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ABSTRACT

A 6X 6 matrix method for transforming a catalog mean place from epoch and equinox B1950.0 on the
FK4 system to epoch and equinox J2000.0 on the FKS5 system is described. A step-by-step comparison
is made between the matrix method and the classical spherical formulas.

I. INTRODUCTION

The main purposes of this paper are (1) to describea 6 X6
matrix method for transforming mean star places from the
standard epoch and equinox of B1950.0 on the FK4 system
to the standard epoch and equinox of J2000.0 on the FK5
system, and (2) to make a step-by-step comparison between
this matrix method and the classical method described in
Paper 1.

The transformation from B1950.0 to J2000.0 is described
in the next section. It is straightforward to express this trans-
formation in the matrix notation adopted by Standish
(1982) with the modifications communicated to Standish by
Aoki and Soma (1983). There are two main advantages in
the matrix method. First, if there are any changes in the
transformation, such as a change in one of the parameters or
a change in the order of operations, then it is easily incorpo-
rated into the matrix transformation. Second, it is easier to
translate the matrix method into a high-level programming
language such as FORTRAN or BASIC, and the program
should run more efficiently. Third, there are no problems
with singularities at the poles. Moreover, it is much easier to
modify the algorithm if it is decided to change the transfor-
mation at a later stage (e.g., the alternative procedure sug-
gested by C. A. Murray. See note added in proof to Paper I).

The various stages of the matrix transformation are dis-
cussed in more detail in Secs. IV, V, VII, IX, and X. In Sec.
X1 the complete matrix transformation is compared with the
classical method. In most cases, the comparison is obvious.
The exception is at the step in the transformation at which
the proper motions are changed from the FK4 system to the
FKS5 system. In the matrix method, this transformation is
implicit, while in the classical method it is explicit. It re-
quires considerable algebraic manipulation to obtain explicit
expressions from the matrix method which may then be
compared with the classical expressions given in Paper I.
When numerical comparisons are made between the two
methods, they will agree to a precision of + 07001. The lar-
gest difference comes from the spherical equations for the E
terms of aberration, partly from the corrections to position,
but mainly from the corrections to the proper motions in
right ascension and declination. Ignoring the effect of the £
terms of aberration, the agreement is better than + 2"
X 1071, provided the terms of order + 1” X 10~ involving
lin the proper-motion equations are included in the classical
case and all variables are calculated to the same precision in
both methods. This includes the equinox correction, the
precession angles, and m and », the rates of change of the
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precession angles. In fact, the classical method calculates m
and n at 1984 January 1.0 directly from their polynomial
expressions, while in the 6 X 6 matrix method they are calcu-
lated at B1950.0 and J2000.0, and their values at 1984 Jan-
uary 1.0 are implicit. This produces differences between the
two methods of about + 3”10~ in position and + 2"
X 10~2 per century in proper motion.

II. THE TRANSFORMATION FROM B1950.0 TO J2000.0

There has been much controversy in the literature over the
correct procedure for the transformation (Aoki ez al. 1983).
The recommended transformation is given in Paper I. The
transformation described here follows that recommenda-
tion. It should be noted that when transferring individual
observations, as opposed to a catalog mean place, the safest
method is to transform the observation back to the epoch of
the observation, on the FK4 system (or in the system that
was used to produce the observed mean place), convert to
the FKS5 system, and transform to the epoch and equinox
J2000.0.

The transformation for a fundamental catalog position is
as follows:

Step 1. Form the position and velocity vector from the
FK4 catalog position, i.e., form the position and velocity
vector from the right ascension, declination, proper mo-
tions, parallax, and radial velocity.

Step 2. Remove the E terms of aberration from the
B1950.0 catalog mean place. There is also a question
whether or not the E terms should be removed from the
proper motions. The problem is discussed more fully in Pa-
per I. If the FK4 catalog is used, they certainly do not have to
be removed from stars within 10° of the poles because they
have not been included (Lederle 1984).

Step 3. Apply space motion to the position vector to the
epoch 1984 January 1.0, which is the epoch at which the
sidereal time expression in terms of UT is changed (IAU
1977). This is an example of where one of the parameters of
the transformation could be changed.

