rT992AT.~ - CI03 Z610H:

THE ASTRONOMICAL JOURNAL

VOLUME 103, NUMBER 2

THE MOTION OF MARS’ POLE. II. THE EFFECT OF AN ELASTIC MANTLE AND A LIQUID CORE

JAMES L. HiLTON
U.S. Naval Observatory, 34th St. and Massachusetts Ave. NW, Washington, DC 20392
Received 6 June 1991, revised 8 October 1991

ABSTRACT

A first-order approximation of the effects of an elastic mantle and liquid core on the motion of Mars’
pole are explored. The effect on Mars’ Chandler wobble (Eulerian free nutation) is much less depen-
dent on Mars’ structure than the Earth’s Chandler wobble depends on the Earth’s structure. The period
of the liquid core free-core nutation (FCN), however, is found to be very sensitive to the mean core
radius; if the FCN period is known with an uncertainty of 2 days, then the mean core radius can be
inferred with an uncertainty of only 6 km. The amplitude of the forced nutation in the liquid core
models is also sensitive to the mean core radius. The sensitivity is high enough that measuring of the
amplitudes of the three largest nutation components with an accuracy of a milliarcsecond will produce
measures of the mean core radius with uncertainties of 32, 38, and 67 km, respectively. Elastic mantle,
solid core models, however, are found to produce no significant difference in the motion of the pole
compared to the rigid solid core model. Evidence for some sort of nonrigid polar motion is shown to
exist from the Viking lander radar ranges of Mars. Methods of obtaining higher quality observations of
Mars’ orientation in space, and the applicability of the methods derived for Mars to other planets in the
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solar system are discussed.

1. INTRODUCTION

The rigid body precession and nutation of Mars’ pole has
been discussed in several places such as Struve (1898), de
Vaucouleurs (1964), Reasenberg & King (1979), and most
recently Hilton (1991). All of these studies are based on a
rigid body model for Mars. However, Mars, like the Earth, is
not a rigid body, but consists of an elastic mantle and, possi-
bly, a liquid core. The structure of the planet affects its re-
sponse to both force-free motion such as the Chandler wob-
ble and forced motion such as nutation. The aim of this paper
is to explore the effect that an elastic mantle with either a
liquid or solid core has on the motion of Mars’ pole and how
that knowledge can be put to use in gaining a greater under-
standing of Mars’ structure. i

For the Earth, the difference between the theoretical rigid
structure and the actual elastic Earth with a liquid core
causes differences between the observed and predicted am-
plitude of the Earth’s forced nutation components. The
physical process of how a liquid in a container affects the
motion of the container-liquid system was first constructed
by Poinsot (1854 ). In this case, the liquid is the Earth’s outer
core and the container is the mantle. However, except in the
period of the Chandler wobble, the observations of the mo-
tion of the Earth’s pole were not accurate enough to show the
effects of the elastic, liquid core Earth until the last thirty
years. The more recent works, such as those by Wahr
(1981a,b, 1982), show that the amplitudes of the forced nu-
tation components resulting from an elastic, liquid core
Earth can be modeled as a perturbation to the rigid Earth
model theories. This is the approach adopted in the 1980
IAU Theory of Nutation to determine the amplitude of the
various nutational elements (Seidelmann et al. 1981). These
perturbations result in modifications to the nutation of the
Earth from about 1% to 0.01% of the theoretical rigid nuta-
tion component amplitudes. The largest change in ampli-
tude is about 0”019 for the semiannual nutation term in lon-
gitude. Since the 1950’s the improvement in the
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measurement of the motion of the Earth’s pole have made its
study a powerful probe of the structure of the Earth (e.g.,
Kinoshita & Souchay 1990; Zhu et al. 1990; Melchior 1986).

