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ABSTRACT

Useful constraints on the orbits and mass ratios of astrometric binaries in theHipparcos catalog are derived from
the measured proper motion differences of Hipparcos and Tycho-2 (��), accelerations of proper motions (�̇), and
second derivatives of proper motions (�̈). It is shown how, in some cases, statistical bounds can be estimated for the
masses of the secondary components. Two catalogs of astrometric binaries are generated, one of binaries with
significant proper motion differences and the other of binaries with significant accelerations of their proper motions.
Mathematical relations between the astrometric observables��, �̇, and �̈ and the orbital elements are derived in the
appendices. We find a remarkable difference between the distribution of spectral types of stars with large accel-
erations but small proper motion differences and that of stars with large proper motion differences but insignificant
accelerations. The spectral type distribution for the former sample of binaries is the same as the general distribution
of all stars in the Hipparcos catalog, whereas the latter sample is clearly dominated by solar-type stars, with an
obvious dearth of blue stars. We point out that the latter set includes mostly binaries with long periods ( longer than
about 6 yr).
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1. INTRODUCTION

Binaries with invisible or unresolved companions may create
problems in the data reduction of a large and accurate astro-
metric catalog. Owing to the orbital motion, which may be
measurable astrometrically, these stars cannot be accurately
described by the five-parameter model that includes two posi-
tion components, two components of proper motion, and par-
allax as unknowns. Instead, a more complex model of seven or
nine free parameters (including the acceleration �̇ and second
derivative of proper motion �̈) or a complete orbital adjustment
of 12 parameters may be necessary. About 2.2% of stars in the
Hipparcos catalog require such a special treatment (Perryman
et al. 1997). With the anticipated greater accuracy of future as-
trometric missions such as the Space Interferometry Mission
(SIM ) and Gaia, the fraction of stars exhibiting nonlinear ap-
parent motions will dramatically increase (Kaplan & Makarov
2003).

While astrometric ramifications of the problem have been
addressed in a number of publications, less attention has been
paid to the prospect of characterizing new binaries through these
astrometric effects. A catalog of about 7000�� binaries—those
with significant differences in the Hipparcos and Fifth Funda-
mental Catalogue proper motions—was created by Wielen et al.
(2000). Gontcharov et al. (2001) produced a similar catalog of
a few hundred astrometric binaries with nonlinear motion. In
further development of the approach used in these previous in-
vestigations, we derive formulae to estimate the physical size of
the orbit (i.e., the semimajor axis in AU) for astrometric binaries
with invisible companions from the available astrometric data in
the Hipparcos and Tycho-2 (Høg et al. 2000) catalogs. The bi-
naries are divided into three categories: (1) stars with statistically
significant differences between the short-term Hipparcos proper

motions and the long-term Tycho-2 proper motions; (2) stars
with measured acceleration of proper motions as given in the
Hipparcos catalog, Annex DMSA/G; and (3) stars with mea-
sured second derivatives of proper motion (besides the first de-
rivative, or acceleration) as given in the same annex. We present
two catalogs of astrometric binaries, one of which includes ��
binaries, and the other �̇ and �̈ binaries.
Our catalogs, which are mostly compilations of previous as-

trometric data, are intended for researchers interested in binary
stars, in particular for the search of binary brown dwarfs and
other low-mass companions. The catalogs include only reliably
identified long-period astrometric binaries, which are difficult to
detect by other means. The objectives of the previous Heidelberg
catalogs TYC2+HIP and ARIHIP (Wielen et al. 2001a, 2001b),
on the contrary, were (1) to provide the most accurate proper mo-
tions for certain samples of stars and (2) to obtain ‘‘mean’’ proper
motions. The emphasis of the ARIHIP catalogs was heavily on
the ‘‘astrometrically excellent’’ stars that could be used as an
optical representation of the International Celestial Reference
System. Our criteria are strict in the selection of high-fidelity
binary stars, whereas the ARIHIP criteria select nonbinary
‘‘excellent’’ stars. (Essentially, for identifying binary systems,
the difference is between minimizing false positives and mini-
mizing false negatives.) Most importantly, the Heidelberg team
empirically estimated an all-sky correlation between the Hip-
parcos catalog and Tycho-2 catalog proper motions. Since this is
a positive correlation, applying it to the detection of stars with
perfectly unperturbed motion makes it easier to achieve the sta-
tistical binarity threshold. The real correlation may differ from
the mean value at different parts of the sky because of varying
number density, brightness of the Hipparcos stars, and system-
atic errors (Wielen et al. 2001b). While this approach may be
justified if one wants a reliable sample of single stars, the filtered
perturbed stars are not necessarily binaries, and certainly not
necessarily the astrometric binaries with faint companions that
are the focus of this paper.
Parameters Q0 (x 2) and Q1 (x 3) are computed for all stars in

