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ABSTRACT

This paper discusses the correspondence between two approaches to astrometric observational
reductions: the approach based on angular observables used for optical observations, and the approach
based on the interferometric delay observable used for very long baseline radio interferometry (VLBI)
observations. A procedure is presented by which VLBI algorithms can be used for optical observations.
This scheme can help to guarantee consistent treatment of observational results in the two regimes. Dif-
ferences between angle- and delay-based algorithms in current use are shown to be less than 1 pas.
However, the physical models used as the bases for the algorithms must be improved to reach external

accuracies at such levels.
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1. INTRODUCTION

This paper discusses some important algorithms used in
wide-angle astrometry, defined here as the measurement of
the relative positions of celestial objects over angular scales
of a radian or more. Typically, a program of wide-angle
astrometry results in a catalog of positions (at some epoch)
and proper motions (if measurable) of some restricted class
of objects. Fundamental astrometry is a special form of
wide-angle astrometry in which the coordinate system of
the final catalog is tied to the celestial equator and the
equinox. The discussion in this paper applies to the more
general case and is not coordinate system dependent.

Specifically of interest here is the group of algorithms that
have become standard in accounting for the physical effects
traditionally called annual and diurnal aberration and
gravitational light bending. Currently achievable obser-
vational accuracies for wide-angle astrometry, of order 1
mas, require that these effects be correctly modeled at a
level of parts in 10° for aberration and 10* for light bending.
New observational techniques under development promise
to raise the accuracy requirements by several orders of mag-
nitude. These algorithms are important because they must
be applied to all wide-angle astrometric measurements,
whether ground- or space-based, and regardless of the dis-
tance of the objects observed.

The paper discusses the correspondence between two
approaches to astrometric observational reductions: the
approach based on angular observables used for optical
observations, and the approach based on the interferomet-
ric delay observable used for very long baseline radio inter-
ferometry (VLBI) observations. A procedure is presented by
which VLBI algorithms can be used for optical obser-
vations. This scheme can help to guarantee consistent treat-
ment of observational results that are often combined or
compared. It also allows for the evaluation of the precision
of the algorithms.

As used in this paper, precision refers to how well a math-
ematical representation of some effect corresponds to the
physical model constructed to account for it. Accuracy
refers to how well the physical model corresponds to reality.
Thus, an algorithm can be precise without being accurate, if,
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for example, a very exact mathematical development is used
to represent a relatively crude physical model. The tech-
nique that is the main subject of this paper provides infor-
mation on the precision of the algorithms involved but not
necessarily their accuracy. The accuracy of algorithms is
also obviously important, and will be touched on in § 10.
Section 2 provides some background information on
high-precision astrometry and the algorithms that support
it. Section 3 describes the algorithms used in optical astrom-
etry, while § 4 presents the comparable VLBI algorithms. In
§ 5, the procedure that allows the two kinds of algorithms to
be directly compared is developed. Section 6 describes how
the comparison software works, and § 7 presents numerical
results from the comparison. Section 8 shows how a modifi-
cation to an algorithm can be tested by the procedures
developed in the paper. Section 9 deals with the large-
aperture case, and § 10 provides a summary and conclusion.

2. BACKGROUND

A full discussion of the motivations for high-precision
wide-angle astrometry are beyond the scope of this paper,
but several recent IAU conferences have covered this
subject well; see Lieske & Abalakin (1990), Hughes, Smith,
& Kaplan (1991), or Hog & Seidelmann (1995). Suffice it
here to say that an important goal of this work has been the
construction of high-precision celestial reference frames in
various wavelength regimes and the determination of the
relationships between these reference frames. The primary
astrometric technique in the radio regime is very long base-
line interferometry, which now routinely provides large-
angle measurements with accuracies of ~1 mas or better
(Ma 1990; Jacobs & Sovers 1993; Johnston et al. 1995). In
the optical band, the Hipparcos satellite has determined
stellar positions with similar accuracies (Mignard 1995),
and ground-based interferometry may soon be competitive
(Hutter, Johnston, & Mozurkewich 1995). Several propo-
sals for space-based observing systems anticipate wide-
angle astrometry at the 5-50 pas level (Reasenberg et al.
1988; Lindegren & Perryman 1995; Seidelmann et al. 1995).

Although each astrometric observing program has
unique requirements, there are a number of physical and
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geometric effects that enter into the data reductions that are
common to all techniques. If high-precision reference
frames are to be aligned, it would seem desirable to have
some assurance that the data have been handled consistent-
ly. The International Earth Rotation Service (IERS) has
established standard models and algorithms (McCarthy
1992, 1996) that facilitate comparison of data within its
field. The IAU Working Group on Astronomical Standards
has been tasked with establishing standard astrometric
algorithms for the broader community (Fukushima 1995;
TIAU 1996).

This paper reports on the treatment of the physical effects
traditionally referred to as aberration and gravitational
light deflection. These names reflect a particular way of
conceptualizing these effects, one based on the point of view
of an observing system with a single, well-defined
location—that is, one with an aperture small compared
with the radius of Earth. For such a system, these effects
appear as small angular departures from the Euclidean
direction of an observed object. Practitioners of VLBI treat
these effects quite differently than do other observers, prin-
cipally because they use a very sparsely filled aperture, each
segment of which is separated from the others by distances
of thousands of kilometers. The relative motions of the
various parts of the total aperture are not negligible. The
observable in the VLBI case is the time difference (group
delay) between a wave front’s arrival at one segment of the
aperture and its arrival at another. Although the basic
framework for modeling the physical effects that we are
considering—special and general relativity—is the same in
the two cases, the algorithms used are actually quite differ-
ent. It is therefore fair to ask to what extent the VLBI
treatment is consistent, in practice, with the algorithms used
for small apertures.

3. TREATMENT USING ANGLE VARIABLES

The traditional treatment of stellar aberration can be
found in any textbook on spherical astronomy, for example,
Woolard & Clemence (1966) or Green (1985). Aberration is
the effect by which a moving observer sees an apparent
angular shift in the position of a fixed light source. Of
course, for unaccelerated motion, one can simply shift refer-
ence frames so that the observer is at rest and the effect
appears as a light-time problem. In the solar system, accel-
erations are small (spacetime is nearly flat), and such a shift
in reference frames can simplify the computations when
high precision is not required. For example, in computing
the positions of planets as seen from Earth, it was for many
years a common practice to combine aberration and light-
time effects into “planetary aberration,” which is actually
based on a light-time perspective (Hohenkerk et al. 1992).
For stars, however, the light time is unknown (or considered
irrelevant), and it is more convenient to treat them as fixed
for this purpose and to adjust their apparent positions for
the motion of Earth relative to the solar system barycenter.
Hence the name “annual aberration” when the effect is
treated from this perspective.

