Year	Acreage	Acreage	Loss Rate	
Total Acres		TY0 Marsh Acres		TY0 Water Acres	1974	1990	17,320	16,100	-0.004555	
847	,	0		847	EV	Plandlo	ss Reduction	0.50		
047		FWOP		047	ΓV	VP Lanu Lo:	FWP	0.50		
		TWOP								
ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	Net Acre of Mars
0		0	0%	847	0		0	0%	847	
1	-0.004555	0	0%	847	17	0	85	10%	762	
2	-0.004555	0		847	18	0	85	10%	762	
3 4	-0.004555 -0.004555	0	0% 0%	<u>847</u> 847	19 20	0 -0.002277	254 254	30%	593	
<u>4</u> 5	-0.004555	0		<u>847</u> 847	20 21	-0.002277	254 720	<u> </u>	593 127	2
6	-0.004555	0		847	21	-0.002277	718	85%	127	7
7	-0.004555	0		847	23	-0.002277	717	85%	130	7
8	-0.004555	0		847	24	-0.002277	715	84%	132	7
9	-0.004555	0	0%	847	25	-0.002277	713	84%	134	7
10	-0.004555	0	0%	847	26	-0.002277	712	84%	135	7
11 12	-0.004555	0	0% 0%	847	27 28	-0.002277	710	<u>84%</u> 84%	137	7
12	-0.004555 -0.004555	0		<u>847</u> 847	28	-0.002277 -0.002277	709 707	84%	138 140	7 7
14	-0.004555	0		847	30	-0.002277	707	83%	140	7
15	-0.004555	0	0%	847	31	-0.002277	704	83%	143	7
16	-0.004555	0		847	32	-0.002277	702	83%	145	7
17	-0.004555	0	0%	847	33	-0.002277	701	83%	146	7
18	-0.004555	0		847	34	-0.002277	699	83%	148	6
19	-0.004555	0		847	35	-0.002277	697	82%	150	6
20	-0.004555	0		847	36 37	-0.002277	696	82%	151	6
21 22	-0.004555 -0.004555	0		847 847	37	-0.002277	694 693	82% 82%	153 154	6 6
22	-0.004555	0	0%	847	39	-0.002277	693	82%	154	6
24	-0.004555	0		847	40	-0.002277	689	81%	158	6
25	-0.004555	0		847	41	-0.002277	688	81%	159	6
26	-0.004555	0	0%	847	42	-0.002277	686	81%	161	6
27	-0.004555	0		847		-0.002277	685	81%	162	6
28	-0.004555	0		847	44	-0.002277	683	81%	164	6
29	-0.004555	0		847	45	-0.002277	682	80%	165	6
30 31	-0.004555 -0.004555	0		<u>847</u> 847	46 47	-0.002277	680 679	<u>80%</u> 80%	167 168	6 6
32	-0.004555	0		847	47	-0.002277	679	80%	170	6
33	-0.004555	0		847	49	-0.002277	675	80%	170	6
34	-0.004555	0		847	50	-0.002277	674	80%	173	
35	-0.004555	0	0%	847	51	-0.002277	672	79%	175	6
36	-0.004555	0		847	52	-0.002277	671	79%	176	6
37	-0.004555	0		847	53	-0.002277	669	79%	178	6
38	-0.004555 -0.004555	0		847	54	-0.002277	668	79%	179	6
39 40	-0.004555	0	0% 0%	<u>847</u> 847	55 56	-0.002277	666 665	<u>79%</u> 78%	181 182	6 6
40	-0.004555	0		847	50	-0.002277	663	78%	184	6
42	-0.004555	0		847	58	-0.002277	662	78%	185	6
43	-0.004555	0		847	59	-0.002277	660	78%	187	6
44	-0.004555	0		847	60	-0.002277	659	78%	188	6
45	-0.004555	0		847	61	-0.002277	657	78%	190	6
46	-0.004555	0		847	62	-0.002277	656	77%	191	6
47	-0.004555	0		847	63	-0.002277	654	77%	193	6
48	-0.004555 -0.004555	0		847 847	64 65	-0.002277 -0.002277	653 651	77% 77%	194 196	6 6
49		0	11%	847	- nn		651		106	6

Land Loss Spreadsheet

						Loss	Rate Calcula			
		•			.		Beginning	Ending		
roject:	BU 7, Cycle	e 2			Beginning Year	Ending Year	Year Acreage	Year Acreage	Loss Rate	
Total Acres		TY0TY0MarshWaterAcresAcres				1990	17,320	16,100		
847	,	0		847	F۱۸	/Plandlo	ss Reduction	0.50	50	
047		FWOP		1+0	1.0		FWP	0.00		
TY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	TY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	
0		0	0%	847	0		0	0%	847	
<u>0</u> 1	-0.004555	0	0%	<u>847</u> 847	18	0	85	10%	762	
2	-0.004555	0	0%	847	19	0	85	10%	762	
3	-0.004555	0	0%	847	20	0	254	30%	593	
4	-0.004555	0	0%	847	21	-0.002277	254	30%	593	
5	-0.004555	0	0%	847	22	-0.002277	720	85%	127	
6	-0.004555	0		847	23	-0.002277	718	85%	129	
7	-0.004555	0	0%	847	24	-0.002277	717	85%	130	
8	-0.004555	0	0%	847	25	-0.002277	715	84%	132	
9	-0.004555	0	0%	847	26	-0.002277	713	84%	134	
10	-0.004555	0	0%	847	27	-0.002277	712	84%	135	
11 12	-0.004555 -0.004555	0		<u>847</u> 847	28 29	-0.002277	710 709	<u>84%</u> 84%	137 138	
12	-0.004555	0	0%	847	29 30	-0.002277	709	84%	138	
13	-0.004555	0	0%	847	30	-0.002277	707	83%	140	
15	-0.004555	0	0%	847	32	-0.002277	704	83%	142	
16	-0.004555	0	0%	847	33	-0.002277	702	83%	145	
17	-0.004555	0	0%	847	34	-0.002277	701	83%	146	
18	-0.004555	0	0%	847	35	-0.002277	699	83%	148	
19	-0.004555	0	0%	847	36	-0.002277	697	82%	150	
20	-0.004555	0	0%	847	37	-0.002277	696	82%	151	
21	-0.004555	0	0%	847	38	-0.002277	694	82%	153	
22	-0.004555	0	0%	847	39	-0.002277	693	82%	154	
23	-0.004555	0		847	40	-0.002277	691	82%	156	
24 25	-0.004555	0		847	41 42	-0.002277	689 688	81%	158	
25 26	-0.004555 -0.004555	0	0% 0%	<u>847</u> 847	42	-0.002277	688 686	<u>81%</u> 81%	159 161	
20	-0.004555	0		847	43	-0.002277	685	81%	161	
28	-0.004555	0	0%	847	45	-0.002277	683	81%	164	
29	-0.004555	0		847	46	-0.002277	682	80%	165	
30	-0.004555	0	0%	847	47	-0.002277	680	80%	167	
31	-0.004555	0		847	48	-0.002277	679	80%	168	
32	-0.004555	0		847	49	-0.002277	677	80%	170	
33	-0.004555	0	0%	847	50	-0.002277	675	80%	172	
34 35	-0.004555 -0.004555	0	0% 0%	<u>847</u> 847	51 52	-0.002277	674 672	80% 79%	173 175	
36	-0.004555	0		847	52	-0.002277	672	79%	175	
37	-0.004555	0		847	54	-0.002277	669	79%	178	
38	-0.004555	0		847	55	-0.002277	668	79%	170	
39	-0.004555	0	0%	847	56	-0.002277	666	79%	181	
40	-0.004555	0	0%	847	57	-0.002277	665	78%	182	
41	-0.004555	0	0%	847	58	-0.002277	663	78%	184	
42	-0.004555	0		847	59	-0.002277	662	78%	185	
43	-0.004555	0		847	60	-0.002277	660	78%	187	
44	-0.004555	0		847	61	-0.002277	659	78%	188	
45	-0.004555	0	0%	847	62	-0.002277	657	78%	190	
46	-0.004555	0		847	63 64	-0.002277	656 654	77%	191	
47 48	-0.004555 -0.004555	0	0% 0%	<u>847</u> 847	64 65	-0.002277	654 653	<u>77%</u> 77%	193 194	
	-0.004555	0		847	60 66	-0.002277	653	77%	194	
49										

Beneficial Use Site 18

Calcasieu DMMP: Sabine Unit 1A, BU Site 18

Project Location/Area

For this WVA, an approximately 1,000-acre open water area in Unit 1a of the Sabine NWR, Cameron Parish, Louisiana, was delineated.

Variable 1 – Emergent Vegetation

Approximately 1,389,300 cubic yards of material would be pumped in six dredging cycles making approximately 8,335,800 cyds of material available to create approximately 600 acres of intertidal, brackish marsh and 400 acres of shallow open water habitat.

Dredged sediments pumped would be unconfined and earthen dikes would not be constructed to contain the dredged materials. This impounded area will be breached at some point to facilitate the movement of dredge material throughout the area. Material would be pumped adjacent to existing wetland vegetation to allow sediments to stack to an elevation conducive for emergent marsh vegetation. Dredged material slurry would be allowed to overflow existing emergent marsh vegetation within the project area, but would not be allowed to exceed a height of approximately one-foot above the existing marsh elevation. Material is expected to stack up where existing marsh allows; however, depending on pipe placement and movement, material is likely to create an abundance of mudflat/shallow open water. Subsequent dredging cycles would be pumped adjacent to existing marsh and/or the marsh platform created during the previous pumping event. Tidal inlets and channels are expected to be created during the pumping of dredge material and by natural tidal fluctuations.

Because unconfined dredge material placement is a relatively unpracticed technique for marsh creation, several assumptions have been made using known values from confined beneficial use marsh creation sites in the vicinity.

FWOP

TY 0: 0 acres/~ 1,000 ac project area (PA) = 0% emergent marsh (EM)

FWP

This area is relatively shallow which would require less material to achieve marsh elevations. Assuming that the average depth is approximately 1.5 feet and initial target elevations are +4.5 ft MLG, approximately 850 acres of marsh could be created (i.e., provided that the marsh creation area were confined with dikes and weirs). According to Corps, where healthy marsh borders proposed unconfined marsh creation areas, material is likely to stack in a manner similar to confined BU marsh creation areas. Also, with beneficial use of dredge material projects, generally approximately 85% of marsh is created in confined marsh creation areas. It is assumed for this analysis that 75% of dredge material pumped adjacent to healthy marsh would create elevations conducive for marsh creation, and 25% would create shallow open water habitat (i.e., mudflats). Material is expected to overflow the existing marsh; however, for this analysis nourishment was not considered because of the minimal amount of wetlands that exists within the open water area.

• One (1) acre of marsh would require 261,360 cubic feet of material:

4.5'MLG + 1.5' water depths = 6' x 43,560 sq ft = 261,360 cubic feet/27 = 9,680 cubic yards

- One (1) acre of mudflat would require 65,340 cubic feet of material:
 1.5' X 43,560 sq. ft = 65,340 cubic ft/27 = 2,420 cubic yards
- Therefore.

75% of 1,389,300 cyds = 1,041,975 cyds/ 9,680 cyds = **108 acres of marsh x 6 cycles = 648 acres of marsh total**

25% of 1,389,300 cyds = 347,325 cyds/ 2,420 cyds = **144 acres of mudflat could be created per cycle;** however, portions of the previously pumped cycles would be affected. (A portion of the material would nourish previously created marsh habitat, but benefits for marsh nourishment were not considered in this calculation because of the unknowns.)

The timeline for functional marsh credit for marsh creation is assumed as follows: Construction Year - 10 % Two years after CY - 30 % Four years after CY - 100%

1 abic	Table 1 - Timenne for Sabine DO Site 18 pump events and functional credit.																
TY	0-1	2	4	6	8	10	12	13	14	15	16	17	18	19	20	21	23
Cycle	Cycle																
1		10%	30%	100%													
2					10%	30%	100%										
3						10%	30%		100%								
4								10%		30%		100%					
5											10%		30%		100%		
6														10%		30%	100%

Table 1 - Timeline for Sabine BU Site 18 pump events and functional credit.

Marsh loss data was obtained from the Louisiana Coastal Area project report *Coast 2050: Toward a Sustainable Coastal Louisiana* (1999), Appendix F. The 1974 to 1990 annual land loss rate for the Brown Lake area (-.45%) was used for FWOP. Material is not expected to stack and consolidate like confined material. Marsh loss rates for this area are intermediate, and sediments and nutrients will be added to the system throughout the project life. Therefore, for the purpose of this WVA, loss rates were applied to FWP starting at TY 1, but were reduced by 25 %, rather than the standard 50% reduction.

*Refer to land loss spreadsheet for marsh acreages credited by target year.

Variable 2 – Submerged Aquatic Vegetation (SAV)

According to Billy Leonard, Oil and Gas Specialist / Wildlife Biologist with the Southwest Louisiana National Wildlife Refuge Complex, SAV has been observed within Sabine BU site 18 (Personal communication w/ Billy Leonard, August 13, 2008). Water control structures constructed under the CS-23 CWPPRA project were designed to reduce salinity spikes in the area, and the area of Unit 1A is semi-impounded allowing salinity levels to be further reduced.

Salinities are variable within the site which is influenced by rain events and some salinity coming in from a breach along the eastern boundary. The area of open water is located to the north of the breach.

FWOP

TY 0 – 20 % TY 1 – 20 % TY 20 – 20 % TY 50 – 20 %

FWP

TY 0 – 20 % TY 2 – 5 % (areas of lower salinity further to the west would be pumped first) TY 10 – 15 % (those lower salinity areas previously pumped should have SAV recruitment) TY 13 – 20 % TY 23 – 25 % [marsh created in OW areas increase SAV potential (TY 23 = 5 years after last cycle)] TY 50 – 35 %

Variable 3 – Interspersion

Interspersion was determined by reviewing 2004 DOQQ and knowledge of the area.

FWOP

TY 0 -50: 1,000 ac project area = Class 5 (open water)

Target	Cycles	Class2	Class 3	Class 5				
Year	Cycles	(%)	(%)	(%)				
0-1				100				
(FWOP)								
2	1		17	83				
8	2		33	67				
10	3		50	50				
13	4		66	34				
16	5		83	17				
19	6		100					
20			100					
50			100					

Table 3: FWP Interspersion Classification

*No more than 620 acres/1,000 acre would be converted to marsh, which suggests a Class 3 interspersion.

Variable 4 – Shallow Open Water (SOW) Habitat (percent of open water < 1.5 feet)

Much of the area is relatively shallow (1-2 feet); however dredge sediments pumped into the area would help to further shallow up the area creating mudflat habitat (~ 0.5 ' water depths).

FWOP

 $\begin{array}{l} TY \ 1-70 \ \% \\ TY \ 20-70 \ \% \\ TY \ 50-70 \ \% \end{array}$

FWP

TY 0 – 70 %

TY 2-65 % (shallow areas filled to marsh elevations removing that available SOW habitat)

- TY 13 70 % (some deeper areas are filled in to create SOW and marsh during these cycles) TY 16 75 % ""
- TY 19 65 % (NWR personnel indicated that dikes would be breached once marsh habitat is restored)

TY 23 – 65 % TY 50 – 65 %

Variable 5 – Salinity

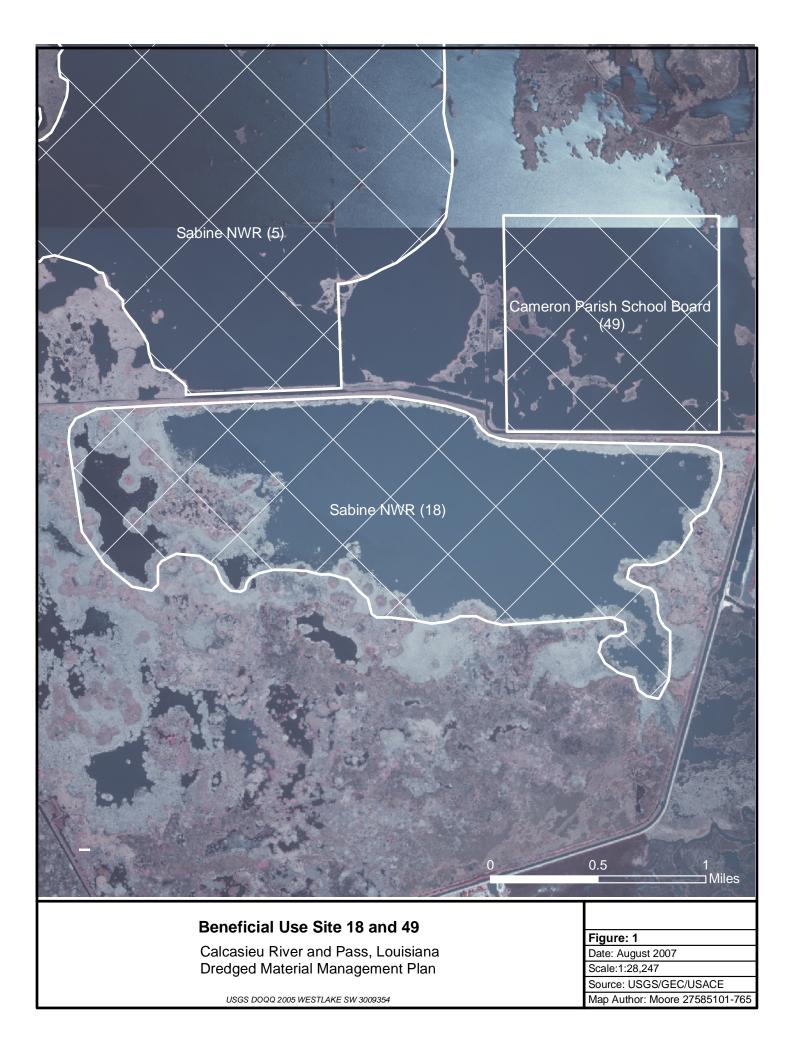
Salinity was measured within Unit 1a on August 13, 2008. The southeastern corner of Unit 1a is approximately 7.7 ppt (Leonard 2008). The area is highly variable, but 7.7 ppt should be a good representation of the area (Leonard 2008). Areas closer to the breach along the eastern boundary would be around 10 ppt, and areas within the marsh further from the breach should be less, approximately 3.0 ppt. The open water area designated for placement of dredge material is north of the breach and is somewhat buffered with marsh vegetation from the breach. An average of 7.0 ppt was assumed.

Variable 6 – Fish Access

The CWPPRA, CS-23 project replaced water control structures on three major waterways within the study area. The project structures include deep bays, culverts, and flapgates, resulting in a current access value of 0.35. The site also has dikes all the way around with one 50-foot breach on the eastern boundary that can be controlled (variable crest weir = 0.3); however the structure is usually in the open position (Leonard 2008). Because this is the only access, the access value is reduced to a structure rating of 0.2.

Either after marsh creation/BU is complete or during the dredge pumping events, the Refuge intends to breach the dikes to facilitate movement of dredge material and to bring the marsh complex back into the system. The access value should increase to 0.35 at this point.

FWOP


TY 0 - 0.2 (with existing water control structures from the CWPPRA, CS -23 project and 1 breach in the project area dikes) TY 50 - 0.2

FWP

TY 0 – 0.2 TY 20 – 0.35 TY 50 – 0.35

References

Louisiana Coastal Wetlands Conservation and Restoration Task Force and the Wetlands Conservation and Restoration Authority. 1999. Coast 2050: Toward a Sustainable Coastal Louisiana, The Appendices. Appendix F— Region 4 Supplemental Information. Louisiana Department of Natural Resources. Baton Rouge, La.

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: Sabine BU Site 18, Calcasieu DMMP

Project Area: 1,000

Condition: Future Without Project (FWOP)

		TY 0		TY 1		TY	20			
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	0	0.10			
V2	% Aquatic	20	0.28	20	0.28	20	0.28			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	%	0.10	0 0 0 0.1	0 0 0 0.1	0 0 0 0
V4	%OW <= 1.5ft	70	1.00	70	1.00	70	1.00			
V5	Salinity (ppt)	7	1.00	7	1.00	7	1.00			
V6	Access Value	0.20	0.28	0.20	0.28	0.20	0.28			
	Emergent Marsh HS	i =	0.22	EM HSI =	0.22	EM HSI =	0.22			
	Open Water HSI	=	0.37	OW HSI =	0.37	OW HSI =	0.37			

Project: Sabine BU Site 18, Calcasieu DMMP FWOP

	1	TY	50							
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10							
V2	% Aquatic	20	0.28							
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%		%		0 0 0 0.1	0 0 0 0	
V4	%OW <= 1.5ft	70	1.00							
V5	Salinity (ppt)	7	1.00							
V6	Access Value	0.20	0.28							
		EM HSI =	0.22	EM HSI =		EM HSI =				
		OW HSI =	0.37	OW HSI =		OW HSI =				

Project Area: 1,000

		TY 0		TY 2		ТҮ	4
Variable	,,	Value	SI	Value	SI	Value	SI
V1	% Emergent	0	0.10	1	0.11	3	0.13
V2	% Aquatic	20	0.28	5	0.15	5	0.15
V3	Interspersion Class 1 Class 2	%	0.10	%	0.15	%	0.15
	Class 3 Class 4 Class 5	100		17 83		17 83	
V4	%OW <= 1.5ft	70	1.00	65	0.94	65	0.94
V5	Salinity (ppt)	7	1.00	7	1.00	7	1.00
V6	Access Value	0.20	0.28	0.20	0.28	0.20	0.28
	Emergent Marsh HS	=	0.22	EM HSI =	0.23	EM HSI =	0.25
	Open Water HSI	=	0.37	OW HSI =	0.30	OW HSI =	0.30

0	0	0
0	0	0
0	0.4	0.4
0	0	0
.1	0.1	0.1

0 0.4 0

Project: Sabine BU Site 18, Calcasieu DMMP FWP

			6		8		10		
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	11	0.20	12	0.21	15	0.24		
V2	% Aquatic	5	0.15	5	0.15	15	0.24		
V3	Interspersion Class 1 Class 2	%	0.15	%	0.20	%	0.25	0 0	0
	Class 2 Class 3 Class 4	17		33		50		0.4 0	0 0.4
	Class 5	83		67		50		0.1	0
V4	%OW <= 1.5ft	65	0.94	65	0.94	65	0.94		0.1
V5	Salinity (ppt)	7	1.00	7	1.00	7	1.00		
V6	Access Value	0.20	0.28	0.20	0.28	0.20	0.28		
		EM HSI =	0.30	EM HSI =	0.31	EM HSI =	0.33		
	Ē	OW HSI =	0.30	OW HSI =	0.30	OW HSI =	0.36		

Project: Sabine BU Site 18, Calcasieu DMMP FWP

WP							
			12		13		14
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	24	0.32	22	0.30	33	0.40
V2	% Aquatic	15	0.24	20	0.28	20	0.28
V3	Interspersion Class 1 Class 2	%	0.25	%	0.30	%	0.30
	Class 3 Class 4 Class 5	50		66		66	
	Class 5	50		34		34	
V4	%OW <= 1.5ft	70	1.00	70	1.00	70	1.00
V5	Salinity (ppt)	7	1.00	7	1.00	7	1.00
V6	Access Value	0.20	0.28	0.35	0.28	0.35	0.28
		EM HSI =	0.38	EM HSI =	0.37	EM HSI =	0.43
		OW HSI =	0.36	OW HSI =	0.39	OW HSI =	0.39

0 0 0 0 0.4 0.4 0 0 0.1 0.1

] [15		16		17			
Variable	ΓΓ	Value	SI	Value	SI	Value	SI			
V1	% Emergent	35	0.42	35	0.42	43	0.49			
V2	% Aquatic	20	0.28	20	0.28	20	0.28			
V3	Interspersion Class 1 Class 2	%	0.30	%	0.35	%	0.35	0		
	Class 3 Class 4	66		83		83		0.4 0 0.1	0 0 0.4	0 0 0.4
V4	Class 5 %OW <= 1.5ft	34 70	1.00	17	1.00	17	1.00	0.1	0.4 0 0	0.4 0 0
V5	Salinity (ppt)	7	1.00	7	1.00	7	1.00			
V6	Access Value	0.35	0.42	0.20	0.28	0.20	0.28			
		EM HSI =	0.47	EM HSI =	0.44	EM HSI =	0.48			
	Г	OW HSI =	0.43	OW HSI =	0.39	OW HSI =	0.39			

Project: FWP Sabine BU Site 18, Calcasieu DMMP

] [18		19		20
Variable	<u> </u>	Value	SI	Value	SI	Value	SI
V1	% Emergent	45	0.51	46	0.51	53	0.58
V2	% Aquatic	20	0.10	20	0.28	20	0.28
V3	Interspersion Class 1 Class 2	%	0.35	%	0.40	%	0.40
	Class 3 Class 4 Class 5	83		100		100	
V4	%OW <= 1.5ft	75	1.00	75	1.00	75	1.00
V5	Salinity (ppt)	7	1.00	7	1.00	7	1.00
V6	Access Value	0.20	0.28	0.20	0.28	0.35	0.42
		EM HSI = OW HSI =	0.49 0.29	EM HSI = OW HSI =	0.50 0.40	EM HSI = OW HSI =	0.57 0.43

Project: FWP Sabine BU Site 18, Calcasieu DMMP

WP	ז ר		04		00		
Variable		Value	21 SI	Value	23 SI	Value	50 SI
V1	% Emergent	55	0.60	62	0.66	57	0.61
V2	% Aquatic	20	0.28	25	0.33	35	0.42
V3	Interspersion Class 1 Class 2	%	0.40	%	0.40	%	0.40
	Class 2 Class 3 Class 4 Class 5	100		100		100	
V4	%OW <= 1.5ft	75	1.00	75	1.00	75	1.00
V5	Salinity (ppt)	7	1.00	7	1.00	7	1.00
V6	Access Value	0.35	0.42	0.35	0.42	0.35	0.42
		EM HSI = OW HSI =	0.58 0.43	EM HSI = OW HSI =	0.62 0.46	EM HSI = OW HSI =	0.59 0.50

AAHU CALCULATION - MARSH

Project: Sabine BU Site 18, Calcasieu DMMP

Future Witho	out Project		Total	Cummulative
TY	Marsh Acres	x HSI	HUs	HUs
0	0	0.22	0.00	
1	0	0.22	0.00	0.00
20	0	0.22	0.00	0.00
50	0	0.22	0.00	0.00
			AAHUs =	0.00

Future With	Project		Total	Cummulative
ΤY	Marsh Acres	x HSI	HUs	HUs
0	0	0.22	0.00	
2	11	0.23	2.57	2.52
4	32	0.25	7.89	10.36
6	106	0.30	31.31	37.99
8	116	0.31	35.55	66.82
10	148	0.33	48.72	84.03
12	242	0.38	91.45	138.65
13	220	0.37	81.99	86.70
14	326	0.43	139.89	109.94
15	346	0.47	161.89	150.76
16	355	0.44	157.85	159.91
17	429	0.48	207.31	182.11
18	448	0.49	220.72	213.99
19	458	0.50	230.39	225.54
20	531	0.57	304.06	266.38
21	550	0.58	320.43	312.21
23	620	0.62	381.73	701.38
50	565	0.59	334.08	8298.77
			AAHUs	220.96

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	220.96
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	220.96

AAHU CALCULATION - OPEN WATER

Project: Sabine BU Site 18, Calcasieu DMMP

ure Witho	ut Project		Total	Cummulative
ΤY	Water Acres	x HSI	HUs	HUs
0	1000	0.37	373.33	
1	1000	0.37	373.33	373.33
20	1000	0.37	373.33	7093.33
50	1000	0.37	373.33	11200.00
			AAHUs =	373.33

Future With	Project		Total	Cummulative
TY	Water Acres	x HSI	HUs	HUs
0	1000	0.37	373.33	
2	892	0.30	268.78	639.52
4	893	0.30	269.08	537.86
6	894	0.30	269.38	538.46
8	787	0.30	239.94	509.45
10	681	0.36	243.77	485.59
12	683	0.36	247.73	491.50
13	576	0.39	223.49	236.06
14	578	0.39	224.26	223.88
15	579	0.43	246.85	235.55
16	473	0.39	185.31	215.47
17	475	0.39	186.09	185.70
18	477	0.29	139.00	162.58
19	371	0.40	146.75	144.72
20	373	0.43	161.85	154.29
21	375	0.43	162.71	162.28
23	380	0.46	173.48	336.15
50	435	0.50	217.74	8052.67
			AAHUs	266.23

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	266.23
B. Future Without Project Open Water AAHUs =	373.33
Net Change (FWP - FWOP) =	-107.10

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	220.96
B. Open Water Habitat Net AAHUs =	-107.10
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	129.83

Ð
0
2
d
S
ŝ
Ś
0
2
p
, a

Land Loss Spreadsheet						Loss	Loss Rate Calculation	_							
Project:	Sabine 18 (Unit 1A)	: (Unit 1A)			Beginning Year	Ending Year	Beginning Year Acreage	Ending Year Acreage		Loss Rate					
Total Acres		TY0 Marsh Acres		TY0 Water Acres	1974	1990	17,320	16,100		-0.0046					
252	FWOP	0		252	× ⊑	FWP Land Loss Reduction FWP - Created Marsh	ed uction Marsh	0.25 FWP	- Nourish	Nourished Marsh		FWP	FWP Totals		r
					ບ ບ	Created Marsh =	108	Nourished Marsh =	i Marsh =	0					
ΤΥ	FWOP Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	FWP Loss Rate	Created Marsh Acreage	Adjusted Marsh Acreage (10% @ TY2; 30% @ TY4 and 100% @ TY6)	FWP Loss Rate	Nourishe d Marsh Acreage	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3	Water (acres)	Marsh (acres)	% Marsh (V1)	Net Acres of Marsh	Acr
0,	0,0040	•	%0	252	0.00045	0	4	0.00045	0	d	010	4	Ĩ	<	,
2	-0.0046	• •	0%0	252	-0.00345	108	11	-0.00345	0 0	0	144	11	4%	11 0	
3	-0.0046	0 0	%0 7%	252	-0.00345	107	11	-0.00345	00	0	145	11	4%	1	
o n	-0.0046	, 0	%0	252	-0.00345	107	32	-0.00345	, 0	0	145	32	13%	32	
6	-0.0046	0	0% ⁰	252	-0.00345	106 106	106 106	-0.00345	0	0	146	106	42%	106	
- 80	-0.0046	, 0	%0	252	-0.00345	105	105	-0.00345	, o	0	147	105	42%	105	1.04
6	-0.0046	0	%0	252	-0.00345	105	105	-0.00345	0	0	147	105	42%	105	
10	-0.0046	0 0	%0	252	-0.00345	105	105	-0.00345	0 0	0 0	147	102	42%	105	
12	-0.0046	0	%0	252	-0.00345	4	19	-0.00345	0	0	148	5 4	41%	<u>ş</u>	4 (4
13	-0.0046	0	%0	252	-0.00345	104	104	-0.00345	0	0	148	104	41%	104	~
14	-0.0046	0	%0	252	-0.00345	103	103	-0.00345	0	0	149	103	41%	103	
16	-0.0046	0	%0	252	-0.00345	103	103	-0.00345	0	00	149	103	41%	38	4 (4
17	-0.0046	0	%0	252	-0.00345	102	102	-0.00345	0	0	150	102	41%	102	
18	-0.0046	0	%0	252	-0.00345	102	102	-0.00345	•	0	150	102	40%	102	
20	-0.0046	•	%0	252 252	-0.00345	101	101	-0.00345		• •	151	101	40%	101	4.0
21	-0.0046	0	0%	252	-0.00345	101	101	-0.00345	0	0	151	101	40%	101	
22	-0.0046	0	%0	252	-0.00345	90	100	-0.00345	0	0	152	90	40%	100	
82	-0.0046		%0 /%	252	-0.00345	26	90	-0.00345		00	152	86	40%	86	
25	-0.0046	0	%0	252	-0.00345	66	66	-0.00345	0	0	153	66	39%	66	
26	-0.0046	0	%0	252	-0.00345	66	66	-0.00345	0	0	153	66	39%	66	
27	-0.0046	0	%0	252	-0.00345	66	66	-0.00345	0	0	153	66	39%	66	
28	-0.0046	0	%0	252	-0.00345	88	98	-0.00345	0	0	154	86	39%	86	
67	-0.0046		%0 %0	252	-0.00345	88	80 80	-0.00345			4 <u>7</u>	8 8	39%	98 88	
31	-0.0046	0	%0	252	-0.00345	97	97	-0.00345	0	0	155	97	39%	67	
32	-0.0046	0	0%	252	-0.00345	97	97	-0.00345	0	0	155	97	39%	97	~
33	-0.0046	0	%0	252	-0.00345	97	97	-0.00345	0	0	155	97	38%	97	
45 45	-0.0046		%0	252	-0.00345	96 Y	96 96	-0.00345			156	8 8	38%	88	
38	-0.0046	0	%0	252	-0.00345	96	96 96	-0.00345	0	0	156	96	38%	96	1.04
37	-0.0046	0	0%	252	-0.00345	95	95	-0.00345	0	0	157	95	38%	95	~
38	-0.0046	0	%0	252	-0.00345	95	95	-0.00345	0	0	157	95	38%	95	
39	-0.0046	0	0%0	252	-0.00345	83	8	-0.00345	0 0		15/	89	38%	8	
40	-0.0046		%0	252	-0.00345	1	1. 2.	-0.00345		00	158	8	37%	8	4 (4
42	-0.0046	0	%0	252	-0.00345	94	94	-0.00345	0	0	158	94	37%	94	
43	-0.0046	0	%0	252	-0.00345	93	93	-0.00345	0	0	159	93	37%	93	
44	-0.0046	-	0%0	202	-0.00345	80	83	-0.00345		0 0	159	38	31%	56 G	
46	-0.0046	0	%0	252	-0.00345	92	92	-0.00345	0	0	160	92	37%	92	4 (4
47	-0.0046	0	%0	252	-0.00345	92	92	-0.00345	0	0	160	92	37%	92	
48	-0.0046	0	0%	252	-0.00345	92	92 01	-0.00345	0 0	0 0	160	92	36%	92	
50	-0.0046	0	%0	252	-0.00345	91	91	-0.00345	0	0	161	9	36%	6	
Cobine BII cite 18 (Ilbit 1c)															1
Water Acre Calculations						00 1									
	Cycle 2	Cycle 3	Cycle 4	Cycle 5 (Cycle 6	I OTAL MARSH AC	_⊤	Water acres	3						
108		l	l	l	l	108	- 2	1000							
107						107	ω4	893 893	89% 89%						
107						107	. 0	893							
106						106	91	894							
106						106	~ •	894 ene							
105	108					213	• •	787							
105						212	9	788							
104		108				319	11	681							
104			0	l	l	317	13	082 683							
103			108			423	14	577							
103			107			422	15	578							
201			107	0		420	16	580							