our catalogs. They are related to the lower bounds of the mass
ratio, and their use is exemplified in x 2 by the young binary
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AB Dor with a brown dwarf companion. On the contrary, the
‘‘cosmic error’’ given in the Heidelberg compilations is a measure
of astrometric disturbance and is not related directly to the orbital
elements. In the appendices, we derive formulae linking the ob-
servables ��, �̇, and �̈ with the orbital parameters. This anal-
ysis will be useful in astrometric applications. For example, a
number of SIM target stars and grid stars will have to be reduced
with the seven-parameter astrometric model that includes accel-
eration components, and the formalism is directly applicable in
the ensuing astrometric analysis.

2. �� BINARIES

Binarity of this type is revealed when two astrometric catalogs
of proper motion are compared. Depending on the accuracy of
the catalogs, a certain fraction of stars will show differences in
proper motion in excess of a statistically plausible measurement
error. This happens when one of the catalogs includes short-term
proper motions (i.e., based on observations collected during a
relatively short time), while the other is based on long-term ob-
servations of star positions. In binaries of sufficiently long pe-
riods, the reflex orbital motion of the primary will be captured in
the observed short-term proper motions. The long-term proper
motion, on the other hand, will be closer to the true center-of-
mass motion of the system. Thus, we define�� binaries as stars
that have instantaneous (or short-term) proper motions signifi-
cantly different from the quasi-inertial motion of the center of
mass. For the majority of stars, the unknown astrometric excur-
sion of the photocenter from the center-of-mass position will
be averaged out to quantities comparable to or smaller than the
astrometric formal error. Because of the averaging effect in long-
term proper motions, it is expected that mostly long-period bi-
naries are detectable as�� binaries. Some short-period binaries
can accidentally produce significant proper motion difference
too if their apparent astrometric excursions are large and only a
few observations are available.

Our catalog of�� binaries (Table 1) includes 1929 stars with
�� differences between the Hipparcos and Tycho-2 catalogs
larger than 3.5 � in at least one of the coordinate components.
A typical observational time span for a Hipparcos star is about
3.2 yr, while Tycho-2 proper motions are derived from astro-
metric observations often spanning over a century (Urban et al.
2000). Since Hipparcos proper motions were used for correct-
ing the system of ground-based catalogs, they are positively

correlated with the Tycho-2 proper motions for common stars.
These correlations are not known for each star, and we chose
to neglect them in order to reduce the probability of false pos-
itives, that is, to generate a more reliable set of binary stars.
Because of the neglected positive correlation, the calculated
�� is smaller than the true value, which tends to give an un-
derestimate of the secondary mass. The lower bound conditions
given below in this section are not violated. Stars flagged in
Hipparcos with ‘‘C’’ (resolved visual binaries) or ‘‘O’’ ( pre-
viously known astrometric binaries with orbital fits) are not in-
cluded in our catalog, but a small number of stochastic solutions
(flag ‘‘X’’) may appear there. The nearest astrometric binaries of
long periods are of special interest, since theymay have substellar
or planetary companions.

Equation (A13), shown in Appendix A, can be rewritten in
terms of the orbital period P,

�� � 2��R0M2

M
2=3
tot P

1=3
; ð1Þ

where � is the parallax, M2 is the secondary mass, and Mtot is
the total mass. From this, given a period estimate, a lower es-
timate for the secondary mass can be derived. The upper bound
for �� is proportional to q2 ¼ M2/Mtot and has a weak depen-
dence on Mtot, in that ��max / q2M

1=3
tot . The inequality be-

comes an exact equation for face-on orbits. The projected�� of
an inclined orbit is always smaller than the true center-of-mass
deviation of proper motion; hence, generally, heavier compo-
nents are required to generate the same astrometric effect.

Another kind of uncertainty is related to the fact that the above
formula is valid for the difference between instantaneous proper
motion and the true center-of-mass proper motion, whereas the
proper motions in the catalogs are some average of proper mo-
tions, over about 3.2 yr for Hipparcos and several decades to a
century for Tycho-2. If the period of a system is longer than a few
decades, the Tycho-2 proper motion may be very different from
the true proper motion. On the other hand, if the period is shorter
than several years, theHipparcos proper motion is an average of
instantaneous proper motions at individual times of observation.
Such an averagewill be between themaximum and theminimum
instantaneous ��-values, as described by the R0 (orbital phase)
factor (Fig. 1). The averaging effect of the finite duration of
Hipparcos measurements can be imagined as a sliding mean of

TABLE 1

A Catalog of �� Binaries

Hipparcos Tycho

HIP No.