The information on the interior of Mars is very sketchy.
The only structural information that is certain is (1) Mars’
overall physical shape, (2) its mean density, and (3) the
structure of the surface gravity field to twelfth degree and
order (Christensen & Balmino 1979). Mars’ inertia ratio is
definitely greater than that of the Earth, but its exact value is
subject to debate. Current values range from 0.365 (Reasen-
berg 1977) to 0.345 (Bills 1989). The seismic experiments
that were included in the Viking probes were designed only
as a preliminary survey to determine what instruments
would be necessary on future missions to Mars. Also, the
seismic package functioned properly on only one of the two
landers (Anderson et al. 1977).

The less extreme central condensation (greater inertia ra-
tio) and small magnetic field are the reasons that some of the
existing Mars’ models picture a planet with a solid core
(Binder & Davis 1973) rather than a liquid core as the Earth
has. Most models, however, do use liquid cores, but the com-
position and mean radius of the core are unknown. Johnston
& Toksoz (1977) and Okal & Anderson (1978) discuss the
merits of the various possible core configurations. The key to
determining the core’s composition is determining its mean
radius, which will give its mean density based on the planet’s
inertia ratio.

By using the Earth as an example for how the motion of
the pole is affected by a planet’s structure and keeping in
mind the known and possible differences between Mars and
the Earth, it is possible to use the motion of Mars’ pole as a
probe of its interior structure. The information needed to
discriminate between the various models of the Martian inte-
rior can be obtained from a few, highly accurate planetary
orientation sensors, as opposed to a large net of seismo-
meters needed for a classic determination of the planetary
interior structure.
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2. THE EFFECTS OF PLANETARY STRUCTURE
ON THE MOTION OF A PLANET

Aside from the Tharsis uplift, Mars has a much simpler
surface structure than the Earth. Mars lacks many of the
attributes that perturb the Earth’s observed polar motion,
such as plate tectonics, spin-wobble coupling by surface
oceans, and an atmosphere massive enough to contain a sig-
nificant portion of the planet’s angular momentum. These
problems have been addressed for the structure of the Earth
in numerous papers, such as Dahlen (1976), Wahr (1982),
and Wahr & de Vries (1989). The same tools used to handle
the more complicated and much better known structure of
the Earth can be applied to Mars as a probe of its structure.

The only possibly significant structural complication not
accounted for in the above papers is the Tharsis uplift area.
Reasenberg (1977) shows that the amount of volcanic activ-
ity over this area of Mars’ surface may have been great
enough that the volcanic shield added to the surface may
have shifted Mars’ entire center of mass by 800 m with re-
spect to the center of mass of Mars’ core.

Normal mode expansion theory (e.g., Smith 1974) shows
that a hydrostatic, unstressed, elastic, rotating planet with a
solid mantle and a liquid core is subject to three secular and
an infinite number of oscillatory modes. The three secular
modes compose the linear motion of the planet in space. Of
the oscillatory modes, all but three are restricted to the liquid
core of the planet. In addition to the normal modes, the
Earth also has an annual wobble unconnected with normal
mode theory. Hence, except for these four oscillatory modes,
the oscillatory modes are unobservable and problematic.
The three observable oscillating normal modes are common-
ly referred to as the tilt over mode, the Chandler wobble, and
the free-core nutation. The Chandler wobble, the free-core
nutation, and the annual wobble are the three main polar
motion components for the Earth. All four modes of these
are important enough to discuss in detail.

2.1 The Annual Wobble

The Earth’s annual wobble, unlike the other three modes,
is not an eigenstate of the motion of the Earth. The annual
wobble is a result of the seasonal changes in the surface load
resulting from the seasonal shift in the distribution of water
over the surface of the Earth from things such as seasonal
rains, river runoff, and ice-cap formation. The closest Mar-
tian equivalent to the sources of the Earth’s annual wobble
are the growth and shrinkage of Mars’ polar ice caps. How-
ever, the ratio of the mass of these ice caps to the mass of the
planet is several orders of magnitude smaller than the ratio
of the surface water mass with respect to the mass of the
Earth, so a martian “annual” term will be insignificant.