Total Acres Check

44.9% 44.9% 37.9% 37.9% 33.9% 33.9% 33.9% 33.9% 33.9% 33.9% 33.9% 33.9% 40.9% 40.9% 40.9% 41.1% 41.1% 41.1% 42.5% 42.5% 43.3% 43.3% 43.3% 43.3% 43.3% 43.3%	nairsh 1958 1978 1978 1978 1978 1978 1978 1979 1979
7 17 17 17 17 17 17 17 17 17 17 17 17 17	
4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	È
528 529 529 529 529 529 529 529 525 525 525	11111111111111111111111111111111111111
	Total MC
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 $
	Cycle 6
100 107 107 107 107 107 107 107 107 107	公 長 2 3 3 3 3 3 3 3 3 3 3 3 3 3
001 001 001 001 001 001 001 001	0 0 0 0 0 0 0 0 0 + + + 0 0 0 0 0 0 0 0
	0 0 4
2020 2020 2020 2020 2020 2020 2020 202	Cy 6 8 8 8 8 8 8 8 8 8 8 8 8 8
104 104 104 104 104 104 104 104 104 104	v 0.225,858,888,888,888,888,888,888,888,888,
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Calculations
	416 C3
	Cyderl Acre C

et e
ň
۳
ŝ
Ö
ສັ
Ð
F
പ്
0)
ŝ
SSC
9
_
σ
g

				Docineitad	Ending	Beginning Ending	Enaing						
Project: Sabine 1	Sabine 18, Cycle 2			Beginning Year	Ending Year	Year Acreage	Year Acreage	Loss	Loss Rate				
Total Acres	TY0 Marsh Acres		TY0 Water Acres	1974	1990	17,320	16,100		-0.0046				
252	0		252		FWP Land Loss Reduction	∋duction	0.25						
	FWOP				FWP - Created Marsh	Marsh	FWP - N	FWP - Nourished Marsh	Marsh		. dMJ	FWP Totals	
				Creater	Created Marsh =	108	Nourishe	Nourished Marsh =	0				
TY FWOP Loss Rate	Marsh te (acres)	% Marsh (V1)	Water (acres)	FWP Loss Rate	Created Marsh Acreage	Adjusted Marsh Acreage (10% @ TY1; 30% @ TY3 and 100% @ TY5)	FWP Loss Rate	Nourished Marsh Acreage	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3	Water (acres)	Marsh (acres)	% Marsh (V1)	Net Acres of Marsh
0	0	%0	252		0			0					
1		%0	252 252	-0.0034161	108	7		0	c	144	1	4%	
9 -0.00455	0	%0	252	-0.0034161	107	32	-0.00341607	0	0	145	32	13%	
		%0	252	-0.0034161			-0.00341607	0	0	145			
11 -0.00455		%0	252	-0.0034161	106	106	-0.00341607	0	0	146	106	42%	106
		0%	252	-0.0034161		106	-0.00341607	0 0	0 0	146	106	42%	106
	00	%0 %0	202	-0.0034161		105	-0.00341607	00		14/	501	42%	105
		%0	252	-0.0034161		105	-0.00341607	0	0	147	105	42%	105
	5 0	%0	252	-0.0034161		104	-0.00341607	0	0	148	104	41%	104
17 -0.00455		%0	252	-0.0034161		104	-0.00341607	0	0	148	104	41%	104
		%0	252	-0.0034161		104	-0.00341607	0	0	148	104	41%	104
	0 0	0%7	202	-0.0034161	103	103	-0.00341607			149	103	41%	103
21 -0.00455		%0	252	-0.0034161	103	103	-0.00341607	0	0	149	103	41%	103
	5 0	%0	252	-0.0034161		102	-0.00341607	0	0	150	102	41%	102
		%0	252	-0.0034161	102	102	-0.00341607	0	0	150	102	40%	102
		%0	252	-0.0034161	102	102	-0.00341607	0	0	150	102	40%	102
	- -	%0	252	-0.0034161	ſ	101	-0.00341607	0 0		151	101	40%	101
27 -0.00455		%0	252	-0.0034161	101	101	-0.00341607	0	•	151	101	40%	101
		%0	252	-0.0034161		100	-0.00341607	0	0	152	100	40%	100
	5 0	%0	252	-0.0034161	100	100	-0.00341607	0	0	152	100	40%	100
30 -0.00455	5 0	%0	252	-0.0034161	66	66	-0.00341607	0	0	153	66	39%	66
	-	%0	252	-0.0034161		66	-0.00341607	0	0	153	66	39%	66
		0%	252	-0.0034161		66	-0.00341607	0	0	153	66	39%	66
33 -0.00455		%	222	-0.0034161	98	86	-0.00341607	0 0	0 0	5	98	39%	86
	0	0%/	207	-0.0034161	80	ŝ	-0.00341607			40- 10-	200	39%	8
		%0	202	-0.0034161		20	-0.00341607	0 0	0 0	104	88	39%	88
	0 0	%0	727	-0.0034161		9/	-0.0034160/	0 0	0 0	155	9/	39%	97
37 -0.00455	_	%0	252	-0.0034161		-6	-0.00341607	0	0	155	9/	39%	9/
	0	%	292	-0.0034161		9/	-0.0034160/	0	0	155	16	38%	16
		%0	252	-0.0034161		96	-0.00341607	0	0	156	96	38%	96
	5	%0	252	-0.0034161		96	-0.00341607	0	0	156	96	38%	96
	5	%0	252	-0.0034161		96	-0.00341607	0	0	156	96	38%	96
	9	0%	252	-0.0034161		95	-0.00341607	0	0	15/	95	38%	66 6
	5 0	%0	252	-0.0034161		95	-0.00341607	0	0	157	95	38%	95
	5	%0	252	-0.0034161	95	95	-0.00341607	0	0	157	95	38%	95
	5 0	%0	252	-0.0034161		95	-0.00341607	0	0	157	95	38%	95
	5 0	%0	252	-0.0034161		94	-0.00341607	0	0	158	94	37%	94
47 -0.00455	5 0	%0	252	-0.0034161		94	-0.00341607	0	0	158	94	37%	94
	5 0	%0	252	-0.0034161		94	-0.00341607		0	158	94	37%	94
	5 0	%0	252	-0.0034161		50	7 0011607 C	0	,		Í		
						3	-0.003+100.0-		0	159	93	37%	83

rotal vcres theck

						Total Acres Check		252	202	252	252	252	202	252	252	252	252	252	202	252	252	252	252	252	252	252	252	252	252	252	222	202	202	252	252	252	252	252	252	252	252 252
						Net Acres of Marsh					106	106	105	105	104	104	104	103	103	102	102	102	1 01	101	100	100	66 66	66	98	98	98	9/	9/	37 96	96	96	95	95	95	95	94 94
				FWP Totals		% Marsh (V1)		4%	130/	2/2	42%	42%	42%	42%	41%	41%	41%	41%	41%	41%	40%	40%	40%	40%	40%	40%	39%	39%	39%	39%	39%	29.%	39%	38%	38%	38%	38%	38%	38%	38%	37% 37%
				. dMJ		Marsh (acres)		11	39	74	106	106	105	105	104	104	104	103	103	102	102	102	101	101	100	001	66	66	98	98	98	9/	9/ 07	ية 96	96	96	95	95	95	95	94 94
						Water (acres)		144	145	145	146	146	14/	147	148	148	148	149	149	150	150	150	151	151	152	152	153	153	154	154	154		155	156	156	156	157	157	157	157	158 158
_	Loss Rate	-0.0046		Marsh	0	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3		0	c	>	0	0	0 0	0	0	0	0	00	0 0	0	0	00	• •	0	0	0 0	0	0	0	0	0 0		5 0	0 0	0	0	0	0	0	0	00
	Loss			FWP - Nourished Marsh	Nourished Marsh =	Nourished Marsh Acreage	0	0		0	0	0	0 0		0				0 0	0	0	0	0	0	0	0 0		0	0	0	0 0	0	0 0	0 0	0	0	0				00
ation	Ending Year	Acreage 16,100	0.25	FWP - N	Nourish	FWP Loss Rate		-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.0034160/	-0.00341607	-0.0034160/	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607	-0.00341607 -0.00341607
l oss Bate Calculation	Beginning Year	Acreage 17,320	eduction	Marsh	108	Adjusted Marsh Acreage (10% @ TY1; 30% @ TY3 and 100% @ TY5)		11	6 2	77	106	106		105	104	104	104	103	103	102	102	102	101	101	100	001	66	66	98	98	86	9/	9/ 07	مر 96	96	96	95	95	95	95	94 94
105	Ending	Year 1990	FWP Land Loss Reduction	FWP - Created Marsh	Created Marsh =	Created Marsh Acreage	0	108	107	107	106	106	90F	105	104	104	104	103	103	102	102	102	101	101	100	001				98 00	98	31	9/	ي 96	96	96	95				94 94
	Beginning	Year 1974	FWP La	- FWP -	Create	FWP Loss Rate		-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161 -0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161	-0.0034161 -0.0034161
		TY0 Water Acres	252			Water (acres)	252	252 050	202	252	252	252	252	252	252	252	252	252	252	252	252	252	252 252	252	252	252	252	252	252	252	292	202	252	252	252	252	252	252	252		252 252
jet						% Marsh (V1)	%0	%0	0%0	%0	0%	0%	0%0	%0	%0	%0	%0	%0	0%0	%0	%0	%0	%0	0%	%0	%0	%0	%0	%0	%0	0%0	0.70	0%0	%0	~~^ ~~~	%0	%0	%0	%0	%0	%0
readshe	Cycle 3	TYO Marsh Acres	0	FWOP		Marsh (acres)	0	0		0	0	0		0	0	0	0	0	0 0	0	0	0	•	0	0	0 0	0	0	0	0	0 0		5 0		0	0	0	0	0	0	00
-and Loss Spreadsneet	Sabine 18, Cycle 3		_			FWOP Loss Rate		-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455	-0.00455 -0.00455
Lano L	Project:	Total Acres	252			Ϋ́	0	10	= \$	13	14	15	15	18	19	20	21	22	23	25	26	27	29	30	31	32	34	35	36	37	88	90	40	42	43	44	45	46	47	48	49 50

Loss Rate
0.25
FWP - Nourished Marsh
Nourished Marsh =
FWP Loss Rourished Adjusted Marsh Rate Acreage Marsh Rate Acreage T11 and Acreage T00% @ 100% T13 and 100% T13 and 100% C 100\% C 100% C 100\% C
0
0.00341607 0
-0.00341607 0
0.0034160/ 0
0.00341607 0
0.00341607 0
0.00341607 0
~
-0.00341607 0
-0.00341607 0
0.00341607 0
-0.00341607 0
0.00341607 0
0.00341607 0
0.00341607 0
00341607 0
-0.00341607 0
0.00341607 0
0.00341607 0
-0.00341607 0
c

במנוט ב	ido sso	Larid Loss opreausrieet	IG I			990	Loce Bate Calculation	ation						
						LOS	Beginning	ation						
Project:	Sabine 18, Cycle 5	Cycle 5			Beginning Year	Ending Year	Year Acreage	Ending Year Acreage	Loss Rate	Rate				
T otal Acres		TY0 Marsh Acres		TY0 Water Acres	1974	1990	17,320	16,100		-0.0046				
252		0		252		FWP Land Loss Reduction	duction	0.25						
		FWOP				FWP - Created Marsh	Marsh	FWP - Nc	FWP - Nourished Marsh	Marsh		FWP Totals	Fotals	
					Creater	Created Marsh =	108	Nourishe	Nourished Marsh =	0				
ΤY	FWOP Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	FWP Loss Rate	Created Marsh Acreage	Adjusted Marsh Acreage (10% @ TY1; 30% @ TY3 and 100% @ TY5)	FWP Loss Rate	Nourished Marsh Acreage	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3	Water (acres)	Marsh (acres)	% Marsh (V1)	Net Acres of Marsh
0		0	%0	252		0			0					
16	-0.00455	0	%0	252	-0.0034161	108	11	-0.00341607	0	0	144	1	4%	
17	-0.00455	0	%0	252	-0.0034161	107		-0.00341607	0		145			
18	-0.00455	0	%0	252	-0.0034161	107	32	-0.00341607	0	0	145	32	13%	
19	-0.00455	0	%0	252	-0.0034161	107		-0.00341607	0		145			
50	-0.00455	0	%0	252	-0.0034161	106	106 106	-0.00341607	0	•	146	106 106	42%	106
20	-0.00455		%0	252	-0.0034161 -0.0034161	105	105	-0.00341607		0 0	140	105	42%	105
33	-0.00455	0	%0	252	-0.0034161	105	105	-0.00341607	0	0	147	105	42%	105
24	-0.00455	0	%0	252	-0.0034161	105	105	-0.00341607	0	0	147	105	42%	105
25	-0.00455	0	%0	252	-0.0034161	104	104	-0.00341607	0	0	148	104	41%	104
26	-0.00455	0	%0	252	-0.0034161	104	104	-0.00341607	0	0	148	104	41%	104
27	-0.00455	0 0	%0	252	-0.0034161	104	104	-0.00341607	0 0	0 0	148	104	41%	104
07	-0.00455		%0 /00/	707	-0.0034161	100	100	-0.00341607			149	201	417/0	202
30	-0.00455	0	%0	252	-0.0034161	103	103	-0.00341607	0	0 0	149	103	41%	103
31	-0.00455	0	%0	252	-0.0034161	102	102	-0.00341607	0	0	150	102	41%	102
32	-0.00455	0	%0	252	-0.0034161	102	102	-0.00341607	0	0	150	102	40%	102
22	-0.00455	0	%0 %0	252	-0.0034161	201	201	-0.0034160/		0	190	201	40%	201
35 25	-0.00455	- -	%0	202 263	-0.0034161	101	101	-0.00341607			151	101	40%	101
36	-0.00455	b C	%0	252	-0.0034161	101	101	-0.00341607	0 0	, c	151	101	40%	101
37	-0.00455	0	%0	252	-0.0034161	100	100	-0.00341607	0	0	152	100	40%	100
38	-0.00455	0	%0	252	-0.0034161	100	100	-0.00341607	0	0	152	100	40%	100
39	-0.00455	0	%0	252	-0.0034161	66	66	-0.00341607	0	0	153	66	39%	66
40	-0.00455	0	%0	252	-0.0034161	66	66	-0.00341607	0	0	153	66	39%	66
41	-0.00455	0	%0	252	-0.0034161	66	66	-0.00341607	0	0	153	66	39%	66
42	-0.00455	00	%0	252 252	-0.0034161	98 08	86 88	-0.00341607	0	00	154	98	39%	98 00
44	-0.00455	0	%0	252	-0.0034161	98	88	-0.00341607	0	0	154	98	39%	98 98
45	-0.00455	0	%0	252	-0.0034161	97	67	-0.00341607	0	0	155	97	39%	97
46	-0.00455	0	%0	252	-0.0034161	97	97	-0.00341607	0	0	155	97	39%	97
47	-0.00455	0	%0	252	-0.0034161	97	67	-0.00341607	0	0	155	97	38%	97
48	-0.00455	0	%0	252	-0.0034161	96	96	-0.00341607	0	00	156	96 50	38%	96 55
49	-0.00455	0 0	%0 %0	252 252	-0.0034161	96 96	96 96	-0.0034160/	0 0	0 0	156 156	96	38%	96 96
20	>>+>>>	2	0/0	FUF	·>·+>>->->->->->->->->->->->->->->->->->	âC	30	· · · · · · · · · · · · · · · · · · ·	2	2	202	30	00 %	ы

Total Acres Check

במומי		raila russ opleausileel	ממו	-		-			ſ					
						LOSS	Loss Rate Calculation	ation						
Project:	Sabine 18, Cycle 6	Cycle 6			Beginning	Ending	Beginning Year	Ending Year	Loss Rate	Rate				
					Year	Year	Acreage	Acreage						
Total Acres		TY0 Marsh Acres		TY0 Water Acres	1974	1990	17,320	16,100		-0.0046				
252		0		252		FWP Land Loss Reduction	duction	0.25						
		FWOP				FWP - Created Marsh	Marsh	FWP - No	FWP - Nourished Marsh	Marsh		FWP Totals	otals	
					Created	Created Marsh =	108	Nourishe	Nourished Marsh =	0				
Ł	FWOP Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	FWP Loss Rate	Created Marsh Acreage	Adjusted Marsh Acreage (10% @ TY1; 30% @ TY3 and 100% @ TY5)	FWP Loss Rate	Nourished Marsh Acreage	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3	Water (acres)	Marsh (acres)	% Marsh (V1)	Net Acres of Marsh
0		0	%0	252		0			0					
19	-0.00455	0	%0	252	-0.0034161	108	11	-0.00341607	0	0	144	11	4%	
20	-0.00455	0	%0	252	-0.0034161	107		-0.00341607	0		145			
21	-0.00455	0	0%	252	-0.0034161	107	32	-0.00341607	0	0	145	32	13%	
ន	-0.00455	0	%0	252	-0.0034161	107		-0.00341607	0	ſ	145			
33	-0.00455	0	0%	252	-0.0034161	106	106	-0.00341607	0	0	146	106	42%	106
24	-0.00455	0	%0	252	-0.0034161	106	106	-0.00341607	00	00	146	106	42%	106
26	-0.00455	- c	%0	252	-0.0034161	105	105	-0.00341607			14/	105	42%	105
27	-0.00455	0	%0	252	-0.0034161	105	105	-0.00341607	0	0	147	105	42%	105
28	-0.00455	0	%0	252	-0.0034161	104	104	-0.00341607	0	0	148	104	41%	104
29	-0.00455	0	%0	252	-0.0034161	104	104	-0.00341607	0	0	148	104	41%	104
8	-0.00455	0	%0	252	-0.0034161	104	104	-0.00341607	0	0	148	104	41%	104
31	-0.00455	0 0	%0	252	-0.0034161	103	103	-0.0034160/	0 0	0 0	149	103	41%	103
38	-0.00455	0	%0	252	-0.0034161	103	103	-0.00341607	0	0	149	103	41%	103
34	-0.00455	0	%0	252	-0.0034161	102	102	-0.00341607	0	0	150	102	41%	102
35	-0.00455	0	0%	252	-0.0034161	102	102	-0.00341607	0	0	150	102	40%	102
36	-0.00455	0	0% 557	252	-0.0034161	102	102	-0.00341607	0	0	150	102	40%	102
3/	-0.00455	. .	%0	252	-0.0034161	101	101	-0.0034160/	0 0	- -	151		40%	
88	0.00455	-	% ^	262	0.0034161	5	101	0.00341607		-	151	101	40%	101
64	-0.00455	0	%0	252	-0.0034161	100	100	-0.00341607		0	152	100	40%	100
41	-0.00455	0	%0	252	-0.0034161	100	100	-0.00341607		0	152	100	40%	100
42	-0.00455	0	%0	252	-0.0034161	66	66	-0.00341607	0	0	153	66	39%	66
43	-0.00455	0	%0	252	-0.0034161	66	66	-0.00341607	0	0	153	66	39%	66
44	-0.00455	0	%0	252	-0.0034161	66	66	-0.00341607	0	0	153	66	39%	66
45	-0.00455	0	%0	252	-0.0034161	88	98	-0.00341607	0	0	154	98	39%	88
46	-0.00455	0	%0	252	-0.0034161	86	98	-0.00341607	0	0	154	98	39%	86
47	-0.00455	0 0	%0	252 252	-0.0034161 -0.0034161	98 27	98 97	-0.00341607 -0.00341607	0 0	0 0	154 155	98 97	39% 39%	98 97
64	-0.00455		~~^ 0%	252	-0.0034161	.? 97	97	-0.00341607		0	155	97	39%	97
50	-0.00455		%0	252	-0.0034161	97	97	-0.00341607		0	155	97	38%	97

Total Acres Check

Beneficial Use Site 19

Cameron Prairie NWR Beneficial Use (BU) Site 19

Project Location/Area: For this WVA, a 1,026-acre open water area in the southwestern portion of the Cameron-Creole Watershed in the Cameron Prairie National Wildlife Refuge, Cameron Parish, Louisiana, was delineated (Figure 1). A portion of the site (477 acres) is located on private land adjacent to the refuge.

Variable 1 – Emergent Vegetation

The Corps intends to pump approximately 1,628,100 cubic yards of dredge material into the Sabine BU site 19. The material would be allowed to flow unconfined to nourish existing marsh, create new marsh, and create shallow open water habitat. Material is expected to stack up where existing marsh allows; however, depending on pipe placement and movement, material is likely to create an abundance of mudflat/shallow open water. Assuming that the average depth is approximately 1.5 feet and initial target elevations are +4.5 ft MLG, approximately 168 acres of marsh could be created (i.e., provided that the marsh creation area were confined with dikes and weirs). According to Corps, where healthy marsh borders proposed unconfined marsh creation areas, material is likely to stack in a manner similar to confined BU marsh creation areas. Also, with beneficial use of dredge material projects, generally approximately 85% of marsh is created in confined marsh creation areas. It is assumed for this analysis that 75% of dredge material pumped adjacent to existing marsh would create elevations conducive for marsh creation, and 25% would create shallow open water habitat (i.e., mudflats). Material is expected to overflow the existing marsh; however, for this analysis nourishment was not considered because of the minimal amount of wetlands that exists within the open water area.

- One (1) acre of marsh would require 261,360 cubic feet of material: 4.5'MLG + 1.5' water depths = 6' x 43,560 sq ft = 261,360 cubic feet/27 = 9,680 cubic yards
- One (1) acre of mudflat would require 65,340 cubic feet of material:
 1.5' X 43,560 sq. ft = 65,340 cubic ft/27 = 2,420 cubic yards
- Therefore,

75% of 1,628,100 cyds = 1,221,075 cyds/ 9,680 cyds = **126 acres of marsh**

25% of 1,628,100 cyds = 407,025 cyds/ 2,420 cyds = **168 acres of mudflat**

The timeline for functional marsh credit for marsh creation is assumed as follows:

Construction Year - 10 % Two Years After CY – 30 % Four Years After CY– 100%

Marsh loss and land change data was obtained from the USGS and the USACE during the evaluation of the Coastal Wetlands Planning, Protection and Restoration (CWPPRA), Priority Project List 17, East Cove Marsh Creation Project. Rates were derived from those data for the project boundary and extended boundary. The 1978-2006 annual rate (-0.41%/yr) was used in that analysis and will be used for this analysis. Material is not expected to stack and consolidate like confined material. Therefore, for the purpose of this WVA, loss rates were applied to FWP starting at TY 1, but were reduced by 25 % rather than the standard 50% reduction.

FWOP

TY 0: 15 acres/~ 300ac project area (PA) = 5 % emergent marsh (EM)

FWP

Refer to land loss spreadsheet for marsh acreages credited by target year.

V2 - Submerged Aquatic Vegetation (SAV)

No SAV was observed during the field inspections for the CWPPRA evaluation, but *Ruppia spp*. has been observed in the project area in concentrations as high as 80% cover by Cameron Prairie National Wildlife Refuge personnel (Jim Ashfield) prior to Hurricane Rita. With the repair of the Cameron-Creole Watershed project in the near future, those percentages are expected to return. For FWOP, through TY 50 all of the open water in area will be shallow, however, salinities will not be above the range for Widgeon Grass (*Ruppia maritima*) development. Widgeon grass has been observed in the area before Hurricane Rita in concentrations as high as 80% cover in project area open water areas.

FWOP

 $\begin{array}{l} TY \ 0-60\% \\ TY \ 20-80 \ \% \\ TY \ 50-80 \ \% \end{array}$

FWP

TY 0 60 % TY 7 60 % TY 8 0 % pump TY 10 60 % TY 12 60 % TY 20 70 % TY 50 80 %

Variable 3 – Interspersion

Interspersion Classes were determined using 2005 aerial photography and knowledge of the area.

FWOP

TY 0-20: 20/80 Class 4/Class5; TY 50: 100% Class 5

		meerspe		neution
Target Year	Cycles	Class3 (%)	Class 4 (%)	Class 5 (%)
		(70)		``´
0 (FWOP)			20	80
3			20	80
7			20	80
8	pump	100		
10		100		
12		100		
20		100		

Table 1: FWP Interspersion Classification

50 100

Variable 4 – Shallow Open Water Habitat (percent of open water < 1.5 feet)

GPS based water depths were taken during the May 19th, 2007, CWPPRA field trip. Combined water depth information from the NMFS and FWS for the two areas is shown on Table 4. Based on that information, BU site 19 contains an estimated 44% shallow water equal or less than 1.5 ft.

Table 2: Water Depth Information from May 19, 2007, Field Trip conducted by CWPPRA evaluation team.

Site	Average Water Depths	Percentage of depths =< 1.5 ft
East Site	1.6 ft	44%
West Site	1.44 ft	60%

FWOP

TY0 60% TY3 60% TY4 60% TY20 60% TY50 60% FWP TY 0 60% TY 7 60% TY 8 100% (pump year) TY 10 100% TY 12 90% TY 20 85%

TY 50 80 %

Variable 5 – Salinity

For the brackish and saline marsh models, average annual salinity is used as the salinity parameter. The SI graph for brackish marsh is constructed to represent optimal conditions when salinities are between 0 ppt and 10 ppt. Average annual salinities greater than 10 ppt are assumed to be progressively more harmful to brackish marsh vegetation. Average annual salinities greater than 16 ppt are assumed to be representative of those found in a saline marsh, and thus are not considered in the brackish marsh model. The SI graph for the saline marsh model is constructed to represent optimal salinity conditions at between 0 ppt and 21 ppt. The EnvWG acknowledges that average annual salinities below 10 ppt will effectively define a marsh as brackish, not saline.

Because the FWOP and FWP salinities are controlled by the operation of the Cameron-Creole Watershed project, FWOP and FWP salinities are expected to be the same over the project life. Salinities recorded during the May 19, 2007, field trip, from data collected by the NMFS and

FWS, indicated average salinities of 18.0 ppt. It is assumed that project area salinities would increase if the Cameron-Creole Watershed project were not maintained, but if so, FWOP salinities would not be different from FWP. The watershed project is expected be repaired and maintained in the near future, therefore average annual salinities would not be expected to increase above those recorded for the 1989 to 2003 period below (Table 3). Average annual salinities are slightly above optimal conditions for brackish marsh and there is a potential for greater project-area salinities to exist as a result of failed water control structures; therefore, the saline marsh model was used for this analysis.

AVERAGE SALIN AND EC 12 1989-	ITIES (PPT) FOR NO I 2003	NAME BAYOU
	STATION	
YEAR	No Name	EC 12
1989	11.96	
1990	10.58	8.77
1991	8.07	5.01
1992	8.79	5.48
1993	8.92	6.47
1994	9.83	6.83
1995	10.3	6.91
1996	11.97	8.3
1997	9.76	5.92
1998	10.1	6.32
1999	16.51	11.06
2000	22.06	17.66
2001	8.62	5.58
2002	8.49	6.25
2003	13.61	9.15
AVERAGE	11.30	7.84

Table 3: Average Cameron-Creole Watershed Salinities for No Name Bayou and StationEC 12 South of Lambert Bayou from 1989 to 2003.

(Source: Glenn Harris, Cameron Prairie NWR 2007)

Variable 6 - Fish Access

All TY's: 0.4 (Cameron-Creole Watershed Project repaired, slotted fixed crest weir)

References

Harris, Glenn. 2003. Cameron-Creole Watershed average annual salinities from 1989 to 2003 at Stations No Name Bayou and EC 12. Cameron Prairie National Wildlife Refuge. Bell City, LA.

Beneficial Use Sites 19 and 20 Calcasieu River and Pass, Louisiana Dredged Material Management Plan

USGS DOQQ 2005 WESTLAKE SW 3009354

Figure: 1 Date: August 2007 Scale:1:43,970 Source: USGS/GEC/USACE Map Author: Moore 27585101-765

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Saline Marsh

Project: Calcasieu DMMP: Cameron Prairie BU 19

Project Area: 300

Condition: Future Without Project (FWOP)

20	sı	0.15	0.86	0 T 0	71.0				0.87	1.00	0.46	0.27	0.58
ΤY	Value	L)	80	%			20	80	60	11	0.40	EM HSI =	= ISH MO
	SI	0.15	0.72	0 7 0	71.0				0.87	1.00	0.46	0.27	0.55
ΤΥ 1	Value	ى س	60	%			20	80	60	11	0.40	EM HSI =	= ISH MO
	SI	0.15	0.72	0 7 7	0.12				0.87	1.00	0.46	0.27	0.55
ΤΥ 0	Value	5	60	%			20	80	60	11	0.40	HSI =	•
		% Emergent	% Aquatic	Interspersion	Class 1 Class 2	Class 3	Class 4	Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	Emergent Marsh HSI	Open Water HSI
	Variable	٧1	V2	V3					V4	V5	V6		

0 0.2 0.2 1.0

0.2 0.2 0.1

Project: Calcasieu DMMP: Cameron Prairie BU 19

FWOP							
		ΥT	50				
Variable		Value	SI	Value	IS	Value	SI
۲۷	% Emergent	4	0.14				
V2	% Aquatic	80	0.86				
٤٨	Interspersion	%		%		%	
	Class 1		0.10				
	Class 2 Class 3						
	Class 4						
	Class 5	100					
V4	%OW <= 1.5ft	60	0.87				
V5	Salinity (ppt)	11	1.00				
V6	Access Value	0.40	0.46				
		EM HSI =	0.27	EM HSI =		EM HSI =	
		= ISH MO	0.57	= ISH MO		= ISH MO	

0 0 0 0 0

Project: Calcasieu DMMP: Cameron Prairie BU 19

Project Area: 300

Condition: Future With Project (FWP)

		ΤΥ 0		T Y 7		TΥ	8
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	D.	0.15	5	0.15	7	0.16
V2	% Aquatic	60	0.72	60	0.72	0	0.30
V3	Interspersion	%		%	010	%	
	Class 1 Class 2		0.12		21.0		0.40
	Class 3	;		:		100	
	Class 4 Class 5	20 80		20 80			
V4	%OW <= 1.5ft	60	0.87	60	0.87	0	0.10
V5	Salinity (ppt)	TT	1.00	TT	1.00	11	1.00
V6	Access Value	0.40	0.46	0.40	0.46	0.40	0.46
	Emergent Marsh HSI	HSI =	0.27	EM HSI =	0.27	EM HSI =	0.32
	Open Water HSI	H	0.55	= ISH MO	0.55	= ISH MO	0.43

Project: Calcasieu DMMP: Cameron Prairie BU 19

Γ			•				2
			10		12		20
Variable		Value	SI	Value	SI	Value	SI
	% Emergent	77	0.25	46	0.51	45	0.51
	% Aquatic	60	0.72	60	0.72	70	0.79
	Interspersion	%		%		%	
	Class 1 Class 2		0.40		0.40		0.40
	Class 3 Class 4	100		100		100	
	Class 5						
	%OW <= 1.5ft	100	0.50	90	0.75	85	0.88
	Salinity (ppt)	11	1.00	11	1.00	11	1.00
	Access Value	0.40	0.46	0.40	0.46	0.40	0.46
		EM HSI =	0.38	EM HSI =	0.54	EM HSI =	0.54
		= ISH MO	0.55	= ISH MO	0.57	= ISH MO	0.59

0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0.2 0.1	

C	0	0.4	0	0
C	0	0.4	0	0
C	0	0.4	0	0

Calcasieu DMMP: Cameron Prairie BU 19 Project:

			50				
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	41	0.47				
V2	% Aquatic	80	0.86				
V3	Interspersion Class 1	%	0.40			%	
	Class 2 Class 2 Class 4 Class 5	100					
V4	%OW <= 1.5ft	80	1.00				
V5	Salinity (ppt)	11	1.00				
V6	Access Value	0.40	0.46				
		EM HSI =	0.52	EM HSI =		EM HSI =	
	<u> </u>	= ISH MO	0.61	= ISH MO		= ISH MO	

00000 00000

0 0 0 0 0 0

AAHU CALCULATION - EMERGENT MARSH Project: Calcasieu DMMP: Cameron Prairie BU 19

Future Without Project	out Project		Total	Cummulative
ΤY	Marsh Acres	X HSI	HUS	HUs
0	15	0.27	4.12	
1	15	0.27	4.12	4.12
20	14	0.27	3.85	75.75
5.0	12	0.27	3.19	105.47
			AAHUs =	9.27
		•		

Future With Project	Project		Total	Cummulative
ΤY	Marsh Acres	X HSI	HUS	HUS
0	15	0.27	4.12	
2	15	0.27	4.12	28.87
8	20	0.32	6.40	5.22
10	52	0.38	19.97	25.68
12	139	0.54	75.67	66'06
20	135 1	0.54	72.80	293.86
5.0	124	0.52	64.30	2055.43
			AAHUS	140.00

1/12/2009

AAHU CALCULATION - OPEN WATER Project: Calcasieu DMMP: Cameron Prairie BU 19

Future Without Project	out Project		Total	Cummulative
ΤY	Water Acres	X HSI	HUS	HUS
0	285	0.55	157.94	
1	285	0.55	157.94	157.94
20	286	0.58	164.55	3063.52
5.0	288	0.57	165.27	4947.28
			= SUHAA	408.44

5		
L		
0		
2		
5		
•		

Į

Future With Project	Project		Total	Cummulative
ΤY	Water Acres	X HSI	HUS	HUS
0	285	0.55	157.94	
2	285	0.55	157.94	1105.55
8	159	0.43	68.01	110.32
10	160	0.55	87.58	155.55
12	191	0.57	91.11	178.68
20	165	0.59	96.70	751.14
20	176	0.61	106.58	3048.23
			AAHUS	267.47

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	267.47
B. Future Without Project Open Water AAHUs =	408.44
Net Change (FWP - FWOP) =	-140.96

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
Emergent Marsh Habitat Net AAHUs =	130.74
B. Open Water Habitat Net AAHUs =	-140.96
Net Benefits= (3.5xEMAAHUs+OWAAHUs)/4.5	70.36

Lana	000 001	oudone			r	Los	s Rate Calcu	lation							
Project:	CP_BU19				Beginning Year	Ending Year	Beginning Year Acreage	Ending Year Acreage		Loss Rate					
Total Acres		TY0 Marsh Acres		TY0 Water Acres						-0.0041					
300		15		285	FWP La	and Loss Re	eduction	0.25							
		FWOP			i i	Created		FWI	- Nouris	hed Marsh		FWP	Totals		
		-				d Marsh =	126	Nourish	ed Marsh =	15					
TY	FWOP Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	FWP Loss Rate	Created Marsh Acreage	Adjusted Marsh Acreage (10% @ TY1; 30% @ TY3 and 100% @ TY5)	FWP Loss Rate	Nourished Marsh Acreage	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3	Water (acres)	Marsh (acres)	% Marsh (V1)	Net Acres of Marsh	Total Acres Check
<u> </u>	-0.0041	15 15	5% 5%	285 285	-0.003075	0	0	-0.0041	0 15	15	285	15	5%		300
2	-0.0041	15	5%	285	-0.003075	0	0	-0.0041	15	15	285		0,0		300
3	-0.0041	15	5%	285	-0.003075	0	0	-0.0041	15	15	285	15	5%		300
4	-0.0041	15	5%	285	-0.003075	0	0	-0.0041	15	15	285	45	E0/		300
5 6	-0.0041	15 15	5% 5%	285 285	-0.003075 -0.003075	0	0	-0.0041 -0.0041	15 15	15 15	285 285	15 15	5% 5%	0	300 300
7	-0.0041	15	5%	285	-0.003075	0	0	-0.0041	15	15	285	15	5%	0	300
8	-0.0041	15	5%	285	-0.003075	126	13	-0.003075	15	7	160	140	9%	126	300
9	-0.0041	14	5%	286	-0.003075	125	13	-0.003075	14	7	160	140	9%	125	300
10 11	-0.0041 -0.0041	14 14	5% 5%	286 286	-0.003075 -0.003075	125 124	125 124	-0.003075 -0.003075	14 14	14 14	161 161	139 139	46% 46%	125 125	300 300
12	-0.0041	14	5%	286	-0.003075	124	124	-0.003075	14	14	162	139	46%	123	300
13	-0.0041	14	5%	286	-0.003075	124	124	-0.003075	14	14	162	138	46%	124	300
14	-0.0041	14	5%	286	-0.003075	123	123	-0.003075	14	14	162	138	46%	123	300
15	-0.0041	14 14	5%	286	-0.003075	123	123	-0.003075	14 14	14 14	163	137	46%	123	300
16 17	-0.0041 -0.0041	14	5% 5%	286 286	-0.003075 -0.003075	123 122	123 122	-0.003075 -0.003075	14	14	163 164	137 136	46% 45%	123 122	300 300
18	-0.0041	14	5%	286	-0.003075	122	122	-0.003075	14	14	164	136	45%	122	300
19	-0.0041	14	5%	286	-0.003075	121	121	-0.003075	14	14	165	135	45%	122	300
20	-0.0041	14	5%	286	-0.003075	121	121	-0.003075	14	14	165	135	45%	121	300
21 22	-0.0041 -0.0041	14 14	5% 5%	286 286	-0.003075 -0.003075	121 120	121 120	-0.003075 -0.003075	14 14	14 14	165 166	135 134	45% 45%	121 121	300 300
23	-0.0041	14	5%	286	-0.003075	120	120	-0.003075	14	14	166	134	45%	120	300
24	-0.0041	14	5%	286	-0.003075	120	120	-0.003075	14	14	167	133	44%	120	300
25	-0.0041	14	5%	286	-0.003075	119	119	-0.003075	14	14	167	133	44%	119	300
26 27	-0.0041	13 13	4% 4%	287 287	-0.003075 -0.003075	119 118	119 118	-0.003075 -0.003075	14 14	14 14	167 168	133 132	44% 44%	119 119	300 300
28	-0.0041	13	4%	287	-0.003075	118	118	-0.003075	14	14	168	132	44%	119	300
29	-0.0041	13	4%	287	-0.003075	118	118	-0.003075	14	14	169	131	44%	118	300
30	-0.0041	13	4%	287	-0.003075	117	117	-0.003075	14	14	169	131	44%	118	300
31 32	-0.0041	13 13	4% 4%	287 287	-0.003075 -0.003075	117 117	117 117	-0.003075 -0.003075	14 13	14 13	169 170	131 130	44% 43%	117 117	300 300
32	-0.0041	13	4% 4%	287	-0.003075	117	117	-0.003075	13	13	170	130	43%	117	300
34	-0.0041	13	4%	287	-0.003075	116	116	-0.003075	13	13	171	129	43%	116	300
35	-0.0041	13	4%	287	-0.003075	116	116	-0.003075	13	13	171	129	43%	116	300
36 37	-0.0041 -0.0041	13 13	4% 4%	287 287	-0.003075 -0.003075	115 115	115 115	-0.003075 -0.003075	13 13	13 13	171 172	129 128	43% 43%	116 115	300 300
37	-0.0041	13	4% 4%	287	-0.003075	115	115	-0.003075	13	13	172	128	43%	115 115	300
39	-0.0041	13	4%	287	-0.003075	114	114	-0.003075	13	13	173	120	42%	115	300
40	-0.0041	13	4%	287	-0.003075	114	114	-0.003075	13	13	173	127	42%	114	300
41 42	-0.0041	13	4%	287	-0.003075	113	113	-0.003075 -0.003075	13	13 13	173 174	127	42%	114	300
42 43	-0.0041 -0.0041	13 13	4% 4%	287 287	-0.003075 -0.003075	113 113	113 113	-0.003075	13 13	13	174	126 126	42% 42%	114 113	300 300
44	-0.0041	13	4%	287	-0.003075	112	112	-0.003075	13	13	175	125	42%	113	300
45	-0.0041	12	4%	288	-0.003075	112	112	-0.003075	13	13	175	125	42%	113	300
46	-0.0041	12	4%	288	-0.003075	112	112	-0.003075	13	13	175	125	42%	112	300
47 48	-0.0041 -0.0041	12 12	4% 4%	288 288	-0.003075 -0.003075	111 111	111 111	-0.003075 -0.003075	13 13	13 13	176 176	124 124	41% 41%	112 112	300 300
48 49	-0.0041	12	4% 4%	288	-0.003075	111	111	-0.003075	13	13	176	124	41%	112	300
50	-0.0041	12	4%	288	-0.003075	110	110	-0.003075	13	13	170	124	41%	111	300
														•	

Beneficial Use Site 20

Cameron Prairie NWR Beneficial Use (BU) Site 20

Project Location/Area: For this WVA, a 1,867-acre open water area in the southwestern portion of the Cameron-Creole Watershed in the Cameron Prairie National Wildlife Refuge, Cameron Parish, Louisiana, was delineated (Figure 1).

Variable 1 – Emergent Vegetation

The Corps intends to pump approximately 1,628,100 cubic yards of dredge material into the Sabine beneficial use site 20 which is located on the Cameron Prairie NWR. The material would be allowed to flow unconfined to nourish existing marsh, create new marsh, and create shallow open water habitat. Material is expected to stack up where existing marsh allows; however, depending on pipe placement and movement, material is likely to create an abundance of mudflat/shallow open water. Assuming that the average depth is approximately 1.5 feet and initial target elevations are +4.5 ft MLG approximately acres of marsh could be created (i.e., provided that the marsh creation area were confined with dikes and weirs). According to Corps, where healthy marsh borders proposed unconfined marsh creation areas, material is likely to stack in a manner similar to confined BU marsh creation areas. Also, with beneficial use of dredge material projects, generally approximately 85% of marsh is created in confined marsh creation areas. It is assumed for this analysis that 75% of dredge material pumped adjacent to existing marsh would create elevations conducive for marsh creation, and 25% would create shallow open water habitat (i.e., mudflats). Material is expected to overflow the existing marsh; however, for this analysis nourishment was not considered because of the minimal amount of wetlands that exists within the open water area (~ 48,400 cyds would nourish 30 acres).

- One (1) acre of marsh would require 261,360 cubic feet of material: 4.5'MLG + 1.5' water depths = 6' x 43,560 sq ft = 261,360 cubic feet/27 = 9,680 cubic yards
- One (1) acre of mudflat would require 65,340 cubic feet of material:
 - **1.5' X 43,560 sq. ft = 65,340 cubic ft/27 = 2,420 cubic yards** Therefore,

75% of 1,628,100 cyds = 1,221,075 cyds/ 9,680 cyds = **126 acres of marsh**

1579700=1184775/9680=122acres

25% of 1,628,100 cyds = 407,025 cyds/ 2,420 cyds = **168 acres of mudflat**

The timeline for functional marsh credit for marsh creation is assumed as follows:

Construction Year - 10 % Two Years After CY – 30 % Four Years After CY – 100%

Marsh loss and land change data was obtained from the USGS and the USACE during the evaluation of the CWPPRA, PPL 17, East Cove Marsh Creation Project. Rates were

derived from those data for the project boundary and extended boundary. The 1978-2006 annual rate (-0.41%/yr) was used in that analysis and will be used for this analysis. Material is not expected to stack and consolidate like confined material. Marsh loss rates for this area are intermediate, and sediments and nutrients will be added to the system throughout the project life. Therefore, for the purpose of this WVA, loss rates were applied to FWP starting at TY 1, but were reduced by 25 % rather than the standard 50% reduction.

FWOP

TY 0: 30 acres/~ 300ac project area (PA) = 10 % emergent marsh

FWP

Refer to land loss spreadsheet for marsh acreages credited by target year.