In recent years, high precision has become more impor-
tant and computational shortcuts unnecessary. Light time
and aberration are handled separately, and both computa-
tions are carried out using the (assumed inertial) frame of
the solar system barycenter. This allows the inclusion of the
relativistic deflection of light in the Sun’s gravitational field.
The computations are properly carried out in the following
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order: light time, gravitational deflection, aberration. The
algorithms effectively follow a photon from a moving
source to a moving observer. Thus, the computations
implicitly assume a point source and a point observer, both
with known coordinates and velocities with respect to the
solar system barycenter, in the relativistic metric being used.
In practice, the source coordinates are obtained from an
ephemeris (for solar system bodies) or from catalog data (for
stars and other bodies outside the solar system). The entire
procedure is described by Kaplan et al. (1989) and
Hohenkerk et al. (1992), and summarized below; the formu-
lae for gravitational deflection and relativistic aberration
are based on the developments of Murray (1983; for an
independent derivation, see Soffel 1989). Refraction due to
Earth’s atmosphere is ignored.

The following notation will be used: The vectors K, S, E,
and R represent the positions of the observed body (planet
or star), Sun, Earth, and observer, respectively, with corre-
sponding unit vectors £, s, e, and r. Unsubscripted vectors
are relative to an origin at the solar system barycenter;
subscripts S, E, and R, when used, denote a coordinate
origin at the Sun, Earth, and observer, respectively. Unless
otherwise noted, these vectors all apply to the (coordinate)
time of observation t. Isotropic coordinates are assumed.
The vector R can be considered to be the sum of Earth’s
barycentric position vector and the observer’s geocentric
position vector: R = E + R.

The geometric (Euclidean) position of the object with
respect to the observer is K = K — R, where both K and R
are evaluated at time . The corresponding unit vector in the
geometric direction of the object is kz. A first approx-
imation to the light time, At, between a solar system object
and the observer is given by At =|Ky|/c. Adjusting the
position vector of the observed planet for light time is then
accomplished by iteratively evaluating the two formulae
K = K(t — At) — R(¢) and At = | Kg|/c until convergence.
The vector K} is then the position of the planet relative to
the observer, accounting for light time—that is, it is the
vector connecting the observer at time ¢ (light arrival) with
the observed planet at time ¢ — At (light departure). This
pair of formulae applies only to angular measurements; it is
too simple for ranging measurements, which are two-way
and require an additional relativistic term. The neglected
term accounts for the “Shapiro delay,” the extra light time
due to the Sun’s gravitational field (Shapiro 1964), which
affects the angular coordinates of the planets only at the
microarcsecond level, and then only near the solar limb.

For stars or other bodies outside the solar system, the
light time and its time derivative are assumed to be irrele-
vant and are not computed. More specifically, they are
assumed to be implicitly included in the catalog quantities.
That is, for stars, Kz = Kz = K(t) — R(t), where K(t) is the
geometric position vector of the star, with respect to the
solar system barycenter, at the epoch of observation, calcu-
lated from the catalog position, proper motion, parallax,
and radial velocity. In the stellar case, then, kz = kg. For
objects effectively at infinity (parallax unmeasurable), k =
kp=kg=ks=k

To compute the relativistic deflection of light in the Sun’s
gravitational field, we will define the vectors Ry =R — S,
representing the heliocentric position of the observer, and
Ky = Ky + R, the heliocentric position of the observed
body, corrected for light time to the observer. The unit
vectors kp, kg, and rg correspond to the position vectors Ky,
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K, and Rg; the quantity R represents the magnitude of Ry,
the distance of the observer from the Sun. Then the unit
vector k%, representing the apparent direction of the body
seen by the observer, accounting for both light time and
gravitational deflection, is given by

2GM (kg - kg)rs — (rs * ki)ks
R 1+ kg - rg

ki =k + , (1)

where G is the gravitational constant, M ; is the mass of the
Sun, and c is the speed of light. The apparent angular deflec-
tion seen by the observer is radially outward from the Sun.
A spherical gravitational field has been assumed. The mag-
nitude of the angular deflection given by equation (1) is
A¢ = g tan (/2), where g = 2GM /c*Rg ~ 4 mas and V) is
the heliocentric angle between the directions of Earth and
the observed body. As noted by Shapiro (1967), this relation
is odd in that it does not depend on the distance of the body
observed. With the appropriate change of variables,
equation (1) can be easily applied to gravitating bodies
other than the Sun (including Earth itself), and the total
deflection can be approximated to high accuracy by the
sum of the individual deflections.

Aberration can be computed as follows: Let R be the
velocity vector (speed R) of the observer with respect to the
solar system barycenter. The unit vector in the apparent
direction of the body, as seen by the observer, adjusted for
light time, gravitational deflection, and aberration, is

ki = (nky + xR/c) ()

where the angle brackets imply normalization (to unit
length). Classically, # = k = 1. Since the barycentric veloc-
ity of the observer R is the sum of the barycentric velocity of
Earth and the geocentric velocity of the observer, both
annual and diurnal aberration have been included. For
Earth-based observers the classical formula is good to
about 0.5 mas, quite adequate for most applications. When
the aberration formula is developed using a Lorentz trans-
formation, we have

B=Rjc, y=1//1-p,

cos 0 =k - R/R,
n=y" '/l +Bcosb),

K=<1+ lﬂ_to;_01>/(1+ﬂcos 9). 3)

The apparent angular deflection of the observed body’s
direction is toward the direction of the observer’s motion
and is independent of the object’s distance. The magnitude
of the deflection is approximately Af = (R/c) sin 0, where 6
is the angle, at the observer, between the direction of motion
and the direction of the observed body (as defined by k%).
For observers on Earth, R/c ~ 107 % ~ 21".

The unit vector k% defines the “apparent place” of the
planet or star; if there were no atmospheric refraction, it
would define the point on the sky where the object would
appear to be. The above formulae, or their equivalents, have
come into widespread use. For example, the SLALIB
(Wallace 1994) and NOVAS (Kaplan 1990) astrometry soft-
ware packages implement them, and they have been used
for the reduction of the Hipparcos satellite observations

ALGORITHMS FOR ASTROMETRY 363

(Lindegren et al. 1992). They are also used for the prep-
aration of Apparent Places of Fundamental Stars (see
Lederle & Schwan 1984) and the Astronomical Almanac
(see pp. B36—B41). Although more accurate formulae have
been developed (e.g., Richter & Matzner 1982; Klioner &
Kopejkin 1992), these have not yet come into general use;
the next generation of astrometric satellites may require the
use of the more complex developments. It should be noted
that, for satellite astrometry, the computation of aberration
to 1 pas would require a determination of the satellite’s
velocity vector to 1.5 mm s~ 1, a technical challenge.