2.2 The Tilt Over Mode or Tt OM

The tilt over mode is the motion of the axis of the rotating
coordinate system (mean axis of rotation) about the true
axis of rotation. Since this motion is that of a point on the
surface of the planet about its rotation axis, this mode has a
period identical to the rotation period of the planet. The
TOM, by definition, is a retrograde rotation, and is indepen-
dent of the structure of the planet.

2.3 The Chandler Wobble

The Chandler wobble is the Eulerian free nutation of the
planet. It is the physical response to the angular separation
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between the angular momentum and the angular velocity
vectors. The Earth’s wobble was first observed by Chandler
(1891), but was not recognized as the Eulerian free nutation
because the observed period of the motion, 436.0 days (Ooe
1978), is much longer than the predicted rigid Earth period
of 304.4 days (Smith & Dahlen 1981). The sources of the
large discrepancy between the theoretical, rigid body and
measured periods are (1) the elasticity of the Earth’s mantle,
(2) the size and shape of the core, (3) the tidal motion of the
oceans, and (4) inelastic dispersion within the mantle.
First, elasticity results in a considerable lengthening of the
rigid body period. The elasticity of the Earth allows the Eu-
lerian nutation to produce a bulge at the equator of rotation
of the Chandler wobble (Fig. 1). This secondary bulge,
which is the equivalent of a tidal bulge, reduces the effective
difference between the principal moments of inertia that are
the source of the Eulerian nutation. Although the change in
the difference is extremely small, about 0.10% for the Earth,
it causes a large increase in the period of the Chandler wob-
ble, 46.98% or 143.0 days (Smith & Dahlen 1981).
Second, the liquid core of a planet causes a decrease in the
period of the Chandler wobble. For a long period (> 1 day),
the motions of the core and mantle are weakly coupled be-
cause the time for the liquid core to deform itself is short
compared to the period of the Chandler wobble (Rochester
1970). Hence, the observed Chandler wobble period is close
to the period of a mantle only Chandler wobble. This change
causes a decrease of 50.5 days or 16.6% of the rigid solid
body Chandler wobble period (Smith & Dahlen 1981).
Third, the Earth’s oceans cause an increase of 29.8 days in

Axis of Rotation

Axis of Chandler
Wobble

The Effect of Elasticity on the Chandler Wobble

Fi1G. 1. The Chandler wobble for an elastic planet. For an elastic planet the
rotation of the planet about the axis of the Chandler wobble raises a bulge
about the equator of the Chandler wobble axis. This bulge reduces the
effective difference between the polar and equatorial principal moments
of inertia for the planet and increases the period of the Chandler wobble.
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the Chandler wobble by reducing the effective difference be-
tween the principal moments of inertia of the Earth in the
same manner as the elastic mantle. Fortunately, Mars has no
oceans, so this effect is ignored.

Fourth, there is the loss of energy through inelastic disper-
sion in the mantle, that is, the change in the quality factor, Q,
with mantle radius (Smith & Dahlen-1981). This contrib-
utes a lengthening of the Earth’s Chandler wobble of 8.5
days. For Mars the effect of dispersion will be much smaller
than it is for the Earth. In the Earth the quality factor ranges
from about 350 4 100 in the lower mantle to about 111 4- 50
in the upper mantle (Smith & Dahlen 1981), so there is as
large of a dispersion in Q. However, the overall Q for the
Earth is dominated by the lower mantle. In Mars, the overall
Q is of the same order as that of the Earth’s upper mantle,
50 < Qptars < 150 (Smith & Born 1976). The similarity be-
tween the Mars’ overall Q and the Earth’s upper mantle Q
suggests that the change in the quality factor with depth for
Marsis not as great as it is for the Earth. Thus the dispersion
in Mars’ mantle will be smaller than it is for the Earth, so the
dispersion has a smaller effect on Mars’ Chandler wobble.

