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Abstract. Apparent acceleration of proper motion is one of the observable manifestations of orbital motion in binary stars.
Owing to the increasing accuracy of astrometric measurements, it may also be a method to detect binarity of stars. This
paper presents some analytical expressions for the effects of binary motion on proper motions when the orbital period is at
least several times the span of observations. We estimate orbit dimensions and distances at which low-mass companions and
planets may be detected around main-sequence stars, using preliminary estimates of precision for the AMEX, GAIA and
SIM space missions.
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1. Introduction

The publication of the Hipparcos catalog (ESA 1997) has
drawn new attention to the problem of the determination of
proper motions of stars that are components of binary or mul-
tiple systems. With only 3 years of observational data, it was
recognized that unmodeled binary motion could affect the
proper motions of many stars in the Hipparcos catalog. Most
of the concern has been with binaries without known orbits
that may have periods of several years to several decades. Yet
half of solar-type binary systems have semimajor axes of 50
AU or more, implying, for solar-mass components, periods of
a century or more (Duquennoy & Mayor 1991). Such systems
can create problems when observational catalogs made years
or decades apart are combined (as in Tycho 2) in an effort to
provide improved proper motions. Thus, the binary-motion
problem occurs on many time scales and may affect, to some
degree, a significant fraction of the data in compiled catalogs.

On the other hand, apparent accelerations prove to be a
powerful instrument in discovering new binary systems. The
short-term Hipparcos proper motions may be compared with
long-term ground-based proper motions (e.g., from FK5), and
new binaries with a significant orbital motion can be revealed
even if the companion is invisible or unresolved. Wielen et al.
(1999) developed a model that estimates the statistical signif-
icance of such differences, and pointed out that with particu-
larly long and accurate series of observations, it may be pos-
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sible to estimate the period and, furthermore, the mass of the
companion. Nonlinear motion of photocenters of a few hun-
dred suspected binaries was in fact estimated by Gontcharov
et al. (2001) from a collection of ground-based catalogs and
Hipparcos.

In this paper we assume that no information is available
for an astrometric analysis of proper motions other than the
data obtained with a short-term space mission. We investi-
gate stellar paths that are almost, but not quite, linear. This
case has received less attention than astrometric orbital solu-
tions, although Eisner & Kulkarni (2001) presented an earlier
analysis. We provide a simplified model of astrometric obser-
vation analysis to quantify the problem. We use the results to
estimate the range of detectable orbits for small brown dwarf
and Jupiter-mass companions, for three planned space mis-
sions, GAIA, SIM and the joint American-German project
AMEX.

2. Detectability of brown dwarfs and planets

The inequality B3, derived in Appendix B, is used to esti-
mate the distances and orbits of very small brown dwarfs
(������) and Jupiter-mass planets (�������) around main
sequence dwarfs that could be detected via the acceleration
method with the AMEX, GAIA and SIM space astrometry
satellites. The minimum detectable semimajor axis with this
method is defined by the constraint �� � � , where � is the
total duration of a mission, and � is the orbital period. Since
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Fig. 1. Detectable orbits of a ������ companion (brown dwarf).
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Fig. 2. Detectable orbits of a ������� companion (a Jupiter).

the mission length of all three missions is 5 years, the ����

is the same irrespective of the distance to the object, namely,
3.4, 4.7 and 6.3 AU for a M2V, G2V and A0V host, respec-
tively. A single Jupiter around a Sun-like star, therefore, can
be detected by any of the satellites at appropriate distances
(in the Solar system, �������� � ������ AU).