Variable 2 - Submerged Aquatic Vegetation (SAV)

No SAV was observed during the field inspections, but *Ruppia spp*. has been observed in the project area in concentrations as high as 80% cover by Cameron Prairie National Wildlife Refuge personnel (Jim Ashfield) prior to Hurricane Rita. With the repair of the Cameron-Creole Watershed project in the near future, those percentages are expected to return.

Assumption:

Though through TY50 all of the open water in area will be shallow, salinities will not be above the range for Widgeon Grass (*Ruppia maritima*) development. Widgeon grass has been observed in the area before Hurricane Rita in concentrations as high as 80% cover in project area open water areas.

FWOP

TY 0 – 60 % TY 20 – 80 % TY 50 – 80 %

FWP

 TY 0
 60%

 TY 4
 60 %

 TY 5
 0 % pump

 TY 7
 60 %

 TY 9
 70 %

 TY 20
 80 %

 TY 50
 80 %

Variable 3 – Interspersion

Interspersion Classes were determined using 2005 aerial photography and knowledge of the area.

FWOP

Table	1: FWP I	[ntersper	sion Classifi	ication
Target	Cycles	Class3	Class 4	Class 5
Year	Cycles	(%)	(%)	(%)
0 (FWOP)			20	80
4			20	80
5	pump	100		
7		100		
9		100		
20		100		
50		100		

TY 0-20: 20 % Class 4, 80% Class 5; TY 50: 100% Class 5

Variable 4 - Shallow Open Water Habitat (percent open water <1.5 ft)

GPS based water depths were taken during the May 19th, 2007 field trip. Combined water depth information from the NMFS and FWS for the two areas is shown on Table 4. Based on that information, BU site 20 contains an estimated 60% shallow water equal or less than 1.5 ft.

Table 2: Water Depth Information from May 19, 2007 Field Trip conducted by CWPPRA evaluation team.

Site	Average Water Depths	Percentage of depths =< 1.5 ft
East Site	1.6 ft	44%
West Site	1.44 ft	60%

FWOP

TY0	60%
TY3	60%
TY4	60%
TY20	60%
TY50	60%
FWP	
TY 0	60 %
TY 4	60 %
TY 5	100 % (pump)
TY 7	100 %
TY 9	90 %
TY 20	85 %
TY 50	80 %

Variable 5 - Salinity

Because the FWOP and FWP salinities are controlled by the operation of the Cameron-Creole Watershed project, FWOP and FWP salinities are expected to be the same over the 20-year project life. Salinities recorded during the May 19, 2007, field trip, from data collected by the NMFS and FWS, indicated average salinities of 12.8 ppt for the Eastern Site. It is assumed that project area salinities would increase if the Cameron-Creole Watershed project were not maintained, but if so, FWOP salinities would not be different from FWP. The watershed project is expected be repaired and maintained in the near future, therefore average annual salinities would not be expected to increase above those recorded for the 1989 to 2003 period below (Table 3).

Table 3: Average Cameron-Creole Watershed Salinities for No Name Bayou and
Station EC 12 South of Lambert Bayou from 1989 to 2003.

AVERAGE SALIN AND EC 12 1989-	ITIES (PPT) FOR NO I 2003	NAME BAYOU	
	STATION		
YEAR	No Name	EC 12	
1989	11.96		
1990	10.58	8.77	
1991	8.07	5.01	
1992	8.79	5.48	
1993	8.92	6.47	
1994	9.83	6.83	
1995	10.3	6.91	
1996	11.97	8.3	
1997	9.76	5.92	
1998	10.1	6.32	
1999	16.51	11.06	
2000	22.06	17.66	
2001	8.62	5.58	
2002	8.49	6.25	
2003	13.61	9.15	
AVERAGE	11.30	7.84	

(Source: Glenn Harris, Cameron Prairie NWR 2007)

Variable 6 - Fish Access

All TY's: 0.4 (Cameron-Creole Watershed Project repaired, slotted fixed crest weir)

References

Harris, Glenn. 2003. Cameron-Creole Watershed average annual salinities from 1989 to 2003 at Stations No Name Bayou and EC 12. Cameron Prairie National Wildlife Refuge. Bell City, LA.

Beneficial Use Sites 19 and 20 Calcasieu River and Pass, Louisiana Dredged Material Management Plan

USGS DOQQ 2005 WESTLAKE SW 3009354

Figure: 1 Date: August 2007 Scale:1:43,970 Source: USGS/GEC/USACE Map Author: Moore 27585101-765

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: Calcasieu DMMP: Cameron Prairie BU site 20

300 Project Area:

Condition: Future Without Project (FWOP)

		TΥ 0		TY 1		τ	20
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	01	0.19	10	0.19	10	0.19
V2	% Aquatic	09	0.64	60	0.64	80	0.82
V3	Interspersion	%		%		%	
	Class 1 Class 2		0.12		0.12		0.12
	Class 3						
	Class 4 Class 5	20		20		20 80	
					0		10.0
V4	11C.1 => MO%	60	0.87	60	0.87	60	0.87
V5	Salinity (ppt)	8	1.00	8	1.00	8	1.00
76 V6	Access Value	0.40	0.46	0.40	0.46	0.40	0.46
	Emergent Marsh HSI	sh HSI =	0.31	EM HSI =	0.31	EM HSI =	0.31
	Open Water HSI	= 10	0.58	= ISH MO	0.58	= ISH MO	0.65

Calcasieu DMMP: Cameron Prairie BU site 20 Project:

FWOP							
		λı	50				
Variable		Value	IS	Value	SI	Value	SI
١٨	% Emergent	6	0.18				
٧2	% Aquatic	08	0.82				
V3	Interspersion	%		%		%	
	Class 1 Class 2		0.12				
	Class 3						
	Class 4	20					
	Class 5	80					
V4	%OW <= 1.5ft	60	0.87				
V5	Salinity (ppt)	8	1.00				
V6	Access Value	0.40	0.46				
		EM HSI =	0:30	EM HSI =		EM HSI =	
		= ISH MO	0.65	= ISH MO		= ISH MO	

0.2 0 0 0 0.2 0 0

00000

Project: Calcasieu DMMP: Cameron Prairie BU site 20

Condition: Future With Project (FWP)

		ΤΥ 0		ΤΥ 4		ΤY	5
Variable		Value	SI	Value	SI	Value	SI
11	% Emergent	10	0.19	10	0.19	6	0.18
V2	% Aquatic	60	0.64	60	0.64	0	0.10
۲3	Interspersion	%		%		%	
	Class 1		0.12		0.12		0.40
	Class 2						
	Class 3					100	
	Class 4	20		20			
	Class 5	80		80			
V4	%OW <= 1.5ft	60	0.87	60	0.87	0	0.10
V5	Salinity (ppt)	8	1.00	ω	1.00	ω	1.00
V6	Access Value	0.40	0.46	0.40	0.46	0.40	0.46
	Emergent Marsh HSI	= ISH 4	0.31	EM HSI =	0.31	EM HSI =	0.33
	Open Water HSI	=	0.58	= ISH MO	0.58	= ISH MO	0.25

Project: Calcasieu DMMP: Cameron Prairie BU site 20

20	Value SI	49 0.54	80 0.82	% 0.40	100	85 0.90	8 1.00	0.40 0.46	EM HSI = 0.56
6	SI	0.56	0.73	0.40		0.80	1.00	0.46	0.57
	Value	51	70	%	100	06	8	0.40	EM HSI =
7	SI	0.30	0.64	0.40		0.60	1.00	0.46	0.41
	Value	22	60	%	100	100	8	0.40	EM HSI =
		% Emergent	% Aquatic	Interspersion Class 1	Class 2 Class 2 Class 3 Class 4 Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	
	Variable	V1	V2	V3		V4	V5	V6	

300	
Project Area:	

roject: Calcasieu	WP
u DMMP:	
P: Cameron	
Prairie B	
U site 20	

					0.04.0						
	SI										
	Value			%						EM HSI =	OW HSI =
	SI										
	Value			%						EM HSI =	OW HSI =
50	SI	0.51	0.82	0.40	5		1.00	1.00	0.46	0.54	0.68
	Value	45	80	%	100		80	8	0.40	EM HSI =	OW HSI =
		% Emergent	% Aquatic	Interspersion Class 1	Class 2 Class 3 Class 3	Class 4 Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value		
	Variable	٧1	V2	V3			V4	V5	90		

AAHU CALCULATION - EMERGENT MARSH Project: Calcasieu DMMP: Cameron Prairie BU site 20

ure With	Future Without Project		Total	Cummulative
τY	Marsh Acres	X HSI	HUS	нUs
0	30	0.31	9.17	
1	30	0.31	9.17	9.17
20	28	0.31	8.56	168.43
50	24	0.30	7.18	235.90
			AAHUs =	20.67
Future With Project	Project		Total	Cummulative
ТΥ	Marsh Acres	X HSI	HUS	нUs
0	30	0.31	9.17	
4	30	0.31	9.17	36.68
5	28	0.33	9.24	9.22
7	67	0.41	27.59	35.77
6	154	0.57	87.97	110.93
20	148	0.56	83.01	940.25
50	135	0.54	72.90	2337.21

Future With Project	Project		Total	Cummulativ
TΥ	Marsh Acres	ISH X	HUS	HUS
0	3.0	0.31	9.17	
4	0 8	0.31	9.17	36.6
5	28	0.33	9.24	6.2
2	67	0.41	27.59	35.7
6	154	0.57	87.97	110.5
20	148	0.56	83.01	940.2
50	135	0.54	72.90	2337.2
			SUHAA	173.5

	=	П	
NET CHANGE IN AAHUS DUE TO PROJECT	A. Future With Project Emergent Marsh AAHUs	B. Future Without Project Emergent Marsh AAHUs	Net Change (FWP - FWOP) =

	3 = 173.50	HUs = 20.67	152.02
N AAHUS DUE TO PROJECT	Project Emergent Marsh AAHUs	ut Project Emergent Marsh AAHUs	

00400

00000

AAHU CALCULATION - OPEN WATER Project: Calcasieu DMMP: Cameron Prairie RU Aite

Future With	uture Without Project		Total	Cummulative
Lλ	Water Acres	X HSI	HUS	HUS
0	270	0.58	157.60	
L	270	0.58	157.60	157.60
20	272	0.65	177.79	3185.77
20	276	0.65	180.40	5372.91
			AAHUs =	435.81

TY Water Acres x HI HUs HUs 0 270 0.58 157.60 60.60 4 270 0.58 157.60 60.10 5 144 0.25 84.73 121.24 7 145 0.58 84.73 121.24 9 146 0.63 92.71 177.42 7 152 0.68 102.83 1074.97 7 152 0.68 102.83 1074.97 7 152 0.68 112.84 3234.53 7 152 0.68 112.84 3234.53 7 103.83 1074.97 1074.97 7 0.68 112.84 3234.53 8 1 112.84 3234.53	Future With Project	Project		Total	Cummulative
270 0.58 157.60 270 0.58 157.60 270 0.58 157.60 144 0.25 157.60 144 0.26 84.73 146 0.63 92.71 152 0.68 102.83 1 153 0.68 112.84 3 165 0.68 112.84 3 165 0.68 112.84 3	ΤY	Water Acres	X HSI	HUS	HUs
270 0.58 157.60 144 0.25 36.62 146 0.58 84.73 146 0.63 92.71 152 0.68 1102.83 1 165 0.68 112.84 3 165 0.68 112.84 3	0	270	0.58	157.60	
144 0.25 36.62 145 0.58 84.73 145 0.63 92.71 152 0.68 102.83 1 165 0.68 102.83 1 165 0.68 112.84 3 165 0.68 112.84 3	4	270	0.58	157.60	630.40
145 0.58 84.73 146 0.63 92.71 152 0.68 102.83 165 0.68 112.84 165 0.68 112.84	5	144	0.25	36.62	90.19
146 0.63 92.71 112.84 3 152 0.68 112.83 1 165 0.68 112.84 3 112.84 3 AAHUS	2	145	0.58	84.73	121.24
152 0.68 102.83 102.83 105 112.84 105 1000000000000000000000000000000000	6	146	0.63	92.71	177.42
112.84 3	20	152	0.68	102.83	1074.97
	50	165	0.68	112.84	3234.53
				AAHUS	266.44

	266.44	435.81	-169.38	
NET CHANGE IN AAHUS DUE TO PROJECT	A. Future With Project Open Water AAHUs =	B. Future Without Project Open Water AAHUs =	Net Change (FWP - FWOP) =	

Emergent Marsh Habitat Net AAHUs = 152.83 Open Water Habitat Net AAHUs = -169.38 Benefite= /2 6vFMAAH Is-0WAAH Is/V3 6 63.33
--

Land Loss Spreadsheet

	.033 Op					1	Bata Cal	lation		1					
Project:	CP BU 20				Beginning Year	Loss Ending Year	s Rate Calcu Beginning Year	Ending Year Acreage		Loss Rate					
Total Acres		TY0 Marsh Acres		TY0 Water Acres	rear	rear	Acreage	Acreage		-0.0041					
300		30		270	FWP La	and Loss Re	eduction	0.25			4				
000		FWOP		2.0		Created			- Nouris	hed Marsh		FWP	Totals		
						d Marsh =	126		ed Marsh =	30			. etaie		
							Adjusted								
ΤY	FWOP Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	FWP Loss Rate	Created Marsh Acreage	Marsh Acreage (10% @ TY1; 30% @ TY3 and 100% @ TY5)	FWP Loss Rate	Nourished Marsh Acreage	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3	Water (acres)	Marsh (acres)	% Marsh (V1)	Net Acres of Marsh	Total Acres Checl
0	-0.0041	30 30	10% 10%	270 270	-0.003075	0	0	-0.0041	0 30	30	270	30	10%		3
2	-0.0041	30	10%	270	-0.003075	0		-0.0041	30	30	270				3
3	-0.0041	30	10%	270	-0.003075	0	0	-0.0041	30	30	270	30	10%		3
4	-0.0041	30 29	10%	270	-0.003075 -0.003075	0	13	-0.0041	30 29	30 15	270 145	27	9%	-2	3
6	-0.0041	29	10%	271	-0.003075	125	13	-0.003075	29	15	145	155	14%	125	3
7	-0.0041	29	10%	271	-0.003075	125	37	-0.003075	29	29	146	154	22%	125	3
8	-0.0041	29 29	10% 10%	271 271	-0.003075 -0.003075	124 124	37 124	-0.003075 -0.003075	29 29	29 29	146 147	154 153	22% 51%	125 124	3
9 10	-0.0041	29	10%	271	-0.003075	124	124	-0.003075	29	29	147	153	51%	124	3
11	-0.0041	29	10%	271	-0.003075	123	123	-0.003075	29	29	148	152	51%	124	3
12 13	-0.0041 -0.0041	29 28	10% 9%	271 272	-0.003075 -0.003075	123 123	123 123	-0.003075 -0.003075	29 29	29 29	148 149	152 151	51% 50%	123 123	3
13	-0.0041	28	9% 9%	272	-0.003075	123	123	-0.003075	29	29	149	151	50%	123	3
15	-0.0041	28	9%	272	-0.003075	122	122	-0.003075	29	29	150	150	50%	122	3
16	-0.0041	28	9%	272	-0.003075	121	121	-0.003075	28	28	150	150	50%	122	3
17 18	-0.0041	28 28	9% 9%	272 272	-0.003075 -0.003075	121 121	121 121	-0.003075 -0.003075	28 28	28 28	151 151	149 149	50% 50%	121 121	3
19	-0.0041	28	9%	272	-0.003075	120	120	-0.003075	28	28	152	148	49%	121	3
20	-0.0041	28	9%	272	-0.003075	120	120	-0.003075	28	28	152	148	49%	120	3
21 22	-0.0041	28 27	9% 9%	272 273	-0.003075 -0.003075	120 119	120 119	-0.003075 -0.003075	28 28	28 28	152 153	148 147	49% 49%	120 120	3
23	-0.0041	27	9%	273	-0.003075	119	119	-0.003075	28	28	153	147	49%	119	3
24	-0.0041	27	9%	273	-0.003075	118	118	-0.003075	28	28	154	146	49%	119	3
25 26	-0.0041 -0.0041	27 27	9% 9%	273 273	-0.003075 -0.003075	118 118	118 118	-0.003075 -0.003075	28 28	28 28	154 155	146 145	49% 48%	119 118	3
20	-0.0041	27	9%	273	-0.003075	117	117	-0.003075	20	28	155	145	48%	118	3
28	-0.0041	27	9%	273	-0.003075	117	117	-0.003075	27	27	156	144	48%	118	3
29 30	-0.0041 -0.0041	27 27	9% 9%	273 273	-0.003075 -0.003075	117 116	117 116	-0.003075 -0.003075	27 27	27 27	156 156	144 144	48% 48%	117 117	3
30	-0.0041	26	9% 9%	273	-0.003075	116	116	-0.003075	27	27	156	144	48%	117	3
32	-0.0041	26	9%	274	-0.003075	116	116	-0.003075	27	27	157	143	48%	116	3
33 34	-0.0041	26 26	9% 9%	274 274	-0.003075 -0.003075	115 115	115 115	-0.003075 -0.003075	27 27	27 27	158 158	142 142	47% 47%	116 116	3
35	-0.0041	26	9%	274	-0.003075	115	115	-0.003075	27	27	150	142	47%	115	3
36	-0.0041	26	9%	274	-0.003075	114	114	-0.003075	27	27	159	141	47%	115	3
37 38	-0.0041	26 26	9% 9%	274 274	-0.003075 -0.003075	114 113	114 113	-0.003075 -0.003075	27 27	27 27	160 160	140 140	47% 47%	115 114	3
39	-0.0041	26	9% 9%	274	-0.003075	113	113	-0.003075	27	27	160	140	47%	114	3
40	-0.0041	25	8%	275	-0.003075	113	113	-0.003075	26	26	161	139	46%	114	3
41 42	-0.0041	25 25	8% 8%	275 275	-0.003075 -0.003075	112 112	112 112	-0.003075 -0.003075	26 26	26 26	161 162	139 138	46% 46%	113 113	3
42	-0.0041	25 25	8% 8%	275	-0.003075	112	112	-0.003075	26 26	26	162	138	46%	113	3
44	-0.0041	25	8%	275	-0.003075	111	111	-0.003075	26	26	163	137	46%	112	3
45	-0.0041	25	8%	275	-0.003075	111	111	-0.003075	26	26	163	137	46%	112	3
46 47	-0.0041	25 25	8% 8%	275 275	-0.003075 -0.003075	111 110	111 110	-0.003075 -0.003075	26 26	26 26	163 164	137 136	46% 45%	112 111	3
48	-0.0041	25	8%	275	-0.003075	110	110	-0.003075	26	26	164	136	45%	111	3
49	-0.0041	25	8%	275	-0.003075	110	110	-0.003075	26	26	165	135		111	3

Beneficial Use Site 24

Beneficial Use (BU) Site 24 (Black Lake)

I. Project Location/Area: BU site 24 (Figure 1) is a 2327-acre area located west of the Calcasieu River and Pass and south of the Gulf Intracoastal Waterway (GIWW).

II. Goals: The project goal is to create approximately 490 acres of brackish marsh habitat in this 2327-acre area. Approximately 4.35 million cubic yards of material would be dredged from the Calcasieu Ship Channel (between miles 16 and 21) in two pumping cycles to create approximately 490 acres of intertidal, brackish marsh habitat in BU site 24. The marsh and estuarine habitat created would achieve a ratio of 85% marsh to 15% shallow open water.

III. Project Features

For the two pumping cycles, a total of 4,356,000 cyds of material will be pumped, with 2,178,000 cyds in both cycles. Two 245-acre cells would be created to accommodate the two pumping cycles. To assess habitat benefits, a WVA was prepared for both pumping cycles.

IV. WVA Variables and Assumptions

The following is a description of assumptions created for the two dredging cycles (cells). The same assumptions apply to both cycles, but target years (i.e., years that dikes would be constructed and dredged material pumped) would differ.

Cycle 1

Variable 1: Emergent Marsh

FWOP: There is 0% emergent marsh in the open water areas where the cells would be constructed.

FWP: A total of 2,178,000 cyds of dredged material will be pumped into this 245-acre cell.

To determine the potential amount of marsh acres that could be created with the dredged material, depth data collected by GBA, Inc. in 2007 was used. It was found that the open water area of this BU site is, on average, approximately 3-feet deep. Assuming that the cells would be filled initially to 2.5 feet above the water surface, 8,873 cyds would be required to create one acre of marsh. These numbers are estimates. Actual target elevations of placed and consolidated fill at the site would be determined through coordination with resource agencies and the development of geotechnical analyses during the preparation of plans and specifications for the project.

- \rightarrow 3 + 2.5 = 5.5 ft. * 43,560 sq. ft = 239,580,260 cubic feet / 27 = 8,873 cyds per acre
- \rightarrow 2,178,000 cyds / 8,873 cyds per acre = 245 acres

Based on USACE knowledge and experience of dredging operations, a maximum of 85% of this material will form into vegetated marsh, and the remaining 15% of the area would be

shallow open water (also called mudflats). It would take several years for the dredged material to vegetate into marsh. Vegetation would not be planted, but would be allowed to form naturally. The following assumptions are used for marsh creation with natural recruitment:

Target Year (TY) 0: 0 acres of existing marsh

TY 12: 0 acres of marsh

TY 13: (dike and pump) -10% of the dredged material would be marsh (.10*245ac=25ac of marsh)

TY 15: (2 years after pumping) -30% marsh (.3 * 245ac = 74ac of marsh)

TY 17: (4 years after pumping) -85% marsh (.85 * 245ac = 208ac. of marsh)

Marsh loss data was obtained from the Louisiana Coastal Area project report *Coast 2050: Toward a Sustainable Coastal Louisiana* (1998), Appendix F. The loss rate of -0.0029 is used for future-without-project (FWOP). Without the project, there would be no marsh restoration in this project area, so the loss rate would not apply. However, for the futurewith-project (FWP) scenario, loss rates would apply after the material is pumped and the dike degraded. Marsh created in a confined area would likely differ in some aspects from naturally occurring marsh: it would be slightly higher in elevation than natural marsh, and its density would differ from natural marsh due to consolidation and type of material. Therefore, the loss rate that would be applied would differ as well; it would be reduced by 50% to account for these attributes. Therefore, for FWP, a loss rate of -0.0015 was applied starting the year that the dike would be degraded (TY 16). Please see the attached land loss spreadsheet to see how acreage lost after dike degradation was determined.

TY 16 (3 years after pumping): dike degraded and land loss begins TY 20: 85% marsh (208 acres of marsh) TY 50: 81% (198 acres of marsh)

Variable 2 – Submerged Aquatic Vegetation (SAV)

Water control structures were implemented in 1985 as part of the Black Lake Marsh Management Area, at that time classified as an intermediate marsh. Management strategies were requested in 2001 (installation of 3 replacement structures, two of the 60-inch flapgated culverts were after-the-fact (0.2 structure rating)). The area was classified as shallow open water with extensive beds of widgeongrass and other SAVs. FWS recommended that two additional 60-inch variable crest weirs (0.25 Structure rating) be installed to properly manage water levels and salinity (5 ppt being the threshold).

FWOP

TY 0: 60 % TY 1: 60 % TY 20: 60 % TY 50: 60 %

The area supports SAV in the FWOP scenario. Once marsh habitat is created, open water area SAV should increase.

TY 0: 60% TY 12: 60% TY 13 (dike and pump): 20% TY 15: 60% TY 16: 80% TY 17: 80% TY 20: 80% TY 50: 80%

Variable 3 – Interspersion

FWOP: The lowest expression of interspersion, Class 5, is characterized by open water and less than 5% of emergent marsh. Without marsh restoration efforts, 100% of the 245-acre project area in this cycle would fall into Class 5. Interspersion classifications are not expected to change within the 50-year assessment period for FWOP (i.e., marsh will not occur naturally).

FWP: Areas exhibiting a high degree of marsh cover are ranked as having a high degree of dispersion (Class 1 or Class 2). It is assumed that the confined area would achieve a Class 1 once the dredged material is pumped for this cycle because of the ratio of marsh to open water (85% marsh/15% open water). 100% of the project area would fall into Class 1 starting the first year it is pumped (TY 1) and throughout the remainder of the 20-year DMMP project life. By TY 50, the area falls to 80% marsh because of landloss rates. Therefore, in TY 50, the interspersion falls to a Class 2.

1		I Interb	persion en	abbillout	.1011	
Target Year	Class 1		Class 2		Class 5	
					(open	
		%		%	water)	%
12					245 ac	100
13	245 ac	100				
(dike/pump)						
15	245 ac	100				
16 (dike	245 ac	100				
degraded)						
17	245 ac	100				
20	245 ac	100				
50			245 ac	100		

Table 1. FWP Interspersion Classification

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal conditions are expected to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep. Based on limited water depth data of the area, water depth is expected

FWP:

to be greater than 2' throughout most of the area. Therefore, it was assumed that in the FWOP scenario, only 10% of Cell 1 would be classified as </= 1.5'. Once the marsh is pumped, 100% of the water in Cell 1 would be shallow.

FWOP:

(TY 0): 80% * 160ac of open water </= 1.5 ft

FWP:

TY 0 -shallow open water = 80% or same as FWOP

TY 12 - Dike built. Shallow open water = 80%

TY 13 – Pump year. 85% of the 160-acres of material is expected to achieve marsh height. Any open water (15% of the area) would be shallow open water = 100%.

TY 15 -Two years after pumping. Shallow open water = 100%.

TY 16 – Dike degraded. Shallow open water = 100%

TY 17 – Four years after pumping. Marsh is fully vegetated. Shallow open water = 100% 90% as trenasses are formed, mechanically or naturally

TY 20 – Shallow open water = 80% As marsh is lost areas become shallow open water and water depths may gradually become deeper.

TY 50 – Shallow open water = 60%

Variable 5 – Salinity

Hourly water salinity records collected during 2007 show that average annual salinity for the CRMS station located in the project area is 8.1 parts per thousand (ppt). 2006 was considered an anomalous year, with average salinities of 13.1. For that reason, only 2007 data was used.

The salinity is expected to remain constant throughout the life of this project.

Variable 6 – Fish Access

Access by aquatic organisms is considered to be a critical component in assessing the quality of a given marsh system. The suitability index (SI) for this variable is determined by calculating an "access value" based on the percentage of the project area wetlands considered accessible by aquatic organisms during normal tidal fluctuations, and the type of man-made structures (if any) across identified points of ingress/egress (e.g., bayous, canals, etc.). A solid plug is assigned an SI of .0001. A completely open system is assigned an SI of 1.0.

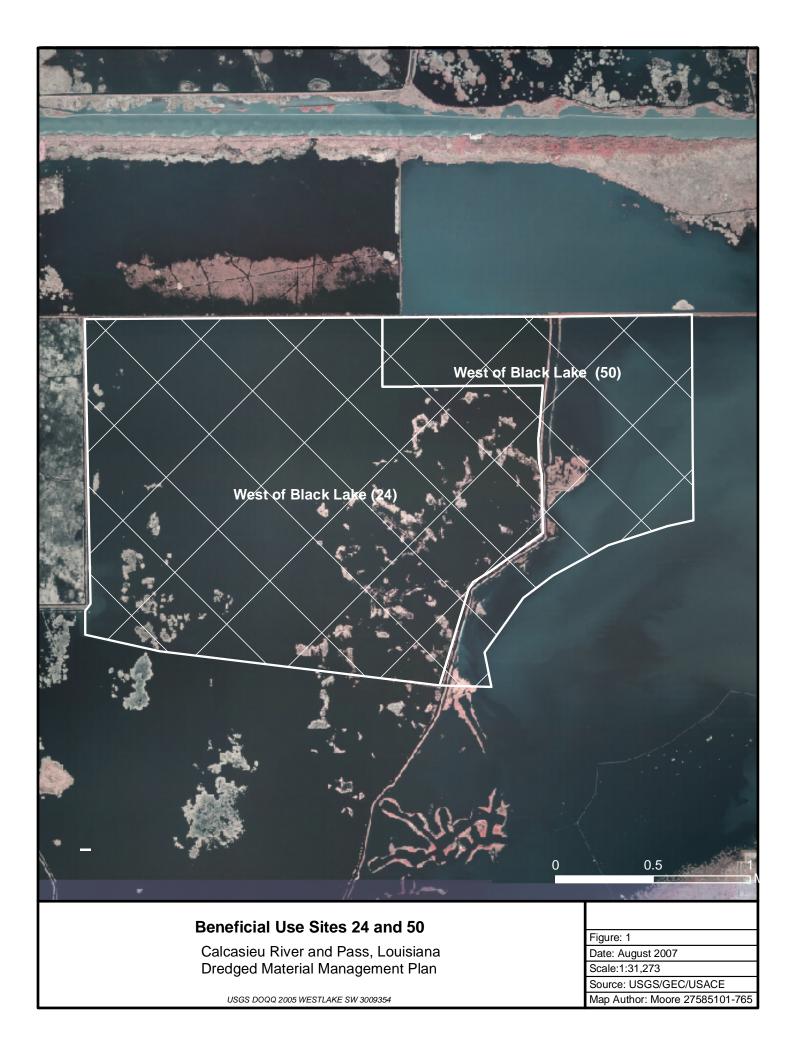
Five water control structures were installed for the Black Lake Marsh Management Area, bringing the access value from 1.0 (an open system) to .22.

FWOP:

TY 0: .22 TY 1: .22 TY 20: .22 TY 50: .22 **FWP:** The current access value, as noted previously, is .22. During TY 13, the dike would be constructed, resulting in an access value of 0.0001. The access value is expected to remain at 0.0001 until the dike degrades in TY 16. The degree of access would then return to the original value of .22 and remain there throughout the 50 year assessment period.

TY 12 .22 TY 13 0.0001 (dike construction and pumping year) TY 16 .22 (dike degradation) TY 20 .22 (end of project) TY 50 .22

Cycle 2


The above assumptions were applied to Cycle 2 target years, which include the following:

FWOP:

TY 0, TY 1, TY 20, TY 50

FWP:

- TY 0: same as FWOP
- TY 15 same as FWOP
- TY 16 Dike and pump year. 10% credit given to marsh creation.
- TY 18 Two years after pumping. 30% credit given to marsh creation.
- TY 19 Three years after pumping. Dike degraded. Landloss begins.
- TY 20 Four years after pumping. Marsh is fully vegetated (85% credit)
- TY 50 -- Landloss rates have reduced the amount of marsh from 85% of project area to 81%

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: Cycle 1, BU Site 24, Calcasieu DMMP

Project Area: 245

Condition: Future Without Project

		ΤΥ 0		TY 1		⊥	20
Variable		Value	SI	Value	SI	Value	SI
11	% Emergent	0	0.10	0	0.10	0	0.10
V2	% Aquatic	60	0.64	09	0.64	60	0.64
۶۸	Interspersion Class 1	%	0.10	%	0.10	%	0.10
	Class 2 Class 3 Class 4 Class 5	100		100		100	
V4	%OW <= 1.5ft	10	0.23	10	0.23	10	0.23
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00
V6	Access Value	0.22	0.30	0.22	0.30	0.22	0.30
	Emergent Marsh HSI	sh HSI =	0.22	EM HSI =	0.22	EM HSI =	0.22
	Open Water HSI	= 19	0.47	= ISH MO	0.47	= ISH MO	0.47

FWOP							
		TY 50					
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	0	0.10				
V2	% Aquatic	09	0.64				
V3	Interspersion	%		%		%	
	Class 1 Class 2		0.10				
	Class 3						
	Class 4						
	Class 5	100					
V4	%OW <= 1.5ft	10	0.23				
V5	Salinity (ppt)	8.1	1.00				
V6	Access Value	0.22					
		EM HSI =	0.22	EM HSI =		EM HSI =	
		= ISH MO	0.47	= ISH MO		= ISH MO	

Project Area: 245

Condition: Future With Project

		ТҮ 0		TY 12		TY 13 Dike & Pump	Pump
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	0	0.10	0	0.10	10	0.19
V2	% Aquatic	60	0.64	60	0.64	20	0.28
V3	Interspersion Class 1	%	0.10	%	0.10	100	1.00
	Class 2 Class 3 Class 4						
	Class 5	100		100			
V4	%OW <= 1.5ft	10	0.23	10	0.23	100	0.60
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00
V6	Access Value	0.22	0.30	0.22	0.30	0.00	0.10
	Emergent Marsh HS	sh HSI =	0.22	EM HSI =	0.22	EM HSI =	0.35
	Open Water HSI	= IS	0.47	OW HSI =	0.47	= ISH MO	0.34

FWP	ſ						
		TY 15		TY 16 Dike degraded	graded	TY 17	
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	30	0.37	30	0.37	85	0.87
V2	% Aquatic	60	0.64	80	0.82	80	0.82
V3	Interspersion Class 1 Class 2	100	1.00	100	1.00	100	0.60
	Class 3 Class 4 Class 5						
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00
V6	Access Value	0.00	0.10	0.22	0.30	0.22	0.30
		EM HSI =	0.44	EM HSI =	0.50	EM HSI =	0.70
		= ISH MO	0.43	= ISH MO	0.62	= ISH MO	0.59

Project: Cycle 1, BU	
Site 24,	
Calcasieu DN	
AMP	

		SI								
		Value			%				EM HSI =	OW HSI =
		SI	0.83	0.82	0.00	0.87	1.00	0.30	0.62	0.56
	TY 50	Value	81	80	100	90	8.1	0.22	EM HSI =	= ISH MO
		SI	0.87	0.82	1.00	1.00	1.00	0.30	0.75	0.65
	TY 20	Value	85	80	100	80	8.1	0.22	EM HSI =	= ISH MO
			% Emergent	% Aquatic	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value		
FWP		Variable	V1	V2	V3	V4	V5	V6		

AAHU CALCULATION - MARSH

Future Without Project	out Project		Total	Cummulative
ТҮ	Marsh Acres	X HSI	HUS	HUS
0	0	0.22	00.0	
1	0	0.22	00.0	00.0
20	0	0.22	00.0	00.0
50	0	0.22	00.0	00.00
			AAHUs =	0.00

TY Marsh Acres x HS HUs HUs 0 0 0 0.22 0.00 0.000 12 0 0.22 0.000 0.000 0.000 13 25 0.35 8.74 3.84 14 32.19 33.64 3.84 15 74 0.44 32.19 39.54 16 74 0.50 36.70 34.45 17 208 0.70 146.41 86.91 20 208 0.70 146.41 86.91 20 198 0.62 122.82 343.76 50 198 0.62 122.82 4437.61	Future With Project	Project		Total	Cummulative
0 0.22 0.00 0 0.22 0.00 25 0.35 8.74 74 0.44 32.19 74 0.50 36.70 74 0.50 146.41 208 0.70 146.41 208 0.75 155.65 3 198 0.62 122.82 44 198 0.62 122.82 44	ТΥ	Marsh Acres	X HSI	HUS	HUS
0 0.22 0.00 25 0.35 8.74 74 0.44 32.19 74 0.50 36.70 208 0.70 146.41 208 0.75 155.65 3 208 0.62 122.82 44 208 0.62 122.82 44	0	0	0.22	00.0	
25 0.35 8.74 74 0.35 8.74 74 0.44 32.19 74 0.50 36.70 208 0.70 146.41 208 0.75 155.65 208 0.75 155.65 208 0.62 34Us	12	0	0.22	00.0	0.00
74 0.44 32.19 74 0.50 36.70 208 0.70 146.41 208 0.75 155.65 3 198 0.62 122.82 4	13	52	0.35	8.74	3.84
74 0.50 36.70 208 0.70 146.41 208 0.75 155.65 3 198 0.62 122.82 44	15		0.44	32.19	39.54
208 0.70 146.41 1 208 0.75 155.65 3 198 0.62 122.82 44 AHUS AAHUS	16		0.50	36.70	34.45
208 0.75 155.65 3 198 0.62 122.82 44 AAHUS AAHUS	17	208	0.70	146.41	86.91
198 0.62 122.82 44	20	208	0.75	155.65	362.17
	50	198	0.62	122.82	4437.61
				SUHAA	99.29

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	99.29
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	99.29

AAHU CALCULATION - OPEN WATER Project: Cycle 1, BU Site 24, Calcasieu DMMP

Future Without Project	out Project		Total	Cummulative
ТҮ	Water Acres	X HSI	HUs	HUS
0	245	0.47	113.94	
1	245	0.47	113.94	113.94
20	245	0.47	113.94	2164.87
50	245	0.47	113.94	3418.22
			AAHUs =	113.94

Future With Project	Project		Total	Cummulative
ТΥ	Water Acres	X HSI	HUS	HUS
0	245	0.47	113.94	
12	245	0.47	113.94	1367.29
13	37	0.34	12.46	58.76
15	37	0.43	15.89	28.36
16	37	0.62	22.87	19.38
17	37	0.59	21.77	22.32
20	37	0.65	23.96	68.60
50	47	0.62	29.15	838.50
			AAHUS	48.06

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	48.06
B. Future Without Project Open Water AAHUs =	113.94
Net Change (FWP - FWOP) =	-65.88

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	99.29
B. Open Water Habitat Net AAHUs =	-65.88
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	53.41

WETLAND VALUE ASSESSMENT COMMUNITY MODEL

Brackish Marsh

Project Area: 245

Condition: Future Without Project

20	SI	0.10	0.64	0.10	0.000	0.23	1.00	0.30	= <u>0.22</u>	- 0.47
TΥ	Value	0	60	%	100	10	8.1	0.22	EM HSI =	
	SI	0.10	0.64	0.10		0.23	1.00	0.30	0.22	C 7 7
ΤΥ 1	Value	0	60	%	100	10	8.1	0.22	EM HSI =	
	SI	0.10	0.64	0.10		0.23	1.00	0.30	0.22	11 0
TY 0	Value	0	60	%	100	10	8.1	0.22	sh HSI =	_
		% Emergent	% Aquatic	Interspersion Class 1 Class 2	Class 2 Class 3 Class 4 Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	Emergent Marsh HSI	Out and Mintelline
	Variable	٧1	V2	V3		V4	V5	V6		

FWOP								
		TY 50						
Variable		Value	SI	Value	SI	Value	SI	
٧1	% Emergent	0	0.10					
V2	% Aquatic	60	0.64					
V3	Interspersion Class 1	%	010	%		%		
	Class 2		5					, 0 0
	Class 3 Class 4 0.							
	Class 5	100						
V4	%OW <= 1.5ft	10	0.23					
V5	Salinity (ppt)	8.1	1.00					
V6	Access Value	0.22	0.30					
		EM HSI =	0.22	EM HSI =		= ISH WE		
		OW HSI =	0.47	= ISH MO		= ISH MO		

0000-

00000

Project Area: 245

Condition: Future With Project

		TY 0		TY 15		TY 16 Dike and Pump	Pump
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	0	0.10	0	0.10	10	0.19
V2	% Aquatic	9	0.64	60	0.64	20	0.28
V3	Interspersion Class 1	%	0.10	%	0.10	100	1.00
	Class 2 Class 2 Class 4 Class 4	c t		0 0 7			
		00 T		00 7			
V4 V5		10	0.23	10	0.23	100	0.60
6A 9A	Access Value	8.1	0.30	0.22	0.30	00.0	0.10
	Emergent Marsh HSI	sh HSI =	0.22	EM HSI =	0.22	EM HSI =	0.35
_	Open Water HSI	SI =	0.47	= ISH MO	0.47	OW HSI =	0.34

