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Abstract. The IAU Working Group on Precession and the Equinox looked at sev-
eral solutions for replacing the precession part of the IAU 2000A precession–nutation
model, which is not consistent with dynamical theory. These comparisons show that the
(Capitaine et al., Astron. Astrophys., 412, 2003a) precession theory, P03, is both consis-
tent with dynamical theory and the solution most compatible with the IAU 2000A nuta-
tion model. Thus, the working group recommends the adoption of the P03 precession
theory for use with the IAU 2000A nutation. The two greatest sources of uncertainty
in the precession theory are the rate of change of the Earth’s dynamical flattening, !J2,
and the precession rates (i.e. the constants of integration used in deriving the precession).
The combined uncertainties limit the accuracy in the precession theory to approximately
2 mas cent−2.

Given that there are difficulties with the traditional angles used to parameterize the
precession, zA, ζA, and θA, the working group has decided that the choice of parame-
ters should be left to the user. We provide a consistent set of parameters that may be
used with either the traditional rotation matrix, or those rotation matrices described in
(Capitaine et al., Astron. Astrophys., 412, 2003a) and (Fukushima Astron. J., 126, 2003).

We recommend that the ecliptic pole be explicitly defined by the mean orbital angular
momentum vector of the Earth–Moon barycenter in the Barycentric Celestial Reference
System (BCRS), and explicitly state that this definition is being used to avoid confusion
with previous definitions of the ecliptic.
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Finally, we recommend that the terms precession of the equator and precession of the
ecliptic replace the terms lunisolar precession and planetary precession, respectively.

Key words: precession and the ecliptic, reference systems

1. Introduction

Precession or, more precisely, precession of the equinox is the result of
the motions of two planes. The first plane is that of the Earth’s equa-
tor. The second is the ecliptic, the mean plane of the orbit of the Earth–
Moon barycenter1 about the Sun. These two planes have been chosen
because the equinox has historically provided a convenient fiducial point
in the observation of the heavens and the passage of time. For exam-
ple, the calendar year is tuned to follow the tropical year from equinox
to equinox rather than another definition of the year such as perihelion
passage or the revolution of the Earth about the Sun in inertial space.
These planes are also both dynamically involved in the motion of the
Earth’s pole.

For the purposes of this report, an inertial space or an inertial coordinate
system is one in which the space coordinate grids show no global rotation
with respect to a set of distant extragalactic objects. This report is specifi-
cally concerned with two coordinate systems. The first coordinate system
is the Barycentric Celestial Reference System (BCRS) with its origin at the
solar system barycenter and its axes aligned oriented to match the Inter-
national Celestial Reference System (ICRS). The second coordinate system
is the Geocentric Celestial Reference System (GCRS) with its origin at the
center of mass of the Earth.

In the past, the motion of the Earth’s equator has been called lunisolar
precession, while the motion of the ecliptic has been called planetary preces-
sion. The names of these components are based on the dominant forces for
each of these motions. However, the accuracy with which the precession can
be measured has reached the point where the contribution of the planets to
the motion of the Earth’s equator is significant. Thus, the name lunisolar
precession has become misleading. Fukushima (2003) proposed renaming
lunisolar precession equator precession and planetary precession ecliptic pre-
cession to describe more accurately these two components of precession.

1The ecliptic is defined as the mean plane of the Earth’s orbit around the Sun (The
Astronomical Almanac 2006). However, for reasons described in Hilton (2006) it is pref-
erable to use the mean orbital angular momentum vector of the Earth–Moon barycenter.
This change of definition is included in recommendation 5 of this report.
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Similarly, Capitaine et al. (2003a) proposed the terms precession of the equa-
tor and precession of the ecliptic. Considering that the term equator preces-
sion does not differentiate between motion of the equator and motion along
the equator, this report will adopt the terms precession of the equator and pre-
cession of the ecliptic. Further, we recommend that these terms be adopted
for general use.