The triangular shapes in Figs. 1 to 5 show the domains
of detectable brown dwarf and Jupiter-mass companions, us-
ing acceleration solutions, for the three missions in question.
The detection domains of orbit solutions lie below these tri-
angles. We assumed the mission-average accuracy measure
� in Eq. B3 to be twice the expected sky-average �� accu-
racy of parallaxes, taken from the NASA SMEX proposal for
AMEX, (ESA-SCI(2000)4) for GAIA, and (Unwin 2000) for
SIM. The upper limit ��	
 for SIM is magnitude- and spec-
tral type-independent, since with this pointing mission, the
nominal accuracy of parallaxes (� � �as) can be achieved
by picking suitable exposure times. As mentioned in Ap-
pendix A, the calculated upper detectability limits approx-
imately correspond to the 95% confidence level; therefore,
the smallest detected accelerations will have a probability of
0.95. Such moderately reliable detections are of interest for
the AMEX mission that would precede the more accurate
pointing SIM mission and select suitable targets for planet

 GAIA
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Fig. 3. Detectable orbits of a ������ companion (brown dwarf).
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Fig. 4. Detectable orbits of a ������� companion (a Jupiter).

detection. The upper limit of detection at a 99% confidence
is � ��� times lower in � than the boundaries in Figs. 1-5.

The figures also show the approximate lower limits of de-
tectable semimajor axes for orbit solutions, although such so-
lutions are not considered in detail in this paper. The thin dot-
dashed lines in Figs. 1-5 indicate the lower limit of approx-
imate 95%-confidence detection domains for G2V primary
stars with orbital solutions. It is obtained from the simple re-
quirement that the average astrometric excursion should be
larger than �	���� (cf. Appendix 2; 0.87 is an average pro-
jection factor). Thus, at a given distance, and for a given
primary and companion mass, the astrometric sensitivity in-
creases with semimajor axis, provided at least one full period
is observed. However, once only a fraction of a period can be
observed, the astrometric sensitivity decreases with increas-
ing semimajor axis, because the observed motion becomes
more linear. As the distance increases, the width of the regime
of detectable semimajor axes narrows, since the observational
scatter corresponds to an increasing linear scale. Thus there
is a reduced range of semimajor axes that are greater than
the scatter but less than that for which the orbital motion is
statistically indistinguishable from a straight line.

Eisner & Kulkarni (2001) investigated the long-period
regime from a different perspective, examining how the pa-
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Fig. 5. Detectable orbits of a ������� companion (a Jupiter).

rameters for a simple orbital fit evolve as the period increases
beyond the span of the observations. They considered several
cases of circular orbits with known inclinations; the analy-
sis in our paper corresponds most closely to what Eisner &
Kulkarni would call “type II errors” for either face-on or in-
clined orbits. From geometric considerations, they obtain a
measure of the signal amplitude required for detection (their
eq. 25) that is quadratic in �	� for � 

 � , where � is
the orbital period and � is the time span of the observations.
A little algebra shows that our upper limit for the semima-
jor axis, �, in eq. B3, which is proportional to �	

�
distance,

is consistent with an astrometric signature that must increase
as ��	� �� for detection (all other things being equal). Eis-
ner & Kulkarni test their analytic formulas with numerical
simulations. For the face-on and inclined circular orbits their
simulation results (their Figs. 6 and 9) actually seem to in-
dicate a required amplitude that increases approximately as
��	� ���
. It is unclear to what extent this somewhat more
optimistic result is affected by the fact that they apparently
did not solve for the period (curvature) of the orbits that they
generated.

3. Conclusions

AMEX will be able to detect curved paths of solar-type stars
(G2V) due to the presence of a low-mass brown dwarf out to
distances � �� pc. This spectral type is optimal for a search
of binary brown dwarfs with AMEX. The range of detectable
orbits at � � �� pc is 5 to 10 AU. AMEX will be able, in
principle, detect the influence of Jupiter-mass planets around
G2V stars out to� 	 pc, and out to� � pc around M2V stars,
but the range of orbit sizes is fairly small at � � 	 pc, 3 to 4
AU. The actual prospect of such detections are defined by the
rate of jupiters in the immediate Solar neighborhood.

GAIA will improve on the detectability limits roughly a
factor of 15. Brown dwarfs at low orbits will be detectable
out to distances� ��� pc, and jupiters to� ��� pc, for solar-
type stars. Conversely, these objects may generate difficul-
ties in the data reduction, requiring more complex models.
The rate of acceleration detection will grow at least a factor

3300, with respect to AMEX. Quist (2001) conducted exten-
sive simulations of the detectability rates of binary stars for
GAIA, using a Galaxy model and provisional data reduction
models. It follows from his simulations, that more than half of
all ������ companions around stars brighter than M2V with
periods between 15 and 40 years will be safely detected with
GAIA (confidence 99.87%). The cubic model, that includes
also the second derivative of proper motion, can sometimes
detect more companions at smaller orbital periods, than the
quadratic model considered in this paper, but it is practically
useless, since at these smaller periods, the orbital model will
always have a higher detection rate.