2.4 The Free-Core Nutation or FCN

The nearly diurnal free wobble was first derived by Hough
(1895). It is the result of the spheroidal liquid core having a
greater mean density than the solid mantle. For a planet near
hydrostatic equilibrium, the core’s greater density means it
has a smaller ellipticity than the mantle. Since the ellipticity
of the core is smaller than the mantle, the rate of the Eulerian
nutation of the core is slower than the rate of the mantle.
However, the difference in the dynamical oblatenesses of the
core and the mantle is small, so the difference between their
Eulerian nutation rates is also small. Therefore, the align-
ment between the core and the core cavity is maximized at
nearly daily intervals, so the wobble has a nearly diurnal
period. Unlike the Chandler wobble, the core does not have
sufficient time to deform as the two spheroids (the core and
the core cavity in the mantle) nutate. Thus, the pressure at
the interface between the core and the mantle changes as the
two spheroids move farther from and closer to alignment
(Rochester 1970). The change in the pressure over the core-
mantle interface creates a wobble in the mantle of the planet
(Fig. 2). This is the only significant coupling between the
core and the mantle. Associated with this wobble is a much
larger nutation with a period of 1/(1—period of wobble)
(Rochester et al. 1974). This nutation is the free-core nuta-
tion (FCN). Because the associated nutation is much larger
than the nearly diurnal free wobble, the FCN is the quantity
measured; although the physics is more readily seen in the

-nearly diurnal free wobble.

For the Earth the period of the FCN should be 461 sidere-
al days (Wahr 1981b). However, the FCN has never been
directly measured. VLBI techniques set an upper limit on
the FCN amplitude of 070033 (Herring et al. 1988). Al-
though Herring et al. did not directly observe the FCN, its
influence on nutation is seen (Zhu et al. 1990).

2.5 The Observable Quantities and Model Parameters

The Chandler wobble, the TOM, and the FCN are the
three natural modes of oscillation of a rotating planet with a
liquid core and an elastic, solid mantle. The forced nutation
components of the planet are driven oscillations of the plan-
etary motion, and the precession is a driven secular motion
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Axis of Rotation
of Mantle

Axis of Rotation

Equator
of Mantle

Source of the Free Core Nutation

FI1G. 2. The source of the free-core nutation. The free-core nutation is a
result of the different mean densities of the core and the mantle. Because the
core has a greater density than the mantle, rotation of the planet produces a
smaller dynamic oblateness for the core than it does for the mantle. The
smaller dynamic oblateness results in a slower Eulerian nutation rate for the
core than for the mantle. However, since the core is restricted to the cavity
inside the mantle, there is a pressure coupling between the core and the
mantle that has a nearly diurnal frequency.

about the small circle that is the locus of points for the incli-
nation of the rotation axis of the planet to the orbit of the
perturbing body. The ratio between the expected rigid body
amplitudes for the nutation and the observed amplitudes are
a result of the resonance between the driven oscillations and
the natural modes of oscillation of the planet. Since the fre-
quencies of the natural modes of the planet depend on the
planetary structure, the amplitude of the nutation will also
depend on the structure. Precession, however, is unaffected
by the planetary structure, since it is a secular motion of the
pole about a small circle on the sky rather than an oscillatory
motion.