(1)

TYC1

(2)

TYC2

(3)

TYC3

(4)

���
(5)

��

(6)

���
(7)

��

(8)

�

(9)

�̇

Binary?

(10)

logQ0

(11)

68............. 1178 1142 1 �99:7 � 1:1 �315:9 � 0:8 �69:0 � 0:9 �305:0 � 0:9 31:8 � 1:2 A �0.8

93............. 4663 456 1 54:9 � 1:3 �73:3 � 0:7 50:8 � 0:9 �68:7 � 0:9 16:7 � 1:3 �1.2

171........... 1732 2731 1 778:6 � 2:8 �918:7 � 1:8 829:9 � 1:2 �989:4 � 1:1 80:6 � 3:0 �0.8

290........... 6989 1159 1 93:7 � 1:1 �42:8 � 0:6 92:5 � 1:4 �56:7 � 1:4 15:3 � 1:0 �0.8

305........... 6418 1218 1 88:6 � 1:1 �17:7 � 0:9 100:4 � 1:8 �20:3 � 1:4 20:4 � 1:0 A �1.0

329........... 5263 680 1 143:7 � 1:9 66:6 � 0:8 149:9 � 1:7 75:2 � 1:4 9:2 � 1:5 �0.7

356........... 4669 211 1 �42:5 � 1:2 �17:2 � 0:6 �33:8 � 1:1 �20:3 � 1:2 9:9 � 1:1 �0.8

359........... 9346 1115 1 177:5 � 0:9 �15:2 � 0:7 161:6 � 1:5 �16:5 � 1:4 17:1 � 0:9 �0.8

457........... 7529 512 1 �12:8 � 0:8 �1:3 � 0:7 �14:0 � 0:9 3:0 � 0:9 2:0 � 1:0 �0.5

Notes.—Several entries are shown as an example; the complete version of the catalog is available through the CDSWeb site. Col. (1):Hipparcos numbers. Cols. (2)–
(4): Tycho identification numbers TYC1, TYC2, and TYC3. Cols. (5) and (6): Hipparcos proper motion components ��� and �� in mas yr�1 and their standard errors.
Cols. (7) and (8): Tycho-2 proper motion components and their errors. Col. (9):Hipparcos parallaxes and their errors in mas. Col. (10): Flag ‘‘A’’ is set for stars that are
also �̇ binaries. Col. (11): logQ0 factors for the lower limit of q2.

ASTROMETRIC BINARIES 2421



the curves in Figure 1. For eccentric orbits, instantaneous proper
motion deviations are greater at times of periastron passages;
therefore, astrometric binaries of high eccentricity can be better
detected with this method. The averaging effect will diminish the
advantage of eccentric binaries, as the R0 curves will become
smoother and closer to unity. Thus, no significant overrepresen-
tation of eccentric �� binaries is expected in the sample.

For very long period systems, the Tycho-2 and Hipparcos
proper motions will yield a �� approaching 0 as P increases
beyond several centuries. This case was analyzed in Kaplan &
Makarov (2003), and it was shown that the change in measured
proper motion is linear with the observational time span. The
�� method will clearly miss those systems, as the apparent
acceleration will be too small to produce �� larger than 2–
3 mas yr�1. Perhaps the next-generation astrometric satellites
(SIM and Gaia) will detect many of those systems at the mi-
croarcsecond level of precision as slowly accelerating stars.

Another limitation of the astrometric method is the implicit
assumption that the secondary component is much dimmer than
the primary and therefore that the observable photocenter co-
incides with the primary, as discussed in the appendices. In
some cases, when the brightness ratio can be determined pho-
tometrically or spectroscopically, appropriate corrections can
be easily introduced into the formulae relating the astrometric
observables and the orbital elements. In the marginal case in
which both components have the same brightness, the photo-
center will show no orbital motion.Most companions, however,
have significantly smaller masses than the primaries, and since
the intensity of light from a solar-type star withM 2½0:5; 2:0� is
approximately proportional to M 5.58 (Henry & MacCarthy
1993), the vast majority of main-sequence pairs have small
photocentric effects. The inequalities given in this section and

throughout the paper are valid for binaries with considerable
photocentric displacements, because they specify the lower
bounds of the apparent orbit size and motion and the secondary
mass ratio.
Equation (1) shows that nearby (� > 40mas) solar-type stars

