
Technical Note

Celestial Pole Offsets:

Conversion from (dX ,dY ) to (dψ,dε)

George H. Kaplan
U.S. Naval Observatory

Version 3 — 2005 May

1 Introduction

Resolutions B1.6–B1.8 of the 2000 IAU General Assembly established the IAU 2000A precession-
nutation model, defined more precisely what is meant by the celestial pole, and provided a new
definition of UT1 in terms of an angle, θ, that directly measures the rotation of Earth in the celestial
reference system. These resolutions represent major changes in the way in which the instantaneous
orientation of the Earth is to be computed. In particular, the equinox is no longer a fundamental
reference point and sidereal time is no longer needed for this computation. However, Resolution
B1.8 contains the following provision: “. . .the IERS will continue to provide users with data and
algorithms for the conventional transformations.” Thus, the IERS (International Earth Rotation
and Reference Systems Service) has published a new expression for sidereal time consistent with
the new definition of UT1.

Among the data that the IERS has regularly published for the conventional transformations
are celestial pole offsets dψ and dε, representing the observed angular offset of the celestial pole
from its modelled position, expressed in terms of changes in ecliptic longitude and obliquity. These
parameters are simply the differential forms of the angles ∆ψ and ∆ε used to represent the position
of the celestial pole in the nutation theory. The IERS has interpreted the above provision of
Resolution B1.8 as requiring only that it supply dψ and dε values for the pre-2000 precession and
nutation models, i.e., Lieske et al. (1977) precession and Wahr (1979) nutation; furthermore, it has
stated its intention of discontinuing these data after 2005. The IERS publishes observed celestial
pole offsets with respect to the IAU 2000A precession-nutation model in terms of the parameters
dX and dY , which are small changes in the unit vector components of the celestial pole position.
This reflects the new IERS computational procedure whereby the pole position is expressed in
rectangular coordinates (X,Y ) with respect to the axes of the International Celestial Reference
System (ICRS)1 (with Z =

√
1−X2 − Y 2 ≈ 1). Thus, in the long term, only dX and dY will be

available from the IERS.

Because the IAU 2000A precession-nutation model matches modern VLBI observations quite
well, the magnitudes of the pole offsets are now of order 1 milliarcsecond (mas) or less, compared

1More correctly, with respect to the axes of the Geocentric Celestial Reference System (GCRS).
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to several tens of mas for the offsets from the previous models. Thus, some users may no longer
need the pole offsets for their applications. Nevertheless, it seems likely that most of those who
have been using the offsets will continue to do so.

Most existing software systems for positional astronomy applications use the “conventional
transformations”, that is, they express the series of rotations between the terrestrial and celestial
systems in terms of the familiar angular quantities based on the equinox and sidereal time. It is
possible to implement the IAU 2000A precession-nutation model and the new definition of UT1
without adopting the (X,Y ) coordinate scheme for the pole coordinates now used by the IERS.
Indeed, the new precession and nutation models still express the position of the pole in terms of
conventional angles, and the X and Y components must be obtained from the angular quantities.
Thus, there will likely be a continuing need to convert dX and dY values to the equivalent dψ and
dε values, even among those who implement the new IAU models.

2 Procedures

The conversion is trivial for epochs near J2000.0, when the celestial pole remains close to the ICRS
(GCRS) Z-axis. Then Z=1 to high precision and dX and dY are effectively angles (dZ ≈ 0). We
have for this case

dψ = dX/ sin ε

dε = dY (1)

where ε is the mean obliquity of the ecliptic of date (≈ J2000.0).

As the celestial pole precesses farther from the ICRS Z-axis, two effects must be accounted for.
First, dX and dY can no longer be considered angles as dZ becomes non-zero; second, the directions
corresponding to dψ and dε change with respect to the ICRS axes, according to the position of
the pole in the ICRS. The IERS Conventions (2003), Chapter 5, gives the following relationship in
eq. (23):

dX = dψ sin εA + (ψA cos ε0 − χA) dε

dY = dε− (ψA cos ε0 − χA) dψ sin εA (2)

where εA is the mean obliquity, and ψA and χA are accumulated precession angles, all evaluated
for the date of interest. The IERS Conventions gives expansions for εA, ψA and χA in eq. (32).
The above relation is said to be accurate to 1 microarcsecond (µas) over one century. Solving for
dψ and dε we obtain

dψ =
dX − fp dY

(1 + f2
p ) sin εA

dε =
fp dX + dY

1 + f2
p

(3)

where fp = ψA cos ε0−χA ≈ 0.02236T is the precession factor, where T is the number of centuries
from J2000.0. Note that we can still formally use milliarcsecond units for dX and dY — we simply
convert to radians and use the results as small changes to unit vector component values.
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It is useful to consider the more general case, where the celestial pole is many degrees away
from the ICRS Z-axis. The computed direction of the celestial pole in the ICRS, at time t, is given
by the unit vector n:

n(t) =




X(t)
Y (t)
Z(t)