" From the description of the oscillatory modes above and
the rigid body nutation developed in Hilton (1991), the fun-
damental quantities which affect the natural oscillation per-
iods for an oceanless elastic spheroidal planet are (1) the
rotation rate of the planet, (2) the polar principal moment of
inertia of the mantle, (3) the polar principal moment of iner-
tia of the core, (4) the equatorial principal moment of inertia
of the mantle, (5) the equatorial principal moment of inertia
of the core, and (6) the elasticity of the mantle. The observ-
able quantities are (1) the rotation rate of the planet, (2) the
polar principal moment of inertia of the planet, and (3) the
equatorial principal moment of inertia of the planet. The
moment of inertia for even a uniform body depends on both
the density of the body and its shape, so the known informa-
tion leaves three unknowns. (1) The ratio of the polar mo-
ments of inertia of the mantle and the core, (2) the ratio of
the equatorial moments inertia of the mantle and the core,
and (3) the elasticity of the mantle. Although there are three
oscillatory modes for Mars and three unknowns, the prob-
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lem is underdetermined because the TOM adds no useful
information. Therefore, it is assumed that the planet is in
hydrostatic equilibrium. This assumption is fairly accurate
since even small planets such as the Earth are within 1% of
overall hydrostatic equilibrium (Smith & Dahlen 1981).
Hydrostatic equilibrium allows the ratios of the polar and
equatorial principal moments of inertia to be determined
once a mean core radius is supplied. Finally, the elasticity of
Mars is computed based on the assumption that the mantle
of Mars is composed of materials similar enough to the
Earth’s mantle to provide the same material rigidity. This
leaves the mean core radius as the only free variable in the
determination of the structure of Mars. Measurements of the
Chandler wobble and FCN periods and the amplitudes of
the forced nutation terms will each give separate estimates of
the mean core radius.

3. THE EFFECT OF MARS’ STRUCTURE
ON THE MOTION OF ITS POLE

3.1 The Planetary Models

The effect of Mars’ structure on its motion is studied using
two types of Mars models.

The first model type is based on the models of Okal &
Anderson (1978). In these models, Mars is assumed to con-
sist of an elastic mantle with a zero-pressure mean density of
about 3—4 gm/cm® and a liquid core with a zero-pressure
density ranging from 6 to 22 gm/cm?®. The exact core and
mantle densities in the models are functions of the mean core
radius and the inertia ratio.

These models assume that both the core and the mantle
are in hydrostatic equilibrium. Evidence exists, however,
that the mantle is about 7% out of hydrostatic equilibrium
and the center of mass of the core is offset from the center of
mass of the planet by 800 m (Reasenberg 1977). Although
this variance from hydrostatic equilibrium is a factor of 4
larger than the same variance for the Earth, it does not cause
a significant change in the motion of the pole. The effect of
the nonhydrostatic component on the forced nutation of the
Earth is only about 1 part in 10* (Wahr & de Vries 1989).
For Mars, the smallest principal moment of inertia for the
core for any of the hydrostatic models is

I. = (1.46 + 0.04) X 10* kg m?,

for a core with a mean radius of 800 km, which contains
5.87X 10%* kg or 0.0915 of the Mars’ total mass. The source
of the uncertainty in the core moment of inertia for a given
mean core radius is the uncertainty in the inertia ratio of
Mars. From the parallel axis theorem, the change in the prin-
cipal moment of inertia caused by the core being moved off
center is

Al = #.d?, (1

where d is the distance between the center of mass and the
rotation axis, and .# . is the mass of the core (Hestenes
1986). If the axis of rotation of the core is 800 m away from
the center of mass, the change in the moment of inertia is

AT = (5.87x10* kg) (800 m)? = 3.76 X 10*® kg m>.

The change in the moment of inertia is more than four orders
of magnitude smaller than the uncertainty in the moment of
inertia. Therefore, until the inertia ratio of Mars is much
better known, the effect of the departure from hydrostatic
equilibrium is not calculable. The effect of the general depar-
ture of the planet from hydrostatic equilibrium on the oscil-
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lating normal modes of Mars’ core is also smaller than the
uncertainty caused by the same variance for the models for
the Earth because of Mars’ greater dynamic oblateness. The
difference between the theoretical and observed Chandler
wobble period for the Earth as a result of its departure from
hydrostatic equilibrium is 0.5 day (Smith & Dahlen 1981)
or 0.25% the uncertainty in the period. Hence, the nonhy-
drostatic component of Mars is assumed to be insignificant
with respect to the motion of Mars’ pole.