SIM will have moderate chances to detect Jupiter-mass
planets around late-type dwarfs out to distances � ��� pc,
and excellent chances out to � ��� pc. But since there are
perhaps a hundred million M dwarfs within 1 kpc, SIM will
be able to observe only a tiny fraction of them. A precursor,
survey-type mission is therefore desirable, that would help to
select the most promising targets.
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Appendix A: Simplified development of proper
motion estimation

In this section we develop a simple model of how analysis of
astrometric observations for stellar proper motion determina-
tion can become contaminated by an unmodeled acceleration.
The objective is to provide approximate expressions that will
allow us to determine the order of magnitude of the effect as
well as its qualitative nature.

The equation of motion of a body can be expressed as a
Taylor series in vector form as

P��� � 
P� � 
V���

�
�

Z�� � � � � (A1)

where 
P� and 
V� are the body’s position and velocity at time
� � �, and 
Z is the acceleration. For a star where the ac-
celeration is due to the gravitational attraction of a compan-
ion (either seen or unseen), 
Z � �
�	��� ��, where 
 is
the constant of gravitation and � and � are the mass and
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distance of the companion. The unit vector �� points toward
the companion. If we assume a constant acceleration — i.e.,
truncate eq. A1 after the third term — we are limited to con-
sidering a small segment of the orbit. This is the problem we
wish to investigate: the parabolic approximation constitutes a
“weak curvature” case.

Let the star’s motion, projected onto the plane of the sky,
be 
p���. The plane of the sky is orthogonal to the line of sight
unit vector �n, so we have


p��� � 
P���� �
P��� � �n��n
� �
P� � 
V���

�
�

Z���� ��
P� � 
V���

�
�

Z��� � �n��n

� 
P� � 
V���
�
�

Z�� � �
P� � �n��n� �
V� � �n���n

� �
�
�
Z � �n� ���n

� 

P� � �
P� � �n��n� � 

V� � �
V� � �n��n��
� �

�


Z� �
Z � �n��n� �� (A2)

That is, the star’s motion in the plane of the sky can be
represented as


p��� � 
p� � 
v��� �
�

z �� (A3)

where 
p� is 
P� projected onto the sky � 
P� � �
P� � �n��n

v� is 
V� projected onto the sky � 
V� � �
V� � �n��n

z is 
Z projected onto the sky � 
Z� �
Z � �n��n

The vectors 
p���� 
p�� 
v�� and 
z have no component along the
line of sight �n and are therefore 2-vectors in a coordinate sys-
tem on the plane of the sky.

In standard current practice, a star’s motion is expressed
as 
p���� � 
p�� � 
v��. Here, 
v� represents the star’s proper mo-
tion as conventionally defined — assumed constant, hence
without subscript. (In this development we are ignoring terms
for the curvature of the sky and are assuming that aberration
and parallax have already been removed from the data.) It
is tempting to think of eq. A3 as a simple extension of the
conventional expression, carried to higher order. But 
v� in
eq. A3 does not correspond to proper motion. For a gravita-
tionally bound binary, proper motion properly refers to the
projection on the sky of the (constant) space velocity of the
center of mass of the system. In eq. A3, 
v� is the instanta-
neous linear component of the star’s apparent motion, which
is the sum of the proper motion of system plus the projected
orbital velocity of the star (at �=0) around the center of mass.
Determination of the true proper motion of the system would
require observations of the star spanning nearly an orbital pe-
riod, or observations of both the star and its companion over
a shorter period together with an estimate of their mass ratio.