4. TREATMENT USING VLBI DELAY

For interferometers capable of making astrometric mea-
surements, the observable is the difference in arrival times of
a wave front at two receiving stations (telescopes, sidero-
stats, or antennas). For connected-element interferometers,
the time difference, 7, is often estimated in the following
way: First, the star’s apparent place in the sky, represented
by the unit vector k%, is computed as in § 3. (Again, we are
ignoring the refraction of Earth’s atmosphere.) For this cal-
culation, one has to choose coordinates for the location of
the observer, so a point somewhere on the baseline connect-
ing the two stations, the “phase center ” of the interferome-
ter, is used. Once the apparent place is computed, in some
celestial coordinate system, the baseline vector is trans-
formed via a series of rotations to the same system; it
becomes the vector B(f), which rotates with Earth. The
instantaneous delay, t, is then simply T = — B(t) - kg/c if
both the baseline B and delay t are defined in the same
sense, €.g., station 2 minus station 1. Note that the measured
delay divided by the length of the baseline in light time is
simply the direction cosine of the apparent stellar direction
with respect to the instantaneous baseline direction.

It may not be immediately obvious that this approach
remains valid as the length of the interferometer baseline
increases. At some level of accuracy, and for some baseline
lengths, it would seem that we should account for the fact
that the two stations are actually in two different reference
frames. The VLBI community deals with station separa-
tions of many thousands of kilometers, and the computa-
tion of VLBI delay has always been performed entirely in
the time domain. The apparent place of the source is not
used. Aberration is replaced in this paradigm by the
“retarded baseline” effect, which is the motion of the
second antenna after the wave front passes the first antenna
but before it reaches the second. The gravitational deflec-
tion of light appears as the differential Shapiro delay—a
small difference in the gravitational retardation of the wave
front at the two antennas due to the slightly different paths
through the solar system.

There have been a number of developments of the VLBI
delay observable, for example, by Robertson (1975),
Hellings (1986), Zhu & Groten (1991), Shapiro (reported in
Ryan 1991), Shahid-Saless, Hellings, & Ashby (1991), and
Soffel et al. (1991). A consensus model for use in geodetic-
astrometric VLBI experiments emerged from a workshop
held in 1990 (Eubanks 1991a). We will continue to use the
notation introduced in § 3. The wave front arrival times at
stations 1 and 2 are t, and t,, and the delay is then 7 = ¢,

— t,. If we use (barycentric) position vectors R, and R, for
stations 1 and 2, respectively, then the baseline vector that
connects the stations at time t, is B(t;) = R,(¢t;) — R,(t,).
The consensus model for the delay for an infinitely distant
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object, as presented in the standards documents of the IERS
(McCarthy 1992, 1996), expressed in our notation, is

k- B(t
‘EEz{Atg—#

><|:1—(1+y)U—iZ<E—E-R2E):|
c 2

E- B(t,) k-E koo
- <1+ > )}/[1+; (E+R2E)], @)

where the quantities on the right-hand side are all evaluated
at time t,. This equation holds for observed objects effec-
tively at infinity (far outside the solar system). The delay, g,
is expressed in a geocentric coordinate time such as TAI
(hence the subscript). The vector E is the velocity of the
geocenter with respect to the solar system barycenter; k is
the unit vector in the geometric direction of the object (for
objects at infinity k = kg = kg = kg, = kg,); R, is the geo-
centric velocity of the second antenna; U is the total gravi-
tational potential at the geocenter; and y is a parameterized
post-Newtonian (PPN) parameter (y=1 in general
relativity). Note that the vector sum E + R,_ in the denomi-
nator is equal to the barycentric velocity of station 2. The
quantity At, is the differential gravitational delay, calcu-
lated for the Sun’s field using

GM k-R, +|R,|
At = (1 @1 1s 1s 5
g ( +y) c3 n(k'st+|st| ’ ()

where the position vectors of the two stations, R, and R,
are with respect to the Sun. Just as in the computation of
gravitational light bending in the angle-variable case, equa-
tion (5) can be easily generalized to gravitating bodies other
than the Sun; the total differential gravitational delay is
found by summing over all the gravitating bodies relevant
for a particular observational geometry and accuracy.

For an observed body within the solar system, equations
(4) and (5) must be modified. For such an object we can
compute K’, its barycentric position vector corrected for
light time, as in § 3. The corresponding position vectors of
the observed body with respect to the Sun and stations 1
and 2 are, in our notation, Kg, Ky,, and Kg,, respectively.
Equation (4) is based on plane wave fronts, but for solar
system bodies the wave fronts are spherical, with center at
position K'. The first-order delay, the factor —k - B(t,)/c
in the numerator of equation (4), is effectively replaced by
[IK — R,(t))| — | K" — R(t,)|1/c (for a complete develop-
ment, see Sovers & Jacobs 1996). As we will see, for the
purposes of this paper this effect is irrelevant, but the gener-
alization of equation (5) for bodies of finite distance is not.
Using the development given in Hellings (1986), we obtain

o3

X [1n<klR1 Ryt |R15|> + ln<k,R2 s+ |Ké|>:| , (6)
kIRZ.R25+|RZS| kl1{1'Ké+|Ké|
where k, and k%, are the unit vectors corresponding to
position vectors K, and Ky, .
Furthermore, because equation (5) is the result of a first-
order development (straight-line photon trajectories), it

requires an additional term for sources observed close to
the Sun. This term, as given in the IERS documents, for

At, =(1+7)
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sources at infinity is

G2M?

_ B(t,) - (ris + k)
ot,=(1+7)? =

(k.Rls + |Rls|)2 ’

where r, is the unit vector corresponding to R, . The quan-
tity ot is added to At, from equation (5). Equation (7) also
can be applied with small error to sources in the outer solar
system if & is replaced by kg, .

(7)

5. RECONCILING THE ANGLE- AND DELAY-VARIABLE
APPROACHES

Reconciling the angle- and delay-based algorithms is
based on a simple construction. We compute the geometric
direction of a star (infinitely distant) from a given point R,
on the surface of Earth; the spherical coordinates are (., 9).
That is, using the notation of § 3, we start with the unit
vector ky,, which, for objects at infinity, is the same as k.
Suppose we have an aperture plane orthogonal to k, = k,
passing through point R, with the maximum linear dimen-
sion of the aperture small compared with the radius of
Earth.

Within the traditional paradigm, the effects of the gravi-
tational deflection of light and aberration shift the apparent
direction of the object to kx,. That is, in the topocentric
frame of our aperture the wave fronts come from the direc-
tion k%, and there will be a linear gradient of phase across
the aperture. If the aperture is a focusing element, this phase
gradient produces, in the image plane, an offset of the point-
spread function (PSF) from the optical axis. Assuming that
we can point the aperture as precisely as needed, the offset
of the PSF from the optical axis can be measured, yielding
the differential angular coordinates (Ao and AJ) of the
apparent position of the object relative to its geometric
position. We can thus measure the effects of gravitational
light bending and aberration using a more or less direct
measurement of angle.