Since its adoption, it has become apparent that the IAU 1976 theory
of general precession (Lieske et al., 1977, henceforth Lieske) is in error
by approximately 300 mas cent−1, where 1mas = 0.′′001 and the century
(cent2) consists of 36,525 Julian days Terrestrial Time (TT). Williams (1994)
showed that in addition to the precession in longitude there should also be
a secular motion in the obliquity of the Earth which he estimated to be
about −24 mas cent−1. This motion in latitude is caused by the slight incli-
nation of the lunar orbit to the ecliptic when averaged over the period of
its node. More recent estimates of the motion in obliquity are: Bretagnon
et al. (2003), −25 mas cent−1; Capitaine et al. (2003a), −26 mas cent−1; and
Fukushima (2003), −23 mas cent−1.

The precession and nutation of the Earth are most accurately observed
using Very Long Baseline Interferometer (VLBI) observations. These obser-
vations are only sensitive to the linear portion of the precession and insen-
sitive to the ecliptic. Thus, the higher order coefficients of the precession
theory along with the orientation of the ecliptic must be derived from
dynamical theory. When the IAU 2000 precession–nutation theory (IERS,
2004) was adopted (IAU, 2001) the emphasis of the analysis was on the
periodic nutations and correcting the linear portion of the precession VLBI
observations. The effect of these changes on the higher-order terms in
the precession theory was ignored. Ignoring the higher-order terms results
in an error in the precession of about 6.4 mas cent−2 in longitude and
0.01 mas cent−2 in obliquity. Thus, the precession theory was not consistent
with dynamical theory.

Fukushima (2003) showed that the values of ζA and zA, two of the tra-
ditional angles for parameterizing the precession, are complementary and
highly dependent on the precise values that are adopted for the offset
between the dynamical frame and the GCRS at J2000.0. Thus, they are
unsuited to polynomial representation.

The ecliptic in use was defined by Lieske using a method similar to that
of Newcomb (1894). These yield an ecliptic which follows the geometrical

2The IAU style book (Wilkins, 1987) discourages the use of century as a unit; how-
ever, it is frequently used for slowly varying angles in celestial mechanics applications. Nor
is there a consensus for its abbreviation. The abbreviation used here, cent, was chosen as
the one found most often in a sample of both British and American English dictionaries.
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path of the Earth–Moon barycenter. However, more recent work has
used instead an ecliptic that follows the Earth–Moon barycenter’s orbital
angular-momentum vector in the BCRS, yielding a slightly different result
due to the small contribution from the rotation of the ecliptic itself that
is included in the former method (see Standish, 1981). Thus both the
geometrical, often referred to as “rotating”, and inertial definitions of the
ecliptic have been used, creating confusion.

The IAU Working Group on Precession and the Ecliptic was formed at
the XXVth General Assembly of the IAU in Sydney, Australia to address
these topics and make recommendations regarding them to the IAU. This
report constitutes the findings of that working group.

2. Choice of Precession Theory

Four recent, high precision theories for the precession and the definition
of the ecliptic (Bretagnon et al., 2003; Capitaine et al., 2003a; Fukushima,
2003; Harada and Fukushima, 2004) were considered. After examina-
tion of the four theories, the working group agreed that precession of
the equator in the Capitaine et al. (2003a) precession theory, P03, is
consistent with dynamical theory and recommends it as the high preci-
sion precession theory most suited for use with the IAU 2000A nuta-
tion. The details of the comparison of the four theories can be found
in Capitaine et al. (2004). The two greatest sources of uncertainty in
the precession theory are the rate of change of the Earth’s dynamical
flattening, !J2, and the precession rates. The portion of the uncertainty
from the uncertainty in !J2 limits the accuracy in the precession theory to
approximately 1.5 mas cent−2 (Bourda and Capitaine 2004). And the uncer-
tainty in the precession rates is approximately the same. Thus, the com-
bined uncertainties limit the accuracy in the precession theory to about
2 mas cent−2.