But here we wish to consider a series of observations
where the orbital motion of the star is not obvious. Consider
an observation of the star’s position, 
p�, taken at time ��, with
a measurement error 
e� (all vectors are now in the plane of
the sky). Then 
p� � 
p� �
v��� � �

�

z��� �
e�. But if we have no

knowledge of the acceleration, we will model the star’s mo-
tion in the conventional way as 
p���� � 
p���
v�� (see Fig. A1).
The difference between the observation and this incomplete
model of the star’s motion at time �� is then


e�� � 
p� � 
v��� � �
�

z��� �
e� � 
p�� � 
v��� (A4)

Compared to our incomplete model, the observation will ap-
pear to be in error by an amount 
e��. This error is the sum of the
random error of observation and the systematic error resulting
from the use of the incorrect model. Despite the fact that it is
not a purely stochastic quantity, it provides a basis for investi-
gating what would happen if the incomplete model were fit to
a set of � two-dimensional observations using least squares.
Let us take the common situation where the measurement er-
rors 
e� are assumed to all have approximately the same mag-
nitude ��� and the observations are therefore all given unit
weight. In such a case, the quantity that would be minimized
is the sum of 
e��� over all observations. The method would
determine the position 
p�� (at time �=0) and proper motion 
v�

that minimize
�


e��� . The quantities 
p�� and 
v� are not partic-
ularly interesting in themselves, but the differences between
these quantities and the corresponding ones from eq. A3 for
this case are key to further analysis. That is, we are interested
in �
p � 
p��
p�� and �
v � 
v��
v�. These quantities measure
in some sense the “error” in the position-at-epoch and proper
motion derived from the linear fit.

One can perform a standard least-squares analysis of this
case, which amounts to the fit of a straight line to a series of
observations along a parabola; see Kaplan (2002). We obtain

�
p � �
��

z� � and �
v � � �

�

z� (A5)

Since the vectors �
p, �
v, and 
z are collinear, we can dis-
pense with the vector notation and use use the symbols ��,
��, and � for the vector magnitudes. Equation A5 then be-
comes

�� � �
��
�� � and �� � ��

�
�� (A6)

The difference between the actual position of the star and
that computed from the linear model at time � is in the direc-
tion of 
z. The acceleration 
z is always toward the companion,
and for 
z to be considered essentially constant, the compan-
ion must be sufficiently far away that neither its direction nor
distance change significantly over the short orbital arc we are
considering. The magnitude of the difference between the ac-
tual motion and the linear model is

Æ � ������� �
�
��� � �

��
�� � � �

�
�� �� �

�
��� (A7)

This equation also holds for the individual components of
the motion. The function Æ has an extremum (�Æ	��=0) at
�=�	�, in the middle of the span of observations, where
Æ � ��� �	�	. At the beginning and end of the span of ob-
servations (�=0 and �=� ), Æ � �� �	��. The total range of Æ
over the time interval of interest is thus �� �	�. The locus of
actual motion of the star on the sky crosses the least-squares-
determined straight line where the Æ function has zeros, at
� � �	����	�� � ������ and ������ . See Fig. A1.

We will refer to �� �	�	, which is the absolute value of
Æ at � � �	�, as the amplitude of the modeling error from
the linear approximation, designated by �. The total range
of Æ over the time span of interest is ��. In the following
developments we will use � as the metric for determining
the sensitivity of the � observations to the acceleration. Intu-
itively, it would seem that if � is a few times ���	�� , where
��� is the mean error of a single observation (unit weight),
then the observations should be at least marginally sensitive
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to the acceleration. More precisely, if we compute the ratio
of the post-fit sum-of-squares�� for the linear and quadratic
models, expressed as a function of �, we can use an F-test to
determine the significance of the acceleration term.

The post-fit sum-of-squares for the case of the linear fit to
accelerated motion is

�� � �� �
���

��� �� �

��
���

��� (A8)

Here, the �� are the lengths of the 2D error vectors, that is,
��� � 
e� � 
e�. But ��� is defined such that

��
��� �

�
� � �����,

so eq. A8 becomes

�� � �

�
�

���
��� � � ����

�
(A9)

and the fractional increase in �� (the “extra sum of squares”)
due to the modeling error from the linear approximation (and
assuming no other modeling errors) would be