- 0 0 0 0

0 0 0 0 0 0 0 0 0

		ТҮ 18		TY 19 Dike Degraded	graded	TY 20	
Variable		Value	SI	Value	SI	Value	SI
۲۱	% Emergent	30	0.37	30	0.37	85	0.87
V2	% Aquatic	60	0.64	80	0.82	80	0.82
V3	Interspersion Class 1 Class 2	100	1.00	100	1.00	100	0.60
	Class 3 Class 4 Class 5						
V4	%OW <= 1.5ft	100	0.60	100	0.60	80	1.00
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	11.8	0.73
V6	Access Value	0.00	0.10	0.22	0.30	0.22	0.30
		EM HSI =	0.44	EM HSI =	0.50	EM HSI =	0.67
		OW HSI =	0.43	= ISH MO	0.62	= ISH MO	09.0

-0000

- 0 0 0 0

-0000

	I							
		TY 50						
Variable		Value	SI	Value	SI	Value	SI	
V1	% Emergent	81	0.83					
V2	% Aquatic	80	0.82					
V3	Interspersion Class 1	%	090	%		%		
	Class 2 Class 3	100						0.6 0
	Class 4 Class 5							<u>.</u>
V4	%OW <= 1.5ft	09	0.87					
V5	Salinity (ppt)	11.8	0.73					
V6	Access Value	0.22	0.30					
		= ISH WE	0.66	EM HSI =		EM HSI =		
		= ISH MO	0.59	= ISH MO		= ISH MO		
								-+

0 9.0 0 0

00000

AAHU CALCULATION - MARSH

Future Without Project	out Project		Total	Cummulative
ТҮ	Marsh Acres	x HSI	HUS	HUS
0	0	0.22	00.0	
1	0	0.22	00.00	0.00
20	0	0.22	00.00	0.00
50	0	0.22	00.00	0.00
			AAHUS =	0.00

Entrue Mith Drainet			Totol	Cumminotino
	r ojeci		10141	
тΥ	Marsh Acres	x HSI	HUS	HUS
0	0	0.22	00.0	
15	0	0.22	00.00	00.00
16	25	0.35	8.74	3.84
18	74	0.44	32.19	39.54
19	74	0.50	36.70	34.45
20	208	0.67	140.17	84.46
50	198	0.66	130.08	4052.83
			AAHUs	84.30

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	84.30
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	84.30

AAHU CALCULATION - OPEN WATEF Project: Cycle 2, BU Site 24, Calcasieu DMMP

TY Water Acres 0 24 1 24 20 24				
20	tes x HSI	31	HUS	HUs
20	245	0.47	113.94	
20	245	0.47	113.94	113.94
	245	0.47	113.94	2164.87
50	245	0.47	113.94	3418.22
			AAHUs =	113.94

07	
~	
<u> </u>	
<u> </u>	
~	
Ш	
S	
⊃	
Ŧ	
÷.	
◄	
حک	
~	

L WELL	100			
Future with Project	Project		lotal	Cummulative
ТҮ	Water Acres	X HSI	HUS	HUS
0	245	0.47	113.94	
15	245	0.47	113.94	1709.11
16	28	0.34	12.46	58.76
18	28	0.43	15.89	28.36
19	28	0.62	22.87	19.38
20	28	09.0	22.13	22.50
50	4 1	0.59	27.66	747.28
			AAHUS	51.71

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	51.71
B. Future Without Project Open Water AAHUs =	113.94
Net Change (FWP - FWOP) =	-62.23

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	84.30
B. Open Water Habitat Net AAHUs =	-62.23
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	43.60

						Loss	Loss Rate Calculation	tion		
							Beginning	Ending		
Project:					Beginning Year	Ending Year	Year Acreage	Year Acreage	Loss Rate	
Total Acres		TY0 Marsh		TY0 Water	1974	1990	3,740	3,570	-0.002903	
245		Acres		245	ΡM	/P Land Los	FWP Land Loss Reduction	0.50		
		FWOP					FWP			
ТҮ	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	λL	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	Net Acro of Mars
0		0	%0	245	0		0	%0	245	
-	-0.002903	0	%0	245	~	-0.001452	0	%0	245	
2	-0.002903	0	%0	245	2	-0.001452	0	%0	245	
3	-0.002903	0	0%	245	3	-0.001452	0	%0	245	
4	-0.002903	0	%0	245	4	-0.001452	0	%0	245	
5	-0.002903	0	%0	245	5	-0.001452	0	%0	245	
9	-0.002903	0	%0	245	9	-0.001452	0	%0	245	
7	-0.002903	0	%0	245	2	-0.001452	0	%0	245	
8	-0.002903	0	%0	245	8	-0.001452	0	%0	245	
6	-0.002903	0	%0	245	6	-0.001452	0	%0	245	
10	-0.002903	0	%0	245	10	-0.001452	0	%0	245	
11	-0.002903	0	%0	245	11	-0.001452	0	%0	245	
12	-0.002903	0	%0	245	12	-0.001452	0	%0	245	
13	-0.002903	0	%0	245	13	-0.001452	25	10%	221	
14	-0.002903	0	%0	245	14	-0.001452	25	10%	220	
15	-0.002903	0	%0	245	15	-0.001452	74	30%	172	
16	-0.002903	0	%0	245	16	-0.001452	73	30%	172	
17	-0.002903	0	%0	245	17	-0.001452	208	85%	37	0
18	-0.002903	0	%0	245	18	-0.001452	208	85%	37	0
19	-0.002903	0	%0	245	19	-0.001452	207	85%	38	0
20	-0.002903	0	%0	245	20	-0.001452	207	85%	38	5
21	-0.002903	0	%0	245	21	-0.001452	207	84%	38	0

cres Irsh

39	39	39	39	40	40	40	41	41	41	41	42	42	42	43	43	43	44	44	44	44	45	45	45	46	46	46	46	47
84%	84%	84%	84%	84%	84%	84%	83%	83%	83%	83%	83%	83%	83%	83%	82%	82%	82%	82%	82%	82%	82%	82%	82%	81%	81%	81%	81%	81%
206	206	206	206	205	205	205	204	204	204	204	203	203	203	202	202	202	201	201	201	201	200	200	200	199	199	199	199	198
-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452	-0.001452
22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245	245
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903	-0.002903
22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50

Beneficial Use Site 48

Beneficial Use (BU) Site 48 (West Palermo Property)

I. Project Location/Area

This wetland value assessment (WVA) focuses on BU site 48 (Figure 1), also known as the West Palermo property. This 1475-acre area is located near Brown Lake, approximately one mile south of the GIWW and bordered by Highway 27 on the east.

II. Goals

The project goal is to create fish and wildlife habitat, including intertidal marsh and shallow open water habitat within the 1318-acre open water area of the BU site. Approximately 6.3 million cubic yards of material would be dredged from the Calcasieu Ship Channel (between miles 16 and 21) and placed in the area through three pumping cycles.

III. Project Features

For the three pumping cycles, a total of 6,292,000 cyds of material will be pumped, with 2,097,333 cyds in each cycle. Three 236-acre cells would be created to accommodate the three pumping cycles (6,292,000 cyds/3 = 2,097,333cyds/8873 cyds per acre = 236-acre cells created in each pumping cycle). To assess habitat benefits, a WVA was prepared for each of the three pumping cycles.

IV. WVA Variables and Assumptions

The following is a description of assumptions for the three dredging cycles (cells). The same assumptions apply to all cycles, but target years (i.e., years that dikes would be constructed and dredged material pumped) would differ between the three.

Cycle 1

Variable 1 – Emergent Vegetation

FWOP: There is 0% emergent marsh in the open water areas where the cells would be constructed.

FWP: A total of 2,097,333 cyds of dredged material will be pumped into this 236-acre cell. To determine the potential amount of marsh acres that could be created with the dredged material, depth data collected by GBA, Inc. in 2007 was used. It was found that the open water area of this BU site is, on average, approximately 3-feet deep. Assuming that the cells would be filled initially to 2.5 feet above the water surface, 8,873 cyds would be required to create one acre of marsh. These numbers are estimates. Actual target elevations of placed and consolidated fill at the site would be determined through coordination with resource agencies and the development of geotechnical analyses during the preparation of plans and specifications for the project. The analyses would consider long-term settlement of the dredged materials and placement area foundations, as well as elevation surveys of the nearby planned wetland habitat to determine the appropriate target range.

- \rightarrow 3 + 2.5 = 5.5 ft. * 43,560 sq. ft = 239,580,260 cubic feet / 27 = 8,873 cyds per acre
- \rightarrow 2,097,333cyds / 8,873 cyds per acre = 236 acres

Based on USACE knowledge and experience of dredging operations, a maximum of 85% of this material will form into vegetated marsh, and the remaining 15% of the area would be shallow open water (also called mudflats). It would take several years for the dredged material to vegetate into marsh. Vegetation would not be planted, but would be allowed to form naturally. The following assumptions are used for marsh creation with natural recruitment:

Target Year (TY) 0 - 0% emergent marsh TY 1 - 0%TY 2 (dike construction & pump year) – 10% of the dredged material would be marsh (.10 * 236 ac = 23.6 ac of marsh) TY 4 (2 years after pumping) – 30% marsh (.3 * 236 ac = 70.8 ac of marsh) TY 6 (4 years after pumping) – 85% marsh (.85 * 236 ac = 200.6 ac of marsh)

Marsh loss data was obtained from the Louisiana Coastal Area project report *Coast 2050: Toward a Sustainable Coastal Louisiana* (1998), Appendix F. The loss rate of -0.0045 is used for future-without-project (FWOP). Without the project, there would be no marsh restoration in this project area, so the loss rate would not apply. However, for the future-with-project (FWP) scenario, loss rates would apply after the material is pumped and the dike degraded. Marsh created in a confined area would likely differ in some aspects from naturally occurring marsh: it would be slightly higher in elevation than natural marsh, and its density would differ from natural marsh due to consolidation and type of material. Therefore, the loss rate that would be applied would differ as well; it would be reduced by 50% to account for these attributes. Therefore, for FWP, a loss rate of -0.0023 was applied starting the year that the dike would be degraded (TY 5).

TY 5 (or 3 years after pumping): dike degraded and land loss rate of -0.0023 was applied. TY 20: 85 % marsh TY 50: 85 % marsh

Variable 2 – Submerged Aquatic Vegetation (SAV)

In the past, this area has experienced higher levels of salt water intrusion causing the marsh to transition from an intermediate marsh to a more brackish marsh. Water control structures were designed and installed in the area to reduce salinity spikes in the area and help create suitable habitat for SAVs. However, these control structures are no longer operational. Without any hydrologic restoration to control salinity, the project area will continue to experience salinity spikes and is not expected to support a significant amount of SAV habitat. BU Site 48 is completely impounded and not influenced by salt water intrusion. Although there are no water structures to control water levels on the site, the area is expected to support a significant amount of SAV habitat because of the lower salinities levels.

FWOP:

TY 0: 60% TY 5: 60% TY 20: 60% TY 50: 60%

FWP:

TY 1: 60% TY 2: 0% TY 5: 60% TY 20: 80% TY 50: 80%

Variable 3 – Interspersion

FWOP: The lowest expression of interspersion, Class 5, is characterized by open water and less than 5% of emergent marsh. Without marsh restoration efforts, 100% of the 236-acre cell would fall into Class 5. Interspersion classifications are not expected to change within the 50-year time period for FWOP (i.e., marsh will not occur naturally).

FWP: Areas exhibiting a high degree of marsh cover are ranked as having a high degree of dispersion (Class 1 or Class 2). It is assumed that the confined area would achieve a Class 1 once the dredged material is pumped for this cycle because of the ratio of marsh to open water (85% marsh/15% open water). 100% of the 236-acre cell would fall into Class 1 starting the first year it is pumped (TY 1) and throughout the remainder of the 20-year DMMP project life. By TY 50, the area falls to 85% marsh because of landloss rates and interspersion falls to a Class 2.

Target Year	Class 1	%	Class 2	%	Class 5	%
0 (FWOP)					236 ac	100
1					236 ac	100
2 (dike & pump)	236 ac	100				
5 (dike degraded)	236 ac	100				
20	236 ac	100				
50			236 ac	100		

Table 1: FWP Interspersion Classification

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal conditions are expected to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep. A study by La Peyre et al. (2007) was conducted within the nearby Sabine NWR which shows that a 3.28-foot (1 m) area waterward of the marsh edge has an

average water depth less than 1.5 feet (NAVD 88). Subtidal, open water areas located 164.04 feet (50 m) from marsh edge have an average water depth of 1.7 feet (NAVD 88). Therefore, it was assumed that all water within 164 feet of existing emergent marsh is less than 1.5 feet deep.

FWOP:

Using ArcView, the perimeter of existing marsh was measured and multiplied by 164 feet. That value was converted into an acreage value. Based on this calculation, it was found that 28% (66 acres) of the 236 acres of open water in BU Site 48, Cell 1, would be less than or equal to 1.5 ft.

FWOP (TY 0): 28% * 236 ac of open water </= 1.5 ft

FWP:

TY 0 = 28% or same as FWOP TY 2 (Pump year) = 100% TY 20 = 80 % TY 50 = 60 %

Variable 5 – Salinity

Hydrographic data was downloaded by station number from the Louisiana Department of Natural Resources SONRIS site (accessed July 30, GEC). All data has been corrected for biofouling, instrument drift, and/or instrument malfunction.

Hourly water salinity records collected during 2007 show that average annual salinity for the CRMS station located near the project area is 8.1 parts per thousand (ppt). The salinity is expected to remain constant throughout the life of this project.

Variable 6 – Fish Access

Access by aquatic organisms is considered to be a critical component in assessing the quality of a given marsh system. The access value is based on the percentage of the project area wetlands considered accessible by aquatic organisms during normal tidal fluctuations, and the type of man-made structures (if any) across identified points of ingress/egress (e.g., bayous, canals, etc.). A solid plug is assigned an SI of .0001 and a completely open system is assigned an SI of 1.0.

FWOP: This area is considered an impounded system, and is therefore assigned an access value of 0.0001.

TY 0: 0.0001 TY 1: 0.0001 TY 20: 0.0001 TY 50: 0.0001 **FWP:** The current access value, as noted previously, is 0.0001. During TY 2, the dike would be constructed, so the access value would remain 0.0001 throughout the 50-year assessment period.

TY 0	0.0001
TY 1	0.0001
TY 2 (dike & pump year)	0.0001
TY 5 (dike degradation)	0.0001
TY 20	0.0001
TY 50	0.0001

Cycles 2 and 3

The above assumptions were applied to Cycle 2 and 3 Target Years, which include the following:

FWOP (Cycles 2 and 3):

TY 0, TY 1, TY 20, TY 50

FWP (Cycle 2):

TY 0: Same as FWOP

TY 5: Same as TY 0

TY 6: Dike construction and pump year. 10% credit given to marsh creation.

TY 8: Two years after pumping. 30% credit given to marsh creation.

TY 9: Dike degradation (3 years after pumping)

TY 10: Four years after pumping. 85% credit given to fully vegetated marsh

TY 20: Landloss rates have reduced the amount of marsh from 85% of project area to 83%

TY 50: Landloss rates have reduced the amount of marsh from 83% of project area to 78%.

FWP (Cycle 3):

TY 0: Same as FWOP

TY 10: Same as TY 0

TY 11: Dike construction and pump year. 10% credit given to marsh creation.

TY 13: Two years after pumping. 30% credit given to marsh creation.

TY 14: Dike degradation (3 years after pumping)

TY 15: Four years after pumping. Marsh is fully vegetated (85% credit)

TY 20: Landloss rates have reduced the amount of marsh from 85% of project area to 83%.

TY 50: Landloss rates have reduced the amount of marsh from 83% of project area to 78%.

V. References

La Peyre, Megan K., Bryan Gossman, and John A. Nyman. Assessing functional equivalency of nekton habitat in enhanced habitats: Comparison of terraced and unterraced marsh ponds. *Estuaries and Coasts.* Vol. 30, No. 3, p. 526–536. June 2007.

USGS DOQQ 2005 WESTLAKE SW 3009354

Date: January 2008 Scale:1:25,018 Source: USGS/GEC/USACE Map Author: Laura 27585107

Project: Cycle 1, BU Site 48, Calcasieu DMMP

```
Project Area:
```

236

Condition: Future Without Project

		TY 0		TY 1		TY 20				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	0	0.10			
V2	% Aquatic	60	0.64	60	0.64	60	0.64			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	0.10	%	0.10	%	0.10	0 0 0 0.1	0 0 0 0.1	
V4	%OW <= 1.5ft	28	0.46	28	0.46	28	0.46			
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00			
V6	Access Value	0.00	0.10	0.00	0.10	0.00	0.10			
	Emergent Marsh	HSI =	0.20	EM HSI =	0.20	EM HSI =	0.20			
	Open Water HSI	=	0.35	OW HSI =	0.35	OW HSI =	0.35			

Project: FWOP	Cycle 1, BU Si	ite 48, Calcasie	eu DMMP						
Variable		TY 50 Value	SI	Value	SI	Value	SI		
V1	% Emergent	0	0.10						
V2	% Aquatic	60	0.64						
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%		%		0 0 0 0.1	0 0 0 0
V4	%OW <= 1.5ft	28	0.46						
V5	Salinity (ppt)	8.1	1.00						
V6	Access Value	0.00	0.10	EN LIQ		ENUO			
		EM HSI = OW HSI =	0.20 0.35	EM HSI = OW HSI =		EM HSI = OW HSI =			

Project: Cycle 1, BU Site 48, Calcasieu DMMP

Project Area:

236

Condition: Future With Project

		TY 0		TY 1		TY 2				
						(dike & pump year)				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	10	0.19			
V2	% Aquatic	60	0.64	60	0.64	0	0.10			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	% 100	1.00	0 0 0 0.1	0 0 0 0.1	1 0 0 0
V4	%OW <= 1.5ft	28	0.46	28	0.46	100	0.60			
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00			
V6	Access Value	0.00	0.10	0.00	0.10	0.00	0.10			
	Emergent Marsh	HSI =	0.20	EM HSI =		EM HSI =	0.35			
	Open Water HSI	=	0.35	OW HSI =	0.35	OW HSI =	0.27			

Project: Cycle 1, BU Site 48, Calcasieu DMMP FWP

		TY 4		TY 5 (dike degraded)		TY 6			
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	30	0.37	30	0.37	85	0.87	Ĩ	
V2	% Aquatic	20	0.28	60	0.64	60	0.64		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	1.00	% 100	0.60	1 0 0 0 0	1 0 0 0
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60		
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00		
V6	Access Value	0.00 EM HSI =	0.10 0.44	0.00 EM HSI =	0.10 0.44	0.00 EM HSI =	0.10 0.59		
		OW HSI =	0.34		0.43		0.40		

Project: Cycle 1, BU Site 48, Calcasieu DMMP FWP

		TY 20		TY 50				
Variable		Value	SI	Value	SI	Value	SI	
V1	% Emergent	85	0.87	85	0.87			
V2	% Aquatic	80	0.82	80	0.82			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	0.00	%		
V4	%OW <= 1.5ft	80	1.00	60	0.87			
V5	Salinity (ppt)	8.1	1.00	8.1	1.00			
V6	Access Value	0.00	0.10	0.00	0.10			
	Ļ	EM HSI = OW HSI =	0.63	EM HSI = OW HSI =	0.52	EM HSI = OW HSI =		

Future With	out Project		Total	Cummulative
TY	Marsh Acres	x HSI	HUs	HUs
0	0	0.20	0.00	
1	0	0.20	0.00	0.00
20	0	0.20	0.00	0.00
50	0	0.20	0.00	0.00
			AAHUs =	0.00

Future With	Project		Total	Cummulative
ΤY	Marsh Acres	x HSI	HUs	HUs
0	0	0.20	0.00	
1	0	0.20	0.00	0.00
2	24	0.35	8.39	3.60
4	71	0.44	30.89	37.94
5	71	0.44	30.89	30.89
6	201	0.59	117.94	71.13
20	201	0.63	126.88	1713.74
50	201	0.52	104.54	3471.29
			AAHUs	106.57

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	106.57
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	106.57

AAHU CALCULATION - OPEN WATER

Project: Cycle 1, BU Site 48, Calcasieu DMMP

uture Witho	out Project		Total	Cummulative
TY	Water Acres	x HSI	HUs	HUs
0	236	0.35	83.20	
1	236	0.35	83.20	83.20
20	236	0.35	83.20	1580.82
50	236	0.35	83.20	2496.02
			AAHUs =	83.20

Future With	Project		Total	Cummulative		
ΤY	Water Acres	x HSI	HUs	HUs		
0	236	0.35	83.20			
1	236	0.35	83.20	83.20		
2	212	0.27	57.32	69.93		
4	165	165	165	0.34	55.58	113.94
5	165	0.43	70.88	63.23		
6	35	0.40	14.00	41.80		
20			17.40	219.80		
50	35	0.41	14.48	626.44		
			AAHUs	24.37		

NET CHANGE IN AAHUS DUE TO PROJECT		
A. Future With Project Open Water AAHUs =		24.37
B. Future Without Project Open Water AAHUs =	-	83.20
Net Change (FWP - FWOP) =		-58.83

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	106.57
B. Open Water Habitat Net AAHUs =	-58.83
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	60.63

Project: Cycle 2, BU Site 48, Calcasieu DMMP

```
Project Area:
```

236

Condition: Future Without Project

	1	TY 0		TY 1		TY 20				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	0	0.10			
V2	% Aquatic	60	0.64	60	0.64	60	0.64			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	%	0.10	0 0 0 0.1	0 0 0 0.1	0
V4	%OW <= 1.5ft	28	0.46	28	0.46	28	0.46			
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00			
V6	Access Value	0.00	0.10	0.00	0.10	0.00	0.10			
	Emergent Marsh	HSI =	0.20	EM HSI =	0.20	EM HSI =	0.20			
	Open Water HSI	=	0.35	OW HSI =	0.35	OW HSI =	0.35			

	1 [TY 50						1	
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	0	0.10						
V2	% Aquatic	60	0.64						
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%		%		0 0 0 0.1	
V4	%OW <= 1.5ft	28	0.46						
V5	Salinity (ppt)	8.1	1.00						
V6	Access Value	0.00	0.10						
		EM HSI = OW HSI =	0.20	EM HSI = OW HSI =		EM HSI = OW HSI =		l	

Project: Cycle 2, BU Site 48, Calcasieu DMMP

Project Area:

236

Condition: Future With Project

		TY 0		TY 5		TY 6				
						(dike & pump year)				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	10	0.19			
V2	% Aquatic	60	0.64	60	0.64	0	0.10			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	% 100	1.00	0 0 0 0.1	0 0 0 0.1	1 0 0 0
V4	%OW <= 1.5ft	28	0.46	28	0.46	100	0.60			
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00			
V6	Access Value	0.00	0.10	0.00	0.10	0.00	0.10			
	Emergent Marsh	HSI =	0.20	EM HSI =		EM HSI =	0.35			
	Open Water HSI	=	0.35	OW HSI =	0.35	OW HSI =	0.27			

Project: Cycle 2, BU Site 48, Calcasieu DMMP FWP

		TY 8		TY 9 (dike degraded)		TY 10			
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	30	0.37	30	0.37	85	0.87		
V2	% Aquatic	20	0.28	60	0.64	60	0.64		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	1.00	% 100	0.60	1 0 0 0 0	1 0 0 0
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60		
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00		
V6	Access Value	0.00 EM HSI =	0.10 0.44	0.00 EM HSI =	0.10 0.44	0.00 EM HSI =	0.10 0.59		
		OW HSI =	0.44	OW HSI =		OW HSI =			

Project: Cycle 2, BU Site 48, Calcasieu DMMP FWP

	1	TY 20		TY 50			
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	85	0.87	85	0.87		
V2	% Aquatic	80	0.82	80	0.82		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	0.00	%	
V4	%OW <= 1.5ft	80	1.00	60	0.87		
V5	Salinity (ppt)	8.1	1.00	8.1	1.00		
V6	Access Value	0.00	0.10	0.00	0.10		
		EM HSI =	0.63	EM HSI =	0.52	EM HSI =	
		OW HSI =	0.50	OW HSI =	0.41	OW HSI =	

Future With	out Project		Total	Cummulative
TY	Marsh Acres	x HSI	HUs	HUs
0	0	0.20	0.00	
1	0	0.20	0.00	0.00
20	0	0.20	0.00	0.00
50	0	0.20	0.00	0.00
			AAHUs =	0.00

Future With	Project		Total	Cummulative
ΤY	Marsh Acres	x HSI	HUs	HUs
0	0	0.20	0.00	
5	0	0.20	0.00	0.00
6	24	0.35	8.39	3.60
8	71	0.44	30.89	37.94
9	71	0.44	30.89	30.89
10	201	0.59	117.94	71.13
20	201	0.63	126.88	1224.10
50	201	0.52	104.54	3471.29
			AAHUs	96.78

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	96.78
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	96.78

AAHU CALCULATION - OPEN WATER

Project: Cycle 2, BU Site 48, Calcasieu DMMP

uture Witho	out Project		Total	Cummulative		
TY	Water Acres	x HSI	HUs	HUs		
0	236	0.35	83.20			
1	236	0.35	83.20	83.20		
20	236	0.35	83.20	1580.82		
50	236	0.35	83.20	2496.02		
			AAHUs =	83.20		

Future With	Project		Total	Cummulative
TY	Water Acres	x HSI	HUs	HUs
0	236	0.35	83.20	
5	236	0.35	83.20	416.00
6	212	0.27	57.32	69.93
8	165	0.34	55.58	113.94
9	165	0.43	70.88	63.23
10	35	0.40	14.00	41.80
20	35	0.50	17.40	157.00
50	35	0.41	14.48	569.49
			AAHUs	28.63

NET CHANGE IN AAHUS DUE TO PROJECT]
A. Future With Project Open Water AAHUs =	28.63
B. Future Without Project Open Water AAHUs =	83.20
Net Change (FWP - FWOP) =	-54.57

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	96.78
B. Open Water Habitat Net AAHUs =	-54.57
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	54.74

Project: Cycle 3, BU Site 48, Calcasieu DMMP

```
Project Area:
```

236

Condition: Future Without Project

	1	TY 0		TY 1		TY 20				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	0	0.10			
V2	% Aquatic	60	0.64	60	0.64	60	0.64			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%	0.10	%	0.10	0 0 0 0.1	0 0 0 0.1	0
V4	%OW <= 1.5ft	28	0.46	28	0.46	28	0.46			
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00			
V6	Access Value	0.00	0.10	0.00	0.10	0.00	0.10			
	Emergent Marsh	HSI =	0.20	EM HSI =	0.20	EM HSI =	0.20			
	Open Water HSI	=	0.35	OW HSI =	0.35	OW HSI =	0.35			

Project: FWOP	Cycle 3, BU Si	te 48, Calcasie	eu DMMP						
] [TY 50]	
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	0	0.10						
V2	% Aquatic	60	0.64						
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	%		%		0 0 0 0 0.1	0 0 0 0
V4	%OW <= 1.5ft	28	0.46						
V5	Salinity (ppt)	8.1	1.00						
V6	Access Value	0.00	0.10						
		EM HSI = OW HSI =	0.20	EM HSI = OW HSI =		EM HSI = OW HSI =			

Project: Cycle 3, BU Site 48, Calcasieu DMMP

Project Area:

236

Condition: Future With Project

		TY 0		TY 10		TY 11 (dike & pump year)				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	0	0.10	0	0.10	10	0.19			
V2	% Aquatic	60	0.64	60	0.64	0	0.10			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%	0.10	% 100	0.10	% 100	1.00	0 0 0 0.1	0 0 0 0 0.1	
V4	%OW <= 1.5ft	28	0.46	28	0.46	100	0.60			
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00			
V6	Access Value	0.00	0.10	0.00	0.10	0.00	0.10			
	Emergent Marsh H Open Water HSI	HSI = =	0.20 0.35	EM HSI = OW HSI =	0.20 0.35	EM HSI = OW HSI =	0.35 0.27			

Project: Cycle 3, BU Site 48, Calcasieu DMMP FWP

		TY 13		TY 14		TY 15			
				(dike degraded)					
Variable		Value	SI	Value	SI	Value	SI		
V1	% Emergent	30	0.37	30	0.37	85	0.87		
V2	% Aquatic	20	0.28	60	0.64	60	0.64		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	1.00	% 100	0.60	1 0 0 0 0	1 0 0 0
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60		
V5	Salinity (ppt)	8.1	1.00	8.1	1.00	8.1	1.00		
V6	Access Value	0.00 EM HSI =	0.10 0.44	0.00 EM HSI =	0.10 0.44	0.00 EM HSI =	0.10 0.59		
		OW HSI =	0.44	OW HSI =		OW HSI =			

Project: Cycle 3, BU Site 48, Calcasieu DMMP FWP

		TY 20		TY 50			
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	85	0.87	85	0.87		
V2	% Aquatic	80	0.82	80	0.82		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	0.00	%	
V4	%OW <= 1.5ft	80	1.00	60	0.87		
V5	Salinity (ppt)	8.1	1.00	8.1	1.00		
V6	Access Value	0.00	0.10	0.00	0.10		
		EM HSI = OW HSI =	0.63	EM HSI = OW HSI =	0.52	EM HSI = OW HSI =	

Future With	out Project		Total	Cummulative
TY	Marsh Acres	x HSI	HUs	HUs
0	0	0.20	0.00	
1	0	0.20	0.00	0.00
20	0	0.20	0.00	0.00
50	0	0.20	0.00	0.00
			AAHUs =	0.00

Future With	Project		Total	Cummulative
TY	Marsh Acres	x HSI	HUs	HUs
0	0	0.20	0.00	
10	0	0.20	0.00	0.00
11	24	0.35	8.39	3.60
13	71	0.44	30.89	37.94
14	71	0.44	30.89	30.89
15	201	0.59	117.94	71.13
20	201	0.63	126.88	612.05
50	201	0.52	104.54	3471.29
			AAHUs	84.54

	7
NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	84.54
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	84.54

AAHU CALCULATION - OPEN WATER

Project: Cycle 3, BU Site 48, Calcasieu DMMP

uture Witho	out Project		Total	Cummulative
TY	Water Acres	x HSI	HUs	HUs
0	236	0.35	83.20	
1	236	0.35	83.20	83.20
20	236	0.35	83.20	1580.82
50	236	0.35	83.20	2496.02
			AAHUs =	83.20

Future With	Project		Total	Cummulative
ΤY	Water Acres	x HSI	HUs	HUs
0	236	0.35	83.20	
10	236	0.35	83.20	832.01
11	212	0.27	57.32	69.93
13	165	0.34	55.58	113.94
14	165	0.43	70.88	63.23
15	35	0.40	14.00	41.80
20	35	0.50	17.40	78.50
50	35	0.41	14.48	498.31
			AAHUs	33.95

NET CHANGE IN AAHUS DUE TO PROJECT]
A. Future With Project Open Water AAHUs =	33.95
B. Future Without Project Open Water AAHUs =	83.20
Net Change (FWP - FWOP) =	-49.25

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	84.54
B. Open Water Habitat Net AAHUs =	-49.25
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	47.38

						Loss Rate Calculation Beginning Ending					
Project:	Cycle, BU 4	18			Beginning	Ending	Beginning Year	Ending			
. 0,001.	5,00,004				Year	Year	Acreage		Loss Rate		
Total Acres		TY0 Marsh Acres		TY0 Water Acres	1974	1990	17,320	16,100	-0.004555		
236	5	0		236	FV	/P Land Los	ss Reduction	0.50			
	1 1	FWOP					FWP				
TY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)		
0		0	0%	236	0		0	0%	236		
1 2	-0.004555	0	0% 0%	236 236	2 3	0	24 24	10% 10%	212 212		
3	-0.004555	0	0%	236	3 4	0	24 71	30%	165		
4	-0.004555	0	0%	230	4 5	-0.002277	71	30%	165		
5	-0.004555	0	0%	236	6	-0.002277	201	85%	35		
6	-0.004555	0	0%	236	7	-0.002277	200	85%	36		
7	-0.004555	0	0%	236	8	-0.002277	200	85%	36		
8	-0.004555	0	0%	236	9	-0.002277	199	84%	37		
9	-0.004555	0	0%	236	10	-0.002277	199	84%	37		
10 11	-0.004555 -0.004555	0	0% 0%	236 236	11 12	-0.002277	198 198	<u>84%</u> 84%	38 38		
12	-0.004555	0	0%	230	12	-0.002277	190	84%	39		
13	-0.004555	0	0%	236	14	-0.002277	197	83%	39		
14	-0.004555	0	0%	236	15	-0.002277	197	83%	39		
15	-0.004555	0	0%	236	16	-0.002277	196	83%	40		
16	-0.004555	0	0%	236	17	-0.002277	196	83%	40		
17	-0.004555	0	0%	236	18	-0.002277	195	83%	41		
18 19	-0.004555	0	0%	236 236	19 20	-0.002277	195 194	83% 82%	41		
20	-0.004555	0	0%	230	20	-0.002277	194	82%	42		
21	-0.004555	0	0%	236	22	-0.002277	193	82%	43		
22	-0.004555	0	0%	236	23	-0.002277	193	82%	43		
23	-0.004555	0		236	24	-0.002277	193	82%	43		
24	-0.004555	0		236	25	-0.002277	192	81%	44		
25	-0.004555	0	0%	236	26	-0.002277	192	81%	44		
26 27	-0.004555 -0.004555	0		236 236	27 28	-0.002277	191 191	<u>81%</u> 81%	45 45		
28	-0.004555	0	0%	236	20	-0.002277	190	81%	46		
29	-0.004555	0		236	30	-0.002277	190	80%	46		
30	-0.004555	0		236	31	-0.002277	189	80%	47		
31	-0.004555	0		236	32	-0.002277	189	80%	47		
32	-0.004555	0		236	33	-0.002277	189	80%	47		
33 34	-0.004555 -0.004555	0	0% 0%	236 236	34 35	-0.002277	188 188	80% 80%	48 48		
35	-0.004555	0		230	36	-0.002277	187	79%	40		
36	-0.004555	0		236	37	-0.002277	187	79%	49		
37	-0.004555	0		236	38	-0.002277	186	79%	50		
38	-0.004555	0		236	39	-0.002277	186	79%	50		
39	-0.004555	0	0%	236	40	-0.002277	186	79%	50		
40	-0.004555	0		236	41	-0.002277	185	78%	51		
41 42	-0.004555 -0.004555	0	0% 0%	236 236		-0.002277	185 184	78% 78%	51 52		
42	-0.004555	0		236	43	-0.002277	184	78%	52		
43	-0.004555	0		230	44	-0.002277	184	78%	52		
45	-0.004555	0		236	46	-0.002277	183	78%	53		
46	-0.004555	0		236	47	-0.002277	183	77%	53		
47	-0.004555	0	0%	236	48	-0.002277	182	77%	54		
48	-0.004555	0		236	49	-0.002277	182	77%	54		
49	-0.004555		00/	236	50	-0.002277	181	77%	55		

						Loss Rate Calculation Beginning Ending					
	Our C D	1.40			Decimin 1	F	Beginning	Ending			
Project:	Cycle 2, BL	J 48			Beginning Year	Ending Year	Year Acreage	Year Acreage	Loss Rate		
Total Acres		TY0 Marsh Acres		TY0 Water Acres	1974	1990	17,320		-0.004555		
220	,						o Doduction	0.50			
236		0 FWOP		236	FV	VP Land Los	ss Reduction	0.50			
		FWOP					FVF				
TY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)		
0		0	0%	236	0		0	0%	236		
1	-0.004555	0	0%	236		0	24	10%	212		
2	-0.004555	0	0%	236	7	0	24	10%	212		
3 4	-0.004555 -0.004555	0	0%	236 236	8 9	0-0.002277	71 71	30%	165 165		
5	-0.004555	0	0%	236	9 10	-0.002277	201	85%	35		
6	-0.004555	0	0%	236	11	-0.002277	200	85%	36		
7	-0.004555	0	0%	236	12	-0.002277	200	85%	36		
8	-0.004555	0	0%	236		-0.002277	199	84%	37		
9	-0.004555	0	0%	236	14 15	-0.002277	199	84%	37		
10 11	-0.004555 -0.004555	0	0% 0%	236 236	15	-0.002277 -0.002277	198 198	84% 84%	38 38		
12	-0.004555	0	0%	230	17	-0.002277	190	84%	39		
13	-0.004555	0	0%	236		-0.002277	197	83%	39		
14	-0.004555	0	0%	236	19	-0.002277	197	83%	39		
15	-0.004555	0	0%	236		-0.002277	196	83%	40		
16	-0.004555	0	0%	236	21	-0.002277	196	83%	40		
17	-0.004555	0	0%	236	22	-0.002277	195	83%	41		
18 19	-0.004555 -0.004555	0	0% 0%	236 236	23 24	-0.002277 -0.002277	195 194	83% 82%	41 42		
20	-0.004555	0	0%	230		-0.002277	194	82%	42		
21	-0.004555	0	0%	236		-0.002277	193	82%	43		
22	-0.004555	0	0%	236	27	-0.002277	193	82%	43		
23	-0.004555	0	0%	236		-0.002277	193	82%	43		
24	-0.004555	0	0%	236	29	-0.002277	192	81%	44		
25 26	-0.004555	0	0% 0%	236	30 31	-0.002277	192 191	81% 81%	44 45		
20	-0.004555 -0.004555	0		236 236		-0.002277 -0.002277	191	81%	45		
28	-0.004555	0	0%	236	33	-0.002277	190	81%	46		
29	-0.004555	0	0%	236		-0.002277	190	80%	46		
30	-0.004555	0	0%	236		-0.002277	189	80%	47		
31	-0.004555	0	0%	236	36	-0.002277	189	80%	47		
32 33	-0.004555 -0.004555	0	0% 0%	236 236	37 38	-0.002277	189 188	80% 80%	47 48		
34	-0.004555	0	0%	236	39	-0.002277	188	80%	40		
35	-0.004555	0	0%	236	40	-0.002277	187	79%	49		
36	-0.004555	0	0%	236	41	-0.002277	187	79%	49		
37	-0.004555	0	0%	236		-0.002277	186	79%	50		
38	-0.004555	0	0%	236		-0.002277	186	79%	50		
39 40	-0.004555	0	0% 0%	236 236	44 45	-0.002277 -0.002277	186 185	79% 78%	50 51		
40	-0.004555 -0.004555	0	0%	236		-0.002277	185	78% 78%	51		
42	-0.004555	0	0%	230		-0.002277	184	78%	52		
43	-0.004555	0	0%	236		-0.002277	184	78%	52		
44	-0.004555	0	0%	236	49	-0.002277	184	78%	52		
45	-0.004555	0	0%	236	50	-0.002277	183	78%	53		
46	-0.004555	0	0%	236		-0.002277	183	77%	53		
47	-0.004555	0	0%	236		-0.002277	182	77%	54		
48 49	-0.004555 -0.004555	0	0% 0%	236 236		-0.002277 -0.002277	182 181	77% 77%	54 55		
49 50	-0.004555	0		230	55	-0.002277	181	77%	55		

						Loss	Rate Calcula		
In la st.		1 10			Paginning	Ending	Beginning	Ending	
Project:	Cycle 3, BL	9 40			Beginning Year	Ending Year	Year Acreage	Year Acreage	Loss Rate
Total Acres		TY0 Marsh		TY0 Water	1974	1990			-0.004555
		Acres		Acres					
				236	FV	/P Land Los	ss Reduction	0.50	
		FWOP					FWP		
TY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)
0		0	0%	236	0		0	0%	236
1 2	-0.004555	0	0% 0%	236 236	11 12	0	24 24	10%	212 212
2	-0.004555	0	0%	236	12	0	24 71	30%	165
4	-0.004555	0	0%	236	14	-0.002277	71	30%	165
5	-0.004555	0	0%	236	15	-0.002277	201	85%	35
6	-0.004555	0	0%	236	16	-0.002277	201	85%	35
7	-0.004555	0	0%	236	17	-0.002277	201	85%	35
8 9	-0.004555 -0.004555	0	0% 0%	236 236	18 19	-0.002277	201 201	85% 85%	35 35
9 10	-0.004555	0	0%	236	20	-0.002277	201 201	85%	35
11	-0.004555	0	0%	236	21	-0.002277	200	85%	36
12	-0.004555	0	0%	236	22	-0.002277	200	85%	36
13	-0.004555	0	0%	236	23	-0.002277	199	84%	37
14	-0.004555	0	0%	236	24	-0.002277	199	84%	37
15 16	-0.004555 -0.004555	0	0% 0%	236 236	25 26	-0.002277	198 198	84% 84%	38 38
17	-0.004555	0	0%	230	20	-0.002277	198	84%	39
18	-0.004555	0	0%	236	28	-0.002277	197	83%	39
19	-0.004555	0	0%	236	29	-0.002277	197	83%	39
20	-0.004555	0	0%	236	30	-0.002277	196	83%	40
21	-0.004555	0	0%	236	31	-0.002277	196	83%	40
22 23	-0.004555 -0.004555	0	0% 0%	236 236	32 33	-0.002277	195 195	83% 83%	41 41
23	-0.004555	0		230	33	-0.002277	195	82%	41
25	-0.004555	0	0%	236	35	-0.002277	194	82%	42
26	-0.004555	0		236	36	-0.002277	193	82%	43
27	-0.004555	0		236		-0.002277	193	82%	43
28	-0.004555	0	0%	236	38	-0.002277	193	82%	43
29 30	-0.004555 -0.004555	0		236 236	39 40	-0.002277 -0.002277	192 192	81% 81%	44 44
31	-0.004555	0		230	40	-0.002277	192	81%	44
32	-0.004555	0		236		-0.002277	191	81%	45
33	-0.004555	0	0%	236	43	-0.002277	190	81%	46
34	-0.004555	0	0%	236	44	-0.002277	190	80%	46
35	-0.004555	0	0%	236	45	-0.002277	189	80% 80%	47
36 37	-0.004555 -0.004555	0		236 236	46 47	-0.002277 -0.002277	189 189	80% 80%	47 47
38	-0.004555	0	0%	230	47	-0.002277	188	80%	47
39	-0.004555	0	0%	236	49	-0.002277	188	80%	48
40	-0.004555	0	0%	236	50	-0.002277	187	79%	49
41	-0.004555	0	0%	236	51	-0.002277	187	79%	49
42	-0.004555	0		236		-0.002277	186	79%	50
43 44	-0.004555 -0.004555	0		236 236	53 54	-0.002277	186 186	79% 79%	50 50
44	-0.004555	0		236		-0.002277	186	79%	50
46	-0.004555	0		236	56	-0.002277	185	78%	51
47	-0.004555	0		236	57	-0.002277	184	78%	52
48	-0.004555	0		236	58	-0.002277	184	78%	52
49	-0.004555	0		236	59	-0.002277	184	78%	52
50	-0.004555	0	0%	236	60	-0.002277	183	78%	53

Beneficial Use Site 49

Beneficial Use (BU) Site 49 (Cameron Parish School Board)

I. Project Location/Area

This wetland value assessment (WVA) focuses on BU site 49 (Figure 1), called the Cameron Parish School Board. This 640-acre area lies east of the Sabine NWR on Section 16 property.