While it serves a useful fiducial purpose, dynamical uses for the mod-
ern ecliptic are limited. Thus, certain arbitrary decisions required to realize
the ecliptic do not impair it. The details of these considerations are given
in Hilton (2006). Thus, the working group recommends the precession
of the ecliptic included in the P03 precession theory. More specifically,
we recommend that the ecliptic pole should be explicitly defined by the
mean orbital angular momentum vector of the Earth–Moon barycenter
in the BCRS to simplify the dynamics. We also recommend that both
the definition used and the process by which the ecliptic has been deter-
mined be made explicit when any future definition is adopted, to avoid
confusion.
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3. Parameterization

There is no unique method of parameterizing the precession. Williams
(1994), for example, gives three methods to rotate from the equator and
equinox of J2000.0 to the equator and equinox of date in addition to the
method used by Lieske (1979). The particular parameterization desired may
depend on extraneous details such as whether old computer code needs to
be maintained or replaced. Thus, we have chosen to provide the data nec-
essary for four different parameterizations:

• The traditional parameterization used by Newcomb and Lieske.
• The parameterization recommended by Capitaine et al. (2003a) which

cleanly separates precession of the equator from precession of the eclip-
tic.

• The parameterization developed by Fukushima (2003) which allows for
flexible switching between the mean equator and equinox of J2000.0 and
the GCRS as its initial reference system.

• The parameterization to compute the precession–nutation in the new
paradigm adopted by the IAU with respect to the Celestial Intermediate
Origin (CIO)3.

The first two parameterizations use the position of the mean equator and
equinox of J2000.04 as their initial reference frame. However, many applica-
tions nowadays use the GCRS as the initial reference frame. To start from the
GCRS, the coordinates used in the first two parameterizations must first be
rotated using a constant bias matrix (top line of Expression 4 in Capitaine
et al., 2003a). The third parameterization may start from either the mean
equator and equinox of J2000.0 or the GCRS. The description provides the
details on how the parameters change between the mean equator and equi-
nox of J2000.0 and the GCRS. The fourth parameterization is meant only
to be used with the GCRS as the initial reference frame.

The polynomial coefficients for all the angles for these four parameter-
izations derived from the P03 precession are given in Table I. The first 15
expressions are from Capitaine et al. (2003a). The remaining six expres-
sions are the result of applying the P03 precession to the angles defined by
Fukushima (2003).

3The IAU Division I Working Group on Nomenclature for Fundamental Astronomy
is recommending the Celestial Ephemeris Origin (CEO) be renamed the Celestial Inter-
mediate Origin (CIO).

4The position of the CIP, not including nutation, at J2000.0.
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3.1. LIESKE PARAMETERIZATION

The Lieske (1979) precession matrix is:

P(zA,θA,ζA)

=R3(−90◦ −zA)R1(θA)R3(90◦ −ζA)

=R3(−zA)R2(θA)R3(−ζA)

=




coszA cosθA cosζA−sinzA sinζA −coszA cosθA sinζA−sinzA cosζA −coszA sinθA

sinzA cosθA cosζA+coszA sinζA −sinzA cosθA sinζA+coszA cosζA −sinzA sinθA

sinθA cosζA −sinθA sinζA cosθA





(1)

where R1, R2, and R3 are the basic rotation matrices around the axes of a
right handed coordinate system,

R1(τ )=




1 0 0
0 cosτ sinτ

0 −sinτ cosτ



, R2(τ )=




cosτ 0 −sinτ

0 1 0
sinτ 0 cosτ



, and R3(τ )=




cosτ sinτ 0

−sinτ cosτ 0
0 0 1





(2)

The angles, shown in Figure 1, parameterizing the rotation are: θA, the arc
connecting the mean pole of J2000.0, P0, with the mean pole of date, Pt ;
ζA, the angle with its vertex at P0 from the equinoctial colure of J2000.0 to
θA; and zA, the angle with its vertex at Pt from θA to the equinoctial colure
of date. This might be considered the traditional way of parameterizing the
precession and is imbedded in many software applications that implement
the precession. The angles ζA, θA, and zA can be determined from ωA, the
arc from the ecliptic pole of J2000.0 to the mean pole of date; ψA, the
angle between ε0, the arc from the ecliptic pole of J2000.0 to the mean pole
of J2000.0,5 and ωA; πA, the obliquity of the ecliptic of date on the ecliptic
of J2000.0; and 'A, the longitude of the ascending node of the ecliptic of
date on the ecliptic of J2000.0 (see Figure 1). The last two quantities, πA
and 'A, are given in terms of the canonical variables PA = sin πA sin 'A
and QA = sin πA cos'A. The relations between the known quantities and
ζA, θA, and zA are

cos θA = cos ε0 cosωA + sin ε0 sin ωA cosψA,

cos ζA = sin ωA sin ψA/ sin θA, and (3)
cos(zA −χA)= sin ε0 sin ψA/ sin θA

where the length of ε0 ≡ωA(t =0), and χA, the angle between ωA and εA,
6 is

sin χA = sin(180◦ −'A −ψA) sin π/ sin εA (4)