Step 4. Precess, using the FK4 precession constants, the
position and velocity from B1950.0 to 1984 January 1.0.

Step 5. Apply the equinox correction FK4 to FK5 at 1984
January 1.0.

Step 6. Convert the proper motions from seconds of arc
per tropical century to seconds of arc per Julian century.

Step 7. Precess, using the FKS5 precession constants, the
position and velocity from 1984 January 1.0 to J2000.0.

Step 8. Apply space motion to the position vector from
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1984 January 1.0 to J2000.0.

Step 9. Convert the position and velocity vector back to
right ascension and declination and proper motions in right
ascension and declination, and extract the parallax and radi-
al velocity in the FK5 system.

III. NOTATION AND DEFINITIONS

a—right ascension in degrees.

S—declination in degrees.

p—proper motion in right ascension in arcseconds per
century. On the FK4 system, tropical centuries are used,
while Julian centuries are used on the FKS system.

p'—proper motion in declination in arcseconds per cen-
tury.

m—parallax in arcseconds.

V—radial velocity in km s~ 1.

C—the length of the century in days. Julian centuries C;
consist of 36525 days, while tropical centuries
Cp = 36524.21987817305 days.

& —Epoch, e.g., 1984 January 1.0.

JD(date)—The Julian date, which is a function of the
date or epoch. Julian dates for some relevant epochs are
JD(B1950.0) = 2433282.42345905, JD (1984 January 1.0)
= 2445700.5, and JD(J2000.0) = 2451545.0.

k—Conversion from kms~' to AU per century.
k = 86400C /1.49597870 X 108,

P—the precession matrix. P, P, are the precession ma-
trices on the new FK5 and the old FK4 systems, respective-
ly. P~ and P represent the inverse and the differential
precession matrix. Whenever it occurs in this paper, P~!
means (P) 1.

r—a column vector of position, where the transpose
r'=(x,y2).

r—a column vector of velocity, where the transpose
¥ =(xJ,2).

R;(¢#)—the standard orthonormal rotation matrices
R;(¢#), i = 12,3, which rotate a right-handed set of axes
x, y, z through an angle ¢ anticlockwise about the ith axis.

v—a vector in 6-space, where the transpose
vV =(r,t')=(x)72%,J2).

The rotations about the x, y, and z axes are represented by
the following matrices

1 0 0
R,(¢) =10 cos¢d sing |,
|0 —sing cosd]
[cos¢ 0 —sing]
R2(¢)= 0 1 0 s
[sing O cos ¢ |
[ cos¢ sing O]
R;(¢)=| —sing cos¢ Of.
| 0 0 1]

These matrices are orthonormal and therefore have the fol-
lowing properties:

R:T(¢)Ri (¢) =I=R, (¢)R:r(¢)’
where R is the transpose of R; and equals theinverse R, . I
is the unit matrix and O is the zero (null) matrix. Matrix
inversion is very efficient for orthonormal matrices as it is

just a matter of exchanging rows for columns. In all applica-
tions in this paper, ¢ is a function of time; thus the deriva-

tives of the rotation matrices are given by

Rl(¢) =¢iRi(¢)’ l= 1:2:3)

a¢
and
5 [0 0 0 ]
a—R1(¢)= 0 —sing cosd|,
4 |0 —cos¢ —sing ]
5 [ —sing 0 —cosg]
8_R2(¢)= 0 0 0 ,
4 | cosg O —sing |
5 [ —sin ¢ cos¢ O]
‘é—Ra(¢)= —cos¢ —sing Of.
4 | 0 0 0]

Using the above definitions for the two 3 X 3 matrices R, (¢)
and R, (¢), we now need to work in 6-space and define a
6X 6 matrix

' R;(¢) (o)
Qi(¢’¢) =1 i
¢ 2 R;(#) R;(4)

The reason for introducing Q and working in 6-space is as
follows. Consider a position vector r, which is rotated about
the ith axis to produce a new vector r,, then

r, =R, (&)r,.

Differentiating this equation with respect to time gives the
relation between the two velocity vectors f, I, as follows:

i =¢%Ri<¢)ro+R,~(¢m.

Hence
R;(#) o
|, 2 RETE
i P R@ R L] T

In astronomy, the higher-order derivatives ¥, etc., are negli-
gible and therefore these two sets of equations in three di-
mensions are all that are required, and it is found to be more
efficient to use one set of equations in 6-space.