II. Goals

The project goal is to create 600 acres of intertidal marsh habitat in this 640-acre area. Approximately 2.4 million cubic yards of material would be dredged from the Calcasieu Ship Channel (between miles 9.5 and 12) in three dredging cycles to create three 200-acre marsh creation cells. The marsh and estuarine habitat created would achieve a ratio of 85% marsh to 15% shallow open water.

III. Project Features

For the 3 cycles, a total of 2,420,000 cyds of material will be pumped, with 806,667 cyds in each cycle. Three 200-acre cells would be created to accommodate each of the three pumping cycles. To assess habitat benefits, a WVA was prepared for each of the three pumping cycles.

IV. WVA Variables and Assumptions

The following is a description of assumptions created for each of the three dredging cycles (cells). The same assumptions apply to all three cycles, but target years (i.e., years that dikes would be constructed and dredged material pumped) would differ among the three.

Cycle 1

A total of 806,667 cyds (200 acres) of dredged material will be pumped into this 200-acre cell. To determine the potential amount of marsh acres that could be created with the dredged material, the CWPPRA, Sabine Refuge Marsh Creation (CS-28), Cycle 1 project was used as a reference site. That project created marsh by pumping material into an area confined by earthen dikes. It was found that approximately 4,000 cyds of dredge material created 1 acre of marsh.

 \rightarrow 806,667 cyds / 4,000 cyds per acre = 200 acres

Based on USACE knowledge and experience of dredging operations, a maximum of 85% of this material will form into vegetated marsh, and the remaining 15% of the area would be shallow open water (also called mudflats). It would take several years for the dredged material to vegetate into marsh. Vegetation would not be planted, but would be allowed to form naturally. The following assumptions are used for marsh creation with natural recruitment:

Target Year (TY) 0: \sim 0 acres of existing marsh

TY 4: ~ 0 acres of existing marsh

TY 5 (dike and pump year): 10% of the dredged material would be marsh (.10*200ac=20ac of marsh)

TY 7 (2 years after pumping): 30% marsh (.3 * 200ac = 60ac of marsh)

TY 9 (4 years after pumping): 85% marsh (.85 * 200ac = 170ac. of marsh)

Marsh loss data was obtained from the Louisiana Coastal Area project report *Coast 2050: Toward a Sustainable Coastal Louisiana* (1998), Appendix F. The loss rate of -0.0049 is used for future-without-project (FWOP). Without the project, there would be no marsh restoration in this project area, so the loss rate would not apply. However, for the futurewith-project (FWP) scenario, loss rates would apply after the material is pumped and the dike degraded. Marsh created in a confined area would likely differ in some aspects from naturally occurring marsh: it would be slightly higher in elevation than natural marsh, and its density would differ from natural marsh due to consolidation and type of material. Therefore, the loss rate that would be applied would differ as well; it would be reduced by 50% to account for these attributes. Therefore, for FWP, a loss rate of -0.0025 was applied starting the year that the dike would be degraded (TY 8). Please see the attached land loss spreadsheet to see how acreage lost after dike degradation was determined.

TY 8 (or 3 years after pumping): dike degraded and landloss begins TY 20: Because of land loss, marsh makes up 83% of area = 166 acres TY 50: Land loss continues 77% = 154 acres

Variable 2 – Submerged Aquatic Vegetation (SAV)

Currently, large open water areas of the site allow increased wave fetch. In the past, the area has experienced higher levels of salt water intrusion causing the marsh to transition from an intermediate marsh to a more brackish marsh. According to Billy Leonard, Oil and Gas Specialist / Wildlife Biologist with the Southwest Louisiana National Wildlife Refuge Complex, no SAV has been observed in the area of the Sabine NWR during field inspections (Personal communication w/ GEC, April 2008). Water control structures constructed under the CS-23 CWPPRA project were designed to reduce salinity spikes in the area. Also, marsh creation projects implemented and proposed in the area will help to reduce salinities and turbidity in adjacent marshes behind these projects, and would help to create suitable conditions for SAVs. Some SAVs are expected to colonize early on due to recent construction of CWPPRA marsh creation and marsh management projects and should gradually increase through time. Based on prior experience with two CWPPRA projects (PPL 3 and PPL 8), the following assumptions were made regarding SAVs for the project area:

FWOP

 $\begin{array}{l} TY \ 0 - 0\% \\ TY \ 5 - 5 \ \% \\ TY \ 20 - 5 \ \% \end{array}$

FWP: TY 1 – 0%

TY 4 – 0% TY 5 (dike and pump year) - 10% TY 7 – 15 % (Two years after pump year: turbidity reduced and wind/wave fetch reduced; SAVs colonize.) TY 20 – 20% TY 50 – 20%

Variable 3 – Interspersion

FWOP: The lowest expression of interspersion, Class 5, is characterized by open water and less than 5% of emergent marsh. Without marsh restoration efforts, 100% of the 200-acre project area in this cycle falls in Class 5. Interspersion classifications are not expected to change within the 20-year project life for FWOP (i.e., marsh will not occur naturally).

FWP: Areas exhibiting a high degree of marsh cover are ranked as having a high degree of dispersion (Class 1 or Class 2). It is assumed that the confined area would achieve a Class 2 once the dredged material is pumped for this cycle because of the ratio of marsh to open water (85% marsh/15% open water). 100% of the project area would fall into Class 2 starting the first year it is pumped (TY 5) and throughout the remainder of the 20-year DMMP project life. By TY 50, the area falls to 77% marsh because of landloss rates. Therefore, in TY 50, the interspersion falls to a Class 2.

			1100010110	<u> </u>		
Target	Class 1		Class 2		Class 5	
Year		%		%	(open water)	%
0 (FWOP)					200 ac	100
4					200 ac	100
5 dike,	200 ac	100				
pump)						
7	200 ac	100				
8	200 ac	100				
9	200 ac	100				
20	200 ac	100				
50			200 ac	100		

Table 1: FWP Interspersion Classification: Cycle 2

|--|

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal conditions are expected to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep. A study by La Peyre et al. (2007) was conducted within the nearby Sabine NWR which shows that a 3.28-foot (1 m) area waterward of the marsh edge has an average water depth less than 1.5 feet (NAVD 88). Subtidal, open water areas located 164.04 feet (50 m) from marsh edge have an average water depth of 1.7 feet (NAVD 88). Therefore, it was assumed that all water within 164 feet of existing emergent marsh (which

makes up approximately 40 acres in BU site 49) is less than 1.5 feet deep. Total acreage was determined for this shallow-water buffer as a percentage of the total open water area.

FWOP:

Using ArcView, the perimeter of existing marsh (40 acres in the area of BU site 49 outside of the cells) was measured and multiplied by 164 feet. That value was converted into an acreage value. Based on this calculation, it was found that 25% (150 acres) of the 600 acres of open water in BU site 49 would be less than or equal to 1.5 ft. This assumption regarding shallow open water was applied to the three cells for the FWOP scenario. Because 100% of the acreage (200 acres) in each cell is open water, 25% of the total area of each cell (50 acres) would be shallow open water. Once the cells are pumped with material, it is assumed that any open water would be shallow.

(TY 0): 25% * 200ac of open water </= 1.5 ft

FWP:

- TY 0 -shallow open water = 25% or same as FWOP
- TY 4 shallow open water = 25% or same as FWOP
- TY 5 Dike and pump. Shallow open water = 100%.
- TY 7 Two years after pumping. Shallow open water = 100%.
- TY 8 Dike degraded. Shallow open water = 100%
- TY 9 Four years after pumping. Marsh is fully vegetated. Shallow open water = 100% TY 20 Shallow open water = 80% As marsh is lost areas become shallow open water and water depths may gradually become deeper.

TY 50 – Shallow open water = 60%

Variable 5 – Salinity

Hydrographic data was downloaded by station number from the Louisiana Department of Natural Resources SONRIS site (accessed April 28, 2008, GEC). All data has been corrected for biofouling, instrument drift, and/or instrument malfunction.

Hourly water salinity records collected during 2003 - 2004 show that average annual salinity for the station located in the project area is 9.1 parts per thousand (ppt).

The salinity is expected to remain constant throughout the life of this project.

Variable 6 – Fish Access

FWOP: CWPPRA project CS-23 was recently completed that replaced water control structures on three major waterways. BU site 49 would be under the same management. The project structures include deep bays, culverts, and flapgates, resulting in a current access value of 0.35. The access value is expected to remain the same throughout the life of the project.

TY 0 0.35 (with existing water control structures from CWPPRA project CS-23)

TY 1 0.35 TY 20 0.35 TY 50 0.35

FWP: The current access value, as noted previously, is 0.35. During target year TY 5, the dike would be constructed, resulting in an access value of 0.0001. The access value is expected to remain at 0.0001 until the dike degrades in TY 8. The degree of access would then return to the original value of 0.35 and remain there throughout the life of the project.

TY 00.35(with existing water control structures from CWPPRA project CS-23)TY 40.35TY 50.0001 (dike and pump)TY 80.35(dike degradation)TY 200.35TY 500.35

Cycle 2

The above assumptions were applied to Cycle 2 target years, which include the following:

FWOP:

TY 0, TY 1, TY 20

FWP:

TY 0: same as FWOP

TY 7 – Same.

TY 8 – Dike and pump year. 10% credit given to marsh creation.

TY 10 – Two years after pumping. 30% credit given to marsh creation.

TY 11 – Dike degraded. Land loss begins.

TY 12 – Four years after pumping. Marsh is fully vegetated (85% credit)

TY 20 – Landloss rates have reduced the amount of marsh from 85% of project area to 83% = 166 acres

TY 50 - Landloss rates have reduced the amount of marsh from 85% of project area to 77% = 154 acres

Cycle 3

Cycle 1 assumptions (above) also apply to Cycle 3 target years:

FWOP:

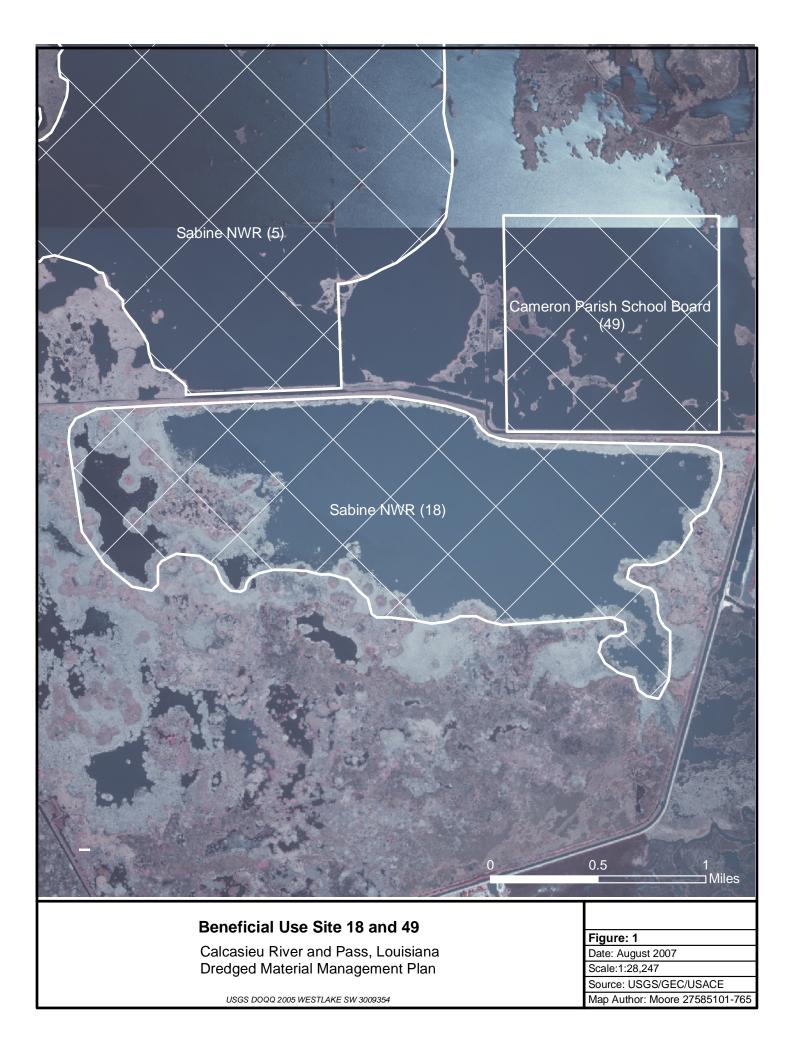
TY 0, TY 1, TY 20

FWP:

TY 0: same as FWOP

TY 10 – Same.

TY 11 – Dike and pump year. 10% credit given to marsh creation.


TY 13 – Two years after pumping. 30% credit given to marsh creation.

TY 14 – Dike degraded.

TY 15 – Four years after pumping. Marsh is fully vegetated (85% credit)

TY 20 – Landloss rates have reduced the amount of marsh from 85% of project area to 84% = 168 acres

TY 50 - Landloss rates have reduced the amount of marsh from 85% of project area to 78% = 156 acres

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: Cycle 1, BU Site 49, Calcasieu DMMP

Project Area: 200

Condition: Future Without Project

		1Υ 0		ΤΥ 1		τY	20
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	0	0.10	0	0.10	0	0.10
V2	% Aquatic	0	0.10	5	0.15	5	0.15
٨3	Interspersion Class 1	%	0.10	%	0.10	%	0.10
	Class 2 Class 3 Class 4 Class 5	100		100		100	
V4	%OW <= 1.5ft	25	0.42	25	0.42	25	0.42
V5	Salinity (ppt)	6	1.00	9	1.00	6	1.00
VG	Access Value	0.35	0.42	0.35	0.42	0.35	0.42
	Emergent Marsh HSI	sh HSI =	0.23	EM HSI =	0.23	EM HSI =	0.23
	Open Water HSI	SI =	0.25	= ISH MO	0.28	= ISH MO	0.28

Project: Cycle 1, BU Site 49, Calcasieu DMMP

FWOP	ſ						
		TY 50					
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	0	0.10				
V2	% Aquatic	9	0.15				
V3	Interspersion	%		%		%	
	Class 1 Class 2		0.10				
	Class 3						
	Class 4						
	Class 5	100					
V4	%OW <= 1.5ft	25	0.42				
V5	Salinity (ppt)	6	1.00				
V6	Access Value	0.35	0.42				
		EM HSI =	0.23	EM HSI =		EM HSI =	
		= ISH MO	0.28	= ISH MO		= ISH MO	

٦

1/12/2009

Project: Cycle 1, BU Site 49, Calcasieu DMMP

Project Area: 200

Condition: Future With Project

VariableValueSIValueSIValueSIValue $V1$ % Emergent0000000 $V2$ % Aquatic0000000 $V3$ Interspersion%0.1000010 $V3$ Interspersion%0.100010 $V3$ Interspersion%0.100010 $V3$ Interspersion%0.1010010 $V3$ Class 1100100100100 $V4$ %OW <= 1.5ft250.42250.421 $V5$ Salinity (ppt)91.0091.0090.02 $V6$ Access Value0.350.420.350.420.0 $V6$ Access Value0.350.420.350.00.0 $Cent Marsh HSI=0.23CW HSI =0.25OW HSI =0.25OW HSI =$			0 λL		ΤΥ 4		TY 5 dike & pump	dund
% Emergent 0 0.10 0 0.10 0 0.10 0 % Aquatic 0 0.10 0 0.10 0 0.10 0	Variable		Value	SI	Value	SI	Value	SI
% Aquatic 0 0 0 0 0 10 Interspersion % 0.10 0 0 0 0 10 Interspersion % 0.10 % 0.10 1 0 1 0 1 0 1 0 1 <td>٧1</td> <td>% Emergent</td> <td>0</td> <td>0.10</td> <td>0</td> <td>0.10</td> <td>10</td> <td>0.19</td>	٧1	% Emergent	0	0.10	0	0.10	10	0.19
Interspersion % 0.10 % Class 1 Class 2 0.10 0.10 Class 3 Class 4 100 100 Class 5 0.42 25 0.42 Salinity (ppt) 9 1.00 9 1.00 Access Value 0.35 0.42 0.42 0.42 Emergent Marsh HSI 0.35 0.42 0.42 0.42 Open Water HSI 0.35 0.42 0.42 0.42	V2	% Aquatic	0	0.10	0	0.10	10	0.19
Class 3 Loss 4 100 100 Class 5 100 0.42 25 0.42 %OW <= 1.5ft	٨3	Interspersion Class 1 Class 2	%	0.10	%	0.10	100	1.00
%OW <= 1.5ft 25 0.42 25 0.42 25 0.42 26 0.42 27 2 0 10 21 0 23 2 2 0 10 27 0 10 23 2 2 0 10 23 2 2 0 10 <t< td=""><td></td><td>Class 3 Class 4 Class 5</td><td>100</td><td></td><td>100</td><td></td><td></td><td></td></t<>		Class 3 Class 4 Class 5	100		100			
Salinity (ppt) 9 1.00 9 1.00 Access Value 0.35 0.42 0.35 0.42 Emergent Marsh HSI = 0.23 EM HSI 0.25 0.25	V4	%OW <= 1.5ft	25	0.42	25	0.42	100	0.60
Access Value 0.35 0.42 0.35 0.42 Emergent Marsh HSI = 0.23 EM HSI 0.23 Open Water HSI = 0.25 OW HSI 0.25	V5	Salinity (ppt)	σ	1.00	σ	1.00	σ	1.00
I = 0.23 EM HSI = 0.23 = 0.25 OW HSI = 0.25 0	V6	Access Value	0.35	0.42	0.35	0.42	0.00	0.10
= 0.25 OW HSI = 0.25		Emergent Mars		0.23	EM HSI =	0.23	EM HSI =	0.35
		Open Water HS		0.25	OW HSI =	0.25	OW HSI =	0.31

Project: Cycle 1, BU Site 49, Calcasieu DMMP

		TY 7		TY 8 dike degraded	raded	TY 9	
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	30	0.37	30	0.37	85	0.87
V2	% Aquatic	15	0.24	15	0.24	15	0.24
٧3	Interspersion Class 1	% 100	1.00	% 100	1.00	% 100	09.0
	Class 2 Class 3 Class 4 Class 5						
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60
V5	Salinity (ppt)	σ	1.00	6	1.00	σ	1.00
V6	Access Value	0.00	0.10	0.35	0.42	0.35	0.42
		EM HSI =	0.44	EM HSI =	0.52	EM HSI =	0.75
		= ISH MO	0.32	= ISH MO	0.42	OW HSI =	0.39

Project: Cycle 1, BU Site 49, Calcasieu DMMP FWP 1/12/2009

		TY 20		TY 50			
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	83	0.85	77	0.79		
V2	% Aquatic	20	0.28	20	0.28		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	100	1.00	100 %	0.00	%	
V4	%OW <= 1.5ft	80	1.00	60	0.87		
V5	Salinity (ppt)	6	1.00	σ	1.00		
V6	Access Value	0.35	0.42	0.35	0.42		
		= ISH WE	0.78	EM HSI =	0.64	EM HSI =	
		= ISH MO	0.48	= ISH MO	0.39	OW HSI =	

AAHU CALCULATION - MARSH

Future Without Project	out Project		Total	Cummulative
ТҮ	Marsh Acres	X HSI	HUS	HUS
0	0	0.23	00.0	
1	0	0.23	0.00	0.00
20	0	0.23	00.0	00.0
50	0	0.23	00.0	0.00
			AAHUS =	0.00

Future With Project	Project		Total	Cummulative
ТҮ	Marsh Acres	X HSI	HUS	HUS
0	0	0.23	00.0	
4	0	0.23	00.0	00.00
5	20	0.35	66.9	3.10
2	60	0.44	26.10	31.96
8	60	0.52	31.06	28.58
6	170	0.75	126.76	74.73
20	166	0.78	129.65	608.44
50	154	0.64	98.91	3420.03
			SUHAA	89.34

A. Future With Project Emergent Marsh AAHUs = 89.34 B. Future Without Project Emergent Marsh AAHUs = 0.00 Net Change (FWP - FWOP) = 89.34	NET CHANGE IN AAHUS DUE TO PROJECT	
=		89.34
=		0.00
		89.34

AAHU CALCULATION - OPEN WATER Project: Cycle 1, BU Site 49, Calcasieu DMMP

Future Withd	uture Without Project		Total	Cummulative
ТҮ	Water Acres	X HSI	HUS	HUS
0	200	0.25	50.03	
1	200	0.28	56.89	53.46
20	200	0.28	56.89	1080.92
50	200	0.28	56.89	1706.72
			AAHUs =	56.82

Future With Project	Project		Total	Cummulative
ТҮ	Water Acres	X HSI	HUs	HUS
0	200	0.25	50.03	
4	200	0.25	50.03	200.11
5	30	0.31	9.21	31.23
7	30	0.32	9.68	18.88
8	30	0.42	12.66	11.17
6	30	0.39	11.77	12.22
20	34	0.78	26.55	232.42
50	46	0.64	29.54	819.69
			AAHUS	66.29

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	66.29
B. Future Without Project Open Water AAHUs =	56.82
Net Change (FWP - FWOP) =	9.46

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	89.34
B. Open Water Habitat Net AAHUs =	9.46
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	67.15

Brackish Marsh

WETLAND VALUE ASSESSMENT COMMUNITY MODEL

Project: Cycle 2, BU Site 49, Calcasieu DMMP

Project Area: 200

Condition: Future Without Project

20		0	2	0			8	0	5	3	8
	SI	0.10	0.15	0.10			0.42	1.00	0.42	0.23	0.28
TΥ	Value	0	D	%		100	25	6	0.35	EM HSI =	= ISH MO
	SI	0.10	0.15	0.10			0.42	1.00	0.42	0.23	0.28
ΤΥ 1	Value	0	5	%		100	25	6	0.35	EM HSI =	= ISH MO
	SI	0.10	0.10	0.10			0.42	1.00	0.42	0.23	0.25
TY 0	Value	0	0	%		100	25	6	0.35	sh HSI =	= 10
		% Emergent	% Aquatic	Interspersion Class 1	Class 2 Class 3 Class 4	Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	Emergent Marsh HSI	Open Water HSI
	Variable	٧1	V2	V3			V4	V5	V6		

0 0 0 0 1. 0 0 0 0 1.

0 0 0 0 0 .

Project: Cycle 2, BU Site 49, Calcasieu DMMP FWOP

		TY 50					
Variable		Value	SI	Value	SI	Value	SI
7	% Emergent	0	0.10				
V2	% Aquatic	Û	0.15				
V3	Interspersion Class 1	%	0.10	%		%	
	Class 2 Class 3 Class 4 Class 5	100					
V4	%OW <= 1.5ft	25	0.42				
V5	Salinity (ppt)	6	1.00				
VG	Access Value	0.35	0.42				
		EM HSI =	0.23	EM HSI =		EM HSI =	
		= ISH MO	0.28	= ISH MO		= ISH MO	

0.000

00000

00000

Project: Cycle 2, BU Site 49, Calcasieu DMMP

Project Area: 200

Condition: Future With Project

				C	000		0.1					
dmp	SI	0.19	0.19	1.00				0.60	1.00	0.10	0.35	0.31
TY 8 dike & pump	Value	10	10	% 1001)) 			100	0	0.00	EM HSI =	OW HSI =
	SI	0.10	0.10	0.10				0.42	1.00	0.42	0.23	0.25
ΤΥ 7	Value	0	0	%			100	25	9	0.35	EM HSI =	OW HSI =
	SI	0.10	0.10	0.10				0.42	1.00	0.42	0.23	0.25
ΤΥ 0	Value	0	0	%			100	25	6	0.35	sh HSI =	=
		% Emergent	% Aquatic	Interspersion Class 1	Class 2 Class 3	Class 4	Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	Emergent Marsh HSI	Open Water HSI
	Variable	٧1	V2	V3				V4	V5	V6		

- 0 0 0 0

Project:	
Cycle 2, BU	
Site 49, 0	
Calcasieu	
DMMF	
<u> </u>	

Variable		Value	SI	Value SI	SI	Value	ิง
٧1	% Emergent	30	0.37	30	0.37	8 8 8	0.87
V2	% Aquatic	15	0.24	15	0.24	15	0.24
V3	Interspersion Class 1	100	1.00	100	1.00	100	0.60
	Class 2 Class 3 Class 4 Class 5						
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60
V5	Salinity (ppt)	0	1.00	6	1.00	6	1.00
V6	Access Value	0.00	0.10	0.35	0.42	0.35	0.42
		EM HSI =	0.44	EM HSI =	0.52	EM HSI =	0.75
		OW HSI =	0.32	= ISH MO	0.42	= ISH MO	0.39

-0000

- 0 0 0 0

- 0 0 0 0

Project: Cycle 2, BU Site 49, Calcasieu DMMP FWP

		TY 20		ΤΥ 50			
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	83	0.85	77	0.79		
V2	% Aquatic	20	0.28	20	0.28		
V3	Interspersion Class 1	% 100	1.00	%	0.00	%	
	Class 2 Class 3 Class 4 Class 5			100			
V4	%OW <= 1.5ft	100	0.60	100	09.0		
V5	Salinity (ppt)	6	1.00	6	1.00		
V6	Access Value	0.35	0.42	0.35	0.42		
		= ISH WE	0.78	EM HSI =	0.64	EM HSI =	
		= ISH MO	0.45	= ISH MO	0.37	= ISH MO	

-0000

0 0 0 0 0 0 0

00000

AAHU CALCULATION - MARSH

Future Without Project	out Project		Total	Cummulative
ТҮ	Marsh Acres	X HSI	HUS	HUS
0	0	0.23	00.0	
1	0	0.23	00'0	00.0
20	0	0.23	00'0	0.00
20	0	0.23	00'0	00.0
			AAHUS =	0.00

		L		
Future With Project	Project		Total	Cummulative
ТΥ	Marsh Acres	X HSI	HUS	HUS
0	0	0.23	00.0	
2	0	0.23	00.0	00.0
8	20	0.35	6.99	3.10
10	09	0.44	26.10	31.96
11	90	0.52	31.06	28.58
12	170	0.42	70.55	97.39
20	166	0.42	68.89	557.76
50	154	0.42	63.91	1992.00
			SUHAA	54.22
		-		

	Γ
NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	54.22
B. Future Without Project Emergent Marsh AAHUs =	00.00
Net Change (FWP - FWOP) =	54.22

AAHU CALCULATION - OPEN WATER Project: Cycle 2, BU Site 49, Calcasieu DMMP

Future Without Project	out Project		Total	Cummulative
ТҮ	Water Acres	x HSI	HUS	HUS
0	200	0.25	50.03	
1	200	0.28	56.89	53.46
20	200	0.28	56.89	1080.92
50	200	0.28	56.89	1706.72
			AAHUS =	56.82

Future With Project	Project		Total	Cummulative
ТΥ	Water Acres	x HSI	HUS	HUS
0	200	0.25	50.03	
7	200	0.25	50.03	350.18
8	0 8	0.31	9.21	31.23
10	0 8	0.32	9.68	18.88
11	30	0.42	12.66	11.17
12	30	0.39	11.77	12.22
20	34	0.78	26.55	174.32
50	46	0.64	29.54	759.72
			AAHUS	27.15

	11	=	
NET CHANGE IN AAHUS DUE TO PROJECT	A. Future With Project Open Water AAHUs	B. Future Without Project Open Water AAHUs	Net Change (FWP - FWOP) =

27.15 56.82 -29.67

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
 A. Emergent Marsh Habitat Net AAHUs 	54.22
B. Open Water Habitat Net AAHUs =	-29.67
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	30.91

Brackish Marsh

WETLAND VALUE ASSESSMENT COMMUNITY MODEL

Project: Cycle 3, BU Site 49, Calcasieu DMMP

Project Area: 200

Condition: Future Without Project

				0	000	ò.					
20	SI	0.10	0.15	0.10			0.42	1.00	0.42	0.23	0.28
TΥ	Value	0	J.	%		100	25	σ	0.35	EM HSI =	= ISH MO
	SI	0.10	0.15	0.10			0.42	1.00	0.42	0.23	0.28
ΤΥ 1	Value	0	D	%		100	25	6	0.35	EM HSI =	= ISH MO
	SI	0.10	0.10	0.10			0.42	1.00	0.42	0.23	0.25
TY 0	Value	0	0	%		100	25	6	0.35	PHSI =	"
		% Emergent	% Aquatic	Interspersion Class 1	Class 2 Class 3 Class 4	Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	Emergent Marsh HSI	Open Water HSI
	Variable	V1	V2	V3			V4	V5	V6		

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

0.000

Project: Cycle 3, BU Site 49, Calcasieu DMMP FWOP

		TY 50					
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	0	0.10				
V2	% Aquatic	Ð	0.15				
V3	Interspersion Class 1	%	0.10	%		%	
	Class 2 Class 3 Class 4 Class 5	C F					
V4	%OW <= 1.5ft	52 70 70	0.42				
V5	Salinity (ppt)	σ	1.00				
V6	Access Value	0.35	0.42				
		EM HSI =	0.23	EM HSI =		= ISH W3	
		= ISH MO	0.28	= ISH MO		= ISH MO	

0.000

00000

00000

Project: Cycle 3, BU Site 49, Calcasieu DMMP

Project Area: 200

Condition: Future With Project

TY 11 dike & pump	Value SI	10 0.19	10 0.19	%	100 1.00 0			0.1	100 0.60	100			FM HSI = 0.35
L	SI	0.10	0.10		0.10				0.42	1 00		0.42	C 0
TY 10	Value	0	0	%				100	25	σ	<u> </u>	0.35	
	SI	0.10	0.10		0.10				0.42	1 00		0.42	0.03
ΤΥ 0	Value	0	0	%				100	25	σ		0.35	
	<u>II</u>	% Emergent	% Aquatic	Interspersion	Class 1	Class 2 Class 3	Class 4	Class 5	%OW <= 1.5ft	Salinity (nnt)		Access value	Emergent March HCI
	Variable	۲۸	V2	V3					V4	V5		97	

00006-00

Project: Cy	
cle 3, BU	
Site 49,	
Calcasieu	
DMMF	

		TY 13		TY 14 dike degraded	Iraded	TY 15	
Variable		Value	SI	Value	ิง	Value	ิร
٧1	% Emergent	30	0.37	30	0.37	85	0.87
V2	% Aquatic	15	0.24	15	0.24	15	0.24
V3	Interspersion Class 1	100	1.00	100	1.00	%	0.60
	Class 2 Class 3 Class 4 Class 5						
V4	%OW <= 1.5ft	100	0.60	100	09.0	100	09.0
V5	Salinity (ppt)	σ	1.00	σ	1.00	σ	1.00
V6	Access Value	0.00	0.10	0.35	0.42	0.35	0.42
		= ISH WE	0.44	EM HSI =	0.52	EM HSI =	0.75
			0 22		CV V		030

- 0 0 0 0

-0000

-0000

Project: Cycle 3, BU Site 49, Calcasieu DMMP FWP

	. <u> </u>	TY 20		TY 50			
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	84	0.86	78	0.80		
V2	% Aquatic	20	0.28	20	0.28		
V3	Interspersion Class 1	% 100	1.00	%	0.00	%	
	Class 2 Class 3 Class 4 Class 5			100			
V4	%OW <= 1.5ft	100	0.60	100	0.60		
V5	Salinity (ppt)	σ	1.00	σ	1.00		
V6	Access Value	0.35	0.42	0.35	0.42		
		EM HSI =	0.79	EM HSI =	0.65	EM HSI =	
		= ISH MO	0.45	= ISH MO	0.37	= ISH MO	

-0000

0 0 0 0 0 0

00000

AAHU CALCULATION - MARSH

Future Without Project	out Project		Total	Cummulative
ТΥ	Marsh Acres	X HSI	HUS	HUS
0	0	0.23	00.0	
1	0	0.23	0.00	0.00
20	0	0.23	0.00	0.00
50	0	0.23	0.00	0.00
			AAHUs =	0.00

		Ľ		
Future With Project	Project		Total	Cummulative
ТΥ	Marsh Acres	x HSI	HUS	HUS
0	0	0.23	00.0	
7	0	0.23	00.0	00.0
8	20	0.35	66.9	3.10
10	90	0.44	26.10	31.96
11	90	0.52	31.06	28.58
12	170	0.75	126.76	74.73
20	166	0.42	68.89	466.12
50	156	0.79	122.55	4740.44
			AAHUS	106.90
		-		

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	106.90
B. Future Without Project Emergent Marsh AAHUs =	00.0
Net Change (FWP - FWOP) =	106.90

AAHU CALCULATION - OPEN WATER Project: Cycle 3, BU Site 49, Calcasieu DMMP

Future Without Project	out Project		Total	Cummulative
ТΥ	Water Acres	x HSI	HUs	HUS
0	200	0.25	50.03	
1	200	0.28	56.89	53.46
20	200	0.28	56.89	1080.92
50	200	0.28	56.89	1706.72
			AAHUS =	56.82

Future With Project	Project		Total	Cummulative
ТΥ	Water Acres	x HSI	HUS	HUS
0	200	0.25	50.03	
۷	200	0.25	50.03	350.18
8	180	0.31	55.25	52.83
10	140	0.32	45.15	100.61
11	30	0.42	12.66	30.73
12	30	0.39	11.77	12.22
20	34	0.79	26.71	174.99
50	44	0.65	28.46	741.94
			AAHUS	29.27

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	29.27
B. Future Without Project Open Water AAHUs =	56.82
Net Change (FWP - FWOP) =	-27.55

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	106.90
B. Open Water Habitat Net AAHUs =	-27.55
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	69.55

Land Loss Spreadsheet

Project:					Beginning	Loss Ending	Rate Calcula Beginning Year	ation Ending Year		
Total		TY0		TY0	Year	Year	Acreage		Loss Rate	
Acres		Marsh Acres		Water Acres	1974	1990	20,665	19,095	-0.004926	
200		0		200	F۷	/P Land Los	ss Reduction	0.50		
	FWOP			FWP						
ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	Net Acres of Marsh
0		0		200	0		0	0%	200	
1	-0.004926	0		200	1	-0.002463	0	0%	200	
2	-0.004926	0	0%	200	2	-0.002463	0	0%	200	
3	-0.004926	0	0%	200	3	-0.002463	0	0%	200	
4	-0.004926	0		200	4	-0.002463	0	0%	200	
5	-0.004926	0	0% 0%	200 200	5	-0.002463	0	0% 0%	200 200	
6 7	-0.004926 -0.004926	0		200	6 7	-0.002463 -0.002463	0	0%	200	
8	-0.004926	0		200	8	-0.002463	0	0%	200	
9	-0.004926	0		200	9	-0.002463	0	0%	200	
10	-0.004926	0	0%	200	10	-0.002463	0	0%	200	
10	-0.004926	0	0%	200	10	-0.002463	0	0%	200	
12	-0.004926	0		200	12	-0.002463	0	0%	200	
13	-0.004926	0	0%	200	13	-0.002463	0	0%	200	
14	-0.004926	0		200	14	-0.002463	0	0%	200	
15	-0.004926	0		200	15	-0.002463	170	85%	30	1
16	-0.004926	0	0%	200	16	-0.002463	170	85%	30	1
17	-0.004926	0		200	17	-0.002463	169	85%	31	16
18	-0.004926	0	0%	200	18	-0.002463	169	84%	31	16
19	-0.004926	0	0%	200	19	-0.002463	168	84%	32	16
20	-0.004926	0	0%	200	20	-0.002463	168	84%	32	16
21	-0.004926	0		200		-0.002463	168	84%	32	16
22	-0.004926	0	0%	200	22	-0.002463	167	84%	33	16
23	-0.004926	0		200	23	-0.002463	167	83%	33	16
24	-0.004926	0	0%	200	24	-0.002463	166	83%	34	10
25	-0.004926	0		200	25	-0.002463	166	83%	34	10
26	-0.004926	0		200	26	-0.002463	165	83%	35	16
27	-0.004926	0	0%	200	27	-0.002463	165	83%	35	16
28	-0.004926	0	0%	200	28	-0.002463	165	82%	35	16
29	-0.004926	0		200	29	-0.002463	164	82%	36	16
30	-0.004926	0		200	30	-0.002463	164	82%	36	16
31	-0.004926	0		200	31	-0.002463	163	82%	37	16
32	-0.004926			200	32	-0.002463	163	82% 81%	37	16
33 34	-0.004926	0		200		-0.002463 -0.002463	<u>163</u> 162	81% 81%	37 38	16
34	-0.004926	0		200	34	-0.002463	162	81%	38	16
36	-0.004926	0		200	35	-0.002463	162	81%	30	10
37	-0.004926	0		200	30	-0.002463	161	81%	39	10
38	-0.004926	0		200	38	-0.002403	161	80%	39	10
39	-0.004926	0		200	39	-0.002463	160	80%	40	16
40	-0.004926	0		200		-0.002463	160	80%	40	16
41	-0.004926	0		200	41	-0.002463	159	80%	41	15
42	-0.004926	0		200		-0.002463	159	80%	41	15
43	-0.004926	0		200	43	-0.002463	159	79%	41	15
44	-0.004926	0		200	44	-0.002463	158	79%	42	1
45	-0.004926	0		200		-0.002463	158	79%	42	1
46	-0.004926	0		200	46	-0.002463	157	79%	43	1
47	-0.004926	0	0%	200	47	-0.002463	157	79%	43	1:
48	-0.004926	0	0%	200	48	-0.002463	157	78%	43	15
49	-0.004926	0	0%	200	49	-0.002463	156	78%	44	1:
50	-0.004926	0	0%	200	50	-0.002463	156	78%	44	1

Beneficial Use Site 50

Beneficial Use (BU) Site 50 (Marcantel)

I. Project Location/Area

This wetland value assessment (WVA) focuses on BU site 50 (Figure 1), called West of Black Lake. This site is an 887-acre area located approximately 5.5 miles west of the Calcasieu River and Pass and one mile south of the Gulf Intracoastal Waterway (GIWW).