5The angular length of the arc ε0 is the obliquity of the ecliptic at J2000.0.
6The arc from the ecliptic pole of date to the mean pole of date. The angular length of this

arc is the obliquity of the ecliptic of date.
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Figure 1. The angles associating the mean pole of J2000.0 (JD 2451545.0), P0; the mean
pole of date, Pt ; the ecliptic pole of J2000.0, C0; the ecliptic pole of date, C; the mean
equinox of J2000.0, ϒ0; and the mean equinox of date, ϒ , used in the Lieske and Cap-
itaine et al. (2003) parameterizations for the precession.

where

cos εA = cosωA cosπA + sin ωA sin πA cos(180◦ −'A −ψA) (5)

A difficulty arises because the starting point for many applications
is now the GCRS rather than mean equator and equinox of J2000.0.
Although this can be accommodated in the traditional angles, Fukushima
(2003) and Capitaine et al., (2003a) have shown that values of the angles
zA and ζA near J2000 are highly sensitive, in a complementary way, to the
values adopted for the offset between the mean equator and equinox of
J2000.0 and the GCRS and hence cannot satisfactorily be represented by
polynomials in t . Thus, unless the accuracy goals are sufficient to neglect
the frame bias (about 23 mas overall), either the frame bias has to be intro-
duced as an additional rotation, or a different representation that does not
suffer from these difficulties should be adopted.

3.2. CAPITAINE ET AL. PARAMETERIZATION

Capitaine et al. (2003a) provide a clean separation between the precession
of the equator and precession of the ecliptic providing the precession of the
equator with respect to the equator and equinox of J2000.0, ψA and ωA,



REPORT ON PRECESSION AND THE ECLIPTIC 359

and the precession of the ecliptic, PA and QA, with respect to the ecliptic
and equinox of J2000.0. The most efficient method of computing the pre-
cession matrix using these parameters is first to determine the mean obliq-
uity of date, εA, and χA, the angle between the ecliptic pole of J2000.0
(epoch), C0, and the ecliptic pole of date, C, with its vertex at Pt (see Fig-
ure 1). The angle χA is determined using Equation 4 and εA is determined
using Equation 5. The precession matrix is then:

P(χA,ωA,ψA)=R3(χA)R1(−ωA)R3(−ψA)R1(ε0)=




P11 P12 P13
P21 P22 P23
P31 P32 P33



 (6)

where the components of the rotation matrix are:

P11 = cosχA cosψA + sin χA cosωA sin ψA,

P12 = (− cosχA sin ψA + sin χA cosωA cosψA) cos ε0 + sin χA sin ωA sin ε0,

P13 = (− cosχA sin ψA + sin χA cosωA cosψA) sin ε0 − sin χA sin ωA cos ε0,

P21 =− sin χA cosψA + cosχA cosωA sin ψA,

P22 = (sin χA sin ψA + cosχA cosωA cosψA) cos ε0 + cosχA sin ωA sin ε0, (7)
P23 = (sin χA sin ψA + cosχA cosωA cosψA) sin ε0 − cosχA sin ωA cos ε0,

P31 = sin ωA sin ψA,

P32 = sin ωA cosψA cos ε0 − cosωA sin ε0, and
P33 = sin ωA cosψA sin ε0 + cosωA cos ε0.

3.3. FUKUSHIMA PARAMETERIZATION

Fukushima (2003) provides an alternative parameterization that has certain
advantages over the parameterization used by Lieske (1979) or the separa-
tion into precession of the equator and precession of the ecliptic provided
by Capitaine et al. (2003a). This parameterization starts with P0, and the
arc to C0 on the celestial sphere (see Figure 2). The position of the C is
then determined by the arc, φ, from P0 to C, and γ , the angle between φ
and the arc from P0 to C0 with its apex at P0. The position of the mean
pole of date is then determined from εA and ψ7, the angle between φ and
εA with its apex at C. The angles φ, γ , and ψ are related to already known
angles by:

7The angle ψ is not the same as the angle ψA. The former is measured from φ to
εA with the apex at the ecliptic pole of date, while the latter is measured from ε0 to ωA

with the apex at the ecliptic pole of J2000.0.