The following properties for the Q matrix will be required
later and are easily verified by substituting the above expres-
sions for R, (¢) and JR, (#)/3¢:

Q '(4$)Q,(4,4) =1=Q,(4,$)Q '(4,¢),
Q '(48) =Q;(—¢,— ),

RT(4) o
Qi—](¢’¢)= i T T
¢ 36 R/ (4) R/(¢)

IV. CONVERSION FROM SPHERICAL TO VECTOR
COORDINATES

In either method, matrix or classical, it is necessary at
some stage of the calculation to convert from spherical to
rectangular coordinates of position and velocity. Given that
a star has position («,8) in degrees, proper motions ( g,u')
in seconds of arc per century, parallax () in seconds of arc,
and radial velocity ¥in km s~!, then the direction cosines of
the position vector r and velocity vector f in arcseconds per
century are
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[x] [cosacosé Egs. (5) and (6)) may be derived from this expression using
r= — | sina cos & a first-order approximation.
’ ins Aoki (1983) has pointed out that the E terms of aberra-
Lzl L sm tion may have affected the proper motions as well. In vector
and notation, the effect is derived by differentiating Eq. (2) as
e . , . follows:
X —psinacos§ — ' cos a sin § R ) ) '
f=|p|=| +pcosacosd—py sinasind|+ kVar, Fo =T — A+ (Foa A)leq + (Feay APy
2] | u' cos + (Kot A)feqys (3)

where k = 86400C /(1.49597870 % 10)® and C is the length
of the century in days. The units of I are arcseconds per
century, Julian or tropical as appropriate, and r is automati-
cally a unit vector.

Conversely, it is also necessary at some stage of the calcu-
lation to convert back from rectangular coordinates of posi-
tion and velocity to spherical coordinates. It may no longer
be the case that r is a unit vector. Hence given the vectors
r' = (x,y,z)and ¥ = (X, ), Z), where I’ is in arcseconds per
century, then the right ascension and declination (a,8) and
proper motions ( u,u') in arcseconds per century are ob-
tained from

cosacosd=x/r, sinacosd=y/r, siné=z/r,

_xp—yx 2747 —z2(xk 4+ yp)
X2+ A+ 57
where
r={x+y +2.

In the conversion from B1950.0 to J2000.0, the parallax and
velocity at J2000.0 (,,¥;) can be obtained from r and r
together with the parallax (7) and velocity. (¥) at B1950.0;

thus
m=mu/r, V= (xx+yp+zz)/knr.

However, if 7 =0, then V', = V.

V. THE REMOVAL OF THE ELLIPTIC TERMS OF ABERRATION

The equatorial velocity components of the E terms of
aberration (Emerson 1973) referred to the equinox of date
are given by

—AD
B= + AC
+ ACtan e
In a fixed frame at B1950.0, the components at date are given
by

A=P7 B, (1)
where P is the precession matrix from B1950.0 to date. Pro-
vided A is in the appropriate units, then the direction to the
star r,, corrected for the E terms of aberration, is given by

Fo=Teat — [A_ (r(,:at A)rcat]’ (2)
where r.,, is the catalog position vector, [ A — (rl, A)r.,]
is the component of A in the direction perpendicular to r,,,
since r.,, is the transpose of r,,, and (r,, A) is the scalar
product. The numerical values of the elements of A at
B1950.0 when P =1 are

— 1.62557
A=/ —0.31919 | X 10~ radians
—0.13843

using the expressions for AC and AD given in Paper I, Sec.
I1d 1, Eq. (7). The classical formula (Paper I, Sec. 11 d 7,

where the terms (f’,, A)r_, and (r.,, A)f,, are very small
and may be neglected unless a precision better than + 1”
X 107 is required. '

In the fixed frame at B1950.0, the expression for A at date
is given by differentiating Eq. (1); thus

A=P-'B 1P B,

where
0 éA +2a 9A
Pl=| —¢, -z, 0 0
—8, 0 0

and £, z,, and 6, are the precession angles. At B1950.0,
differentiating Andoyer’s expressions for the precession an-
gles which are given in Sec. VIII on the FK4 system, with
T=1and t=0, gives