with low-mass companions (q2 ¼ M2 /Mtot as low as 0.05–0.1)
can be detected as �� binaries. This allows the possibility of
discovering new brown dwarfs around nearby stars with orbital
periods larger than 4 yr, still a poorly known domain of sub-
stellar companions (Liu et al. 2002). It may ultimately reveal
whether the ‘‘brown dwarf desert,’’ the apparent paucity of
brown dwarfs with short-period orbits around solar-type stars,
extends into the domain of longer periods. Companions similar
to ice giant planets can be detected around the nearest and the
smallest stars, such as M dwarfs.
Equation (1) is readily transformed into

q2 �
Q0

R0

P

Mtot

� �1=3

; ð2Þ

where Q0 ¼ �� /(2�� ). Here the factor Q0 contains the two
observables, while the remainder of the variables are unknown
but often subject to reasonable estimates or can be bounded.
Decimal logarithms of Q0 are listed in the catalog of �� bi-
naries (Table 1). Whenever the parallax was less than 2 mas, we
assumed � ¼ 2 mas and gave an uncertainty flag ‘‘U’’ in the
end of the record. Those distant stars, interestingly, have large
lower bounds of q2, implying either that the dark companion
is actually more massive than the primary or that the stars are
quite eccentric, and that the observation took place near the
periastron time. In each particular case of interest, a more careful

Fig. 1.—Factors R0, R1, R2, and R2 /R1 as functions of orbital phase (t � T )/P for eccentricities e ¼ 0 (dotted lines), e ¼ 0:2 (dashed lines), e ¼ 0:4 (dash-dotted
lines), and e ¼ 0:6 (solid lines).
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study should be done, since other occasional perturbations can-
not be precluded. For example, a small fraction of distant stars
may be unresolved visual binaries with a slowly variable com-
panion. This may cause the photocenter to shift slowly along the
line connecting the components (the effect known as a variability-
imposed mover), producing apparent proper motion or even ac-
celeration. The majority of objects in the catalog are genuine
binaries, in some cases with low-mass, dim companions.

Consider, as an example, the star AB Dor (HIP 25647). It
is one of the very young and active stars in the immediate so-
lar neighborhood, whose origin is unknown (Makarov 2003).
Guirado et al. (1997) combined VLBI and Hipparcos data to
derive a putative orbit for this astrometric binary. According to
their estimation, the orbital period is between 6.5 and 27.5 yr.
From the catalog of �� binaries, we have logQ0 ¼ �1:3. As-
suming a total mass of 0.86M�, we obtain q2 � 0:10/R0 at P ¼
6:5, and q2 � 0:16/R0 at P ¼ 27:5 yr. The analysis of Guirado
et al. implies that theHipparcos observations were taken around
the periastron time, and the eccentricity is between 0.28 and
0.78. Hence, the orbital phase factorR0 can be between1.3 and 2.8.
Taking this factor into account reverses the boundaries of
the possible interval, so that q2 � 0:07 at P ¼ 6:5, and q2 �
0:06 at P ¼ 27:5 yr. We finally conclude that the secondary
mass in this system can be as small as 0.05–0.06 M�, in good
agreement with the estimates in Guirado et al. (1997) of 0.08–
0.11. The actual mass may indeed be somewhat larger than our
lower limits, since the inclination of the orbit i is probably
about 60�.

3. �̇ BINARIES AND �̈ BINARIES

All currently known �̇ and �̈ binaries are collected in a cat-
alog of 2622 stars (Table 2). The data are mostly copied from
the Double and Multiple Star Annex, Part G, of the Hipparcos
catalog. We added only cross-reference flags ‘‘M’’ for stars that
are also �� binaries, estimates related to the mass ratio lower
bounds, and uncertainty flags ‘‘U’’ for the latter whenever the
Hipparcos parallax was less than 2 mas. It is noted again that
the orbital estimates (Appendix B) suffer three types of un-
certainties: (1) the projection effect for inclined orbits, (2) the
averaging effect due to the finite duration of the observation,
and (3) the orbital phase effect for eccentric orbits. The former
effect always makes the observed accelerations smaller than
the true orbital accelerations, and thus our upper estimates of a
larger. The latter two effects may act either way. In order to
better illustrate these effects, the orbital phase factors R0, R1,
and R2 are depicted in Figure 1 as functions of phase for e ¼ 0,
0.2, 0.4, and 0.6. The heights of the peaks near the periastron
increase for accelerating binaries and stars with significant
second derivatives; hence, the effect of eccentricity becomes
stronger. Although the duration of enhanced nonlinear motion
around the periastron time is only about 1/10 of the orbital
period, eccentric binaries that happen to be observed close to
their periastron have much better chances of being detected.
Indeed, the magnitudes of �̇ and �̈ are proportional to the par-
allax� (eqs. [B12] and [B17]), while the number of detectable
eccentric binaries grows as��3 in the near-solar neighborhood.
Thus, binaries of extreme eccentricity could be detected even at
relatively large distances.