The second model type is based on the models of Binder &
Davis (1973). In these models, both the mantle and the core
are solid and elastic. In these models, it is assumed that be-
cause of Mars’ smaller size, it has cooled enough for the core
to solidify. The immediate consequences of the solid core
models are (1) the free-core nutation mode disappears and
(2) the period of the Chandler wobble increases because
both the core and the mantle participate in the wobble, un-
like in the liquid core models.

All the models start with a spherical planet with a radius
equal to the mean radius of Mars. The input parameters for
the models are the mean radius of the core and the percen-
tage of the mass found in the core. The percentage of mass in
the core is adjusted, in most models, until the final inertia
ratio for the Mars model is 0.3654. The core and mantle
densities are computed and used to produce initial profiles
for the gravitational potential and the pressure as a function
of radius.

The incompressibility of Mars, K, is computed based on
the assumption that the material that makes up Mars’ man-
tle, like the Earth’s mantle, consists mainly of silicates, so the
same empirical equation used to describe the incompressibil-
ity of the Earth can be used for Mars. For the mantle and the
core, in the solid core models, the incompressibility is given
by

K =225%10" Pa+3.35 ()

(Stacey 1977) where p is the pressure in Pascals. This func-
tion for K represents the Earth’s incompressibility to an un-
certainty of 2%. For the solid core models, Eq. (2) is used to
describe the incompressibility in the core as well as the man-
tle.

For the liquid core models, the determination for the val-
ue K in the core is more difficult. For these models, the value
of K is determined from the value of the square of the Brunt—
Viisala frequency,

N? =_('.0£ —13&).
(r 3K+p ” (3)

Equation (3) describes the motion of a piece of the core
material if it is displaced from its equilibrium position. If
N?*(r) > 0 the displaced portion will oscillate about its equi-
librium position, i.e., the core is stably stratified. If
N2%(r) <0, then the displaced particle will move away from
its equilibrium position (unstable stratification). And if
N?%(r) =0, the displaced particle will remain at its displaced
position (neutral stratification). The exact state of stratifica-
tion for the Earth has not been determined (Smith 1977),
but neutral stratification, or nearly neutral stratification, is a
strong likelihood. Again, appealing to the basic similarity
between Mars and the Earth and having no source of infor-
mation to the contrary, the condition of neutral stratification
is applied to the core of Mars.

Incompressibility is defined as the change in density of
material with pressure, that is,
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K =p(dp/dp). 4

Since the density of a material is a function of pressure, the
density profile needs to be recomputed using the new pres-
sure profile. The rest of the parameters for spherical planet
model are then recomputed based on the new density profile.
The model is then iterated until it converges. All of the mod-
els required, at most, three iterations.

Once the density, gravitational potential, and incompress-
ibility profiles have been determined, the next step is to de-
termine the rigidity and Lamé parameter profiles. The rigid-
ity is also based on the assumption that Mars’ mantle and the
core, for the solid core models, are composed of materials
similar to the Earth. This allows the same empirical relation
for the material rigidity of the Earth to be used for Mars
(Stacey 1977),

u=13x10" Pa+ l.4p. (5)

For the Earth this approximation has an accuracy of 5%.
The Lamé parameter is determined from the incompressibil-
ity and the rigidity.

1=K—u. (6)

The oblateness of a rotating, hydrostatic planet as a func-
tion of radius is calculated based on Bullard’s (1948) itera-
tive solution of Clairaut’s (1743) equation. Clairaut’s equa-
tion assumes that the planet in question is in hydrostatic
equilibrium, which Mars is not. However, the solution to the
primordial Mars models of Reasenberg (1977) is extremely
close and the difference between the theoretical hydrostatic
solution and the measured surface ellipticity of Mars pro-
duce errors of less than 0.02%. The main caveat of this ex-
tremely good agreement between Reasenberg’s primordial
Mars model and the hydrostatic equilibrium model is that
the amplitudes of the nutation and the precession of the plan-
et depends on the difference between the equatorial and po-
lar moments of inertia, which are very similar; therefore,
although the error in the geometric oblateness is extremely
small, the error in the dynamical oblateness may be closer to
about 8%.