From another point of view, however, our aperture can
be regarded as simply an array of infinitesimal surface ele-
ments, any two of which are separated by a vector that can
be thought of as an interferometer baseline. An interfero-
metric delay can (in principle) be measured for each such
baseline, directly sampling, at two points, the phase gra-
dient across the aperture. In the topocentric frame, the
phase gradient results from the apparent tilt of the wave
fronts with respect to the aperture plane. As previously
noted, for connected-element interferometers, the delay is
usually computed using the angle between the baseline and
the apparent direction of the star. However, we can also
take the geocentric VLBI approach and compute the delay
without using any angles measured in the local frame.

The approach used here is to apply one of the VLBI delay
algorithms to two orthogonal baselines, B, and B,, which
are part of the small aperture and thus orthogonal to k3, =
k. The two baselines are of equal length B, with baseline B,
pointing in the direction of increasing right ascension and
B, pointing in the direction of increasing declination. The
baselines have the point R; as their common origin, with
the points at the opposite ends designated R,, and R,,,
respectively (see Fig. 1). These two baselines, together with
the unit vector £, effectively define an orthogonal basis for a
spherical polar (curvilinear) coordinate system at R,. This
construction allows us to immediately transform the com-
puted delay values for the two baselines to angular offsets



No. 1, 1998

7

To star

7
Optical Axis ~
r

P Aperture Plane

FiG. 1.—Geometry of baselines used in application of VLBI delay algo-
rithms. The baselines B, and B, are in the direction of increasing right

r

ascension and declination, respectively, as viewed from the common point
R,. Both baselines lie in the aperture plane that is orthogonal to &, which
points in the star’s geometric direction.

Ao and AJ, since either delay divided by B/c is the direction
cosine of the apparent stellar position with respect to the
baseline direction.

However, for the apparent position of the star computed
in such a way to be comparable to that computed from the
traditional approach, it must be expressed in the topocen-
tric frame of the aperture. That is, the delay values must be
expressed in what is essentially local proper time. Since
VLBI delay algorithms yield delay values for a geocentric
frame, some modification of the algorithms is required. For-
tunately, because in our construction B, and B, are orthog-
onal to k, some simplifications also arise. For example, for
our application, the VLBI delay algorithm represented by
equation (4) becomes

At, — [R, - B(t,)/c*1(1 + k- Ry/20)
R 1+ (ko) - (R, + Ry,)

The first term in square brackets in equation (4) does not
appear in equation (8), since k - B(t;) = 0. Equation (8)
yields the delay in local time, because it uses the barycentric
velocity of our basic reference point, R, in place of the
barycentric velocity of the geocenter, E. Similarly, the veloc-
ity of opposite end of the baseline is now measured with
respect to R, instead of the geocenter, that is, RZR has
replaced R,,. (Point R, can represent either R,, or R,,,
depending on which baseline’s delay is being computed.)
Note that the vector sum R, + R, in the denominator is
equal to the barycentric velocity of station 2, just as is the
corresponding sum in equation (4).

No changes are required in equation (5) or (6), since these
equations, standing alone, apply to the barycentric refer-
ence system. The quantity At is transformed into the geo-
centric or topocentric system by the action of the
denominator in equation (4) or (8), respectively.

Other VLBI delay algorithms can be used in the same
way and tested against the angle-variable algorithms. The
Soffel et al. (1991) algorithm reduces to, for the case at hand,

)

1 .
TRy = Atg - c_2 [R, - B(t,)]

1 : 1 .
x[l—yk-Rl)—;(k-Rle)]. ©)
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The Hellings (1986) algorithm reduces to an even simpler
form:

1. 1 .
TR, = At, — e [R, - B(tl)]|:1 + % (k- Rl):| . (10

Hellings also presents a slightly different form of the equa-
tion for the gravitational delay for an object at infinity:

GM [ (k + ri) - B(t,)
At, = — £ !
ty=—(1+7) R, [ Txkr, |’ (11)

where, if R, is a vector from the Sun to the observer, then
R, isits length and r,is the corresponding unit vector.

Finally, we must consider why, as previously asserted, we
can ignore spherical wave front effects for solar system
objects. The effects we are interested in here are linear in
baseline length for short baselines. This linearity means that
the local angle we obtain from the delay value is constant
over a wide range of baseline lengths. However, the extra
delay component due to the sphericity of wave fronts from
solar system objects is quadratic in baseline length. There-
fore, by reducing the size of our hypothetical aperture suffi-
ciently, we can make the delay component due to wave
front curvature negligible relative to the delay component
from the effects of interest. From another perspective, we
have limited ourselves to two baselines because that is the
minimum needed to determine an apparent direction in two
dimensions. If we were to use more baselines, then the
ensemble of delay values would allow us to easily solve for
and remove the delay component due to wave front curva-
ture. Therefore, for present purposes, wave front curvature
can be ignored and equations (8)—(10) used for solar system
objects by merely replacing k with k%, .

6. NUMERICAL EXPERIMENTS

The angle-variable and VLBI algorithms were quantitat-
ively compared by numerically implementing the strategy
outlined in § 5 for a group of celestial objects. That scheme
allows us to generate, from whatever VLBI algorithm is to
be tested, a topocentric apparent place—an angular posi-
tion in the reference frame of the small aperture. This posi-
tion can then be compared with a traditional apparent
place computed using the angle-variable algorithms
described in § 3.

Software was written to evaluate the reduced form of the
three VLBI delay algorithms: the IERS algorithm (eq. [8]),
the Soffel et al. algorithm (eq. [9]), and the Hellings algo-
rithm (eq. [10]). In the IERS and Soffel et al. algorithm
implementations, equation (6) was used for At for both
stars and solar system objects; it reduces to equation (5) for
objects at infinity. In the Hellings algorithm implementa-
tion, equation (11) was used for At, and the analysis was
limited to stars. The algorithms were applied to two equal-
length baselines orthogonal to each other and the geometric
direction of the object, as described in § 5 and shown in
Figure 1. The length of these baselines was an input vari-
able, typically in the range 1-100 m. Once the two delays
were computed, they were converted to Ao and Ad values as
described in § 5; these were added to the coordinates (o, d) of
the geometric direction of the object to form a “VLBI
apparent place.”

The software also evaluated, for the same object, the
topocentric angular position as affected by the gravitational
deflection of light and aberration, computed using the
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angle-variable algorithms given in § 3. Subroutines from the
NOVAS astrometric package (Kaplan 1990) were used,
which directly provide an apparent place of the object of
interest. This apparent place was then compared to the
VLBI apparent place. Differences were formed in o, J, and
arc.