 = BT PT(t) NT(t)




0
0
1




where BT is the dynamical-to-ICRS frame bias matrix, PT(t) is the precession matrix from date t
to J2000.0, NT(t) is the inverse nutation matrix (true-to-mean) for date t, and (0,0,1) is a vector
that here represents the position of the true (dynamical) celestial pole with respect to the true
(dynamical) equator of date. Dropping the explicit time dependence, the above equation becomes

n =




X
Y
Z


 = BT PT NT




0
0
1


 (4)

If we have the values of dX and dY for time t, we can add them respectively to X and Y to get
the position of the observed pole, no, in the ICRS:

no =




Xo

Y o

Zo


 =




X + dX
Y + dY
Z + dZ


 (5)

where
dZ = −

(
X

Z

)
dX −

(
Y

Z

)
dY and Zo =

√
1−X2

o − Y 2
o (6)

To obtain dψ and dε, we can use eq. (1), providing that all quantities are expressed with respect
to the mean equator and equinox of date. So we have to precess no and n from the ICRS to the
mean equator and equinox of date, difference them to form dX and dY in this system, then apply
eq. (1). That is, if we use primes (′) to indicate quantities in the equator-of-date system, we form
the vector

dn′ =




dX ′

dY ′

dZ ′


 = PB




X + dX
Y + dY
Z + dZ


−PB




X
Y
Z


 = PB




dX
dY
dZ


 ≈ P




dX
dY
dZ


 (7)

where P is the precession matrix from J2000.0 to date t and B is the ICRS-to-dynamical frame
bias matrix. In the rightmost expression, B is ignored; it works quite well because B is nearly the
identity matrix (total rotation ≈ 1×10−7 radian) and dX, dY , and dZ are also small and known
to only a few significant digits. With dX ′ and dY ′ in hand we compute

dψ = dX ′/ sin ε

dε = dY ′ (8)

where ε is the mean obliquity of the ecliptic of date t.

Equations (7) and (8) look simple enough, but remember that dZ is not provided by the IERS
and must be obtained from eq. (6), which in turn requires the values of X, Y , and Z obtained
from eq. (4). Two shortcuts to obtaining dZ are possible, both of which are restricted to centuries
near J2000.0. In the first, we approximate the components of the pole vector n as follows: X =
2004 ′′.19T , Y = 0, Z =

√
1−X2; this follows from the fact that, near J2000.0, the pole moves
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mostly in X at an angular rate of 2004 ′′.19/century (the rate of precession in declination). In effect,
this converts the expression for dZ in eq. (6) to

dZ = −
(

X +
1
2

X3
)

dX where X = 2004 ′′.19 T (9)

The other shortcut is to simply set dZ = 0.

3 Results

We end up with four possible procedures for converting dX and dY to dψ and dε:

• Apply eqs. (7) & (8), obtaining dZ from eq. (6), which in turn requires eq. (4);

• Apply eqs. (7) & (8), obtaining dZ from eq. (9);

• Apply eqs. (7) & (8), setting dZ=0; or

• Apply eq. (3).

The precision of the procedures decreases in the order listed. The first is rigorous, although it
seems somewhat awkward, requiring both a “forward” and “backward” application of precession.
The second (dZ from eq. (9)) has errors well below 1 µas for years 1700 through 2300. The third
(dZ=0) has errors reaching a few µas over the same time period. The fourth, derived from the
expression in the IERS Standards, can have errors of about 10 µas over that time. For the two
centuries 1900 through 2100, the errors exceed 1 µas only for the last procedure, and in that case
not by much. These are errors in dψ (without a sin ε factor) and dε and were computed using
random input values of dX and dY of order 1 mas.

Obviously these errors are quite small for any of the procedures, considering that the observa-
tional uncertainties in the celestial pole offsets are currently at about the 300 µas level for IERS
data. Also, of course, celestial pole offsets in any form have been available only for the past few
decades, so a development designed to deal with values for, say, year 2200 is clearly an academic
exercise. However, outlining a rigorous procedure for the (dX,dY ) to (dψ,dε) transformation is
useful for the record and provides a basis for evaluating more convenient, although approximate,
transformation schemes. Such a procedure might also become more appropriate in the future as
the observational precision increases.
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