II. Goals

Approximately 7.2 million cubic yards of material would be dredged from the Calcasieu Ship Channel (between miles 16 and 21) in two pumping cycles to create approximately 640 acres of marsh habitat in this 887-acre open-water area. Two 320-acre marsh creation cells would be designed and constructed to achieve a ratio of 85% marsh to 15% shallow open water.

III. Project Features

A total of 7,219,750 cyds of material will be pumped, with 3,609,875 cyds in both cycles. Two 320-acre cells would be created to accommodate the two pumping cycles. To assess habitat benefits, a WVA was prepared for both pumping cycles.

IV. WVA Variables and Assumptions

The following is a description of assumptions created for the two dredging cycles (cells). The same assumptions apply to both cycles, but target years (i.e., years that dikes would be constructed and dredged material pumped) would differ.

Cycle 1

Variable 1: Emergent Marsh

FWOP: There is 0% emergent marsh in the open water areas where the cells would be constructed.

FWP: A total of 3,609,875 cyds of dredged material will be pumped into this 320-acre cell. To determine the potential amount of marsh acres that could be created with the dredged material, depth data collected by GBA, Inc. in 2007 was used. It was found that the open water area of this BU site is approximately 4-feet deep. Assuming that the cells would be filled initially to 3 feet above the water surface, 11,293 cyds would be required to create one acre of marsh. Based on these assumptions, 320 acres would be created by the first pumping cycle.

→ 4 + 3 = 7 ft. * (43,560 sq. ft) = 304,920 cubic feet / 27 = 11,293 cubic yards per acre → 3,609,875 cyds/11,293 cubic yards per acre = 320 acres

These numbers are estimates. Actual target elevations of placed and consolidated fill at the site would be determined through coordination with resource agencies and the development

of geotechnical analyses during the preparation of plans and specifications for the project. The analyses would consider long-term settlement of the dredged materials and placement area foundations, as well as elevation surveys of the nearby planned wetland habitat to determine the appropriate target range.

Based on USACE knowledge and experience of dredging operations, a maximum of 85% of this material will form into vegetated marsh, and the remaining 15% of the area would be shallow open water (also called mudflats). It would take several years for the dredged material to vegetate into marsh. Vegetation would not be planted, but would be allowed to form naturally. The following assumptions are used for marsh creation with natural recruitment:

Target Year (TY) 0: ~ 0 acres of existing marsh TY 1 (dike and pump) -10% of the dredged material would be marsh (.10*320ac=32ac of marsh) TY 3 (2 years after pumping) – 30% marsh (.3 * 320ac = 96ac of marsh) TY 5 (4 years after pumping) – 85% marsh (.85 * 320ac = 272ac. of marsh)

Marsh loss data was obtained from the Louisiana Coastal Area project report *Coast 2050: Toward a Sustainable Coastal Louisiana* (1998), Appendix F. The loss rate of -0.0029 is used for future-without-project (FWOP). Without the project, there would be no marsh restoration in this project area, so the loss rate would not apply. However, for the future-with-project (FWP) scenario, loss rates would apply after the material is pumped and the dike degraded. Marsh created in a confined area would likely differ in some aspects from naturally occurring marsh: it would be slightly higher in elevation than natural marsh, and its density would differ from natural marsh due to consolidation and type of material. Therefore, the loss rate that would be applied would differ as well; it would be reduced by 50% to account for these attributes. Therefore, for FWP, a loss rate of -0.0065 was applied starting the year that the dike would be degraded (TY 4). Please see the attached land loss spreadsheet to see how acreage lost after dike degradation was determined.

TY 4: (or 3 years after pumping) – dike degraded and landloss begins TY 20: 78% marsh (250 acres of marsh) TY 50: 64% (206 acres of marsh)

Variable 2 – Submerged Aquatic Vegetation (SAV)

Currently, large open water areas of the site allow increased wave fetch. In the past, the area has experienced higher levels of salt water intrusion causing the marsh to transition from an intermediate marsh to a more brackish marsh. This area is not known to support SAVs.

FWOP

TY 0: 0 % TY 5: 0 % TY 20: 0 % TY 50: 0 % Without any hydrologic restoration to control salinity, the project area will continue to experience salinity spikes. The project area is not expected to support a significant amount of SAV habitat.

FWP:

TY 0: 0% TY 1: 0% TY 3: 0% TY 4: 0% TY 5: 0% TY 20: 5% or less TY 50: 5% or less

Variable 3 – Interspersion

FWOP: The lowest expression of interspersion, Class 5, is characterized by open water and less than 5% of emergent marsh. Without marsh restoration efforts, 100% of the 212-acre project area in this cycle falls into Class 5. Interspersion classifications are not expected to change within the 50-year assessment period for FWOP (i.e., marsh will not occur naturally).

FWP: Areas exhibiting a high degree of marsh cover are ranked as having a high degree of dispersion (Class 1 or Class 2). It is assumed that the confined area would achieve a Class 1 once the dredged material is pumped for this cycle because of the ratio of marsh to open water (85% marsh/15% open water). 100% of the project area would fall into Class 1 starting the first year it is pumped (TY 1) and throughout the remainder of the 20-year DMMP project life. By TY 50, the area falls to 80% marsh because of landloss rates. Therefore, in TY 50, the interspersion falls to a Class 2.

Target Year	Class 1		Class 2		Class 5	
					(open	
		%		%	water)	%
0					320 ac	100
1	320 ac	100				
(dike&pump)						
3	320 ac	100				
4 (dike	320 ac	100				
degraded)						
5	320 ac	100				
20	320 ac	100				
50			320 ac	100		

Table 1: FWP Interspersion Classification

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal

conditions are expected to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep. According to DNR's Sonris data, water depth is greater than 2' throughout most of the area in cell two. In the FWOP scenario, 10% of Cell 1 would be classified as </= 1.5'. Once the marsh is pumped, 100% of the water in Cell 1 would be shallow.

FWOP:

(TY 0): 10% * 320ac of open water </= 1.5 ft

FWP:

TY 0 – shallow open water = 10% or same as FWOP TY 1 – Pump year. 85 % of the 320-acres of material is expected to achieve marsh height. Any open water (15% of the area) would be shallow open water = 100%. TY 3 – Two years after pumping. Shallow open water = 100%. TY 4 – Dike degraded. Shallow open water = 100% TY 5 – Four years after pumping. Marsh is fully vegetated. Shallow open water = 100% TY 20 – Shallow open water = 80% As marsh is lost areas become shallow open water and water depths may gradually become deeper. TY 50 – Shallow open water = 60%

Variable 5 – Salinity

Hydrographic data was downloaded by station number from the Louisiana DNR SONRIS site (accessed April 28, 2008, GEC). All data has been corrected for biofouling, instrument drift, and/or instrument malfunction.

Monthly water salinity records collected during 2003 – 2004 show that average annual salinity for the station located in the project area is 6.1 parts per thousand (ppt).

The salinity is expected to remain constant throughout the life of this project.

Variable 6 – Fish Access

Access by aquatic organisms is considered to be a critical component in assessing the quality of a given marsh system. The suitability index (SI) for this variable is determined by calculating an "access value" based on the percentage of the project area wetlands considered accessible by aquatic organisms during normal tidal flucturations, and the type of man-made structures (if any) across identified points of ingress/egress (e.g., bayous, canals, etc.). A brackish marsh with no access is assigned an SI of .2. A solid plug is assigned an SI of .0001. A completely open system is assigned an SI of 1.0.

FWOP: This area is considered an open system, and is therefore assigned an access value of 1.0.

TY 0: 1.0 TY 1: 1.0 TY 20: 1.0 TY 50: 1.0

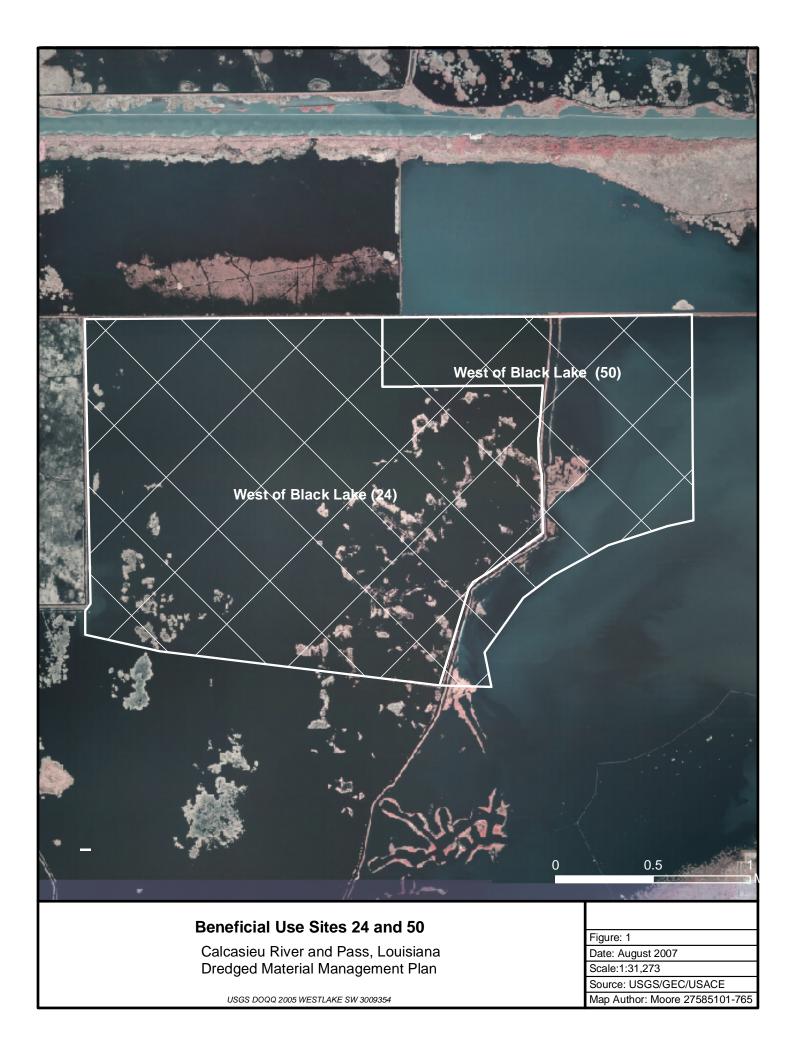
FWP: The current access value, as noted previously, is 1.0. During target year TY 1, the dike would be constructed, resulting in an access value of 0.0001. The access value is expected to remain at 0.0001 until the dike degrades in TY 4. The degree of access would then return to the original value of 1.0 and remain there throughout the 50 year assessment period.

TY 01.0TY 10.0001 (dike and pumping year)TY 41.0TY 201.0TY 501.0

Cycle 2

The above assumptions were applied to Cycle 2 target years, which include the following:

FWOP:


TY 0, TY 1, TY 20, TY 50

FWP:

TY 0: same as FWOP

- TY 2 same as FWOP
- TY 3 Dike and pump year. 10% credit given to marsh creation.
- TY 5 Two years after pumping. 30% credit given to marsh creation.
- TY 6 Three years after pumping. Dike degraded.
- TY 7 Four years after pumping. Marsh is fully vegetated (85% credit)
- TY 20 Landloss rates have reduced the amount of marsh from 85% of project area to 78%

TY 50 – Landloss rates have reduced the amount of marsh from 85% of project area to 64%

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: Cycle 1, BU Site 50, Calcasieu DMMP

Project Area: 320

Condition: Future Without Project

		0 7 1		1 1		7	
Variable			Ū		Ū		20
ValiaUlG		Value	ō	value	5	Value	5
۲۱	% Emergent	0	0.10	0	0.10	0	0.10
V2	% Aquatic	0	0.10	0	0.10	0	0.10
V3	Interspersion	%		%		%	
	Class 1		0.10		0.10		0.10
	Class 2 Class 3						
	Class 4 Class 5	100		100		100	
N/	%OW ~- 1 5#		0.03	C F	0.03	C F	0.23
		DT	0.10	0 T		0T	0.4.0
V5	Salinity (ppt)	6.1	1.00	6.1	1.00	6.1	1.00
VG	Access Value	00	00	1 00	1 00	00 1	1 00
2	Emergent Marsh HSI		0.25	EM HSI =	0.25	EM HSI =	0.25
	Open Water HSI	"	0.29	= ISH MO	0.29	= ISH MO	0.29

FWOP		le JU, Valuas					
		TY 50					
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	0	0.10				
V2	% Aquatic	0	0.10				
۶۸	Interspersion Class 1	%	0.10	%		%	
	Class 2 Class 3						
	Class 4 Class 5	100					
V4	%OW <= 1.5ft	10	0.23				
V5	Salinity (ppt)	6.1	1.00				
9N	Access Value	1.00	1.00				
		EM HSI =	0.25	EM HSI =		EM HSI =	
		= ISH MO	0.29	OW HSI =		= ISH MO	

Project: Cycle 1, BU Site 50, Calcasieu DMMP

Project: Cycle 1, BU Site 50, Calcasieu DMMP

Project Area: 320

Condition: Future With Project

Variable Value SI Value SI SI $V1$ % Emergent 0 0 10 0.19 0.19 $V2$ % Aquatic 0 0.10 100 100 0.10 $V3$ Interspersion % 0.10 0.10 100 1.00 $V3$ Interspersion % 0.10 100 1.00 1.00 $V3$ Interspersion % 0.10 1.00 1.00 1.00 $V3$ Class 1 0.10 0.10 1.00 1.00 1.00 $V4$ %OW <= 1.5ft 1.00 0.23 1.00 6.1 1.00 $V5$ Salinity (ppt) 6.1 1.00 6.1 1.00 0.10 $V6$ Access Value 1.00 0.00 0.00 0.10 0.10 $V5$ Salinity (ppt) 6.1 1.00 0.00 0.10 0.10 $V6$ Access Value 1.00 0.00			TY 0		TY 1 dike and pump	dund	ΤΥ 3	
% Emergent 0 0.10 10 % Aquatic 0 0.10 10 % Aquatic 0 0.10 0 Interspersion % 0.10 0 Interspersion % 0.10 100 Class 1 Class 3 0.10 100 Class 4 100 0.23 100 Sclass 5 100 0.23 100 %OW <= 1.5ft 10 0.23 100 %OW <= 1.5ft 10 0.23 100 Salinity (ppt) 6.1 1.00 6.1 Access Value 1.00 0.00 0.00 Emergent Marsh HSI = 0.25 CW HSI	Variable		Value	SI	Value	SI	Value	SI
% Aquatic 0 100 100 100 100 100 100 100 100 100 100 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 6.1 100 100 6.1 100	۲1	% Emergent	0	0.10			30	0.37
Interspersion % % % Class 1 Class 2 0.10 100 Class 2 Class 3 0.10 100 Class 3 Class 4 100 100 Class 4 100 0.23 100 Class 5 Class 4 10 0.23 %OW <= 1.5ft	V2	% Aquatic	0	0.10		0.10	0	0.10
Class 3 Class 3 100 900 100 900 100 900 <th< td=""><td>۶۸</td><td>Interspersion Class 1 Class 2</td><td>%</td><td></td><td>10</td><td></td><td>100</td><td>1.00</td></th<>	۶۸	Interspersion Class 1 Class 2	%		10		100	1.00
%OW <= 1.5ft 10 0.23 100 Salinity (ppt) 6.1 1.00 6.1 Access Value 1.00 0.00 0.00 Emergent Marsh HSI = 0.25 EM HSI Open Water HSI = 0.29 OW HSI		Class 3 Class 4 Class 5	100					
Salinity (ppt) 6.1 1.00 6.1 Access Value 1.00 0.00 0.00 Emergent Marsh HSI = 0.25 EM HSI Open Water HSI = 0.29 OW HSI	V4	%OW <= 1.5ft	10	0.23	100		100	0.60
Access Value 1.00 0.00 Emergent Marsh HSI = 0.25 EM HSI Open Water HSI = 0.29 OW HSI	V5	Salinity (ppt)	6.1	1.00			6.1	1.00
n HSI = 0.25 EM HSI = = 0.29 OW HSI =	76 V6	Access Value	1.00	1.00		0.10	0.00	0.10
= 0.29 OW HSI =		Emergent Mar		0.25	EM HSI =	0.35	EM HSI =	0.44
		Open Water Ht		0.29	= ISH MO	0.27	= ISH MO	0.27

BU Site 50, Calcasieu DMM
50, Calcasieu DMM
sieu DMM
0

FWP	-						
		TY 4 Dike degraded	egraded	TY 5		TY 20	
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	30	28:0	85	0.87	78	0.80
V2	% Aquatic	0	0.10	0	0.10	5	0.15
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	001	1.00	100	1.00	% 100	0.60
V4	%OW <= 1.5ft	100	09.0	100	0.60	80	1.00
V5	Salinity (ppt)	6.1	1.00	6.1	1.00	6.1	1.00
90	Access Value	1.00	1.00	1.00	1.00	1.00	1.00
		= ISH WE	0.58	EM HSI =	0.92	EM HSI =	0.83
		= ISH MO	0.39	= ISH MO	0.39	= ISH MO	0.44

FWP							
		TY 50					
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	64	0.68				
V2	% Aquatic	5	0.15				
V3	Interspersion Class 1	%	0.60	%		%	
	Class 2 Class 3	100	2				
	Class 4 Class 5						
V4	%OW <= 1.5ft	09	0.87				
V5	Salinity (ppt)	6.1	1.00				
V6	Access Value	1.00	1.00				
		= ISH WE	0.75	= ISH WE		= ISH WE	
			Ī				

0.43

Project: Cycle 1, BU Site 50, Calcasieu DMMP

AAHU CALCULATION - MARSH

Future Without Project	out Project		Total	Cummulative
ΤY	Marsh Acres	X HSI	HUS	HUs
0	0	0.25	00.0	
1	0	0.25	00.00	00.00
20	0	0.25	00.00	00.00
50	0	0.25	00.00	00.00
			AAHUs =	00.00

Future With Project	Project		Total	Cummulative
ТΥ	Marsh Acres	X HSI	HUS	HUS
0	0	0.25	00.0	
1	32	0.35	11.19	2.09
3	96	0.44	41.76	51.13
4	96	0.58	56.08	48.92
5	272	0.92	249.67	143.09
20	250	0.83	208.53	3431.92
50	206	0.75	155.18	5437.86
			AAHUS	182.36

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	182.36
B. Future Without Project Emergent Marsh AAHUs =	00.00
Net Change (FWP - FWOP) =	182.36

AAHU CALCULATION - OPEN WATER Project: Cycle 1, BU Site 50, Calcasieu DMMP

Euture Without Project TY Water Acres 0 320 1 320 20 320 50 320		Total	Cummulative
Water Acre 0 0 1 20 50 50			
	X HSI	HUS	HUS
	0.29	94.01	
	0.29	94.01	10.42
	0.29	94.01	1786.21
	0.29	94.01	2820.32
		AAHUS =	94.01

Future With Project	Project		Total	Cummulative
тΥ	Water Acres	X HSI	HUS	HUS
0	320	0.29	94.01	
1	288	0.27	77.87	85.81
3	224	0.27	60.57	138.44
4	224	0.39	86.90	73.74
5	48	0.39	18.62	52.76
20	0.2	0.44	30.57	366.28
50	114	0.43	48.71	1191.27
			SUHAA	38.17

NET CHANGE IN AAHUS DUE TO PROJECT	[
A. Future With Project Open Water AAHUs =	38.17
B. Future Without Project Open Water AAHUs =	94.01
Net Change (FWP - FWOP) =	-55.84

TOTAL BENEFITS IN AAHUS DUE TO PROJECT A. Emergent Marsh Habitat Net AAHUs = B. Open Water Habitat Net AAHUs = Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6
--

Brackish Marsh

WETLAND VALUE ASSESSMENT COMMUNITY MODEL

Project: Cycle 2, BU Site 50, Calcasieu DMMP

Project Area: 320

Condition: Future Without Project

				0	00	0.1					
20	SI	0.10	0.10	0.10			0.23	1.00	1.00	0.25	0.29
TΥ	Value	0	0	%		100	10	6.1	1.00	EM HSI =	OW HSI =
	SI	0.10	0.10	0.10			0.23	1.00	1.00	0.25	0.29
ΤΥ 1	Value	0	0	%		100	10	6.1	1.00	EM HSI =	= ISH MO
	SI	0.10	0.10	0.10			0.23	1.00	1.00	0.25	0.29
ΤΥ 0	Value	0	0	%		100	10	6.1	1.00	P HSI =	=
<u> </u>	<u>ı </u>	% Emergent	% Aquatic	Interspersion Class 1	Class 2 Class 3	Class 4 Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	Emergent Marsh HSI	Open Water HSI
	Variable	٧1	V2	٧3			V4	V5	VG		

0 0 0 0 ..0

0.000

Project: Cycle 2, BU Site 50, Calcasieu DMMP FWOP

ō		TY 50					
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	0	0.10				
V2	% Aquatic	0	0.10				
V3	Interspersion Class 1	%	0.10	%		%	
	Class 2 Class 3 Class 4 Class 5	100					
V4	%OW <= 1.5ft	10	0.23				
V5	Salinity (ppt)	6.1	1.00				
V6	Access Value	1.00	1.00				
		EM HSI =	0.25	EM HSI =		EM HSI =	
		= ISH MO	0.29	= ISH MO		= ISH MO	

0.000

00000

Project: Cycle 2, BU Site 50, Calcasieu DMMP

Project Area: 320

Condition: Future With Project

TY 2 SI Value 0.10 0.10 0.10 0.10	Contraction (Contraction) (Con	TY 0 TY 2 Value SI Value 0 0.10 0.10 % 0.10 0.10
0.10 0.10 0.10	alue SI 0.10 0.10 0.10	TY 0 Value SI 0 0 0.10 % 0.10 0.10
		TY 0 Value

-0000

0.000.0

- 0 0 0 0

		TY 5		TY 6 Dike degraded	raded	7 Y T	
Variable		Value	SI	Value	S	Value	SI
٧1	% Emergent	30	0.37	30	0.37	8 8	0.87
V2	% Aquatic	0	0.10	0	0.10	0	0.10
V 3	Interspersion Class 1 Class 2 Class 3 Class 4	100	1.00	100	1.00	100	0.60
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60
V5	Salinity (ppt)	6.1	1.00	6.1	1.00	6.1	1.00
9V	Access Value	0.00	0.10	1.00	1.00	1.00	1.00
		= ISH WE	0.44	= ISH WE	0.58	EM HSI =	0.87
		= ISH MO	0.27	= ISH MO	0.39	= ISH MO	0.36

-0000

- 0 0 0 0

- 0 0 0 0

Project: Cycle 2, BU Site 50, Calcasieu DMMP FWP

		TY 20		TY 50			
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	78	0.80	64	0.68		
V2	% Aquatic	ъ	0.15	5	0.15		
V3	Interspersion Class 1 Class 2 Class 4 Class 4	100	1.00	% 100	0.00	%	
V4	%OW <= 1.5ft	80	1.00	60	0.87		
V5	Salinity (ppt)	6.1	1.00	6.1	1.00		
V6	Access Value	1.00	1.00	1.00	1.00		
		EM HSI =	0.88	EM HSI =	0.69	EM HSI =	
		= ISH MO	0.47	= ISH MO	0.38	OW HSI =	

-0000

0 0 0 0 0 0 0

AAHU CALCULATION - MARSH

Future Without Project	out Project		Total	Cummulative
ТΥ	Marsh Acres	x HSI	HUS	HUS
0	0	0.25	00.0	
1	0	0.25	00.00	00.00
20	0	0.25	00.0	00.0
50	0	0.25	00.00	0.00
			AAHUS =	0.00

		Ľ		
Future With Project	Project		Total	Cummulative
ТΥ	Marsh Acres	X HSI	HUS	HUS
0	0	0.25	00.0	
2	0	0.25	00.0	00.0
3	28	0.35	11.19	5.09
5	96	0.44	41.76	51.13
9	96	0.58	56.08	48.92
7	272	0.87	237.58	138.35
20	250	0.88	219.65	1824.34
50	206	0.69	141.44	8060.58
			SUHAA	202.57
		-		

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	202.57
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	202.57

AAHU CALCULATION - OPEN WATER Project: Cycle 2, BU Site 50, Calcasieu DMMP

		L		
Future Without Project	out Project		Total	Cummulative
ТҮ	Water Acres	X HSI	HUS	HUS
0	320	0.29	94.01	
1	320	0.29	94.01	94.01
20	320	0.29	94.01	1786.21
50	320	0.29	94.01	2820.32
			AAHUS =	94.01

Future With Project	Project		Total	Cummulative
١Y	Water Acres	X HSI	HUS	HUS
0	320	0.29	94.01	
2	320	0.29	94.01	188.02
3	288	0.27	77.87	85.81
5	224	0.27	60.56	138.43
9	224	0.39	86.90	73.73
7	48	0.36	17.20	51.18
20	0.2	0.47	32.65	318.85
50	114	0.69	78.27	1897.41
			SUHAA	55.07
		-		

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	55.07
B. Future Without Project Open Water AAHUs =	94.01
Net Change (FWP - FWOP) =	-38.94

-38.94

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	202.57
B. Open Water Habitat Net AAHUs =	-38.94
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	135.48

Land Loss Spreadsheet

						Loss	Loss Rate Calculation	tion		
							Beginning	Ending		
Project:					Beginning Year	Ending Year	Year Acreage	Year Acreage	Loss Rate	
Totol		1Y0		TY0						
Acres		Marsh Acres		Water Acres	1974	1990	3,770	3,060	-0.012957	
320		0		320	ΝJ	/P Land Los	FWP Land Loss Reduction	0.50		
		FWOP					FWP			
ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	λı	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	Net Acres of Marsh
0		0	%0	320	0		0	%0	320	0
1	-0.012957	0	%0	320	1	-0.006478	0	10%	320	0
2	-0.012957	0	%0	320	2	-0.006478	0	10%	320	0
3	-0.012957	0	%0	320	3	-0.006478	0	30%	320	0
4	-0.012957	0	%0	320	4	-0.006478	0	30%	320	0
5	-0.012957	0	%0	320	5	-0.006478	272	85%	48	272
9	-0.012957	0	%0	320	6	-0.006478	270	84%	50	270
7	-0.012957	0	%0	320	7	-0.006478	272	85%	48	272
8	-0.012957	0	%0	320	8	-0.006478	270	84%	50	270
6	-0.012957	0	%0	320	6	-0.006478	268	84%	52	268
10	-0.012957	0	%0	320	10	-0.006478	267	83%	53	267
11	-0.012957	0	%0	320	11	-0.006478	265	83%	55	265
12	-0.012957	0	%0	320	12	-0.006478	263	82%	57	263
13	-0.012957	0	%0	320	13	-0.006478	262	82%	58	262
14	-0.012957	0	%0	320	14	-0.006478	260	81%	60	260
15	-0.012957	0	%0	320	15	-0.006478	258	81%	62	258
16	-0.012957	0	%0	320	16	-0.006478	257	80%	63	257
17	-0.012957	0	%0	320	17	-0.006478	255	80%	65	255
18	-0.012957	0	%0	320	18	-0.006478	253	%62	67	253
19	-0.012957	0	%0	320	19	-0.006478	252	%62	68	252
20	-0.012957	0	%0	320	20	-0.006478	250	%82	70	250
21	-0.012957	0	%0	320	21	-0.006478	248	78%	72	248

73	75	76	78	80	81	83	84	86	87	89	06	92	93	96	96	98	66	101	102	103	105	106	108	109	110	112	113	114
%17	%17	%92	%92	75%	75%	74%	74%	73%	73%	72%	72%	71%	71%	%0 <i>L</i>	%02	69%	%69	%69	68%	68%	67%	67%	%99	%99	%99	65%	65%	64%
247	245	244	242	240	239	237	236	234	233	231	230	228	227	225	224	222	221	219	218	217	215	214	212	211	210	208	207	206
-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478
22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957
22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	68	40	41	42	43	44	45	46	47	48	49	50

Land Loss Spreadsheet

						Loss	Loss Rate Calculation	ation		
							Beginnin	Ending		
Project:					Beginnin	Ending	g Year	Year	Loss	
		TY0		TY0	y rear	Teal	Acreage	Acreage	Nale	
Total		Marsh		Water	1974	1990	3,770	3,060	-0.012957	
ACLES		Acres		Acres						
320		0		320		FWP Land Loss Reduction	Reduction	0.50		
		FWOP					FWP			
Ϋ́	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	ΥΥ	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	Net Acres of Marsh
0		0	%0	320	0		0	%0	320	0
-	-0.012957	0	%0	320	-	-0.006478	0	%0	320	0
2	-0.012957	0	%0	320	2	-0.006478	32	10%	288	32
3	-0.012957	0	%0	320	3	-0.006478	32	10%	288	32
4	-0.012957	0	%0	320	4	-0.006478	32	10%	288	32
5	-0.012957	0	%0	320	5	-0.006478	96	30%	224	96
9	-0.012957	0	%0	320	9	-0.006478	96	30%	224	96
7	-0.012957	0	%0	320	7	-0.006478	272	85%	48	272
8	-0.012957	0	%0	320	8	-0.006478	270	84%	50	270
6	-0.012957	0	%0	320	6	-0.006478	268	84%	52	268
10	-0.012957	0	%0	320	10	-0.006478	267	83%	53	267
11	-0.012957	0	%0	320	11	-0.006478	265	83%	55	265
12	-0.012957	0	%0	320	12	-0.006478	263	82%	57	263
13	-0.012957	0	%0	320	13	-0.006478	262	82%	58	262
14	-0.012957	0	%0	320	14	-0.006478	260	81%	60	260
15	-0.012957	0	%0	320	15	-0.006478	258	81%	62	258
16	-0.012957	0	%0	320	16	-0.006478	257	80%	63	257
17	-0.012957	0	%0	320	17	-0.006478	255	80%		255
18	-0.012957	0	%0	320	18	-0.006478	253	79%		253
19	-0.012957	0	%0	320	19	-0.006478	252	79%	68	252
20	-0.012957	0	%0	320	20	-0.006478	250	78%	70	250
21	-0.012957	0	%0	320	21	-0.006478	248	78%	72	248
22	-0.012957	0	%0	320	22	-0.006478	247	77%	73	247

75	76	78	80	81	83	84	86	87	89	06	92	93	92	96	98	66	101	102	103	105	106	108	109	110	112	113	114
%17	76%	%92	75%	75%	74%	74%	73%	73%	72%	72%	71%	71%	%02	%02	%69	%69	%69	68%	68%	67%	67%	%99	%99	%99	65%	65%	64%
245	244	242	240	239	237	236	234	233	231	230	228	227	225	224	222	221	219	218	217	215	214	212	211	210	208	207	206
-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478	-0.006478
23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320	320
%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957	-0.012957
23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50

Beneficial Use Site 52

Beneficial Use (BU) Site 52 (East Palermo)

I. Project Location/Area

This wetland value assessment (WVA) focuses on BU Site 52, called the East Palermo property (Figure 1). This 258-acre area is located near Brown Lake, approximately one mile south of the GIWW and bordered by Highway 27 on the east.

II. Goals

Approximately 726,000 cubic yards of material would be dredged from the Calcasieu Ship Channel (between miles 16 and 21) in one dredging cycle to create a ratio of 85% marsh to 15% shallow open water in the 258-acre area. Approximately 157 acres of intertidal, brackish marsh would be created and 101 acres of existing marsh habitat would be nourished.

III. Project Features

The Brown Lake Hydrologic Restoration project, a CWPPRA project (CS- 09), is proposed for this area; however, final approval has not been accomplished and construction has not been initiated. Therefore, assumptions for future conditions did not consider the affects of this hydrologic restoration project.

Based on USACE knowledge and experience of dredging operations, created cells are approximately 200-300 acres in size. Because the total area of BU Site 52 is only 258 acres, an earthen dike will be constructed around the entire perimeter of the project area one year prior to pumping to confine dredged sediments.

IV. WVA Variables and Assumptions

The following is a description of assumptions created for BU Site 52:

Variable 1 – Emergent Vegetation

Currently, the project area consists of approximately 101 acres of emergent marsh and 157 acres of open water. To determine the percent of emergent marsh the following calculation was used:

101 + 157 = 258 total acres 101 acres of emergent marsh/258 total acres = .391 .391 * 100 = 39.1 % ≈ 39 % emergent marsh

Marsh loss data was obtained from the Louisiana Coastal Area project report *Coast 2050: Toward a Sustainable Coastal Louisiana* (1998), Appendix F. The loss rate of -0.0045 is used for future-without-project (FWOP). However, for the future-with-project (FWP) scenario, loss rates would apply after the material is pumped and the dike degraded. Marsh

created in a confined area would likely differ in some aspects from naturally occurring marsh: it would be slightly higher in elevation than natural marsh, and its density would differ from natural marsh due to consolidation and type of material. Therefore, the loss rate that would be applied would differ as well; it would be reduced by 50% to account for these attributes. Therefore, for FWP, a loss rate of -0.0023 was applied starting the year that the dike would be degraded (TY 12).

FWOP: 39% of the project area is emergent marsh. This marsh is expected to continue to erode at a rate of -0.0045 per year.

TY 0 – 39% TY 1 – 39% TY 20 – 36% TY 50 – 31%

FWP:

To estimate the potential amount of marsh acres that could be created with the dredged material, the CWPPRA Sabine Refuge Marsh Creation (CS-28), Cycle 1 project was used as a reference site. That project created marsh by pumping material into an area confined by earthen dikes. It was found that approximately 4,000 cyds of dredge material created 1 acre of marsh.

The following timeline was used for functional marsh credit:

Marsh Creation

TY1 (pump year) – 10% 2 years after pumping – 30% 4 years after pumping – 85%

 $\begin{array}{l} TY \ 0 - 39\% \\ TY \ 8 - 38\% \\ TY \ 9 - 43\% \\ TY \ 11 - 53\% \\ TY \ 12 - 53\% \\ TY \ 13 - 88\% \\ TY \ 20 - 87\% \\ TY \ 50 - 81\% \end{array}$

Nourishment (no plantings) 50% 100%

See Land Loss Spreadsheet for marsh acreage credits by target year.

Variable 2 – Submerged Aquatic Vegetation (SAV)

In the past, this area has experienced higher levels of salt water intrusion causing the marsh to transition from an intermediate marsh to a more brackish marsh. The Crab Gully water control structure is located near BU Site 52 but is not operational. Without any hydrologic restoration to control salinity, the project area will continue to experience salinity spikes and is not expected to support a significant amount of SAV habitat.

FWOP

 $\begin{array}{l} TY \ 0 - 0\% \\ TY \ 1 - 0\% \\ TY \ 20 - 0\% \\ TY \ 50 - 0\% \end{array}$

FWP:

 $\begin{array}{l} TY \ 0 - 0\% \\ TY \ 8 - 0\% \\ TY \ 9 - 0\% \\ TY \ 11 - 0\% \\ TY \ 12 - 0\% \\ TY \ 13 - 0\% \\ TY \ 20 - 0\% \\ TY \ 50 - 0\% \end{array}$

Variable 3 – Interspersion

FWOP: Lower expressions of interspersion, Classes 3-5, are characterized by large areas of open water with little surrounding marsh. These interspersion values usually indicate advanced stages of marsh loss. Without marsh restoration efforts, 258-acre project area falls in Class 3. Interspersion classifications are not expected to change within the 50-year project life for FWOP (i.e., marsh will not occur naturally).

FWP: Areas exhibiting a high degree of marsh cover are ranked as having a high degree of dispersion (Class 1 or Class 2). It is assumed that the confined area would achieve a Class 1 once the dredged material is pumped for this cycle because of the ratio of marsh to open water (85% marsh/15% open water). 100% of the project area would fall into Class 1 starting the first year it is pumped (TY 9) and throughout the remainder of the 20-year DMMP project life. Based on landloss rates in the area, BU Site 52 may transition to a Class 3 by TY 50.

Target Year	Class 1		Class 2		Class 3	
_		%		%		%
0 (FWOP)					258 ac	100
8					258 ac	100
9 (dike & pump)	258 ac	100				
20	258 ac	100				
50			258	100		

Table 1: FWP Interspersion Classification

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal

conditions are expected to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep.

FWOP:

According to aerial photography and hydrologic monitoring stations deployed in the area, BU Site 52 is a very shallow open water area. Therefore, it was assumed that 80% of the 157-acre open water area project area is shallow, or less than or equal to 1.5 feet.