Some of the details of this software should be mentioned.
First, the gravitational deflection of light was computed
using only the Sun’s field, since adding in the smaller effects
of other bodies—Jupiter or Earth, for example—does not
provide any information about the correctness of the basic
algorithm. Second, precession and nutation, which are
simply rotations of the reference frame, were not applied at
any point. All coordinates were therefore with respect to the
equator and equinox of J2000.0. Third, for solar system
objects, light time was computed using the procedure out-
lined in § 3 for both the angle-variable and VLBI algo-
rithms. (Note that for the purposes of this paper, light time
could have been omitted entirely.)

To ensure that the angle-variable algorithms from § 3
were correctly implemented, results from the NOVAS code
were compared with results from the corresponding code
from the SLALIB package (Wallace 1994). When the same
solar system ephemeris data were used in the calculations,
the differences in star positions were at the 10~ !° arcsec
level, which is numerical noise for angular values represent-
ed in IEEE double-precision floating-point format.

Attention was also given to the potential numerical prob-
lems of computing the VLBI delay for a very short baseline.
Difficulties can arise because of the near-equality of the
quantities R, and R, in equations (5) and (6), as well as the
near-equality of k%, and k%, in equation (6). If IEEE double-
precision floating-point arithmetic is used, then R, and R,
are represented to about 15 decimal digits of precision.
These vectors are heliocentric, and if the two positions they
represent are 10 m apart, the first 10 digits of the corre-
sponding components of the two vectors will be the same,
leaving only five digits of precision for the difference
between them. Similar considerations hold for k%, and kg, .
Equations (5) and (6) account for the effect of the Sun’s
gravitational field, which, in angular terms, is greater than
0”1 within 5° of the Sun. Therefore, near the Sun we would
expect numerical errors to appear at about the 10 uas level.
In early testing of the algorithm comparison, this was
observed. There are several strategies to avoid these errors.
One is to simply limit our comparison to longer baselines or
greater elongations. Another is to expand equations (5) and
(6) in small quantities; for example, equation (11) results
from an expansion of equation (5) in B=R,,— R,..
However, a first-order formula of this sort is not sufficiently
accurate. A more general and easily implemented solution
(if less elegant) is to simply use more numerical precision.
Therefore, equation (6) was implemented in extended-
precision (31 digit) arithmetic to avoid the numerical degen-
eracy. The success of this approach depends to some degree
on how the vectors involved are constructed, since the basic
solar system ephemerides are represented only in double-
precision floating-point words.

Each algorithm comparison was performed for 16,471
imaginary stars distributed around the celestial sphere at 2°
intervals of o and 8. A separate set of comparisons was
made within 15° of the Sun, where the imaginary stars were
at 3° intervals (beyond the solar limb). The proper motions
and parallaxes of these stars were assumed to be zero. Com-
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parisons were also performed for selected planets, using
barycentric coordinates obtained from the JPL DE200
ephemeris (Standish 1990). The planetary positions were
computed at half-day intervals over the 4 year period begin-
ning at 1995.0. For both the star and planet computations,
the barycentric position and velocity of Earth were also
obtained from DE200. The results from all of the computer
runs are described in the following section.

7. RESULTS AND DISCUSSION

For each VLBI algorithm that was tested, several types of
plots were generated. All-sky maps were produced that use
the shading at each point on the map to indicate the arc
difference between the VLBI apparent place and the con-
ventional apparent place, for an infinitely distant star at
that point. Maps showing the more densely sampled region
near the Sun were also generated. Supplementing these
maps were “flow diagrams” that showed the direction of
the differences between the algorithms across the sky. In
addition, for the Soffel et al. and IERS algorithms, plots
were produced showing the difference between the VLBI
apparent place and the conventional apparent place of
selected planets as a function of time. For the planet plots,
the algorithm differences in right ascension, declination,
and arc were plotted. Statistical data on the comparison
were also generated for each plot.

Although each of the all-sky maps was computed for a
specific geographic location and date, it was found that the
overall pattern of the algorithm differences on the sky, with
respect to the position of the Sun and the ecliptic, did not
vary significantly with time or place. Similarly, the planet
plots appeared to be insensitive to the observer’s location;
however, if an extended span of time was plotted, the curves
were seen to repeat with the synodic period of the planet.
The algorithm differences also did not depend on baseline
length for baselines <1 km, although numerical noise
began to appear below the microarcsecond level for these
short baselines (the long-baseline case is discussed in § 8). A
selection of the most revealing of the ensemble of plots is
shown as Figures 2-6, and their interpretation is described
below. Unless otherwise noted, all the plots used here were
computed for longitude — 120° and latitude 30°, using 100 m
VLBI baselines. The all-sky maps for the stellar case were
computed for 1996 May 1 at 0000 TT, while the planet plots
covered the years 1995 through 1998.

Figure 2 shows the all-sky difference map for the Hellings
algorithm. The positions of the Sun, the ecliptic pole, and
the apex of the observer’s instantaneous velocity are
marked. The shading is linear in the arc difference between
algorithms, with the black-to-white range representing dif-
ferences of 0—1 mas. The figure indicates a major difference
between the Hellings and angle-variable algorithms that
must be associated with aberration, since maxima occur in
two rings, 45° and 135° from the velocity apex. Further-
more, the direction of the difference at each point (not
shown in the figure) is aligned directly toward or away from
the velocity apex. However, the largest differences between
the Hellings and angle-variable algorithms actually occur
very close to the Sun (within the width of the Sun symbol on
the map) and reach 16 mas.

Differences between algorithms at such levels is signifi-
cant for modern astrometric applications. The Hellings
VLBI algorithm is a decade old, however, and its design
specification was “tenths of a nanosecond” in delay. As a
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Fic. 2—All-sky map showing the arc differences between star positions computed using the Hellings VLBI delay algorithm and the standard angle-
variable algorithms used in optical astrometry. These computations used a grid of artificial stars at infinity and 100 m VLBI baselines. The black-to-white
shading range represents differences of 0—1 mas. The positions of the Sun, the ecliptic pole (€), and the apex of the observer’s instantaneous velocity (v) are
indicated. The long-dashed curve is the ecliptic, and the short-dashed curve is 90° from the velocity apex.

fraction of the maximum delay of ag/c = 0.021 s for ground-
based interferometers (where ag is the Earth radius), +0.1
ns in delay accounts for the 1 mas difference in apparent
position that we see over most of the sky (at least in
magnitude) and does not require that any error be assigned
to the conventional angle-based algorithms. The situation
close to the Sun is not as clear, although the Hellings gravi-
tational delay formula is an approximation to those used in
the later VLBI algorithms. Improvements were made to the
Hellings VLBI model by Shahid-Saless et al. (1991).