360 J. L. HILTON ET AL.

Figure 2. The angles associating the mean pole of date, Pt ; and the ecliptic pole of date,
C; to the mean pole of J2000.0, P0; and ecliptic pole of J2000.0, C0 in the Fukushima
(2003) parameterization for the precession.

cosφ = cosπA cos ε0 − sin πA sin ε0 cos'A (8)

sin γ = sin πA sin 'A

sin φ
= PA

sin φ
(9)

sin ψ = sin θA cos zA

sin φ
(10)

The precession matrix is then:

P(εA,ψ,φ,γ )=R1(−εA)R3(−ψ)R1(φ)R3(γ )=




P11 P12 P13
P21 P22 P23
P31 P32 P33



 (11)

where the components of the rotation matrix are:

P11 = cosψ cosγ + sin ψ cosφ sin γ ,

P12 = cosψ sin γ − sin ψ cosφ cosγ ,

P13 =− sin ψ sin φ,

P21 = cos εA sin ψ cosγ − (cos εA cosψ cosφ + sin εA sin φ) sin γ ,

P22 = cos εA sin ψ sin γ + (cos εA cosψ cosφ + sin εA sin φ) cosγ , (12)
P23 = cos εA cosψ sin φ − sin εA cosφ,

P31 = sin εA sin ψ cosγ − (sin εA cosψ cosφ − cos εA sin φ) sin γ ,

P32 = sin εA sin ψ sin γ + (sin εA cosψ cosφ − cos εA sin φ) cosγ , and
P33 = sin εA cosψ sin φ + cos εA cosφ.
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For some applications, the initial reference frame is the GCRS rather
than the mean equator and equinox of J2000.0. Using the GCRS as
the initial reference frame requires three changes. The relevant angles are
shown in Figure 3.

First, in Equation 8, the arc ε0 is replaced by ε0 + δε0 where δε0 is the
difference between the mean obliquity of the ecliptic at J2000.0 and the arc
length from C0 to the pole of the GCRS, PGCRS. Thus,

cosφGCRS = cosπA cos(ε0 + δε0)− sin πA sin(ε0 + δε0) cos'A. (13)

Second, unlike the mean equator and equinox of J2000.0, the node of
the ecliptic of J2000.0 on the GCRS equator is offset 0.′′052928 in right
ascension. Thus, an additional initial rotation, δγ =−0.′′052928, about the
z-axis is required to first align the origin of the GCRS with the node of
the ecliptic on the equator of the GCRS, and the equation for γ becomes

γGCRS = sin−1
(

PA

sin φGCRS

)
+ δγ . (14)

Third, let δψ be the angle between the arc to Pt and the arc to PGCRS
with its vertex at C, and δψ0 be the angle between the arc to P0 and the
arc to PGCRS with its vertex at C0. The angles δ and δψ are very small.
Thus, the cosines of these angles are ∼ (1−5 × 10−17). Correct calculation

Figure 3. The angles associating the mean pole of date, Pt ; and the ecliptic pole of date,
C; to the mean pole of J2000.0, P0; and ecliptic pole of J2000.0, C0 in the Fukushima
(2003) parameterization for the precession.
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of these angles using a cosine formulation requires extended precision to
retain accuracy. Instead, it is preferable to use the half angle sine formula,
Equation C3, of Fukushima (2003). The length of the arc, δ, from P0 to
PGCRS is then

sin2
(

δ

2

)
= sin ε0 sin(ε0 + δε0) sin2

(
δψ0

2

)
+ sin2

(
δε0

2

)
. (15)

Since the angles δε0 and δψ0 are very small, the sines of these angles may
be replaced with their first order approximations without any loss of accu-
racy. Similarly, sin(ε0 + δε0) may be replaced by sin ε0 without any loss of
accuracy. Thus,

sin2
(

δ

2

)
≈

(
δψ0

2

)2

sin2 ε0 +
(

δε0

2

)2

. (16)