3.2 The Periods of the FCN and Chandler Wobble

From the pressure coupling at the core-mantle interface
the angular velocity of the nearly diurnal free wobble
(NDFW) is (Rochester et al. 1974),

Qnprw = — Qdecy /Ay €))

where €y is the ellipticity of the core-mantle interface, 4 is
the equatorial moment of inertia for the entire planet, () is
the angular velocity of the planet, and 4,, is the equatorial
moment of inertia for the mantle alone. The angular velocity
of the FCN is computed using period of FCN = 1/(1—peri-
od of NDFW) (Rochester et al. 1974). ,

It is much more difficult to calculate the period of the
Chandler wobble, however, since its value depends on the
determination of the effective dynamical oblateness of the
planet. The value of the effective dynamical oblateness is
affected by both the planet’s elasticity and the coupling be-
tween the liquid core and the solid mantle. The effect of the
existence of a liquid core upon the Chandler wobble was first
quantitatively determined by Hough (1895). Hough (1896)
also first solved for the effect of an elastic mantle on the
Chandler wobble. The expression of the effects of elasticity
on the physical structure of the Earth were later consolidat-

623

ed by Love (1909) and Larmor (1909) into the Love
numbers, 4 and k. '

The angular velocity of the Chandler wobble, like the an-
gular velocity of the FCN, is an eigenstate of the normal
mode theory, and hence they are both derivable from the
theory. However, the FCN period can also be determined
using the Hough-Love-Larmor (HLL) theory developed
by Smith & Dahlen (1981). This theory is used because it
does not require the assumption of hydrostatic equilibrium
that normal mode theory requires. Thus, the HLL theory
gives an estimate of how much that assumption of hydrostat-
ic equilibrium affects the angular velocity derived. The HLL
theory also addresses the motion more directly and gives a
better physical feel for what is occurring. The main draw-
back of the HLL theory is that it is difficult to extend and
does not show the connection between the three mantle ei-
genstates and the higher order core oscillations found in the
normal mode theory.

In the HLL theory, the angular velocity vector is broken
into mean and time varying parts,

Q=08 +Qm, (8)

where |m| is small compared to unity and Q, is the mean
angular speed. The total angular momentum in inertial
space is

1(6) =I()Q(s) +h(2) (9

where the value of 1(#) is independent of the coordinate
frame chosen, but the values of I, , and h are not.

Similarly, the moment of inertia is decomposed into a
mean part and a time-varying part,

I =I+5(1) (10)

where I is the rigid body inertia tensor and .# (1) is the time-
varying component.

There are now two unknown vectors, m and h, and an
unknown second degree tensor, .#, to be solved for. The
planet is assumed to be an axisymmetric spheroid. The de-
rivatives of h, m and .# are of the form d F/dt = iQcw F, and
all nonlinear terms in h, m, and ¢are insignificant. For any
motion small enough that the planet’s response, s, is linear,
the change in rotation, m is also linear. Hence, since both .#°
and h are linear in s, there must be a set of linear relations
between .#, h, and m, and the solution of the Louiville equa-
tion requires knowledge of only .# -e,

fB = Dm

LARd b

h = QcwE;m; (11)

grrp
where D and E are the linear relations connecting .# and h,
respectively, to m.
The axisymmetry of the planet puts restrictions on the
degrees of freedom of the coefficients (Dahlen 1976) for the
linear relations in Eqs. (11). These restrictions are

D; =D(6,6;, +8,6,)+D'6,5; (12)
and

E; =E(6,6; +68,6,) +iE'e; + E"556;, (13)
where §; is the Kronecker delta, €, is the Levi-Civita den-
sity tensor, and D, D', E, E', and E " are all real scalars.