Equation (B14) from Appendix B can be rewritten in terms
of the orbital period P:

�̇ � 2�R1ð Þ2�M2

M
2=3
tot P

4=3
: ð3Þ

From this, given a period estimate, a lower estimate for the secon-
dary mass can be derived. Just as for��, the upper bound for �̇ is
proportional to q2 ¼ M2 /Mtot and has aweak dependence onMtot ,
in that �̇max / q2M

1=3
tot . The inequality becomes an exact equation

for face-on orbits. Equation (3) is readily transformed into

q2 �
Q1

R2
1

P4=3

M
1=3
tot

; ð4Þ

where Q1 ¼ �̇ /(4�2� ). Decimal logarithms of Q1 are listed in
the catalog of �̇ binaries (Table 2). Whenever the parallax was
below 2 mas, we assumed � ¼ 2 mas and gave an uncertainty
flag ‘‘U’’ in the end of the record.

Figure 1 (bottom right) shows why second derivatives of
proper motions can be larger in magnitude than accelerations,
even in long-period binaries. This is caused by the large cur-
vature of highly eccentric orbits near the periastron. Since the
ratio R2 /R1 is significantly larger than unity only within�0.1P,
the probability of observing such accelerations is fairly small
for a given eccentric binary. Presumably, very eccentric binaries
are rare, too. The fraction of stars with �̈ /�̇ > 1 should be quite
small in an unbiased sample. However, most of the stars with
significant accelerations and second derivatives have �̈ /�̇ > 1,
which is probably a statistical bias due to the much higher de-
tection threshold for �̈. Stars with significant �̈ can hardly have
periods P31 yr, as discussed in x 4.

The statistical significances of accelerations and second deriv-
atives are given as statistics in columns (7) and (10) of Table 2,
respectively. These statistics are equivalents to �2 statistics with
2 degrees of freedom for the case of a multivariate normal dis-
tribution. Estimated accelerations were considered statistically
significant when that quantity was larger than 3.44, and similarly
for second derivatives of proper motion. This criterion corre-
sponds to the 3 � level of significance of a one-dimensional
Gaussian distribution, or a 0.27% probability of a null hypothe-
sis (that the true parameter value is 0).

4. OVERVIEW OF ASTROMETRIC BINARIES

From relations (A13) and (B12), one obtains

��

�̇
	 P

2�
1þ e cos Eð Þ1=2 1� e cos Eð Þ3=2: ð5Þ

This equation is strict for face-on orbits and a good approxi-
mation for moderately inclined orbits. For circular orbits, the
ratio of instantaneous proper motion difference and acceleration
is roughly P /2�. This approximate equality is expected to hold
for the majority of astrometric binaries of moderate eccentric-
ities, since the probability of catching a star near its periastron is
small. However, very eccentric binaries may tip the balance
toward stars with small �� /�̇. With that in mind, we discrim-
inate in the set of astrometric binaries in the two catalogs a set of
binaries with significant �� but nonmeasurable �̇, and a set of
binaries with significant �̇ but insignificant ��. It is expected
that most of the former should have periods longer than about
6 yr, while the latter group should include mostly stars with pe-
riods shorter than 6 yr.

Figure 2 shows distributions of B� V colors of the short-
period and long-period binaries, selected as described above, and
the general distribution of Hipparcos stars (solid line) normal-
ized to unit area. There is no appreciable difference between the
distributions of short-period binaries and the general sample.
Hence, short-period binaries have the same rate of appearance in
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TABLE 2

A Catalog of �̇ Binaries and �̈ Binaries

HIP No.

(1)

TYC1

(2)

TYC2

(3)

TYC3

(4)

�̇��
(5)

�̇�

(6)

Sig. Level

(7)

�̈��
(8)

�̈�

(9)

Sig. Level

(10)

�

(11)

��

Binary?

(12)

logQ1

(13)

Uncertain?

(14)

62.......................... 8022 411 1 �6:41 � 2:69 �5:16 � 1:71 3.53 5:3 � 1:1 �1.3

68.......................... 1178 1142 1 3:04 � 2:50 �7:04 � 1:66 5.33 31:8 � 1:2 M �2.5

104........................ 6989 95 1 9:75 � 2:79 5:97 � 1:38 5.63 8:2 � 1:2 �1.3

305........................ 6418 1218 1 �4:26 � 2:97 9:95 � 1:40 7.11 20:4 � 1:0 M �2.2

340........................ 7529 819 1 3:16 � 3:19 �0:99 � 2:99 1.15 �29:08 � 8:87 �17:63 � 6:97 3.84 14:9 � 1:0 �2.4