The Soffel et al. algorithm provides a more interesting
case. It was designed for picosecond delay accuracy; +1 ps
translates to about 10 uas in apparent place. Figure 3 shows
the difference maps for this algorithm, computed and pre-
sented in the same manner as Figure 2. In Figure 3,
however, the differences between the VLBI and angle-based
algorithms are 3 orders of magnitude smaller than those in
Figure 2, with the shading range representing 0—0.75 uas
differences. Since the angle-based algorithms have not been
changed, the vast improvement must come from the better
VLBI delay model. The pattern shown in Figure 3 indicates
that, although the maximum differences are clearly related
to the Sun (they reach ~2 pas near the solar limb), some
other factor is involved that is associated with the ecliptic.
The differences must result from some kind of interaction
between gravitational light bending and aberration that is
not identically handled in the angle-based and VLBI algo-
rithms.

Figure 4 is the difference map for the IERS algorithm,
and we see another order-of-magnitude improvement; here
the shading range represents only 0—0.025 pas differences.
Over most of the sky, we are left with a featureless map of
very low-level discrepancies, typically tens of nanoarcsec-
onds, associated with the aberration calculations. Within a
few degrees of the Sun, where gravitational light bending is
greatest, the differences increase but remain below 1 pas.
T. M. Eubanks (1995, private communication) has noted
that the primary difference between the Soffel et al. and
IERS algorithms is a Lorentz factor arising from the obser-
ver’s velocity that is applied to the gravitational delay in the
latter theory (denominator in eqs. [4] and [8]) but not the
former. (The counterpart in the angle-based algorithms is
that the gravitational deflection is computed before aberra-
tion.) This, then, explains the difference pattern seen in
Figure 3 that is not present in Figure 4. Clearly, the IERS
algorithm is superior to the other two VLBI algorithms, at
least for objects at infinity. Table 1 numerically summarizes
the results for the set of comparisons described above.

Figures 5 and 6 show the arc difference between the VLBI
and angle-based computed positions for two planets, Venus
and Mars, as a function of time. Figure 5 is based on the
Soffel et al. algorithm and Figure 6 is based on the IERS
algorithm, both with the gravitational delay formula gener-
alized to work for objects at all distances. These plots were
computed for the same geographic location and baseline
length (100 m) as the previous figures. Like Figures 3 and 4,
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FiG. 3—Same as Fig. 2, except that the Soffel et al. VLBI delay algorithm was used and the shading range represents differences of 0-0.75 pas

they show that the VLBI and angle-based algorithms
compare quite well, with the IERS algorithm significantly
better than the Soffel et al. algorithm most of the time.
Differences between the IERS and angle-based algorithms
remain well below 1 pas except for a forest of numerical
noise spikes and some broader, more significant peaks.
These peaks, which reach about 10 pas near the times when
one of the planets is at conjunction with the Sun, are the
counterparts to the difference maxima near the Sun that
arose in the stellar computations. The exceptional peak for
Mars at conjunction in 1998 occurs when Mars is occulted
by the Sun.

The results described above illustrate the improvements
in precision that accompanied the development of a con-
sensus VLBI delay algorithm. Widely accepted angle-
variable algorithms were already in place when this
development began, and the analysis described here indi-
cates that the confidence placed in the angle-variable algo-
rithms was not unfounded. The small differences between
the two regimes that remain may, of course, be due to either

the delay- or angle-based formulations; a better version of
one or the other would be needed to resolve the issue. In the
next section, the comparison approach used here is
exploited to test an experimental improvement made in the
angle-based algorithms.

8. TESTING AN IMPROVEMENT TO THE MODEL

In the VLBI and angle-based algorithms tested so far, the
general relativistic effect of the Sun’s gravitational field has
been derived from a first-order geometric model. That is,
the total effect has been derived from a line integral over a
photon trajectory that is a straight line in Euclidean space.
For most trajectories (most of the sky), this is a reasonable
and highly accurate approximation. However, as noted in
§ 4, for VLBI observations close to the Sun, a delay correc-
tion has been developed (reproduced here as eq. [7]) that
accounts for path curvature. As noted by Eubanks (1991b),
since the actual photon path is concave toward the Sun, the
impact parameter of the ray with respect to the Sun is
actually greater than in the linear approximation. For an

TABLE 1
DIFFERENCES BETWEEN VLBI AND ANGLE-VARIABLE ALGORITHMS

Average Difference over

Average Difference within

Maximum Difference near

VLBI Algorithm Whole Sky 15° of Sun Solar Limb
Hellings 1986 ......... 6.5 x 1074 25 % 1074 1.6 x 1072
Soffel et al. 1991...... 22 x 1077 49 x 1077 1.5x 10°¢
IERS 19% ............ 1.8 x 1078 23x 108 23 x 1077

NoTE.—In units of arcseconds.
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Fi1G. 4—Same as Fig. 2, except that the IERS VLBI delay algorithm was used and the shading range represents differences of 0-0.025 pas

object at infinity observed on Earth, this tends to lessen the
total gravitational delay and the apparent angular deflec-
tion of the photon’s path. Detailed expressions for the total
effect, including high-order terms, have been presented by
Richter & Matzner (1982, 1983), whose work formed the
basis for the VLBI delay correction given in the IERS docu-
ments and here.

We can include the path-curvature VLBI delay correc-
tion (eq. [7]) in the IERS algorithm and again compute the
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FiGc. 5—Differences between planet positions computed using the
Soffel et al. VLBI delay algorithm and the standard angle-variable algo-
rithms used in optical astrometry. Differences for Venus are shown in
black, and those for Mars are shown in gray. This comparison required
that the usual VLBI formula for differential gravitational (Shapiro) delay
be generalized for use with solar system objects.

differences with the standard angle-based algorithms.
(Referring to this as a path-curvature correction, rather
than as a second-order correction, avoids nomenclatural
confusion with terms in the relativistic metric.) Averaged
over the whole sky, the differences increase by 44%, but
most of the effect is concentrated near the Sun, where the
differences reach a few milliarcseconds. Apparently, this is
an indication of the error in the standard algorithm for
angular deflection due to neglect of path curvature.