£n + 24 = 4609790 per tropical century,

9, = 2004”26 per tropical century.
Also, P~!=1Tand
[ —AD
B= +AC
_AC tan € + ACe,/cos’ €
[ 4279941
=| — 970738 | X 10~ 3 per tropical century
| —3"9174
using the expressions for AC and AD given in Paper I, Sec.
II d2, Egs. (10). Hence
[+ 17245
A = — 17580 | X 102 per tropical century.
[ —0"659]
The classical formula for the correction to the proper mo-
tions for the E termsis equivalent to Eq. (3) to first order. In
the case where the E terms have been allowed for when de-
riving the catalog proper motions, the procedure in the vec-
tor method has to follow the classical method more closely.
After the position vector r_,, has been corrected for the E
terms using Eq. (2), the corrected right ascension and decli-

nation of the position vector r, have to be determined and
they are used to form the velocity vector.

VI. THE PRECESSION MATRIX IN 3-SPACE

The precession matrix P, which precesses equatorial rec-
tangular coordinates from a fixed equinox and equator % ¢
to one of date &, in 3-space, is given by

P[gF:gD] =R3(— 2z, )R, (+ 0,)R;(— 54,

where £, , z,, 0, are the precession angles, which are evalu-
ated using the appropriate time arguments. The expressions
for the precession angles in seconds of arc are given in Sec.
VIII. The precession matrix is made up of three rotations,
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applied in an appropriate order. The first rotation is through
the angle — §, about the z axis, the second rotation is
through the angle + 8, about the y axis, and the final rota-
tion is through the angle — z, about the z axis.

Having calculated the precession angles for the matrix P,
the inverse matrix P! can be calculated in various ways, for
example,

P! =R3_l( —gA )Rz_l( +9A)R3_1( —2z,)
=R-3r( —Ga )R-{( + 64 )Rg( —2,)
=R;3(+ Sa )R (— 6, )R5( +2,).

Alternatively, the precession angles may be recalculated
since P~'[&,& ]| =P[ &, & ]. Differentiating P, we
find that the differential precession matrix is given by

P= Rg( —Z, )R (+ 0,)R3(— &)
+ R,( _ZA)RZ( +0,)R(—5a)

+R3( =2z, )R (+ 6, )Rs( —6a)s

where R is defined in Sec. III. P is required when comparing
the two methods (Sec. XI).

VII. THE PRECESSION MATRIX IN 6-SPACE

In 6-space, the notation for the precession matrix has to be
modified to include a further parameter s, where s = 0 when
precessing from one inertial frame to another inertial frame
and s = 1 when precessing from an inertial frame to a non-
inertial frame (i.e., rotating frame of date). The expression
for P becomes

P O
P[&e,&ps] = [sP P

=Q3( —2,,—52,)Q5(+ 6,4, +59A)
XQ3(—8a, —S§A)-

For the conversion from FK4 B1950.0 to FK5 J2000.0 in
Sec.X, the case s = 1 is required. The inverse is also required
with s = 1, and is given by
_ P O]°' [P!' O
NI R B P
= [Qs( —zs, — 24)Q;( + 6, + 8,)

XQy(—&—Ea)]7"

VIII. NUMERICAL EXPRESSIONS FOR THE PRECESSION
ANGLES AND THEIR RATES OF CHANGE

The equatorial precession angles &, , z, , 6, are given as
polynomial functions of T'and ¢. T transforms the equations
from the basic epoch &, (e.g., B1850.0 or J2000.0) to the
required fixed (initial) epoch & (e.g., B1950.0), while ¢
transforms the equations from the fixed (initial) epoch &
(e.g., B1950.0 or J2000.0) to the epoch of date & .

Sa =Ca(TD), zpo =zo(T)1), O =0,(T 1),
where

T=[JD(%r)—-ID(&,)]/C
and

t=[ID(¥p) — ID(%)]/C,

with C the number of days in the century, Julian or tropical
as appropriate. The conversion of mean star places from
B1950.0 on the FK4 system to J2000.0 on the FK5 system
requires not only the precession angles but also their rates of
change with respect to time to be defined on both systems.
The precession rates are given by

d . d ; d
; =:1;§A(T,t), ZA=';;ZA(TJ), 0A=;t'0A(T;t)~

There is still some argument as to whose (i.e., Newcomb, or Andoyer, or Kinoshita) definitions of precession to use with
the FK4 system. In this paper, we have used Andoyer’s, and in these equations the basic epoch is & , = B1850.0, and the time

arguments are fractions of a tropical century.