FWOP (**TY 0**): 80% * 157 acres = 126 acres of open water </= 1.5 ft

FWP:

TY 0 – 80% or same as FWOP TY 8 – 80% TY 9 (dike & pump year) – 100% TY 20 – 80% TY 50 – 60%

Variable 5 – Salinity

Hydrographic data was downloaded by station number from the Louisiana Department of Natural Resources SONRIS site (accessed July 25, 2008, GEC). All data has been corrected for biofouling, instrument drift, and/or instrument malfunction.

Hourly water salinity records collected during 2003 - 2004 show that average annual salinity for the station located in the project area is 9.1 parts per thousand (ppt).

The salinity is expected to remain constant throughout the life of this project.

Variable 6 – Fish Access

FWOP: A water control structure, known as the Crab Gully Structure, is present just west of Highway 27. The project structure includes an open culvert, resulting in a current access value of 0.5. The access value is expected to remain the same throughout the life of the project.


TY 0 – 0.5 (Crab Gully Structure is an open culvert) TY 1 – 0.5 TY 20 – 0.5 TY 50 – 0.5

FWP: The current access value, as noted previously, is 0.5. During TY 9, the dike would be constructed, resulting in an access value of 0.0001. The access value is expected to remain at 0.0001 until the dike degrades in TY 13. The degree of access would then return to the original value of 0. 5 and remain there throughout the life of the project.

TY 0 - 0.5 (with existing water control structures)

TY 8 – 0.5 TY 9 – 0.0001 (dike & pump year) TY 11 – 0.0001 TY 12 – 0.5 (dike degradation)

 $\begin{array}{c} TY \ 13-0.5 \\ TY \ 20-0.5 \\ TY \ 50- \ 0.5 \end{array}$

USGS DOQQ 2005 WESTLAKE SW 3009354

Map Author: Moore 27585101-765

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: BU Site 52, Calcasieu DMMP

Project Area:

258

Condition: Future Without Project

		TY 0		TY 1		TY 20				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	39	0.45	39	0.45	36	0.42			
V2	% Aquatic	0	0.10	0	0.10	0	0.10			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	0.40	%	0.40	%	0.40	0 0.4 0	0 0 0.4 0	0.4 0.4 0
V4	%OW <= 1.5ft	80	1.00	80	1.00	80	1.00			
V5	Salinity (ppt)	9.1	1.00	9.1	1.00	9.1	1.00			
V6	Access Value	0.50	0.55	0.50	0.55	0.50	0.55			
	Emergent Marsh	HSI =	0.52	EM HSI =	0.52	EM HSI =	0.51			
	Open Water HSI	=	0.33	OW HSI =	0.33	OW HSI =	0.33			

Project: FWOP	BU Site 52, Ca	alcasieu DMMP	•							
		TY 50						1		
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	31	0.38							
V2	% Aquatic	0	0.10							
V3	Interspersion Class 1 Class 2	%	0.40	%		%		0	0 0	0
	Class 3 Class 4 Class 5	100						0.4 0 0	0 0 0	0 0 0
V4	%OW <= 1.5ft	80	1.00							
V5	Salinity (ppt)	9.1	1.00							
V6	Access Value	0.50	0.55							
		EM HSI =	0.37	EM HSI =		EM HSI =				
		OW HSI =	0.26	OW HSI =		OW HSI =				

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: BU Site 52, Calcasieu DMMP

Project Area:

258

Condition: Future With Project

		TY 0		TY 8		TY 9 (dike & pump year)				
Variable		Value	SI	Value	SI	Value	SI			
V1	% Emergent	39	0.45	38	0.44	43	0.49			
V2	% Aquatic	0	0.10	0	0.10	0	0.10			
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	0.40	%	0.40	% 100	1.00	0 0 0.4 0	0 0 0.4 0	1 0 0 0
V4	%OW <= 1.5ft	80	1.00	80	1.00	100	0.60			
V5	Salinity (ppt)	9.1	1.00	9.1	1.00	9.1	1.00			
V6	Access Value	0.50	0.55	0.50	0.55		0.10	1		
	Emergent Marsh Open Water HSI		0.52 0.33	EM HSI = OW HSI =	0.52 0.33		0.49 0.27			

Project: BU Site 52, Calcasieu DMMP FWP

		TY 11		TY 12 (dike degraded)		TY 13			
Variable		Value	SI	Value	SI	Value	SI	ļ	
V1	% Emergent	53	0.58	53	0.58	88	0.89		
V2	% Aquatic	0	0.10	0	0.10	0	0.10		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	1.00	% 100	0.60	1 0 0 0 0	1 0 0 0
V4	%OW <= 1.5ft	100	0.60	100	0.60	100	0.60		
V5	Salinity (ppt)	9.1	1.00	9.1	1.00	9.1	1.00		
V6	Access Value	0.00 EM HSI =	0.10 0.52	0.50 EM HSI =	0.55 0.67	0.50 EM HSI =	0.55 0.80		
		OW HSI =	0.32	OW HSI =					

Project: BU Site 52, Calcasieu DMMP FWP

		TY 20		TY 50			
Variable	ļ	Value	SI	Value	SI	Value	SI
V1	% Emergent	87	0.88	81	0.83		
V2	% Aquatic	0	0.10	0	0.10		
V3	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	% 100	1.00	% 100	0.00	%	
V4	%OW <= 1.5ft	80	1.00	60	0.87		
V5	Salinity (ppt)	9.1	1.00	9.1	1.00		
V6	Access Value	0.50 EM HSI =	0.55 0.84	0.50 EM HSI =	0.55 0.70	EM HSI =	
	L	OW HSI =	0.84	OW HSI =	0.29	OW HSI =	

uture With	out Project		Total	Cummulative
ΤY	Marsh Acres	x HSI	HUs	HUs
0	101	0.52	52.80	
1	101	0.52	52.80	52.80
20	92	0.51	46.53	943.13
50	81	0.37	29.62	1134.51
			AAHUs =	42.61

Future With	Project		Total	Cummulative
TY	Marsh Acres	x HSI	HUs	HUs
0	101	0.52	52.80	
8	97	0.52	50.16	411.81
9	230	0.49	111.58	81.58
11	229	0.52	119.49	231.08
12	229	0.67	152.53	136.01
13	228	0.80	182.01	167.29
20	228	0.84	191.05	1305.71
50	210	0.70	146.50	5685.43
			AAHUs	160.38

NET CHANGE IN AAHUS DUE TO PROJECT	1
A. Future With Project Emergent Marsh AAHUs =	160.38
B. Future Without Project Emergent Marsh AAHUs =	42.61
Net Change (FWP - FWOP) =	117.77

AAHU CALCULATION - OPEN WATER

Project: BU Site 52, Calcasieu DMMP

ture Witho	out Project		Total	Cummulative
TY	Water Acres	x HSI	HUs	HUs
0	157	0.33	52.06	
1	157	0.33	52.06	52.06
20	166	0.33	55.04	1017.49
50	177	0.26	45.58	1513.46
			AAHUs =	51.66

Future With	Project		Total	Cummulative
TY	Water Acres	x HSI	HUs	HUs
0	157	0.33	52.06	
8	161	0.33	53.39	421.79
9	28	0.27	7.57	29.12
11	29	0.27	7.84	15.41
12	29	0.35	10.05	8.94
13	30	0.32	9.50	9.78
20	33	0.38	12.41	89.66
50	48	0.29	14.04	402.97
			AAHUs	19.55

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	19.55
B. Future Without Project Open Water AAHUs =	51.66
Net Change (FWP - FWOP) =	-32.11

TOTAL BENEFITS IN AAHUS DUE TO PROJECT				
A. Emergent Marsh Habitat Net AAHUs =	117.77			
B. Open Water Habitat Net AAHUs =	-32.11			
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	76.14			

Land Loss Spreadsheet

						Los	s Rate Calcu	lation		1						
Project:	BU Site 52				Beginning Year	Ending Year	Beginning Year Acreage	Ending Year Acreage	Loss	s Rate						
Total Acres		TY0 Marsh Acres		TY0 Water Acres	1983	1980				-0.0045						
258		101		157	FWP La	and Loss Re	duction	0.50			-					
		FWOP			FWP -	Created	Marsh	FWP - N	ourished	Marsh		FWP	Totals			
					Create	d Marsh =	133	Nourish	ed Marsh =	101						
TY	FWOP Loss Rate	Marsh (acres)	% Marsh (V1) 39%	Water (acres) 157	FWP Loss Rate	Created Marsh Acreage	Adjusted Marsh Acreage (10% @ TY10; 30% @ TY12 and 100% @ TY14)	FWP Loss Rate	Nourished Marsh Acreage	Adjusted Marsh Acreage (50% @ TY1 and 100% @ TY3	Water (acres)	Marsh (acres)	% Marsh (V1)	Net Acres of Marsh	Total Acres Check	TY 0
1	-0.0045	101	39%	157	0	0	0	-0.0045	101	101	157	101	39%		258	1
2	-0.0045	100	39%	158	0		0	-0.0045	100	100	158	100	39%		258	2
3	-0.0045	100	39%	158	0	0	0	-0.0045	100	100	158	100	39%		258	3
4 5	-0.0045 -0.0045	99 99	38% 38%	159 159	0		0	-0.0045 -0.0045	99 99	99 99	159 159	99 99	38% 38%	0	258 258	4 5
5	-0.0045	99	38%	160	0		0	-0.0045	99	99	160	99	38%	0	258 258	5 6
7	-0.0045	98	38%	160	0		0	-0.0045	98	98	160	98	38%	0	258	7
8	-0.0045	97	38%	161	0		0	-0.0045	97	97	161	97	38%	0	258	8
9	-0.0045	97	38%	161	0	133	13	0.0000	97	48	28	230	43%	133	258	9
10 11	-0.0045	97 96	37% 37%	161 162	0	133 133	13 40	0.0000	97 96	48 96	28 29	230 229	43% 53%	133 133	258 258	10 11
12	-0.0045	96	37%	162	-0.00225	133	40	-0.0023	96	96	29	229	53%	133	258	12
13	-0.0045	95	37%	163	-0.00225	132	132	-0.0023	96	96	30	228	88%	133	258	13
14	-0.0045	95	37%	163	-0.00225	132	132	-0.00225	95	95	30	228	88%	133	258	14
15	-0.0045	94	37%	164	-0.00225	132	132	-0.00225	95	95	31	227	88%	133	258	15
16 17	-0.0045 -0.0045	94 94	36% 36%	164 164	-0.00225	132 131	132 131	-0.00225 -0.00225	95 95	95 95	31 32	227 226	88% 88%	133 132	258 258	16 17
18	-0.0045	93	36%	165	-0.00225	131	131	-0.00225	95	95	32	226	87%	132	258	18
19	-0.0045	93	36%	165	-0.00225	131	131	-0.00225	94	94	33	225	87%	132	258	19
20	-0.0045	92	36%	166	-0.00225	130	130	-0.0023	94	94	33	225	87%	132	258	20
21	-0.0045	92	36%	166	-0.00225	130	130	-0.00225	94	94	34	224	87%	132	258	21
22 23	-0.0045 -0.0045	91 91	35% 35%	167 167	-0.00225	130 129	130 129	-0.00225 -0.00225	94 94	94 94	34 35	224 223	87% 86%	132 132	258 258	22 23
23	-0.0045	91	35%	167	-0.00225	129	129	-0.00225	94	94	36	223	86%	132	258	23
25	-0.0045	90	35%	168	-0.00225	129	129	-0.00225	93	93	36	222	86%	132	258	25
26	-0.0045	90	35%	168	-0.00225	129	129	-0.00225	93	93	37	221	86%	132	258	26
27 28	-0.0045	89	35%	169	-0.00225	128	128	-0.00225	93	93 93	37 37	221	86%	132 131	258 258	27
28	-0.0045 -0.0045	89 89	35% 34%	169 169	-0.00225 -0.00225	128 128	128 128	-0.00225 -0.00225	93 92	93	37	221 220	85% 85%	131	258 258	28 29
30	-0.0045	88	34%	170	-0.00225	120	120	-0.00225	92	92	38	220	85%	131	258	30
31	-0.0045	88	34%	170	-0.00225	127	127	-0.00225	92	92	39	219	85%	131	258	31
32	-0.0045	87	34%	171	-0.00225	127	127	-0.00225	92	92	39	219	85%	131	258	32
33 34	-0.0045 -0.0045	87 87	34% 34%	171 171	-0.00225	127 126	127 126	-0.00225 -0.00225	91 91	91 91	40 40	218 218	85% 84%	131 131	258 258	33 34
35	-0.0045	86	34%	171	-0.00225	126	126	-0.00225	91	91	40	210	84%	131	258	34 35
36	-0.0045	86	33%	172	-0.00225	126	126	-0.00225	91	91	41	217	84%	131	258	36
37	-0.0045	85	33%	173	-0.00225	125	125	-0.00225	91	91	42	216	84%	131	258	37
38 39	-0.0045 -0.0045	85	33% 33%	173 173	-0.00225	125 125	125 125	-0.00225 -0.00225	90 90	90 90	42 43	216	84%	131 130	258	38
39 40	-0.0045	85 84	33%	173	-0.00225	125	125	-0.00225	90 90	90 90	43	215 215	83% 83%	130	258 258	39 40
40	-0.0045	84	33%	174	-0.00225	123	123	-0.00225	90	90	43	213	83%	130	258	40
42	-0.0045	84	32%	174	-0.00225	124	124	-0.00225	90	90	44	214	83%	130	258	42
43	-0.0045	83	32%	175	-0.00225	124	124	-0.00225	89	89	45	213	83%	130	258	43
44	-0.0045	83	32%	175	-0.00225	123	123	-0.00225	89	89	45	213	82%	130	258	44
45 46	-0.0045 -0.0045	82 82	32% 32%	176 176	-0.00225	123 123	123 123	-0.00225 -0.00225	89 89	89 89	46 46	212 212	82% 82%	130 130	258 258	45 46
40	-0.0045	82	32%	176	-0.00225	123	123	-0.00225	89	89	40	212	82%	130	258	40
48	-0.0045	81	32%	177	-0.00225	120	120	-0.00225	88	88	47	211	82%	129	258	48
49	-0.0045	81	31%	177	-0.00225	122	122	-0.00225	88	88	48	210	82%	129	258	49
50	-0.0045	81	31%	177	-0.00225	122	122	-0.0023	88	88	48	210	81%	129	258	50

Beneficial Use in Calcasieu Lake Adjacent to CDF D/E

<u>CDF D/E</u> Beneficial Use (BU) Expansion Area

I. Project Location/Area

This wetland value assessment (WVA) focuses on the BU expansion area adjacent to CDF D/E. CDF D/E is located adjacent to the eastern side of the Calcasieu Ship Channel between miles 12 to 16. The existing CDF would be expanded east into Calcasieu Lake, with an upland expansion area occupying approximately 293 acres. Adjacent to the upland expansion area, semi-confined intertidal marsh would be created in Calcasieu Lake. The marsh would extend from the edge of the upland expansion to the approximate 3-foot depth contour of Calcasieu Lake and would occupy approximately 466 acres. This area is currently open water.

II. Goals

Approximately 4.1 million cubic yards of material would be dredged from the Calcasieu Ship Channel (between miles 12 and 16) in four pumping cycles to create approximately 466 acres of brackish marsh and estuarine habitat adjacent to CDF D/E in Calcasieu Lake.

III. Project Features

A rock dike would be constructed to contain the dredged material until it has consolidated and wetland vegetation has become established. The rock dike would extend in height above the planned marsh level. During the pumping of dredged material, the material would be allowed to flow throughout the site, and the substrate for the establishment of marsh would form over four pumping cycles: project years 11, 13, 16, and 18. The dike would be opened after the dredged material has stabilized and vegetation has colonized to facilitate water exchange. The intervals and dimensions of the openings would be coordinated with resource agencies.

IV. WVA Variables and Assumptions

Variable 1: Emergent Marsh

FWOP: There is no marsh, only open water.

FWP: A total of 4,132,000 cyds of dredged material will be pumped into this 476-acre confined area. To determine the potential amount of marsh acres that could be created with the dredged material, an average water depth of the area was estimated based on field investigations conducted by GBA, Inc. It was estimated that the average water depth of this BU site is approximately 3-feet deep. Assuming that the cells would be filled initially to 2.5 feet above the water surface, 8,873 cyds would be required to create one acre of marsh. These numbers are estimates. Actual target elevations of placed and consolidated fill at the site would be determined through coordination with resource agencies and the development of geotechnical analyses during the preparation of plans and specifications for the project.

- → 3 + 2.5 = 5.5 ft. * 43,560 sq. ft = 239,580,260 cubic feet / 27 = 8,873 cyds per acre
- \rightarrow 4,132,000 cyds / 8,873 cyds per acre = 466 acres

Each of the four pump cycles would create about 116.5 acres of marsh

 \rightarrow 466 acres / 4 = 116.5 acres

Marsh creation assumptions: Based on USACE knowledge and experience of dredging operations, a maximum of 85% of this material will form into vegetated marsh, and the remaining 15% of the area would be shallow open water (also called mudflats). It would take several years for the dredged material to vegetate into marsh; it was assumed that the first year of pumping, the dredged material would create 10% marsh. Two years after pumping, the area would achieve 30% marsh, and four years after pumping, the area would achieve 30% marsh, and four years after pumping, the area would achieve 85% marsh (see Table 1).

Landloss assumptions: It was assumed that three years after the last pump cycle, the dike would be degraded and landloss would begin. Land loss rates within the study area (northern Calcasieu Lake) have averaged 0.2 % per year during 1933 to 1955, 0.78 % per year from 1955 to 1978, 0.2 % per year during 1974 to 1983, and 0.14 % per year during 1983 to 1990 (Dunbar et al. 1992). For this project, the most recent rate--0.14% per year—was applied to the FWP scenario. Please see the attached land loss spreadsheet to see how acreage lost after dike gapping was determined.

Table 1 below shows the marsh creation and landloss acreages based on the above assumptions.

Target (Project) Years	Marsh Acres	Total Marsh Acres	% of Area
TY 10 (same as FWOP)			
0 acres of marsh	0	0	0%
TY 11 (1st pump year; dike constructed):			
Pump 1: 117 x 10%=	12	12	3%
TY 13 (2nd pump year)			
Pump 1: 117 x 30%=	35		
Pump 2: 117 x 10%=	12		
		47	10%
TY 15			
Pump 1: 117 x 85%=	99		
Pump 2: 117 x 30%=	35		
Total		134	29%
TY 16 (3rd pump year)			
Pump 1: 117 x 85%=	99		
Pump 2: 117 x 30%=	35		

Pump 3: 117 x 10%=	12		
Total		146	31%
TY 17			
Pump 1: 117 x 85%=	99		
Pump 2: 117 x 85%=	99		
Pump 3: 117 x 10%=	12		
Total		210	45%
TY 18 (4th pump year)			
Pump 1: 117 x 85%=	99		
Pump 2: 117 x 85%=	99		
Pump 3: 117 x 30%=	35		
Pump 4: 117 x 10%=	12		
Total		245	53%
TY 20			
Pump 1: 117 x 85%=	99		
Pump 2: 117 x 85%=	99		
Pump 3: 117 x 85%=	99		
Pump 4: 117 x 30%=	35		
Total		332	71%
TY 21 (3 years after last pump year: dike			
degraded and landloss begins)			
Pump 1: 117 x 85%=	99		
Pump 2: 117 x 85%=	99		
Pump 3: 117 x 85%=	99		
Pump 4: 117 x 85%=	99		
Total		396	85%
TY 22			
Pump 1: 117 x 85%=	99		
Pump 2: 117 x 85%=	99		
Pump 3: 117 x 85%=	99		
Pump 4: 117 x 85%=	99		
Total		396	85%
TY 50			
Pump 1:	97		
Pump 2:	97		
Pump 3:	97		
Pump 4:	97	388	83%

Variable 2 – Submerged Aquatic Vegetation (SAV)

This area is not known to support SAVs.

FWOP

TY 0: 0 % TY 1: 0 % TY 20: 0 % TY 50: 0 % The project area is not expected to support a significant amount of SAV habitat.

FWP: TY 0 - 18: 0% TY 20: 0% TY 50: 0%

Variable 3 – Interspersion

FWOP: The lowest expression of interspersion, Class 5, is characterized by open water and less than 5% of emergent marsh. Without marsh restoration efforts, 100% of the 476-acre project area would falls into Class 5. Interspersion classifications are not expected to change within the 50-year assessment period for FWOP (i.e., marsh will not occur naturally).

FWP: Areas exhibiting a high degree of marsh cover are ranked as having a high degree of dispersion (Class 1 or Class 2). It is assumed that 100% of the *immediate area that is pumped* (25% of total project area) during each of the four pump years would fall into Class 1 for each of the four pump years and would remain a Class 1 throughout the remainder of the 20-year DMMP project life. By TY 50, the area falls to 83% marsh because of landloss rates. Therefore, in TY 50, the interspersion falls to a Class 2.

Target Year	Intersper	rsion Class
0	Class 5	5: 100%
10	Class &	5: 100%
11 (pump)	Class 5: 75%	Class 1: 25%
13 (pump)	Class 5: 50%	Class 1: 50%
15	Class 5: 50%	Class 1: 50%
16 (pump)	Class 5: 25%	Class 1: 75%
17	Class 5: 25%	Class 1: 75%
18 (pump)	Class	1: 100%
20	Class '	1: 100%
21	Class '	1: 100%
22	Class '	1: 100%
50	Class 2	2: 100%

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal conditions are expected to occur when 80 to 90 percent of the open water area is less than or

equal to 1.5 feet deep. The BU area of CDF D/E will be built adjacent to the CDF expansion area of CDF D/E more than 500 ft. from the current shoreline. Its lake-side boundary will extend to the existing 3-foot depth contour. It was assumed that most of the BU expansion area in the FWOP scenario would be 2- to 3-feet deep.

In the FWP scenario, it is assumed that water surrounding the areas receiving dredged material would become shallow. Because there are four pump years, it was assumed that shallow open water would increase in 25% increments. In other words, an additional 25% of the total water area would become shallow during each pump year.

FWOP:

(TY 0): 0% * 476ac of open water </= 1.5 ft

FWP:

TY 0 -shallow open water = 0% or same as FWOP

- TY 10 -shallow open water = 0% or same as FWOP
- TY 11 Pump year. Shallow open water = 25%
- TY 13 Pump year.. Shallow open water = 50%
- TY 15 Shallow open water = 50%
- TY 16 Pump year. Shallow open water = 75%
- TY 17 Pump year. Shallow open water = 75%
- TY 18 Pump year. Shallow open water = 100%
- TY 20 Pump year. Shallow open water = 100%

TY 21 – Dike degraded. Shallow open water = 80% as trenasses are formed, naturally or mechanically.

TY 22 -Shallow open water = 80%

TY 50 – Shallow open water = 60% As marsh is lost areas become shallow open water and water depths may gradually become deeper.

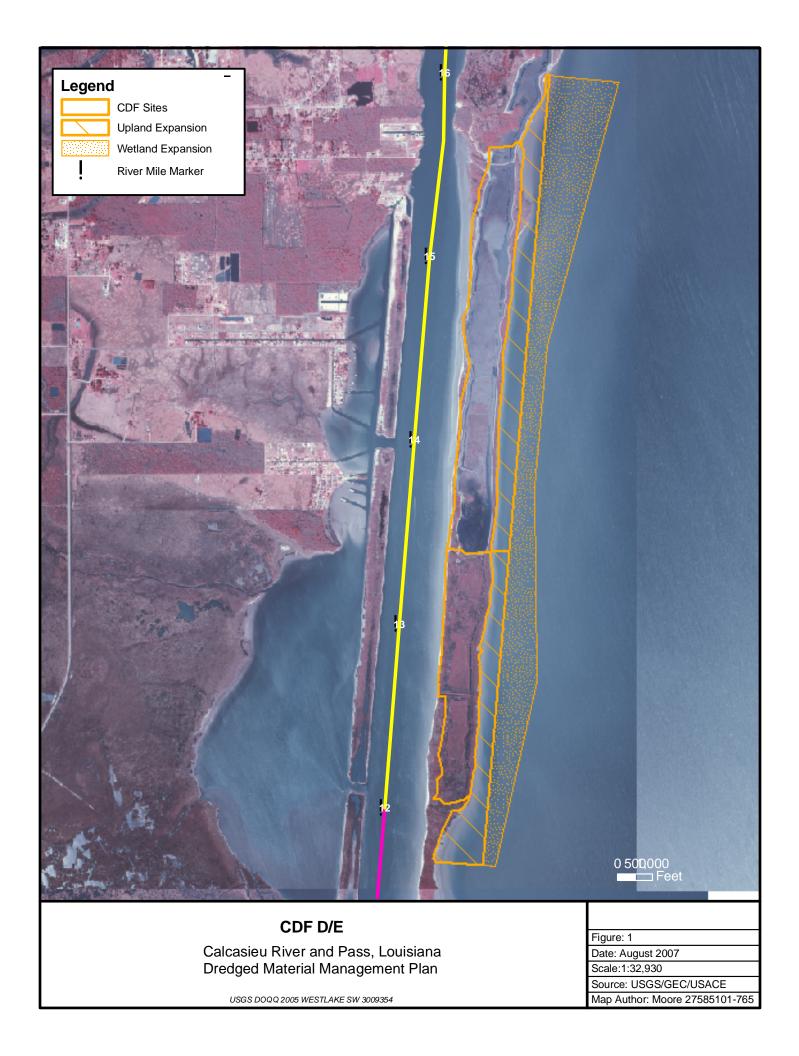
Variable 5 – Salinity

As part of an oyster resources field investigation conducted by E and E Group, LLC in August of 2007, salinity levels in the lake near the CDF were recorded in the area of CDF D/E using an YSI Model 30 S-C-T Meter. The average salinity was approximately 8.0 ppt.

The salinity is expected to remain constant throughout the life of this project.

Variable 6 – Fish Access

Access by aquatic organisms is considered to be a critical component in assessing the quality of a given marsh system. The suitability index (SI) for this variable is determined by calculating an "access value" based on the percentage of the project area wetlands considered accessible by aquatic organisms during normal tidal flucturations, and the type of man-made structures (if any) across identified points of ingress/egress (e.g., bayous, canals, etc.). A


brackish marsh with no access is assigned an SI of .2. A solid plug is assigned an SI of .0001. A completely open system is assigned an SI of 1.0.

FWOP: This area is considered an open system, and is therefore assigned an access value of 1.0.

TY 0: 1.0 TY 1: 1.0 TY 20: 1.0 TY 50: 1.0

FWP: The current access value, as noted previously, is 1.0. During TY 11, the rock dike would be constructed, with a vertical height extending at least 1 foot above the water level, resulting in an access value of 0.0001. The access value is expected to remain at 0.0001 until the dike is gapped in TY 21. The intervals and dimensions of the openings would be coordinated with the resource agencies. The degree of access would increase to a .6 value and would remain there throughout the 50 year assessment period.

TY 0 1.0 TY 10 1.0 TY 11 Rock dike constructed. .0001 TY 12 - 20: .0001 TY 21 Dike is gapped. .6 TY 22 - 50: .6

Target Year Determination:

2 years after pumping: 30% marsh, 4 years after pumping: 85% marsh

Target Years		%	of area
TY 10 (Rock dike constructed): 0 acres of marsh	0	0	0%
TY 11 (1st pump year): Pump 1: 117 x .10=	12	12	3%
TY 13 (2nd pump year) Pump 1: 117 x .30= Pump 2: 117 x .10=	35 12		
TY 15 Pump 1: 117 x .85= Pump 2: 117 x .30=	99 35	47	10%
TY 16 (3rd pump year) Pump 1: 117 x .85= Pump 2: 117 x .30= Pump 3: 117 x .10=	99 35 12	134	29%
TY 17	12	146	31%
Pump 1: 117 x .85= Pump 2: 117 x .85= Pump 3: 117 x .10=	99 99 12		
TY 18 (4th pump year) Pump 1: 117 x .85= Pump 2: 117 x .85= Pump 3: 117 x .30= Pump 4: 117 x .10=	99 99 35 12	210	45%
TY 20		245	53%
Pump 1: 117 x .85= Pump 2: 117 x .85= Pump 3: 117 x .85= Pump 4: 117 x .30=	99 99 99 35		
TY 21 (3 years after last pump year: dike degraded and landloss begins)	0.0	332	71%
Pump 1: 117 x .85= Pump 2: 117 x .85= Pump 3: 117 x .85= Pump 4: 117 x .85=	99 99 99 99		
TY 22 Pump 1: 117 x .85=	99	396	85%
Pump 2: 117 x .85= Pump 3: 117 x .85=	99 99		

Pump 4: 117 x .85=	99		
		396	85%
TY 50			
Pump 1:	97		
Pump 2:	97		
Pump 3:	97		
Pump 4:	97		
		388	83%

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: CDF D/E Beneficial Use Expanded Area, Calcasieu DMMP

Project Area: 466

Condition: Future Without Project

		1 Υ 0		ΤΥ 1		TΥ	20
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	0	0.10	0	0.10	0	0.10
٧2	% Aquatic	0	0.10	0	0.10	0	0.10
V3	Interspersion Class 1 Class 2	%	0.10	%	0.10	%	0.10
	Class 3 Class 4 Class 5	100		100		100	
V4	%OW <= 1.5ft	0	0.10	0	0.10	0	0.10
V5	Salinity (ppt)	ω	1.00	8	1.00	ω	1.00
VG	Access Value	1.00	1.00	1.00	1.00	1.00	1.00
	Emergent Marsh HSI	sh HSI =	0.25	EM HSI =	0.25	EM HSI =	0.25
	Open Water HSI	SI =	0.28	= ISH MO	0.28	= ISH MO	0.28

alcasieu DMMP	
Expanded Area, C	
CDF D/E Beneficial Use	
Project: CDF D/I	

		le SI			%						EM HSI =
		SI Value									EM
		Value			%						EM HSI =
		SI	0.10	0.10	0.10			0.10	1.00	1.00	0.25
	TY 50	Value	0	0	%		100	0	8	1.00	EM HSI =
l	<u> </u>	I <u></u>	% Emergent	% Aquatic	Interspersion Class 1	Class 2 Class 3	Class 4 Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	
FWOP		Variable	۷1	V2	V3			V4	V5	90	

Project: CDF D/E Beneficial Use Expanded Area, Calcasieu DMMP

Condition: Future With Project

		ТҮ 0		TY 10		TY 11 Dike, 1st Pump	lst Pump
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	0	0.10	0	0.10	3	0.13
V2	% Aquatic	0	0.10	0	0.10	0	0.10
V3	Interspersion Class 1	%	0.10	%	0.10	% 25	0.33
	Class 2 Class 3 Class 4 Class 5	100		100		75	
V4	%OW <= 1.5ft	0	0.10	0	0.10	25	0.42
V5	Salinity (ppt)	8	1.00	8	1.00	8	1.00
V6	Access Value	1.00	1.00	1.00	1.00	0.00	0.10
	Emergent Marsh HSI	sh HSI =	0.25	= ISH WE	0.25	EM HSI =	0.24
	Open Water HSI	SI =	0.28	= ISH MO	0.28	OW HSI =	0.21

466

Project Area:

Д
\geq
₹
5
Ξ
ē
S.
ğ
¥
ä
<u> </u>
g
Ð
\triangleleft
σ
Ð
2
ສ
9
-m
-
Š
\supset
π
.8
÷,
e
e
Ď
$\overline{\mathbf{z}}$
<u>ц</u>
CDF
H.
0
act
.ë
2
∟

F

FWP							
		TY 13 Second Pump	d Pump	TY 15		TY 16 Third Pump	dunc
Variable		Value	SI	Value	SI	Value	SI
٧1	% Emergent	10	0.19	29	0.36	31	0.38
V2	% Aquatic	0	0.10	0	0.10	0	0.10
V3	Interspersion Class 1	%	0.55	%	0.55	75 75	0.60
	Class 2 Class 2 Class 4 Class 4						
V4	∪lass 5 %OW <= 1.5ft	50 50	0.74	20 20	0 74	25	1 00
V5	Salinity (ppt)	φ ∞	1.00	∞ ∞	1.00	0 00	1.00
V6	Access Value	0.00	0.10	0.00	0.10	0.00	0.10
		= ISH WE	0:30	EM HSI =	0.38	EM HSI =	0.39
		= ISH MO	0.25	= ISH MO	0.25	= ISH MO	0.27

1/11/2009

|--|--|

FWP	ſ						
		TY 17		TY 18 Fourth Pump	dmp	TY 20	
Variable		Value	SI	Value	SI	Value	SI
۲۱	% Emergent	45	0.51	53	0.58	71	0.74
V2	% Aquatic	0	0.10	0	0.10	0	0.10
٨3	Interspersion Class 1	42 %	0.78	200 100	1.00	% 100	1.00
	Class 2 Class 3 Class 4 Class 5	о Л					
V4	%OW <= 1.5ft	75	1.00	100	0.60	100	0.60
V5	Salinity (ppt)	∞	1.00	∞	1.00	∞	1.00
76 V6	Access Value	0.00	0.10	0.00	0.10	0.00	0.10
		EM HSI =	0.47	= ISH WE	0.52	EM HSI =	0.58
		= ISH MO	0.28	= ISH MO	0.27	= ISH MO	0.27

EWD	Project:	CDF D/E Beneficial Use E	Expanded Area	, Calcasieu DMMP	

FWP	I						
		17 21		TY 22		TY 50	
Variable		Value	SI	Value	SI	Value	SI
۲۱	% Emergent	85	0.87	85	0.87	83	0.85
V2	% Aquatic	0	0.10	0	0.10	0	0.10
V3	Interspersion Class 1	00T %	0.00	00T %	0.00	%	0.00
	Class 2 Class 3 Class 4 Class 5					100	
V4	%OW <= 1.5ft	80	1.00	80	1.00	60	0.87
V5	Salinity (ppt)	8	1.00	8	1.00	8	1.00
V6	Access Value	0.60	0.64	0.60	0.64	0.60	0.64
		= ISH WE	0.74	= ISH WE	0.74	EM HSI =	0.73
		= ISH MO	0.31	= ISH MO	0.31	= ISH MO	0.30

AAHU CALCULATION - MARSH

Future With	Future Without Project		Total	Cummulative
ТҮ	Marsh Acres	X HSI	HUS	HUS
0	0	0.25	00.0	
-	0	0.25	00.0	0.00
20	0	0.25	00.0	0.00
50	0	0.25	00.0	00.0
			AAHUS =	0.00

Future With Project	Project		Total	Cummulative
тү	Marsh Acres	X HSI	HUs	HUS
0	0	0.25	00.0	
10	0	0.25	0.00	00.00
11	12	0.24	2.89	1.47
13	47	0:30	14.09	16.29
15	134	0.38	51.06	62.79
16	146	0.39	57.61	54.31
17	210	0.47	98.19	77.12
18	245	0.52	127.83	112.70
20	332	0.58	194.08	320.09
21	396	0.74	292.53	1022.16
22	396	0.74	292.53	292.53
50	388	0.73	282.71	8052.95
			AAHUS	200.25

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	200.25
B. Future Without Project Emergent Marsh AAHUs =	0.00
Net Change (FWP - FWOP) =	200.25

AAHU CALCULATION - OPEN WATER Project: CDF D/E Beneficial Use Expanded Area, Calcasieu DMMP

Future With	uture Without Project		Total	Cummulative
ΤY	Water Acres	X HSI	HUS	HUS
0	466	0.28	132.46	
1	466	0.28	132.46	132.46
20	466	0.28	132.46	2516.82
50	466	0.28	132.46	3973.92
			AAHUs =	132.46

TY Water Acres Acres		Total	Cummulative
	es x HSI	HUS	HUS
	466 0.28	132.46	
	466 0.28	132.46	1324.64
	367 0.21	76.03	102.97
	250 0.25	62.03	139.63
	250 0.25	62.03	124.06
	134 0.27	36.23	49.57
1	134 0.28	37.96	37.09
	134 0.27	36.25	37.11
	70 0.27	18.90	55.15
	70 0.31	21.78	20.34
	70 0.31	21.78	21.78
50 78	78 0.30	23.56	635.12
		AAHUs	50.95

	11
NET CHANGE IN AAHUS DUE TO PROJECT	A. Future With Project Open Water AAHUs
Ë	Ą.

NET CHANGE IN AAHUS DUE TO FRUJECT	
A. Future With Project Open Water AAHUs =	50.95
B. Future Without Project Open Water AAHUs =	132.46
Net Change (FWP - FWOP) =	-81.51

Don't use landloss spreads It's not right. Calculate it o

1/11/2009

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	200.25
B. Open Water Habitat Net AAHUs =	-81.51
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	121.98

Land Loss Spreadsheet - CDF D/E

roject:	CDF				Beginning	Ending	Rate Calcula Beginning Year	Ending Year		
Total Acres		TY0 Marsh Acres		TY0 Water Acres	Year 1983	Year 1990	Acreage	Acreage	Loss Rate -0.0014	
117	,	0		117	FV	VP Land Los	ss Reduction	0.50		
	1 1	FWOP					FWP			
ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	Net A of M
0		0	0%	117	0		0	0%	117	
1	-0.0014	0	0%	117	1	-0.0007	0	0%	117	
2	-0.0014	0	0% 0%	<u>117</u> 117	2	-0.0007	0	0% 0%	117 117	
4	-0.0014	0	0%	117	4	-0.0007	0	0%	117	
5	-0.0014	0	0%	117	5	-0.0007	0	0%	117	
6	-0.0014	0	0%	117	6	-0.0007	0	0%	117	
7	-0.0014	0	0%	117	7	-0.0007	0	0%	117	
8	-0.0014	0	0%	117	8	-0.0007	0	0%	117	
9 10	-0.0014	0	0% 0%	<u>117</u> 117	9 10	-0.0007	0	0% 0%	<u>117</u> 117	
10	-0.0014	0	0%	117	10	-0.0007	0	0%	117	
12	-0.0014	0	0%	117	12	-0.0007	0	0%	117	
13	-0.0014	0	0%	117	13	-0.0007	0	0%	117	
14	-0.0014	0	0%	117	14	-0.0007	0	0%	117	
15	-0.0014	0	0%	117	15	-0.0007	0	0%	117	
16	-0.0014	0	0%	117	16	-0.0007	0	0%	117	
17 18	-0.0014	0	0% 0%	<u>117</u> 117	17 18	-0.0007	0	0% 0%	117 117	
19	-0.0014	0	0%	117	10	-0.0007	0	0%	117	
20	-0.0014	0	0%	117	20	-0.0007	0	0%	117	
21	-0.0014	0	0%	117	21	-0.0007	99	85%	18	
22	-0.0014	0	0%	117	22	-0.0007	99	85%	18	
23	-0.0014	0	0%	117	23	-0.0007	99	85%	18	
24	-0.0014	0	0%	117	24	-0.0007	99	85%	18	
25	-0.0014	0	0%	117	25	-0.0007	99	85%	18	
26 27	-0.0014	0	0% 0%	117 117	26 27	-0.0007 -0.0007	99 99	<u>85%</u> 85%	18 18	
28	-0.0014	0	0%	117	28	-0.0007	99	85%	18	
29	-0.0014	0	0%	117	29	-0.0007	98	85%	18	
30	-0.0014	0	0%	117	30	-0.0007	98	84%	18	
31	-0.0014	0	0%	117	31	-0.0007	98	84%	18	
32	-0.0014	0	0%	117	32	-0.0007	98	84%	18	
33	-0.0014	0	0%	117		-0.0007	98	84%	18	
34 35	-0.0014	0	0% 0%	117 117	34 35	-0.0007	98 98	84% 84%	18 18	
36	-0.0014	0	0%	117	36	-0.0007	98	84%	10	
37	-0.0014	0	0%	117	37	-0.0007	98	84%	19	
38	-0.0014	0	0%	117	38	-0.0007	98	84%	19	
39	-0.0014	0	0%	117	39	-0.0007	98	84%	19	
40	-0.0014	0	0%	117	40	-0.0007	98	84%	19	
41	-0.0014	0	0%	117	41	-0.0007	98	84%	19	
42 43	-0.0014	0	0% 0%	117 117	42 43	-0.0007	98 97	<u>84%</u> 84%	19 19	
43	-0.0014	0	0%	117	43	-0.0007	97 97	84%	19	
44	-0.0014	0	0%	117	44	-0.0007	97 97	84%	19	
46	-0.0014	0	0%	117	46	-0.0007	97	84%	19	
47	-0.0014	0	0%	117	47	-0.0007	97	83%	19	
48	-0.0014	0	0%	117	48	-0.0007	97	83%	19	
49	-0.0014	0	0%	117	49	-0.0007	97	83%	19	
50	-0.0014	0	0%	117	50	-0.0007	97	83%	19	

Confined Disposal Facility Site 17/19

Confined Disposal Facility (CDF) 17/19 Expansion Area

I. Project Location/Area

CDFs 17 and 19 are located adjacent to the eastern side of the Calcasieu Ship Channel between miles 18 to 20. The existing CDFs would be incorporated into a single CDF and expanded east into Calcasieu Lake and west along the channel to straighten out the eroded shoreline. The expanded area would occupy approximately 218 acres. The expanded area is mostly water but includes approximately 61 acres of marsh.