The same half angle formula is used to find δψ

sin2
(

δ

2

)
= sin φ sin(φGCRS) sin2

(
δψ

2

)
+ sin2

(
φ −φGCRS

2

)
. (17)

As before, the angles δψ and φ −φGCRS are very small. Thus, the sines of
these angles may be replaced with their first order approximations with-
out any loss of accuracy. Also, either sin φGCRS may be replaced by sin φ,
or sin φ may be replaced by sin φGCRS without any loss of accuracy. Thus,
making the appropriate substitutions, Equation 17 becomes

sin2
(

δ

2

)
≈

(
δψ

2

)2

sin2 φ +
(

φ −φGCRS

2

)2

. (18)

The value of δψ is determined by equating the right hand side of Equation
16 with the right hand side of Equation 18 and solving for δψ . The result
is

δψ ≈
−

√
sin2 ε0 δψ2

0 + δε2
0 − (φ −φGCRS)2

sin φ
. (19)

The negative value of the square root function is specifically chosen since
the rotation about the ecliptic pole of date from pole of the GCRS to
the Celestial Intermediate Pole (CIP) is clockwise as shown in Figure 3.
At J2000.0, φ = ε0 and φ − φGCRS = δε0. Thus, δψ = δψ0 at J2000.0, and
the rotation matrix reduces to the bias matrix between the GCRS and the
mean equator and equinox of J2000.0.

Using these transformations, the pole of the GCRS may be substi-
tuted for the mean pole of J2000.0 using δε0 =!εGCRS and δψ0 =!ψGCRS
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(Mathews et al., 2002). Thus, the bias matrix to rotate from the GCRS
to the mean equator and equinox of J2000.0 is incorporated into the pre-
cession. The angles δε0 and δψ0 are small enough that for this particular
transformation the only significant differences are in the zeroth and first
order polynomial coefficients for γ , φ, and ψ .

A second advantage of this parameterization is that the intermediate
frame resulting after the second rotation, R1(φ), is with respect to the
ecliptic of date. Thus, nutation may be added simply by adding the nuta-
tion in longitude, !ψ , to the third rotation and the nutation in obliquity,
!ε, to the fourth rotation, that is, the rotation to the true pole of date is:

NP(εA,!ε,ψ,!ψ,φ,γ )=R1(−εA −!ε)R3(−ψ −!ψ)R1(φ)R3(γ ).

(20)

While this parameterization allows the precession and nutation to be
applied directly, the two previous parameterizations require nutation to be
done in an extra step:

NP =N(εA,!ε,!ψ)P =R1(−εA −!ε)R3(!ψ)R1(εA)P . (21)

Note that the reason that the nutation matrix has to be separate from
the precession matrix in the Lieske and the Capitaine et al. parameter-
izations is that the precession is referred to the ecliptic pole of J2000.0
while the nutation is referred to the ecliptic pole of date. Were the nuta-
tion referred to the ecliptic pole of J2000.0 rather than the ecliptic pole
of date, the nutation could be incorporated into the Lieske and Capitaine
et al. parameterizations using a method similar to that of the Fukushima
parameterization.

3.4. THE CELESTIAL INTERMEDIATE ORIGIN (CIO)

The CIO is intended for use with only a combined bias-precession-nutation
matrix (Capitaine et al., 2003b). This parameterization is in terms of the
two angles X, in the x-direction (toward the x-origin of the GCRS, and Y ,
in the y-direction (90◦ to the east of x), which give the x and y-coordinates
of the CIP unit vector in the GCRS (Figure 4). The third parameter is s.
Except for a tiny fixed offset, this parameter is the difference between the
length of the arcs from /0 to N ′ and σ to N ′. The point /0 is the x-origin
of the GCRS, σ is the CIO of date, and N ′ is the node of the equator
of the CIP on the equator of the GCRS. This matrix includes precession,
nutation, coupling between precession and nutation, and frame biases.
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Figure 4. The Celestial Intermediate Origin (CIO), σ , and the position of the Celestial
Intermediate Pole (CIP), P , with respect to the pole, PGCRS, and equator of the Geocen-
tric Celestial Reference System (GCRS) and its origin, /0. The parameter X is the com-
ponent of the arc from PGCRS to P in the x direction and Y is the component in the
y direction. Thus the CIP is located at [X,Y,1− (X2 +Y 2)1/2] with respect to the GCRS
located at [0,0,1]. The third parameter, s, is the difference between the arcs σN ′ and
/0N

′.