$a = (230375545 + 17397207 + 0'0000607%)¢ + (0730240 — 070002707)¢2 4 0701799523,
z, = (230375545 + 17397207 + 070000607)¢ + (1709480 + 0700039072 + 07018325¢ 3,
6, = (20057112 — 0785297 — 0"000377?)¢ + ( — 074265 — 07000377)¢% — 0704180t >.

In this application, ' = 1 as the fixed epochis &z = B1950.0,and ¢ = [JD(& ) — JD(& ) ]/Cj. The precession angles for
the FK5 system have been defined by Lieske (1979) and adopted by the IAU. In these equations, the basic epoch of the
equations is &, = J2000.0 or JD(& ;) = 2451545.0, and the time arguments are fractions of a Julian century.

a = (230672181 + 17396567 — 070001397%)¢ + (0730188 — 07000344 T)¢2 + 07017998¢3,
z, = (230672181 4 1739656 T — 070001397 %)¢ + (1709468 + 070000667)¢> + 0"018203¢3,
6, = (200473109 — 07853307 — 07000217T?)¢ + ( — 0742665 — 0"000217T)¢* — 0%041833¢>.

In this application, T= [JD(&) —JD(&,)]/C; and
t=[ID(&p) —ID(&E)]/C;. In both systems, the
precession angles are subscripted by the symbol A, which
indicates that the precession angles are accumulated, and the
rates of change are expressed in seconds of arc per century.

IX. EQUINOX CORRECTION

Fricke (1982) has determined that the FK4 right ascen-
sion system requires a correction of + 0°525at B1950.0, and

r

in general at epoch & the correction to right ascension
should be

E, = Es,+ E[ID(#%) — JD(B1950.0)1/Cj,
where
Es, =0"525 and E = 1275.

In the classical method, this correction is applied separately
to the right ascensions and proper motions in right ascen-
sion. In the vector method, the correction is applied by
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means of a rotation about the z axis. The total effect on both
the position and velocity vectors is given by
Q,;( — E4, — E), where E, is expressed in degrees and E in
arcseconds per tropical century.

X. THE COMPLETE TRANSFORMATION IN MATRIX
NOTATION

Thessix steps 3,4, 5, 6, 7, and 8 in Sec. Il may be represent-
ed by successive multiplication by the six matrices M,, M,,
M,, M,, My, and M, on the position and velocity vector v, at
B1950.0 producing the position and velocity vector v, at
J2000.0, where

v, = M\M\M,M;M M v, 4)
and the six matrices are defined as follows:

M,—Adds space motion between the standard epoch
B1950.0 and & to the position vector at B1950.0.

I ¢1
M“[o ’

where t,=c[JD(%) —JD(B1950.0)}/C; and c=n/
(180 3600) is a factor that converts seconds of arc to ra-
dians.

M,—Applies FK4 precession from B1950.0 to &, to the
position and velocity in 6-space.

M, =P, [B1950.0,%,1]
=Q;(—2z,, —2A)Q2(0A’9A)Q3( —Gas— g—A)'

M,—Adds the equinox correction to the right ascension at
epoch &.

M;=Q;( — Eq, — B),
where E, = E5y+ E[JD(%) — JD(B1950.0)]/C; and
E,,= 07525 and E = 1"275.

M,—Converts the proper motions from tropical centuries
to Julian centuries.

I O ]
M. = [0 _FIJ
where F= C;/Cp.
M;—Applies FK5 precession from & to J2000.0, to the
position and velocity in 6-space.

M, = P, '[J2000.0,%,1]
=Q3( +§A’ +§A)Q2( —'BA’ - éA)

XQ3( +2Aa +ZA)

M¢—Adds space motion between & and J2000.0 to the
position vector at €.

_[1 —tlI]
M"_[o O

where ¢, =c¢[JD(%) —JD(J2000.0)]/C,
(180 3600).