���

��
�

�

���

��� �

���� �

�
�

����

�� �

���
��

�
�

�

���
��

(A10)

where � and ��� are expressed in the same angular units, and
� is the previously defined amplitude of the modeling error,
�� �	�	. Suppose we set � � ����	�� , where � is a fac-
tor to be determined; then the fractional increase in �� is
��	� . The ratio � that is subject to the F-test is the frac-
tional increase in �� (= fractional increase in ��, since all
observations have a an uncertainty of ���) times the number
of degrees of freedom, �, in the quadratic fit (see, e.g., Bev-
ington & Robinson 1992, eq. 11.50):

� �
���

��	�
�

��

�
� (A11)

If � is sufficiently large that � � � , then � � ��. For
an F-test probability of 95%, � would have to be about 4
for a wide range of degrees of freedom (�=4.17 for �=30,
3.92 for �=120, 3.84 for �=�). Thus we require � � �, i.e.,
� � ����	�� . This result is not surprising, since a �� value
for a model parameter determined from Gaussian-distributed
data has a 95% chance of being significantly different from
zero. If we wish a more stringent test, we can always set �=3
(probability
 99%); the value of � can be adjusted according
to the acceptable ratio of false positives / false negatives in the
results.

Appendix B: Estimating the magnitude of the
effect

This section provides an assessment of the magnitude of
the unmodeled acceleration effect that may be detected with
a given mission-average precision of astrometric measure-
ments. The detectable orbits have apparent loci with a range
of curvatures. The development given above treats the statis-
tics of stellar loci at the weak curvature limit — those repre-
senting a very small part (a few percent) of a binary orbital
period. The strong curvature limit might be plausibly defined
by the point at which a reliable orbital solution becomes fea-
sible. That point will be somewhat arbitrarily defined here as

Fig. A1. Representation of a single component of a star’s space mo-
tion as a function of time. The true, accelerated motion between
times 0 and T is indicated by the solid line (the acceleration compo-
nent is ��). Observational measurements are indicated that are uni-
formly distributed in time and normally distributed about the true
path of the star. The dashed line is the least-squares straight-line fit
to the motion, assuming equally weighted observations. Various pa-
rameters of the fit are shown.

being half an orbital period, although preliminary orbital so-
lutions are often formed from observations spanning much
less time.

To assess the practical effect of unmodeled accelerations,
a reasonable approach is to compare, for each candidate bi-
nary system, the amplitude of the linear-track modeling error,
�, to some detection criterion � that we are free to choose. The
results of Appendix A show that a reasonable choice for � is
����	�� , where ��� is the mean error of a single observation
and � is the number of observations. (More correctly, the de-
nominator should be

�
�, where � is the number of degrees of

freedom in the quadratic solution, but we are assuming that
� is sufficiently large that � � � .)

The value of the modeling error � is defined for a specific
time period of duration � , and we will use the expression
� � �� �	�	 from Appendix A. Although this expression
somewhat underestimates the effect of orbital motion on the
data for stars that traverse a significant fraction of their orbits
in time � , it is the appropriate expression to use for the weak
curvature limit.

Our task, then, is to determine over what range of con-
ditions � 
 �. Since � is proportional to the star’s projected
acceleration on the sky, �, we must first relate � to the mag-
nitude of the true acceleration of the star in 3-space, 	
Z	. The
true acceleration can be expressed in terms of the physical
parameters of the binary system, and we can then use what is
known about the distribution of these physical parameters to
estimate the frequency of significant acceleration effects on
astrometric data.

The magnitude of the acceleration projected onto the
plane of the sky is related to the magnitude of the true 3-D
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acceleration vector by � � ���� ��	
Z		�, where � is the an-
gle between the direction of 
Z and the line of sight, and � is
the distance to the star. The parallax, �, is �	�, so our � 
 �
condition becomes
�

�	
���� �� 	
Z	� � � 
 � (B1)

The acceleration magnitude is related to the physical state of
the binary system through 	
Z	 � 
�	��, where � is the
instantaneous distance between components, and � is either
(a) the mass of the companion, if the star’s motion is mea-
sured in an inertial system, or (b) the total mass of the system,
if the motion is measured with respect to the companion. If
we use units of AU, years, and solar masses, the gravitational
constant 
 � 	�� and the true acceleration 	
Z	 is expressed
in AU year��. If � is in parsecs and � in arcseconds, then � is
in units of arcsec year�� and � is in arcsec.