The bias-precession-nutation matrix is:

NPB=R3(−s) ·




1−aX2 −aXY −X

−aXY 1−aY 2 −Y

X Y 1−a(X2 +Y 2)



 (22)

where

a ≈ 1
2

+ (X2 +Y 2)

8

X =
5∑

i=0

xit
i +

∑

j

3∑

k=0

tk(asjk sin bk +acjk cosbk), and (23)

Y =
5∑

i=0

yit
i +

∑

j

3∑

k=0

tk(dsjk sin fk +dcjk cosfk)

t is the time in Julian centuries from J2000.0 TT, xi and yi are the coeffi-
cients for the frame bias and precession in X and Y , respectively, asjk, acjk,
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dsjk, and dcjk are the coefficients for the nutation and coupling between
precession and nutation, and bk and fk are the fundamental angular argu-
ments for the nutation and coupling terms.

The values for the coefficients for the secular part of the relations for X
and Y are almost entirely due to precession plus the bias between BCRS
and the J2000 mean pole. These coefficients are given in Table I. The
parameter s is also represented by a series, but it is more efficient to derive
s from the series for s +XY/2, also in Table I. The equations for the sec-
ular portions of X, Y , and s +XY/2 are also given in Equations 49–51 of
Capitaine et al. (2003a).

Determination of the coefficients for the periodic parts of the series for
X and Y require both the precession and the nutation portion of IAU
2000A (Mathews et al. 2002). Thus, developing coefficients for the periodic
parts of the series was deemed beyond the scope of the Working Group.
However, only very slight adjustments are required to the IAU 2000 nuta-
tion, and likewise to the periodic part of the X and Y series, in order to
become consistent with P03, and the periodic part of s + XY/2 is insen-
sitive to this change. An explanation of the theory and the sources for
machine readable tabulations of the coefficients compatible with the IAU
2000A precession–nutation model are on pg. 44 of IERS (2004).

The elements of the matrix in Equation 22 are dimensionless. Thus, the
values of X, Y , s, and the coefficients for the nutation and coupling between
precession and nutation should be in radians. However, these values are nor-
mally given in arcseconds, as in Table I, and have to be converted.

4. Recommendations

The Working Group on Precession and the Ecliptic, recognizing:

1. the need for a precession theory consistent with dynamical theory and
compatible with the IAU 2000A nutation theory,

2. the gravitational attraction of the planets make a significant contribu-
tion to the motion of the Earth’s equator, making the terms lunisolar
precession and planetary precession are misleading,

3. the need for a definition of the ecliptic for both astronomical and civil
purposes, and

4. recognizing the ecliptic has been defined both with respect to an
observer situated in inertial space (inertial definition) and an observer
comoving with the ecliptic (rotating definition),
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recommends:

1. The terms lunisolar precession and planetary precession be replaced by
precession of the equator and precession of the ecliptic, respectively.

2. The IAU adopt the P03 precession theory, of Capitaine et al., (2003a,
Astron. Astrophys., 412, 567–586) for the precession of the equator
(Equations 37) and the precession of the ecliptic (Equations 38); the
same paper provides the polynomial developments for the P03 primary
angles and a number of derived quantities for use in both the equinox
based and CIO based paradigms.

3. The choice of precession parameters be left to the user.
4. The recommended polynomial coefficients for a number of precession

angles are given in Table I of this report, including the P03 expres-
sions set out in Tables 3–5 of Capitaine et al. (2005, Astron. Astrophys.,
432, 355–367), and those of the alternative Fukushima (2003, Astron.
J., 126, 494) parameterization; the corresponding matrix representations
are given in Equations 1, 6, 11, and 22.

5. The ecliptic pole should be explicitly defined by the mean orbital angu-
lar momentum vector of the Earth–Moon barycenter in the BCRS, and
this definition should be explicitly stated to avoid confusion with older
definitions.
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