493........................ 1181 1071 1 �0:60 � 1:63 3:96 � 1:34 3.58 26:2 � 0:8 �2.5

611........................ 7526 641 1 �17:65 � 3:33 �2:38 � 3:24 5.42 19:19 � 9:25 �25:18 � 7:91 4.15 7:2 � 1:1 �1.2

646........................ 5841 423 1 �7:51 � 2:53 �2:83 � 1:02 4.02 3:6 � 0:9 �1.1

648........................ 9350 1236 1 6:77 � 1:80 3:36 � 1:52 4.19 �17:15 � 4:31 9:84 � 4:40 4.96 8:9 � 0:6 �1.5

695........................ 4018 3889 1 0:18 � 1:13 6:17 � 1:66 3.73 2:2 � 0:6 �1.1

741........................ 6995 264 1 11:84 � 3:24 5:29 � 2:38 4.07 0:1 � 1:4 �0.4 U

Notes.—Several entries are shown as an example; the complete version of the catalog is available through the CDS Web site. Col. (1): Hipparcos numbers. Cols. (2)–(4): Tycho identification numbers TYC1, TYC2,
and TYC3. Cols. (5) and (6): Hipparcos acceleration components �̇�� and �̇� and their errors in mas yr�2. Col. (7): Significance levels of acceleration terms. Cols. (8) and (9): Second derivatives of proper motion �̈�� and
�̈� and their errors in mas yr�3. Col. (10): Significance levels of second derivatives. Col. (11): Hipparcos parallaxes and their errors in mas. Col. (12): Flag ‘‘M’’ is set for stars that are also �� binaries. Col. (13): logQ1

factors for the lower limits of q2. Col. (14): Flag ‘‘U’’ for uncertain logQ1 estimates for stars with small or negative parallaxes.



all spectral types. This is obviously not the case with long-period
astrometric binaries, which tend to appear mostly as solar-type
spectral types (late F and G) and rarely as B- and A-type stars.
It may be tempting to interpret this result in terms of different
binary formation mechanisms (e.g., fragmentation vs. capture)
producing distinct period distributions for more massive stars.
We give a cautionary note that early-type stars are also younger,
and some evolutionary effects cannot be precluded.

5. SUMMARY

The two catalogs of astrometric binaries presented here, based
on the results of the Hipparcos mission and older ground-based
astrometric catalogs, can be useful in the ongoing quest for
low-mass binaries and brown dwarfs in the solar neighbor-
hood. The method of astrometric motion analysis is sensitive in
the most difficult area of orbital parameters for both spectro-
scopic and imaging investigation, i.e., orbital periods between
3 and 100 yr. Although the proper motion data are not sufficient
to estimate the orbital elements, approximate constraints are
useful for statistical studies and for selecting promising candi-
dates among nearby stars. In most cases, additional information
via, e.g., radial velocity monitoring or new astrometric mea-
surements will be required to prove the existence of a low-mass
companion and to estimate its mass. The nearest binaries are
especially interesting, since the accuracy of the Hipparcos and
Tycho-2 data is sufficient to detect giant planets. However, care
should be exercised with nearby stars that have large radial
velocities, since their large parallaxes and considerable secular
accelerations were not taken into account in deriving the Tycho-2
proper motions. For example, existence of planetary companions
to Barnard’s star and Kapteyn’s star should not be taken for
granted just because these stars are included in the catalog of
astrometric binaries. Barnard’s star, in particular, has a large sec-
ular acceleration of 1.24 mas yr�2 in declination that amounts
to an astrometric offset of 6B2 over 100 yr. This offset may
account for the 	50 mas yr�1 difference between the Tycho-2
and Hipparcos proper motions. Such objects require more so-
phisticated astrometric analysis.

Because of the limited accuracy of the available astrometric
data, the number of astrometric binaries is currently not large.
However, important conclusions can be drawn from the avail-
able sample, especially on a well-defined volume-limited sample

of stars in which a reasonable degree of completeness can be
anticipated. Some aspects of binary formation at low q2 can be
addressed, such as distributions of orbital elements and their
dependencies on age and metallicity.

The fraction of astrometric binaries will dramatically increase
when the next-generation astrometry projects provide us with
much more accurate data (Gaia and SIM ). In fact, astrometric
binaries may prove to be a considerable difficulty in the com-
plicated data reduction systems for these missions. If, for ex-
ample, brown dwarf companions are widespread in long-period
binaries, a large number of reference stars may be completely
unsuitable for processing with the standard astrometric model of
linear motion and parallax.

The research described in this paper was carried out in part at
the Jet Propulsion Laboratory, California Institute of Technol-
ogy, under a contract with the National Aeronautics and Space
Administration.