The distance � is obviously closely related to the semi-
major axis of the orbit, �. If we write � � ���	�� (for rea-
sons that will become apparent shortly) our condition for de-
tection of weak curvatures becomes

	�� ���� ��� � � �

�	
�
�
�
�
�

��� 
 � (B2)

The strong curvature limit is defined by � 
 �� , where � is
the orbital period, given by � � ����	

�
� , where � is the

total mass of the system. For this limit we therefore have the
condition ����	

�
� 
 �� . Rearranging the expressions for

the weak and strong curvature limits, we obtain the limits on
the semimajor axis that define the fraction of stars of interest:

��� �������� � � �
���
�
�

�
�
� ��� �

�

���� 	�
�


���
(B3)

Note that � on the left and right sides can have different
meanings: on the left it is always the total mass of the sys-
tem; on the right it is the total mass of the system only if the
motion of the star is measured with respect to its companion.
If the star’s motion is measured with respect to an inertial
frame, then � on the right is the mass of the companion. The
expressions therefore can be used for investigating planet de-
tection by the astrometric method, in the long-period limit,
simply by setting � on the right side to be the planet’s pre-
sumed mass.

We have chosen � � ����	�� , which is twice the 1�
uncertainty of any angular variable derived from the obser-
vations (assuming � � �). Therefore, the quantity �	� ap-
pearing on the right side of eq. B3 can be thought of as half
the signal-to-noise ratio of the parallax: �	� � �

�
�	��. (This

holds only for the case where the parallax of the star is deter-
mined using the same set of observations used for the proper

motion and acceleration determination.) If we fix the �	��
ratio, eq. B3 provides the semimajor axis limits for stars
in a certain distance shell; for example, if we wish to con-
sider stars with parallaxes good to 10% (�	�� � ��) when
�� � ���� arcsec, we will obtain the limits on � for stars
at a distance of approximately 100 pc. It is interesting to
note in this regard that if we have a parallax-limited sam-
ple of stars uniformly distributed through space, the average
parallax is only 1.5 times the minimum parallax. In such a
case, and assuming that the minimum parallax is ��, then
�	� � � for most stars in the sample, and the upper limit
on � will generally be quite restricted. However, most cata-
logs are magnitude-limited and their stellar distributions are
much more concentrated toward the Sun. In such catalogs,
and in special samples of nearby stars, there will be enough
stars with �	� 
 � to provide a useful range of detectable
semimajor axes.

To assess quantitatively how many stars fall between the
limits defined by eq. B3, we need to know something about
the distributions of ��� �, �, � , and �	�. Two of the four dis-
tributions, for ��� � and �	�, are easy to deal with. Although
the projection factor

�
��� � is unknown for any specific bi-

nary system, we can assume that the direction of the vector
separating the two components is randomly distributed over
4� steradians. For such a distribution, the average projection
factor is ����, the median projection is 0.71. Therefore we
can adopt ���� as the average value of the projection factor�
��� �, with some confidence that the average is also typical.

The distribution of �	� values presents a similar situa-
tion. For circular orbits, �	�=1 at all times. For stars in ec-
centric orbits,�	� varies between 1–� and 1+�, where � is the
orbital eccentricity. However, binary stars spend more time
near apastron than periastron, and over an orbital period the
average value of�	� is �� �

�
��. Since this ratio can only take

on values between 1 and 1.5, we can adopt an average value
of �	� of 1.3 without much concern about the distribution of
eccentricities.

Inserting the appropriate numerical quantities, eq. B3 be-
comes

����� ������� � � � �����
	
�

�

�


���
(B4)

Since � � ���, the right side (upper limit to �) could also
be expressed as ����� �� �	���

���. As we expect, the range
of applicable � increases with � . For � � � and �	� � �,
��	 � � � ��� if � � �� and �	 � � � �� for � � ���.
These limits define the null set for � � ��� years for solar-
mass binaries where the parallax is at the limit of detection,
but do not preclude more massive or closer systems.