The product of the six matrices may be represented by the
single matrix

M = MMsM,M,M,M,.

and c=7u/

In particular, when the epoch & = 1984 January 1.0, the numerical expression for M, printed to 15 decimal places, is

0.999925678186902  — 0.011182059642247  — 0.004857946558960 0.000002423950176  — 0.000000027106627  — 0.000000011776558
0.011182059571766 0.999937478448132  — 0.000027176441185 0.000000027106627 0.000002423978783  — 0.000000000065874
0.004857946721186  — 0.000027147426498 0.999988199738770  0.000000011776559  — 0.000000000065816 0.000002424101735
— 0.000541652366951  — 0.237968129744288 0.436227555856097  0.999947035154614 — 0.011182506121805 — 0.004857669684959
0.237917612131583  — 0.002660763319071  — 0.008537771074048  0.011182506007242 0.999958833818833  — 0.000027184471371
— 0.436111276039270 0.012259092261564 0.002119110818172  0.004857669948650  — 0.000027137309539 1.000009560363559

XI. THE COMPARISON
This section compares the method that uses matrices in six space with the classical method in three space. Equation (4) may

be written withP=P_ and E=E,:
(r,)_[l _t,l] [P“ 0} [1 o] R,(—E) o HPO 0] [1 tol] (ro)
i/ Lo I P! P!l lo FII [Ry(—-E) Ry-E)IP, P,] lO I i/

The transformation from & to J2000.0 on the FK5 system is

— 5
r _ 5_[1 —tll] [P 1 (0] Iy 5
(i',) =MMve =lo 1 PP \is) )
Hence at & the middle part of the transformation from FK4 to FKS5 is given by
ry R;(— E)rg )
=MM.,vt = R . 6
(f@») e (F[R;(—E)r; +Ry( — E)ity | ©
The transformation from B1950.0 to & on the FK4 system is
r}) ( P, (ro + £o To) )
=MM;vo =1 . . .. 7
(i’?f 2Wi¥o P,(ro+ 1) + P, 1y ™

Consider the space part of the transformation from Eq. (5),
=Pl — £, (P~ + P} ).

From the velocity part of Eq. (5)
=P %, + P .

Hence
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r, =P 1(r} —,PP,).

Using Eqs. (6) and (7) to express ry in terms of ryand f,, the position at J2000.0 can be written in terms that are directly com-
parable with the classical method. Thus

r, =P ' [Ry( — E)P, (o + f ty) — 1,PE,].

To complete the comparison, an expression connecting ¥}, with ¥ is required. This is obtained by considering the velocity
part of the transformation. From Eq. (5),

ry =P(r, + 1, 1),
i =P(r, + 1, i) + Pi,.
Eliminating r, from this pair of equations, and using Eq. (7) to express i in a similar manner, gives
i, =PP 't} + Pi,,
i =P, P, '} +P, i,

Using the above equations and the relationship between ¥}, and ¥, given in Eq. (6), we have

P+ PP'ry = F[ — E-S R(— Byl +Ry(~ B, P 1 +Ry(— B, i) ()
The matrix PP~ is given by
0 —m —n
PP'=|m 0 -1,
n l 0
where I= — 8, sin( —z,) — &, cos( —z,)sin6,, m=2z, + &, cosb,, and n=0, cos(—z,) — &,

Xsin( —z, ) sin 6, . Atepoch & = 1984 January 1.0in the FK5 system / = 1” X 10~° per Julian century. On the right-hand
side of the equation, in the FK4 system at epoch & = 1984 January 1.0, the numerical value of /, in the matrix P, P; ! is
I, = 5" X 1078 per tropical century.

The vector equation (8) represents three scalar equations at epoch &. By multiplying these equations by x5, y%, z, as
appropriate and combining them to form u and ' (see Sec. IV), we obtain

‘u+m+nsinatand—Icosatan = (pu, +m, + n, sina, tan 8, — I, cos @, tan §,)F
p +ncosa+Isina= (u, +n,cosa, +1, sina,)F,

where @ = a, + E and 8 = §, are the right ascension and declination at epoch & on the FK5 and FK4 systems. These
equations are identical to the equations used in the classical method (Paper I) except for the terms in / and /,, which are too
small to be included in the classical formulas.
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