APPENDIX A

ORBIT CONSTRAINTS FROM ��

The apparent motion of a binary in the plane of celestial
projection is described by (Heintz 1978)

x ¼ A cos E � eð Þ þ F
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin E; ðA1Þ

y ¼ B cos E � eð Þ þ G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin E; ðA2Þ

where x and y are the coordinates, e is the eccentricity of the
orbit, and E is the eccentric anomaly related to the mean anom-
aly M by Kepler’s equation

M ¼ 2�
t � T

P
¼ E � e sin E: ðA3Þ

As usual, T is the periastron epoch and P is the orbital period.
The Thiele-Innes constants are related to the remaining orbital
elements by

A ¼ aa(cos ! cos�� sin ! sin� cos i ); ðA4Þ
B ¼ aa(cos ! sin�þ sin ! cos� cos i ); ðA5Þ
F ¼ aa(�sin ! cos�� cos ! sin� cos i ); ðA6Þ
G ¼ aa(�sin ! sin �þ cos ! cos� cos i ); ðA7Þ

where aa is the astrometric semimajor axis (whether for the
primary, secondary, or the photocenter), ! is the longitude of
the periastron in the plane of orbit, and � is the position angle
of the node in the plane of projection.

The first derivative of E is

Ė ¼ 2�

P

1

1� e cos E
: ðA8Þ

Differentiating equation (A2) with respect to time obtains (see
also Brouwer & Clemence 1961)

ẋ ¼ �A sin E þ F
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
cos E

� �
Ė; ðA9Þ

ẏ ¼ �B sin E þ G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
cos E

� �
Ė: ðA10Þ

Fig. 2.—Distributions of B� V colors for all 118,218 Hipparcos stars (solid
line), astrometric binaries with significant �� differences but insignificant ac-
celerations (dot-dashed line; 1161 stars), and with significant accelerations but
insignificant �� (dashed line; 1854 stars).
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The square of the apparent instantaneous orbital velocity is

ẋ2 þ ẏ2 ¼ a2a

"
cos ! sin E þ sin !

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
cos E

� �2

þ sin ! sin E � cos !
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
cos E

� �2

cos2i

#
Ė2:

ðA11Þ

Note that the magnitude of the instantaneous velocity is inde-
pendent of �. Since cos2i�1, and for the primary component

aa ¼ a1� ¼ a�M2

Mtot

; ðA12Þ

we obtain after replacing cos2i with unity,

�� � 2��R0M2ffiffiffiffiffiffiffiffiffiffiffi
aMtot

p ; ðA13Þ

where � is the parallax in the same units as the semimajor axis
of the primary aa, a1 is the semimajor axis of the primary in AU,
M2 is the mass of the secondary, Mtot is the total mass, �� is
the astrometrically measured instantaneous orbital velocity of
the primary in the plane of projection, with respect to the center
of mass, and the time-dependent (orbital phase) term is

R0 ¼
1þ e cos E

1� e cos E

� �1=2

: ðA14Þ

This can be transformed into a constraint for the full semimajor
axis of the orbit:

a � (2�)2�2R2
0M

2
2

Mtot��2
: ðA15Þ

If the share of intensity of the secondary star in the total in-
tensity of the system, k2 ¼ I2 /(I1 þ I2), is not negligible and the
separation between the components is much smaller than the
resolution limit of the instrument, M2 in equations (A13) and
(A15) should be replaced with (k1M2 � k2M1). In this case, the
astrometric excursion of the photocenter is always smaller than
the actual excursion of the primary, and subsequently, the ob-
served �� is smaller too.

ForHipparcos stars that have significant differences in proper
motion between the long-term Tycho-2 and Sixth Fundamental
Catalogue but do not have measurable accelerations, a lower
bound of a can be derived from the somewhat arbitrary condi-
tion that the orbital period should be greater than or approxi-
mately equal to 5 times the mission duration (typically, 3.2 yr).
This provides a rough condition:

ak 6:3M
1=3
tot : ðA16Þ

An alternative way to derive the equality corresponding to
equation (A13) is to use the vis viva integral, representing con-
servation of energy,

v2 ¼ 2GgrMtot

1

r
� 1

2a

� �
; ðA17Þ

in which r is the instantaneous distance between the two com-
ponents, v is the relative speed, Ggr is the gravitational constant,

and a is the semimajor axis of the relative orbit. This can be re-
arranged to

v2 ¼ GgrMtot

a

2a

r
� 1

� �
; ðA18Þ

where r ¼ a(1� e2) /(1þ e cos �) and � is the angle at the pri-
mary between the direction to periastron and the instantaneous
position of the secondary; i.e., � is the true anomaly. In terms of
eccentric anomaly, r ¼ a(1� e cos E ). It is easy to show that
the factor in parentheses above equals R2

0.
For face-on orbits, the projection factor is 1 everywhere, and

�� ¼ v�M2 /Mtot. Therefore, we have

�� ¼ Ggr Mtot

a

� �1=2�R0M2

Mtot

; ðA19Þ

and if Ggr ¼ 4�2, this becomes

�� ¼ 2��R0M2ffiffiffiffiffiffiffiffiffiffiffi
aMtot

p ; ðA20Þ

the same as equation (A13) applied to face-on orbits.