An approximate path-curvature correction was then
applied to the angular deflection algorithm. Equation (1)
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FiG. 6.—Same as Fig. 5, except that the IERS VLBI algorithm was
used. Note that the difference “floor ” is lower by about an order of magni-
tude, making this plot appear noisier than Fig. 5.
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TABLE 2
ALGORITHM DIFFERENCES AS A FUNCTION OF BASELINE LENGTH

Baseline Length Average Difference over

Average Difference within

Maximum Difference near

(km) Whole Sky 15° of Sun Solar Limb
1o, 1.7 x 1078 40 x 1078 1.5x10°°
10 oo, 1.6 x 1078 4.6 x 1078 14 x 1073
100 ..cceeennnens 1.8 x 1077 64 x 1077 1.8 x 107#
1000............. 1.9 x 1076 6.6 x 10°° 1.9 x 1073
10000 ........... 1.9 x 1073 5.6 x 1073 1.9 x 1072

NoTE.—In units of arcseconds.

was recast so that the undeflected impact parameter of the
ray appears as a variable in the denominator. Let the mag-
nitude of the deflection given by equation (1) be A¢ and the
observer-Sun distance be Rg. The correction scheme is
simply to increase the impact parameter of the ray by R¢A¢
and recompute the gravitational deflection using the new
impact parameter. When the results of this new angular
deflection algorithm are compared with those from the
improved VLBI delay model, the large differences between
the two regimes near the Sun are reduced by an order of
magnitude, and the all-sky average reverts to the value
obtained from the comparison of the two original algo-
rithms. The two algorithms with the path-curvature correc-
tions produce a difference map that is indistinguishable
from Figure 4. (Neither of the path-curvature corrections is
valid for observations of solar system bodies, although in
both cases the error would be small for objects in the outer

solar system.) It is rather surprising that the crude correc-
tion applied to the standard angle-based algorithm works
so well, but the results show the value of directly comparing
independently derived algorithms for two different observ-
ing domains. Obviously, if higher angular accuracy is
needed close to the Sun, the next step would be to imple-
ment a true high-order gravitational bending algorithm
based on, for example, the Richter & Matzner (1982) or
Klioner & Kopejkin (1992) developments.

9. THE LARGE-APERTURE CASE

The form of the VLBI delay algorithms that we have been
using is a special case that applies to baselines orthogonal
to the geometric direction of the object and delay measured
in the proper time of station 1. However, no conditions or
approximations were introduced based on the distance
between the two stations, so the VLBI algorithms used here

Difference (uarcsec)

0.00 0.10 0.20

0.30 0.40 0.50

F1G. 7.—Same as Fig. 4, except that the VLBI baselines used were 100 km long. The shading range represents differences of 0-0.5 pas.
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should remain valid for baselines up to ~10” m. In con-
trast, the angle-variable algorithms have been derived for a
single-point observer and do not contain any variable that
relates to aperture size. Using the technique described in
§§ 5 and 6, we can compare the two kinds of algorithms on
increasingly long VLBI baselines and obtain the error that
results from applying the angle-variable algorithms to
instruments with large apertures.

Comparisons of the VLBI and angle-based algorithms
were made for a series of VLBI baseline lengths. For this
series of comparisons, the algorithms used were those
described in § 8, which included the path-curvature gravita-
tional delay/bending corrections. The results for baselines
shorter than a few kilometers are not significantly different
from those reported in § 8 for the 100 m baseline. For
10-10,000 km baselines, the differences between the VLBI
and angle-based algorithms increase linearly with baseline
length but remain small. Table 2 summarizes the results
from a typical series of computations. Table 2 reflects, for
the geometry that we are using, the weak nonlinearity of
VLBI delay as a function of baseline length (sometimes
referred to as “relativistic parallax”). For the 100 km base-
line case, the differences between the angle- and delay-based
algorithms as they map onto the sky are shown in Figure 7,
where the black-to-white shading range represents 0—0.5
uas differences (cf. Fig. 4). Interestingly, the differences that
emerge are all in right ascension.

The angle-based algorithms seem to be quite good even
for very large apertures. However, this set of tests applies
only to the normal way in which these algorithms are
applied in optical astrometry, which is to an object on a line
of sight orthogonal to the aperture plane. A different kind of
test would be required to provide information on whether a
large interferometer such as, for example, the VLA, could
use the angle-based and delay-based algorithms inter-
changeably for all observing geometries. The tests described
above answer that question only for sources observed at the
zenith.

10. CONCLUSION

This paper has presented information on the correspon-
dence between algorithms used in two astrometric regimes:
the optical regime, where the observables are angular quan-
tities, and the VLBI radio regime, where the interferometric
group delay is the observable. The physical effects that the
algorithms of interest account for are relativistic aberration
and gravitational light deflection (in the language of
angular variables). A procedure was presented by which
VLBI algorithms can be used to generate angular positions
that can be compared with those computed using the stan-
dard optical algorithms. The software developed for this,
called WAAAV (Wide-Angle Astrometry Algorithms from
VLBI), is available from the author.

This software has been used to quantitatively evaluate
the differences between the algorithms used in the two
regimes. This analysis showed that the VLBI algorithms
have become substantially more sophisticated over the last
decade and that the VLBI and optical algorithms now cor-
respond at the microarcsecond level or better over most of
the sky. Furthermore, the analysis demonstrates that the
optical algorithms can be applied in the usual way to very
large apertures, without significant error.

The correspondence between these algorithms provides
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information on their precision, which, as used here, refers to
how well a physical model is embodied in the mathematics
used to account for it. Historically, the developments of the
optical and radio algorithms used the same physical model,
based on special and general relativity, but progressed
along separate mathematical paths. What has not been
addressed is the accuracy of these algorithms, that is, how
well the physical model corresponds to reality. Ultimately,
of course, this can only be determined by actual obser-
vation. However, it is well known that these algorithms, as
usually implemented, are not accurate at the micro-
arcsecond level of precision reported here—a level that
could soon be important observationally.

The incompletenesses in the algorithms fall into two cate-
gories. The first arises from the way in which the algorithms
are implemented in software. Often, for example, gravita-
tional deflection is evaluated only for the Sun, as was done
for the comparisons reported in this paper. Yet Jupiter’s
mass is 10~ that of the Sun, and its effects are greater than
1 pas over almost half the celestial sphere; Saturn’s effect is
one-sixth as great. Earth’s field adds a deflection of order
0.1 mas over most of the sky. Furthermore, in computing
gravitational deflection, the position of the gravitating body
changes over the photon’s time of flight, an effect that
Shahid-Saless et al. (1991) treat. At the very least, the deflec-
tion should be computed using the position that the gravi-
tating body had when the observed photons passed closest
to it. Analogous statements could be made about gravita-
tional delay.

A more important category of algorithm incompleteness
is in the fundamental mathematical expressions, which do
not always account for all of the significant physics. In addi-
tion to the path-curvature corrections to gravitational
deflection/delay described in § 8, there are higher order
terms for spherical gravitational fields and terms for the
effects of nonspherical gravitational fields—the quadrupole
component and the dipole gravitometric component for
rotating bodies. These effects have been described by
Richter & Matzner (1982, 1983), Brumberg, Klioner, &
Kopejkin (1990), Klioner & Kopejkin (1992), and Paez &
Frutos (1994). Over most of the sky they are quite small, but
they can be significant at the microarcsecond level or
greater near the limbs of solar system bodies. In addition,
more theoretical work is needed on the validity of the
simple addition of gravitational deflections or delays from
separate bodies and the use of constants and measurements
(such as station and planetary coordinates) that are not
necessarily all expressed in the same metric.