II. Goals

This WVA will assess the impacts of filling in the 218-acre expansion area with dredged material. Approximately 1.9 million cubic yards of material would be dredged and placed in the approximately 218-acre expanded area of CDF 17/19, thereby converting the area to an upland habitat.

III. Project Features

The possible expansion of this CDF site would occur toward the end of the 20-year DMMP if needed. It was assumed that this area would be diked in TY 17 and pumped in TY 18. The containment dike would be approximately 250-feet wide and would be built along the perimeter of the expansion area. The actual width of the dike would be determined during the plans and specifications phase of the project.

IV. WVA Variables and Assumptions

The following is a description of assumptions for CDF 17/19:

Variable 1 – Emergent Vegetation

FWOP:

Currently, the assessment area consists of approximately 61 acres of emergent marsh. The rest of the expanded area (157 acres) is open water in Calcasieu Lake.

Land loss rates within the study area (northern Calcasieu Lake) have averaged 0.2 % per year during 1933 to 1955, 0.78 % per year from 1955 to 1978, 0.2 % per year during 1974 to 1983, and 0.14 % per year during 1983 to 1990 (Dunbar et al. 1992). For this project, the most recent rate--0.14% per year—was applied to the FWOP scenario.

 $\begin{array}{l} TY \ 0-28\% \\ TY \ 1-28\% \\ TY \ 20-27\% \end{array}$

TY 50 - 26%

FWP:

ArcGIS was used to find out impacts of the containment features around the perimeter of the proposed expansion area. Approximately 28 acres of marsh would be impacted by the containment features during the dike construction year (TY 17), leaving 33 acres of existing marsh that year (15% of the area). After the containment features are built, the area would be pumped with dredged material and there would be no marsh.

TY 0 – 28% TY 16 – 28% TY 17 – (dike construction) – 15% TY 18 – (pump year) – 0% TY 20 – 0% TY 50 – 0%

Variable 2 – Submerged Aquatic Vegetation (SAV)

No SAVs have been observed or are expected to occur within the area.

FWOP:

 $\begin{array}{l} TY \ 0 - 0\% \\ TY \ 5 - 0 \ \% \\ TY \ 20 - 0 \ \% \\ TY \ 50 - 0 \ \% \end{array}$

FWP:

TY 1 – 0% TY 16 – 0% TY 17 – (dike construction) – 0% TY 18 – (pump year) – 0% TY 20 – 0% TY 50 – 0%

Variable 3 – Interspersion

FWOP: Areas exhibiting a high degree of marsh cover and interspersion are assumed to be optimal (Class 1 and Class 2). It is assumed that the marsh that currently exists in the expansion area of CDF 17/19 is a Class 2 because of the numerous small marsh ponds that are common to the area. However, these ponds may also be indicative of the beginning stages of marsh degradation. Because land loss rates are relatively low within the Calcasieu Lake area (0.14%), this area should maintain a Class 2 interspersion throughout the life of the project and beyond. The open water area makes up 72% of the total impact area and is classified as a Class 5.

FWP: The year that the area is diked, the marsh makes up 15% of the area and is classified as a Class 2 interspersion. Once pumped, the existing marsh habitat would be filled in with dredged material and undergo an active crust management program, whereby the evaporation of moisture and consolidation of material would be maximized to increase the available site capacity. The dredged material would become entirely crust. Therefore, this area would receive 0 credit for marsh interspersion starting the year it is pumped (TY 18).

Target Year	Class 2	%	Class 5	%
0 (FWOP)	61 ac	28	157 ac	72
16 (FWOP)	61 ac	28		
17 (dike)	61 ac	15	157 ac	85
18 (pump)	0 ac	0	0 ac	0
20	0 ac	0	0 ac	0

 Table 1: FWP Interspersion Classification

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal conditions are expected to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep.

FWOP:

Based on spot water depth data obtained from E and E Group, LLC in August of 2007 for the DMMP Oyster Assessment, it was assumed that approximately 70% of the open water area of the expansion site is shallow.

FWOP: 70% of open water </= 1.5 ft

FWP:

The existing marsh habitat would be filled in with dredged material and undergo an active crust management program, whereby the evaporation of moisture and consolidation of material would be maximized to increase the available site capacity. Therefore, starting the year that the material is pumped into the existing marsh, the site would receive 0 credit for providing shallow open water habitat.

TY 0 – shallow open water = 70% or same as FWOP TY 16 -- shallow open water = 70% or same as FWOP TY 17 – dike construction = 70% or same as FWOP TY 18 – pump year = 0% TY 20 – project end = 0% TY 50 – 0%

Variable 5 – Salinity

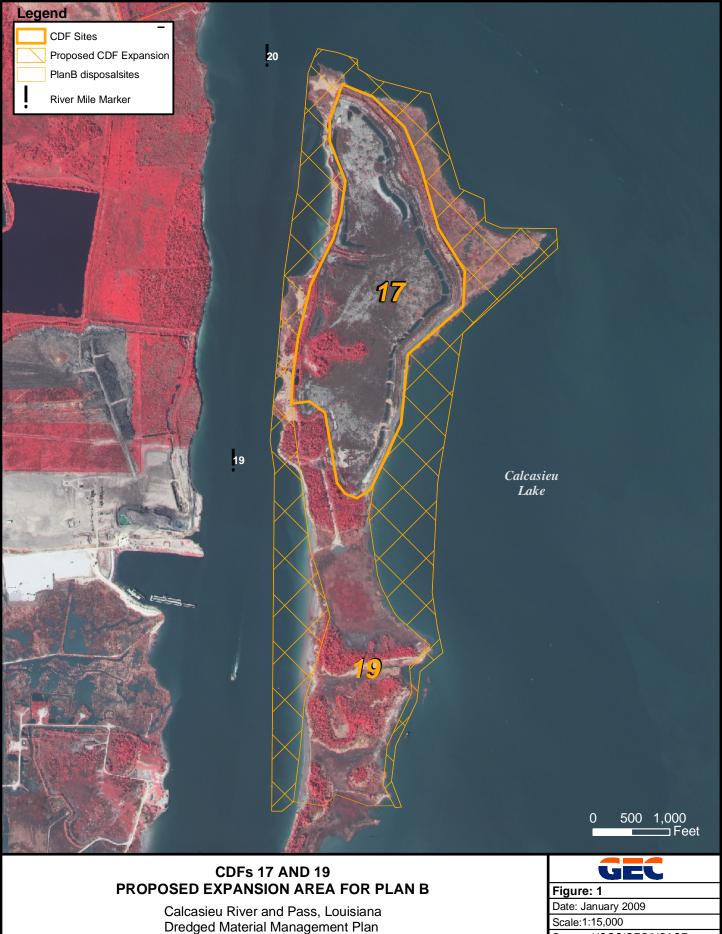
As part of an oyster resources field investigation conducted by E and E Group, LLC in August of 2007, salinity levels in the lake near the CDF were recorded in the area of CDF 17/19 using an YSI Model 30 S-C-T Meter. The average salinity was approximately 8.4 ppt.

FWOP: The salinity is expected to remain constant throughout the life of this project.

FWP: The expanded CDF would be managed by providing drainage for precipitation and water released by excess pore water pressure. Therefore, this variable would not be applicable.

Variable 6 - Fish Access

FWOP: Optimal aquatic organism access is assumed to exist when the area is accessible and the access points are entirely open and unobstructed. CDF 17/19 has a high degree of access and hydrologic connectivity with adjacent systems. Therefore, this open system is assumed to have an access value of 1.0. The access value is expected to remain the same throughout the life of the project.


TY 01.0TY 11.0TY 201.0TY 501.0

FWP: The current access value of CDF 17/19 is 1.0. During TY 15, a rock dike would be constructed along both the channel side and lake side of this CDF in order to straighten the shorelines and facilitate site management. the dike would be constructed, resulting in an access value of 0.0001. The access value is expected to go to 0.0001 the year the dike is constructed and remain there throughout the life of the project and beyond.

TY 0 1.0 TY 16 1.0 TY 17 (dike construction): .0001 TY 18 (pumping year): N/A TY 20 (end of project): N/A TY 50 N/A

V. References

Dunbar, J. B., L. D. Britsch, and E. B Kemp III. 1992. Land Loss Rates; Report 3, Louisiana Coastal Plain. Technical Report No. GL-90-2, U.S. Army Engineer District, New Orleans. 28 pp. plus Appendices.

USGS DOQQ 2005 MOSS LAKE SW 3009362

Scale:1:15,000 Source: USGS/GEC/USACE Map Author: Moore 27585101-765

Project: Upland expansion, CDF 17/19

WETLAND VALUE ASSESSMENT COMMUNITY MODEL

Brackish Marsh

Project Area: 218

Condition: Future Without Project

20		34	0.10		0.6	00	0.1	1.00	1.00	1.00	48	0.36
	SI	0.34	0.	č	0			1.(1.(1.(0.48	0.0
TΥ	Value	27	0	%	28		72	70	8.4	1.00	EM HSI =	= ISH MO
	SI	0.35	0.10	2	0.24			1.00	1.00	1.00	0.49	0.36
ΤΥ 1	Value	28	0	%	28		72	20	8.4	1.00	EM HSI =	= ISH MO
	SI	0.35	0.10	Č	0.24			1.00	1.00	1.00	0.49	0.36
ΤΥ 0	Value	28	0	%	28		72	70	8.4	1.00	h HSI =	11
		% Emergent	% Aquatic	Interspersion	Class 1 Class 2	Class 3 Class 4	Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value	Emergent Marsh HSI	Open Water HSI
	Variable	٧1	V2	V3				V4	V5	V6		

0.6 0.6 0.1

0.6 0.0 0.1

Project: Upland expansion, CDF 17/19 EWOP

FWOP							
		TY 50					
Variable		Value	SI	Value	SI	Value	SI
۲۱	% Emergent	26	0.33				
72	% Aquatic	0	0.10				
٤٨	Interspersion	%		%		%	
	Class 1		0.24				
	Class 2 Class 3	28					
	Class 4						
	Class 5	72					
V4	%OW <= 1.5ft	70	1.00				
57	Salinity (ppt)	8.4	1.00				
9N	Access Value	1.00	1.00				
		EM HSI =	0.47	EM HSI =		= ISH WE	
		= ISH MO	0.36	= ISH MO		= ISH MO	

0.6 0.6 0.1

00000

00000

Project: Upland expansion, CDF 17/19

Project Area: 218

Condition: Future With Project

TY 0 % Emergent % Aquatic % Interspersion	TY 0 Valı	% ° 58	0.35 0.10	TY Value 28 0 %	0.10 0.10 16	TY 17 Dike built Value 15 35 15 10 0 10 0	uilt SI 0.00
Class 1 Class 2 Class 2 Class 4 Class 5 72	28 72		0.24	28	0.24	15 8 85	0.00
%OW <= 1.5ft 70 Salinity (ppt) 8.4	70		1.00	70	1.00	70 8.4	0.00
arsh HSI	HSI HSI		1.00 0.49	1.00 EM HSI =	1.00 0.49	0.00 EM HSI =	0.00
Open Water HSI =			0.36	OW HSI =	0.36	OW HSI =	0.00

0.6 0.6 0.6 0.1 0.1 0.1

Project: Upland FWP		expansion, CDF 17/19	19				
		ТҮ	18	18 TY	20		50
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	0	0.00	0	0.00	0	0.00
V2	% Aquatic	0	0.00	0	0.00	0	0.00
V3	Interspersion Class 1	%	0.00	%	00.0	%	0.00
	Class 2 Class 2 Class 3 Class 5 Class 5	0		0		0	
V4	%OW <= 1.5ft	0	0.00	0	0.00	0	0.00
V5	Salinity (ppt)	0	0.00	0	0.00	0	0.00
V6	Access Value	0.00	0.00	0.00	0.00	0.00	0.00
		EM HSI =	00.0	EM HSI =	0.00	EM HSI =	00.0
		OW HSI =	0.00	= ISH MO	0.00	= ISH MO	00.0

AAHU CALCULATION - MARSH

Future Without Project	out Project		Total	Cummulative
ТҮ	Marsh Acres	x HSI	HUS	HUS
0	61	0.49	29.66	
1	61	0.49	29.66	29.66
20	69	0.48	28.28	550.31
50	22	0.47	26.92	827.96
			AAHUS =	28.16

Future With Project	Project		Total	Cummulative
ТΥ	Marsh Acres	X HSI	HUS	HUS
0	61	0.49	29.66	
16	60	0.49	29.17	470.59
17	33	00.00	00.00	12.40
18	0	0.00	00.00	0.00
20	0	00.00	00.0	0.00
50	0	0.00	0.00	0.00
			AAHUS	9.66

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	9.66
B. Future Without Project Emergent Marsh AAHUs =	28.16
Net Change (FWP - FWOP) =	-18.50

AAHU CALCULATION - OPEN WATER Project: Upland expansion, CDF 17/19

Future Without Project	out Project		Total	Cummulative
ΤY	Water Acres	x HSI	HUS	HUS
0	157	0.36	56.72	
~	157	0.36	56.72	56.72
20	159	0.36	57.45	1084.61
50	161	0.36	58.17	1734.22
			AAHUS =	57.51

Future With Project	Project		Total	Cummulative
ТҮ	Water Acres	x HSI	HUS	HUS
0	157	0.36	56.72	
16	158	0.36	57.08	910.46
17	45	00.00	00.0	21.74
18	0	0.00	00.00	00.00
20	0	0.00	00.0	00.00
50	0	0.00	0.00	00.00
			AAHUS	18.64

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	18.64
B. Future Without Project Open Water AAHUs =	57.51
Net Change (FWP - FWOP) =	-38.87

TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
A. Emergent Marsh Habitat Net AAHUs =	-18.50
B. Open Water Habitat Net AAHUs =	-38.87
Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6	-24.16

Land Loss Spreadsheet - CDF 17/19

						Loss	Rate Calcula	ation		
roject:					Beginning Year	Ending Year	Beginning Year Acreage	Ending Year Acreage	Loss Rate	
Total Acres		TY0 Marsh Acres		TY0 Water Acres	1983	1990	- i - e - g e	ge	-0.0014	
010		61		157		VDLandLa	o Doduction			
218		61 FWOP		157	FV	VP Land Los	ss Reduction FWP			
		FWUF					FWF	I		
ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	ΤY	Loss Rate	Marsh (acres)	% Marsh (V1)	Water (acres)	Net Acr of Mars
0		61	28%	157	0		61	28%	157	
1	-0.0014	61	28%	157	1	-0.0014	61	28%	157	
2	-0.0014	<u>61</u> 61	28% 28%	157 157	2	-0.0014	61 61	28% 28%	157 157	
4	-0.0014	61	28%	157	4	-0.0014	61	28%	157	
5	-0.0014	61	28%	157	5	-0.0014	61	28%	157	
6	-0.0014	60	28%	158	6	-0.0014	60	28%	158	
7	-0.0014	60	28%	158	7	-0.0014	60	28%	158	
8	-0.0014	60	28%	158	8	-0.0014	60	28%	158	
9	-0.0014	60	28%	158	9	-0.0014	60	28%	158	
10	-0.0014	60	28%	158	10	-0.0014	60	28%	158	
11 12	-0.0014	60 60	28% 28%	158 158	11 12	-0.0014	60 60	28% 28%	158 158	
12	-0.0014	60	20%	158	12	-0.0014	60	28%	158	
14	-0.0014	60	27%	158	14	-0.0014	60	27%	158	
15	-0.0014	60	27%	158	15	-0.0014	60	27%	158	
16	-0.0014	60	27%	158	16	-0.0014	60	27%	158	
17	-0.0014	60	27%	158	17	-0.0014	33	15%	45	
18	-0.0014	59	27%	159	18	-0.0014	0	0%	0	
19	-0.0014	59	27%	159	19	-0.0014	0	0%	0	
20	-0.0014	59	27%	159	20	-0.0014	0	0%	0	
21 22	-0.0014	<u>59</u> 59	27% 27%	159 159	21 22	-0.0014	0	0% 0%	0	
22	-0.0014	59	27%	159	22	-0.0014	0	0%	0	
24	-0.0014	59	27%	159	24	-0.0014	0	0%	0	-
25	-0.0014	59	27%	159	25	-0.0014	0	0%	0	-
26	-0.0014	59	27%	159	26	-0.0014	0	0%	0	
27	-0.0014	59	27%	159	27	-0.0014	0	0%	0	
28	-0.0014	59	27%	159	28	-0.0014	0	0%	0	
29	-0.0014	59	27%	159	29	-0.0014	0	0%	0	
30 31	-0.0014 -0.0014	58 58	27% 27%	160 160	30 31	-0.0014	0	0% 0%	0	
32	-0.0014	58	27%	160	32	-0.0014	0	0%	0	
33	-0.0014	58	27%	160	33	-0.0014	0	0%	0	
34	-0.0014	58	27%	160	34	-0.0014	0	0%	0	
35	-0.0014	58	27%	160	35	-0.0014	0	0%	0	
36	-0.0014	58	27%	160	36	-0.0014	0	0%	0	
37	-0.0014	58	27%	160	37	-0.0014	0	0%	0	
38	-0.0014	58	27%	160	38	-0.0014	0	0%	0	
39 40	-0.0014	58 58	26% 26%	160 160	39 40	-0.0014	0	0% 0%	0	
40	-0.0014	58	26%	160	-	-0.0014	0	0%	0	
42	-0.0014	58	26%	160	42	-0.0014	0	0%	0	
43	-0.0014	57	26%	161	43	-0.0014	0	0%	0	
44	-0.0014	57	26%	161	44	-0.0014	0	0%	0	
45	-0.0014	57	26%	161	45	-0.0014	0	0%	0	
46	-0.0014	57	26%	161	46	-0.0014	0	0%	0	
47	-0.0014	57	26%	161	47	-0.0014	0	0%	0	
48 49	-0.0014	57 57	26%	161 161	48 49	-0.0014	0	0% 0%	0	
49 50	-0.0014	57	26% 26%	161	49 50	-0.0014	0	0%	0	-

Ignore water acres.

Confined Disposal Facility D/E Upland Expansion

Confined Disposal Facility (CDF) D/E: Upland Expansion

I. Project Location/Area

CDF D/E is located adjacent to the eastern side of the Calcasieu Ship Channel between miles 12 to 16. The existing CDF would be expanded east into Calcasieu Lake, with the upland expansion area occupying approximately 293 acres. This area is currently mostly water but includes 7 acres of marsh.

II. Goals

Approximately 8.2 million cubic yards of material would be dredged from the Calcasieu Ship Channel (between miles 12 and 16) and placed in the approximately 293-acre expanded area of CDF D/E, thereby converting the area to an upland habitat.

III. Project Features

A rock containment dike would be constructed around the proposed expanded area. Once diked, the area would be filled to capacity with dredged material, which would consolidate to form an upland habitat. The possible expansion of this CDF site would occur toward the end of the 20-year DMMP if needed. It was assumed that this area would be diked in TY 17 and pumped in TY 18.

IV. WVA Variables and Assumptions

The following is a description of assumptions for CDF D/E:

Variable 1 – Emergent Vegetation

FWOP:

Currently, the assessment area consists of approximately 7 acres of emergent marsh (2% of the area). The rest of the expanded area is open water in Calcasieu Lake.

Land loss rates within the study area (northern Calcasieu Lake) have averaged 0.2 % per year during 1933 to 1955, 0.78 % per year from 1955 to 1978, 0.2 % per year during 1974 to 1983, and 0.14 % per year during 1983 to 1990 (Dunbar et al. 1992). For this project, the most recent rate--0.14% per year—was applied to the FWOP scenario and had no effect on the marsh.

 $\begin{array}{l} TY \ 0-2\% \\ TY \ 1-2\% \\ TY \ 20-2\% \\ TY \ 50-2\% \end{array}$

FWP:

The rock dike constructed in surrounding waters to contain the dredged material would not impact the existing marsh area.

TY 0 – 2% TY 16 – 2% TY 17 – (dike construction) – 2% TY 18 – (pump year) – 0% TY 20 – 0% TY 50 – 0%

Variable 2 – Submerged Aquatic Vegetation (SAV)

No SAVs have been observed or are expected to occur within the area.

FWOP:

TY 0 – 0% TY 5 – 0 % TY 20 – 0 % TY 50 – 0 %

FWP:

TY 1 – 0% TY 16 – 0% TY 17 – (dike construction) – 0% TY 18 – (pump year) – 0% TY 20 – 0% TY 50 – 0%

Variable 3 – Interspersion

FWOP: Areas exhibiting a high degree of marsh cover and interspersion are assumed to be optimal (Class 1 and Class 2). It is assumed that the marsh that currently exists in the expansion area of CDF D/E is a Class 2 because of the numerous small marsh ponds that are common to the area. However, these ponds may also be indicative of the beginning stages of marsh degradation. Because land loss rates are relatively low within the Calcasieu Lake area (0.14%), this area should maintain a Class 2 interspersion throughout the life of the project and beyond. The open water area makes up 98% of the total impact area and is classified as a Class 5.

FWP: Once pumped, the existing marsh habitat would be filled in with dredged material and undergo an active crust management program, whereby the evaporation of moisture and consolidation of material would be maximized to increase the available site capacity. The dredged material would become entirely crust. Therefore, this area would receive 0 credit for marsh interspersion starting the year it is pumped (TY 18).

Target Year	Class 2	%	Class 5	%
0 (FWOP)	7 ac	2	291 ac	98
16 (FWOP)	7 ac	2	291 ac	98
17 (dike)	7 ac	2	291 ac	98
18 (pump)	0 ac	0	0 ac	0
20	0 ac	0	0 ac	0

Table 1: FWP Interspersion Classification

Variable 4 – Shallow Open Water Habitat (i.e., mudflats) (percent of open water </= 1.5 feet)

Shallow water areas are assumed to be more biologically productive than deeper water due to a general reduction in sunlight, oxygen, and temperature as water depth increases. Optimal conditions are expected to occur when 80 to 90 percent of the open water area is less than or equal to 1.5 feet deep.

FWOP:

The 293-acre expansion area includes mostly water. Based on spot water depth data obtained from E and E Group, LLC in August of 2007, it was assumed that approximately 80% of the open water area of the expansion site is shallow.

80% of open water </= 1.5 ft

FWP:

The existing marsh habitat would be filled in with dredged material and undergo an active crust management program, whereby the evaporation of moisture and consolidation of material would be maximized to increase the available site capacity. Therefore, starting the year that the material is pumped into the existing marsh, the site would receive 0 credit for providing shallow open water habitat.

TY 0 – shallow open water = 80% or same as FWOP TY 16 – shallow open water = 80% or same as FWO TY 17 – dike construction = 80% or same as FWOP TY 18 – 0%TY 20 – 0%TY 50 – 0%

Variable 5 – Salinity

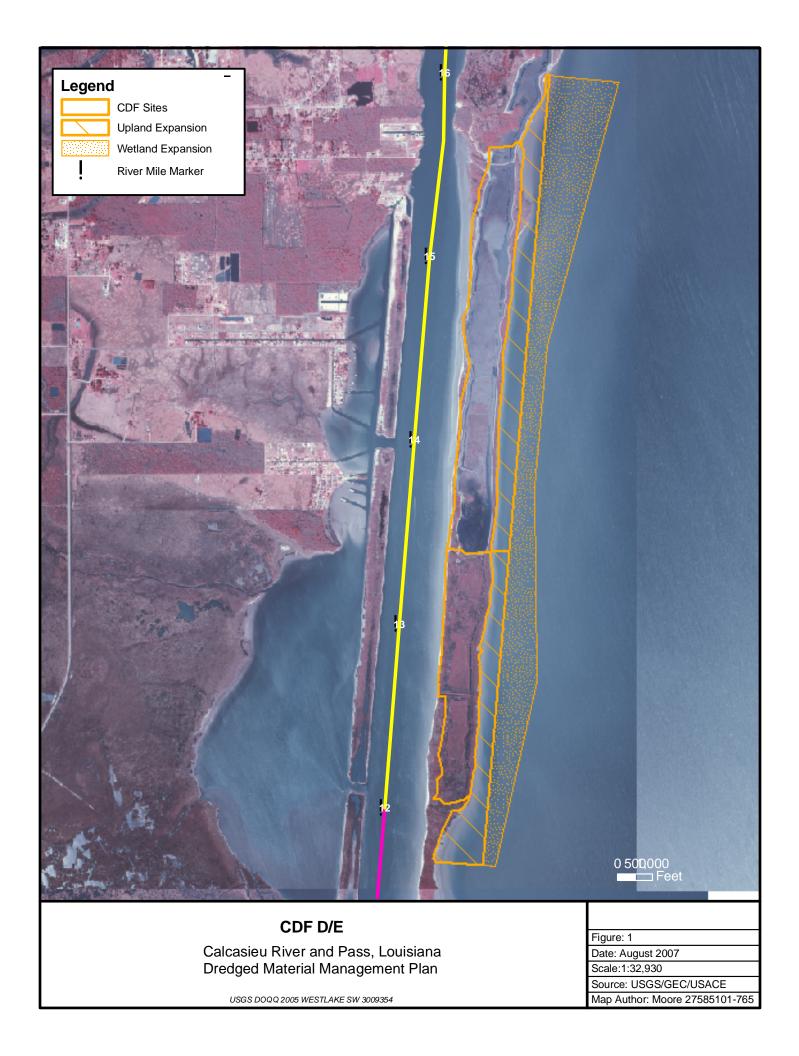
As part of an oyster resources field investigation conducted by E and E Group, LLC in August of 2007, salinity levels in the lake near the CDF were recorded in the area of CDF D/E using an YSI Model 30 S-C-T Meter. The average salinity was approximately 8.0 ppt.

FWOP: The salinity is expected to remain constant throughout the life of this project.

FWP: The expanded CDF would be managed by providing drainage for precipitation and water released by excess pore water pressure. Therefore, this variable would not be applicable.

Variable 6 – Fish Access

FWOP: Optimal aquatic organism access is assumed to exist when the area is accessible and the access points are entirely open and unobstructed. CDF D/E has a high degree of access and hydrologic connectivity with adjacent systems. Therefore, this open system is assumed to have an access value of 1.0. The access value is expected to remain the same throughout the life of the project.


TY 0: 1.0 TY 1: 1.0 TY 20: 1.0 TY 50: 1.0

FWP: The current access value of CDF D/E is 1.0. During TY 17, the dike would be constructed, resulting in an access value of 0.0001. The access value is expected to remain at 0.0001 throughout the life of the project and beyond.

TY 0 1.0 TY 16 1.0 TY 17 (dike construction): .0001 TY 18 (pumping year): .0001 TY 20 (end of project): .0001 TY 50: .0001

V. References

Dunbar, J. B., L. D. Britsch, and E. B Kemp III. 1992. Land Loss Rates; Report 3, Louisiana Coastal Plain. Technical Report No. GL-90-2, U.S. Army Engineer District, New Orleans. 28 pp. plus Appendices.

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: Upland expansion, CDF D/E

Project Area: 293

Condition: Future Without Project

		ΤΥ 0		ΤΥ 1		TΥ	20
Variable		Value	SI	Value	ิร	Value	SI
۲1	% Emergent	2	0.12	2	2 0.12	2	2 0.12
V2	% Aquatic	0	0.10	0	0 0.10	0	0 0.10
V3	Interspersion	%		%		%	
	Class 1 Class 2	0	0.11	0	0.11	0	0.11
	Class 3	1		J		J	
	Class 4 Class 5	98		98		98	
V4	%OW <= 1.5ft	80	1.00	80	80 1.00	80	80 1.00
75	Salinity (ppt)	8	1.00	8	8 1.00	8	8 1.00
9A	Access Value	1.00	1.00	1.00 1.00	1.00	1.00	1.00 1.00
	Emergent Marsh HS	= 10	0.27	EM HSI = 0.27	0.27	EM HSI = 0.2	0.27
	Open Water HSI	H	0.35	OW HSI = 0.35	0.35	OW HSI = 0.35	0.35

Project: Upland expansion, CDF D/E FWOP

		TY 50					
Variable		Value	SI	Value	SI	Value	SI
V1	% Emergent	2	0.12				

					_	_
	%				EM HSI =	OW HSI =
	%				EM HSI =	OW HSI =
0.10	0.11	1.00	1.00	1.00	0.27	0.35
0	8 0 80	80	8	1.00	EM HSI =	= ISH MO
% Aquatic	Interspersion Class 1 Class 2 Class 3 Class 4 Class 5	%OW <= 1.5ft	Salinity (ppt)	Access Value		
V2	۲3 ۲	V4	V5	9A		

WETLAND VALUE ASSESSMENT COMMUNITY MODEL Brackish Marsh

Project: Upland expansion, CDF D/E

293

Project Area:

Condition: Future With Project

		ΤΥ 0		TY 16		TY 17 Dike built	
Variable		Value	SI	Value	SI	Value	SI
	% Emergent	2	0.12	0	2 0.12	0	2 0.12
V2	% Aquatic	0	0.10	0	0.10	0	0 0.10
V3	Interspersion Class 1	%	0.11	%	0.11	%	0.11
	Class 2 Class 3 Class 4	2		2		2	

0	0	0	0	0	
0	0.6	0	0	0.1	

0	0.6	0	0
0	0.6	0	0
0	0.6	0	0

OW HSI = 0.23	OW HSI = 0.23	0.35 OM		Open Water HSI	
EM HSI = 0.21	EM HSI = 0.21	0.27 EN	п	Emergent Marsh HSI	
0.00 0.10	0.00 0.10	1.00	1.00	Access Value	V6
8 1.00	8 1.00	1.00	00	Salinity (ppt)	V5
80 1.00	80 1.00	1.00	80	%OW <= 1.5ft	V4
<u> </u>	86		<u> </u>	Class 5	

FWP							
		<u>TY 18 Pump YR</u>		TY 20			50
Variable		Value	SI	Value	SI	Value	SI
۲۸	% Emergent	0	0.00	00.00	00	0	0 0.00
72	% Aquatic	0	0.00	0.00	00	0	0 0.00
٤٨	Interspersion Class 1	0 %	0.00	0.00	00	0 %	% 0.00
	Class 2 Class 3 Class 4						
V4	%OW <= 1.5ft	0	0.00	0.00	0	0	0.00
5A	Salinity (ppt)	0	0.00	00.00	00	0	00.00
V6	Access Value	00.0	0.00	0.00 0.00	8	0.00 0.00	0.00
		EM HSI =	0.00	EM HSI = 0.0	0.00	EM HSI =	0.00
		= ISH MO	00.0	00.0 = ISH WO	00	OW HSI = 0.00	0.00

Cummulative HUs

Total HUs

x HSI

Future Without Project TY Marsh Acres

0.1

0.1

0.1

00000

0 0 0 0 0

1.92	AAHUs =			
57.46	1.92	0.27	۷	20
36.39	1.92	0.27	2	20
1.92	1.92	0.27	2	L
	1.92	0.27	2	0

Future With Project	oject		Total	Total Cummulative
ТҮ	Marsh Acres	X HSI	HUS	HUS
0	7	0.27	1.92	
16	2	0.21	1.48	27.18
17	۷	0.21	1.48	1.48
18	0	0.00	0.00	0.49
20	0	0.00	0.00	00.00
50	0	00.0	0.00	00.00
			SUHAA	0.58

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Emergent Marsh AAHUs =	0.58
B. Future Without Project Emergent Marsh AAHUs =	1.92
Net Change (FWP - FWOP) =	-1.33

AAHU CALCULATION - OPEN WATER Project: Upland exnancion CDF F

Ш Upland expansion, CDF D/

l

Cummulative	HUs
Total	HUs
	x HSI
: Project	Water Acres
Future Without	ТҮ

100.58	AAHUS =			
3017.29	100.58	0.35	286	50
1910.95	100.58	0.35	286	20
100.58	100.58	0.35	286	1
	100.58	0.35	286	0

			•	•
Future With Project	oject		lotal	Cummulative
ТҮ	Water Acres	X HSI	HUS	HUS
0	286	0.35	100.58	
16	286	0.23	66.95	1340.18
17	86	00.0	0.00	26.14
18	0	00.0	0.00	0.00
20	0	0.00	0.00	0.00
20	0	00.0	0.00	00'0
			SUHAA	27.33

NET CHANGE IN AAHUS DUE TO PROJECT	
A. Future With Project Open Water AAHUs =	27.33
B. Future Without Project Open Water AAHUs =	100.58
Net Change (FWP - FWOP) =	-73.25

Ч	TOTAL BENEFITS IN AAHUS DUE TO PROJECT	
Ă.	Emergent Marsh Habitat Net AAHUs =	-1.33
<u>ю</u>	Open Water Habitat Net AAHUs =	-73.25

Net Benefits= (2.6xEMAAHUs+OWAAHUs)/3.6

Land Loss Spreadsheet - CDF D/E

						Loss	Rate Calcula	ation		
							Beginning	Ending		
Project:	Upland Exp	ansion D/E			Beginning	Ending	Year	Year		
-					Year	Year	Acreage	Acreage	Loss Rate	
Total		TY0		TY0 Water						
Acres		Marsh		Acres	1983	1990			-0.0014	
Acres		Acres		Acres						
		_				(D				
293		7		286	FV	VP Land Los	ss Reduction			
		FWOP					FWP			
		Manak	0/ Manak	10/			Manah	0/ Manak	Matan	
ΤY	Loss Rate	Marsh	% Marsh	Water	ΤY	Loss Rate	Marsh	% Marsh	Water	Net Acr
		(acres)	(V1)	(acres)			(acres)	(V1)	(acres)	of Mars
0		7	2%	286			7	2%	286	
1	-0.0014	7	2%	286	1	-0.0014	7	2%	286	
2	-0.0014	7	2%	286		-0.0014	7	2%	286	
3	-0.0014	7	2%	286	3	-0.0014	7	2%	286	
4	-0.0014	7	2%	286		-0.0014	7	2%	286	
5	-0.0014	7	2%	286	5	-0.0014	7	2%	286	
6	-0.0014	7	2%	286		-0.0014	7	2%	286	
7	-0.0014	7	2%	286	7	-0.0014	7	2%	286	
8	-0.0014	7	<u>2%</u> 2%	286	8	-0.0014	7	2%	286	
9 10	-0.0014	7	2%	286 286	9 10	-0.0014	7	2% 2%	286 286	
10	-0.0014	7	2% 2%	286	-	-0.0014	7	2%	286	
12	-0.0014	7	2%	286	11	-0.0014	7	2%	286	
12	-0.0014	7	2%	286	12	-0.0014	7	2%	286	
14	-0.0014	7	2%	286	13	-0.0014	7	2%	286	
15	-0.0014	7	2%	286	15	-0.0014	7	2%	286	
16	-0.0014	7	2%	286	16	-0.0014	7	2%	286	
17	-0.0014	7	2%	286	17	-0.0014	7	2%	98	
18	-0.0014	. 7	2%	286	18	-0.0014	0	0%	0	
19	-0.0014	7	2%	286	19	-0.0014	0	0%	0	
20	-0.0014	7	2%	286	20	-0.0014	0	0%	0	
21	-0.0014	7	2%	286	21	-0.0014	0	0%	0	
22	-0.0014	7	2%	286	22	-0.0014	0	0%	0	
23	-0.0014	7	2%	286	23	-0.0014	0	0%	0	
24	-0.0014	7	2%	286	24	-0.0014	0	0%	0	
25	-0.0014	7	2%	286	25	-0.0014	0	0%	0	
26	-0.0014	7	2%	286		-0.0014	0	0%	0	
27	-0.0014	7	2%	286	27	-0.0014	0	0%	0	
28	-0.0014	7	2%	286		-0.0014	0	0%	0	
29	-0.0014	7	2%	286	29	-0.0014	0		0	
30	-0.0014	7	2%	286		-0.0014	0	0%	0	
31	-0.0014	7	2%	286	31	-0.0014	0	0%	0	
32	-0.0014	7	2%	286	32	-0.0014	0	0%	0	
33	-0.0014	7	2%			-0.0014	0	0%	0	
34 35	-0.0014	7	2% 2%	286 286		-0.0014	0	0% 0%	0	
35	-0.0014	7	2% 2%	286		-0.0014	0		0	
36	-0.0014	7	2%	286		-0.0014	0		0	
38	-0.0014	7	2%	286		-0.0014	0	0%	0	
39	-0.0014	7	2%	286		-0.0014	0	0%	0	
40	-0.0014	7	2%	286		-0.0014	0		0	
41	-0.0014	7	2%	286		-0.0014	0		0	
42	-0.0014	7	2%			-0.0014	0		0	
43	-0.0014	7	2%	286		-0.0014	0		0	
44	-0.0014	. 7	2%	286		-0.0014	0		0	
45	-0.0014	7	2%	286		-0.0014	0		0	
46	-0.0014	7	2%	286		-0.0014	0		0	
47	-0.0014	7	2%	286		-0.0014	0		0	
48	-0.0014	7	2%	286	48	-0.0014	0	0%	0	
49	-0.0014	7	2%		49	-0.0014	0		0	
50	-0.0014	7	2%	286	50	-0.0014	0	0%	0	