APPENDIX B

ORBIT CONSTRAINTS FROM �̇

Differentiating equation (A10) with respect to time obtains

ẍ ¼� A cos E þ F
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin E

� �
Ė2

þ �A sin E þ F
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
cos E

� �
Ë; ðB1Þ

ÿ ¼� B cos E þ G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
sin E

� �
Ė2

þ �B sin E þ G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
cos E

� �
Ë: ðB2Þ

Substituting

Ė2 ¼ � 1� e cos E

e sin E
Ë; ðB3Þ

squaring, and adding up equations (B1) and (B2) obtains

�̇2 ¼ ẍ2 þ ÿ2 ¼ Ë2

e2
p1q

2
1 � 2p3q1q2 þ p2q

2
2

� �
; ðB4Þ

where

p1 ¼ A2 þ B2 ¼ a2
a cos2!þ sin2! cos2i
� �

; ðB5Þ

p2 ¼ F2 þ G2 ¼ a2
a sin2!þ cos2! cos2i
� �

; ðB6Þ

p3 ¼ AF þ BG ¼ a2a �cos ! sin !þ cos ! sin ! cos2i
� �

;

ðB7Þ

q1 ¼
1� cos E

sin E
; ðB8Þ

q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
: ðB9Þ
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Substituting the expressions for p1, p2, and p3 leads to a qua-
dratic form similar to equation (A11):

ẍ2 þ ÿ2 ¼ a2a
e2

Ë2 cos !q1 þ sin !q2ð Þ2
h

þ sin !q1 � cos !q2ð Þ2 cos2i
i
: ðB10Þ

Since cos2i�1, using equation (A12) and

Ë ¼ � 2�

P

� �2
e sin E

(1� e cos E)3
; ðB11Þ

we derive for the instantaneous acceleration of proper motion
in the plane of projection

�̇ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ẍ2 þ ÿ2

p
� 2�R1

a

� �2

�M2; ðB12Þ

where � is the parallax in the same units as the astrometric
excursion aa, M2 is the mass of the secondary component, and
the time-dependent term

R1 ¼
1

1� e cos E
: ðB13Þ

This can be transformed into a constraint for the full semimajor
axis of the orbit:

a � 2�R1

ffiffiffiffiffiffiffiffiffiffiffi
�M2

�̇

s
: ðB14Þ

If the share of intensity of the secondary star in the total in-
tensity of the system, k2 ¼ I2 /(I1 þ I2), is not negligible and the
separation between the components is much smaller than the
resolution limit of the instrument, M2 in equations (B12) and
(B14) should be replaced with (k1M2 � k2M1). In this case, the
astrometric excursion of the photocenter is always smaller than
the actual excursion of the primary, and subsequently, the ob-
served �̇ is smaller too.

For Hipparcos stars that have significant proper motion ac-
celerations but do not have orbital solutions, a lower bound of a
can be derived from the somewhat arbitrary condition that the
orbital period should be greater than or approximately equal to
2 times the mission duration (typically, 3.2 yr). This provides a
rough condition:

ak 3:4M
1=3
tot : ðB15Þ

Alternatively, the equality relation (B12), corresponding to a
face-on orbit case, can be derived directly from the formula for
orbital acceleration,

v̇ ¼ GgrMtot

r2
; ðB16Þ

along the lines described at the end of Appendix A, using the
relation �̇ ¼ v̇�M2 /Mtot for instantaneous acceleration of the
primary with respect to the center of mass.

We omit the somewhat cumbersome derivation for �̈ and
give the final formula:

�̈ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@3x

@t3

� �2

þ @3y

@t3

� �2
s

� (2�)3�M2

ffiffiffiffiffiffiffiffi
Mtot

p
R2

a7=2
; ðB17Þ

where the time-dependent term

R2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2(3� 4 cos2E )

p
(1� e cos E )4

: ðB18Þ

This can be transformed into a constraint for the full semimajor
axis of the orbit:

a � (2�)6=7(R2�M2)
2=7M

1=7
tot

�̈2=7
: ðB19Þ

Inequalities (B17) and (B19) become exact equations for face-
on orbits (i ¼ 0

�
).
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