Perhaps the principal value of the algorithm comparison
scheme described in this paper is its utility in validating
these kinds of extensions to the underlying physical model.
The example presented in this paper was the addition of
path-curvature corrections to the gravitational deflection/
delay algorithms. Independently derived corrections were
introduced into the delay-based and angle-based algo-
rithms and the results compared. The small numerical dif-
ferences that resulted when the corrections were used in
both regimes, in contrast to the much larger differences
when the algorithms were mismatched, provided a measure
of confidence that the corrections were at least formally
sound. This example demonstrates that the development
described in this paper can serve as a helpful diagnostic tool
in implementing new algorithms required by increasingly
sophisticated and accurate observing systems.



372 KAPLAN

REFERENCES

Brumberg, V. A., Klioner, S. A., & Kopejkin, S. M. 1990, in IAU Symp.
141, Inertial Coordinate System on the Sky, ed. J. H. Lieske & V. K.
Abalakin (Dordrecht: Kluwer), 229

Eubanks, T. M., ed. 1991a, Proc. US Nav. Obs. Workshop on Relativistic
Models for Use in Space Geodesy (Washington: US Nav. Obs.)

. 1991b, in Proc. US Nav. Obs. Workshop on Relativistic Models
fog Use in Space Geodesy, ed. T. M. Eubanks (Washington: US Nav.
Obs.), 60

Fukushima, T. 1995, Highlights Astron., 10, 185

Green, ;{ M. 1985, Spherical Astronomy (Cambridge: Cambridge Univ.
Press

Hellings, R. W. 1986, AJ, 91, 650

Heog, E., & Seidelmann, P. K., eds. 1995, IAU Symp. 166, Astronomical
and Astrophysical Objectives of Sub-Milliarcsecond Optical Astrometry
(Dordrecht: Kluwer)

Hohenkerk, C. Y., Yallop, B. D., Smith, C. A., & Sinclair, A. T. 1992, in
Explanatory Supplement to the Astronomical Almanac, ed. P. K. Seidel-
mann (rev. ed.; Mill Valley, CA: Univ. Sci.), 95

Hughes, J. A., Smith, C. A., & Kaplan, G. H., eds. 1991, IAU Collog. 127,
Reference Systems (Washington: US Nav. Obs.)

Hutter, D. J., Johnston, K. J., & Mozurkewich, D. 1995, in IAU Symp. 166,
Astronomical and Astrophysical Objectives of Sub-Milliarcsecond
Optical Astrometry, ed. E. Hog & P. K. Seidelmann (Dordrecht:
Kluwer), 23

IAU. 1996, Trans. IAU, 22B, 47

Jacobs, C. S., & Sovers, O. J. 1993, in IAU Symp. 156, Developments in
Astrometry and their Impact on Astrophysics and Geodynamics, ed. I. I.
Mueller & B. Kolaczek (Dordrecht: Kluwer), 173

Johnston, K. J., et al. 1995, AJ, 110, 880

Kaplan, G. H. 1990, BAAS, 22,930

Kaplan, G. H., Hughes, J. A., Seidelmann, P. K., Smith, C. A., & Yallop,
B.D. 1989, AJ, 97,1197

Klioner, S. A., & Kopejkin, S. M. 1992, AJ, 104, 897

Lederle, T., & Schwan, H. 1984, A&A, 134, 1

Lieske, J. H., & Abalakin, V. K., eds. 1990, IAU Symp. 141, Inertial Coor-
dinate System on the Sky (Dordrecht: Kluwer)

Lindegren, L., et al. 1992, A&A, 258, 18

Lindegren, L., & Perryman, M. A. C. 1995, in Future Possibilities for
Astrometry in Space, ed. T.-D. Guyenne (ESA SP-379) (Noordwijk:
ESA), 23

Ma, C. 1990, in IAU Symp. 141, Inertial Coordinate System on the Sky, ed.
J. H. Lieske & V. K. Abalakin (Dordrecht: Kluwer), 271

McCarthy, D. D., ed. 1992, IERS Standards 1992 (IERS Tech. Note 13)
(Paris: Obs. Paris)

.)1996, IERS Conventions 1996 (IERS Tech. Note 21) (Paris: Obs.
Paris

Mignard, F. 1995, in Future Possibilities for Astrometry in Space, ed. T.-D.
Guyenne (ESA SP-379) (Noordwijk: ESA), 19

Murray, C. A. 1983, Vectorial Astrometry (Bristol: Hilger)

Paez, J., & Frutos, F. 1994, Ap&SS, 214, 71

Reasenberg, R. D, et al. 1988, AJ, 96, 1731

Richter, G. W., & Matzner, R. A. 1982, Phys. Rev. D, 26, 2549

. 1983, Phys. Rev. D, 28, 3007

Robertson, D. S. 1975, Ph.D. thesis, MIT

Ryan, J. 1991, in Proc. US Nav. Obs. Workshop on Relativistic Models for
Use in Space Geodesy, ed. T. M. Eubanks (Washington: US Nav. Obs.),
5

Seidelmann P. K., et al. 1995, in Future Possibilities for Astrometry in
Space, ed. T.-D. Guyenne (ESA SP-379) (Noordwijk: ESA), 187

Shahi(ll-Saless, B., Hellings, R. W., & Ashby, N. 1991, Geophys. Res. Lett.,
18,1139

Shapiro, I. I. 1964, Phys. Rev. Lett., 13, 789

. 1967, Science, 157, 806

Soffel, M. H. 1989, Relativity in Astrometry, Celestial Mechanics, and
Geodesy (Berlin: Springer)

Soffel, M. H., Miiller, J., Wu, X., & Xu, C. 1991, AJ, 101, 2306

Sovers, O. J., & Jacobs, C. S. 1996, Observation Model and Parameter
Partials for the JPL VLBI Parameter Estimation Software
“MODEST ”—1996 (JPL Publ. 83-39, revision 6) (Pasadena: JPL)

Standish, E. M. 1990, A&A, 233, 252

Wallace, P. T. 1994, SLALIB—Positional Astronomy Library (Starlink
User Note 67.20) (Chilton: Rutherford Appleton Lab.)

Woolard, E. W., & Clemence, G. M. 1966, Spherical Astronomy (New
York: Academic)

Zhu, S. Y., & Groten, E. 1991, in Proc. US Nav. Obs. Workshop on
Relativistic Models for Use in Space Geodesy, ed. T. M. Eubanks
(English transl.; Washington: US Nav. Obs.), 38