The parameters m; €1, so m;, which only appears for ro-
tations about the mean axis of rotation is insignificant in

comparison to ( and, hence, it can be set to zero. The linear
portion of the solution is then
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__C—A4-D
“A+D+E+E’

The determination of the angular speed and period of the
Chandler wobble has been reduced to determining the values
of thethree parameters, D, E, and E '. Dis the only parameter
connected to the change in the inertia tensor, so it alone
determines the effect of the elasticity of the planet on the
Chandler wobble. The parameters E and E’ are connected
with the change in the angular momentum of the observed
mantle; that is, their values are determined by the effect of
the core-mantle coupling on the Chandler wobble.

The deformation response of a planet to a wrench, thatis a
combined force and torque, depends on the material re-
sponse to the wrench. Dahlen (1976) shows that to first
order the equation for the parameter D is

(14)

Qew

k,Q%°
D=—"——.
3G (15)
The value of &, is determined either from direct measure-
ments of the planet tide or can be calculated from the normal
mode solution for the planet model. For the Mars’ models
the value of k, was calculated using the method developed
by Longman (1962, 1963).

The zeroth order effect of the fluid core, represented by E
and E’, on the Chandler wobble is immediately seen by mak-
ing the assumptions that the core is spherical and that the
core-mantle interface is frictionless. In this case, the Chan-
dler wobble observed for a rigid mantle will be that for the
mantle alone. That is,

oy = =G g (16)
Am
where C, and 4,, are the polar and equatorial moments of
inertia of the mantle alone. However, since the core is spheri-
cal, the moments of inertia of the core are equal, 4. = C, so
the angular velocity of the Chandler wobble is given by

A-C
Av

The parameter E' in Eq. (14) for the case of a spherical,
frictionless fluid core is then

E'= —Ac. (18)

Rochester (1970) shows that the assumption of a friction-
less core-mantle interface is a good assumption. However,
the assumption of a spherical core-mantle interface is not a
good approximation. When the core is assumed to be oblate,
the mechanism of pressure coupling is added. This coupling
is the result of a normal force between the core and the man-
tle. The normal force results from the change in orientation
of the mantle relative to the core. Hough (1895) and Smith
& Dahlen (1981) show that the effect of pressure coupling at
the elliptical core mantle interface is given to first order by

E'= —(1—¢,)Ac, (19)
where €. is the dynamical ellipticity of the core. Using these

values for the parameters in Eq. (14) gives the angular ve-
locity of the Chandler wobble as

__€C—-4-D
Ay + €cAc +D

Although many simplifications have been made in deter-
mining the value for Q. , comparison of the linear function

Qew = Q. a7

(20)

Qew
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in Eq. (20) with more exact iterative solutions for the Chan-
dler wobble using normal mode theory show differences of
only 0.06%, which is much smaller than the uncertainties of
the parameters used in the solution.

Smith & Dahlen (1981) show that the Chandler wobble
for the Earth determined using the above solution gives a
period that is comparable to the measured value of the Chan-
dler wobble period to within about half a day. The changes
caused by elasticity and a liquid core on Mars’ Chandler
wobble are found to be significantly smaller than those for
the Earth for two reasons. First, because of Mars’ smaller
size the planet is more rigid than the Earth, hence the value
of k, is smaller. This means the tidal bulge raised on Mars is
proportionately smaller than it is for the Earth, so the pro-
portionate sizes of the products of inertia for Mars are
smaller. Second, Mars has a greater inherent dynamical el-
lipticity than the Earth. Therefore, since the period of the
Chandler wobble depends on the effective dynamical ellipti-
city, a given absolute change in the dynamical ellipticity of
Mars has a smaller effect on the Chandler wobble than the
same change on the Earth does.

3.3 Results for Liquid Core Mars Models

Liquid core planetary models were produced with mean
core radii at intervals of 100 km from 800 to 2000 km. The
ratio of core to mantle mass for most of the models was
varied until the value of the inertia ratio was 0.3654 (Rea-
senberg 1977). Four mean core radii were chosen for more
intensive study. Those mean core radii were 800, 1500, 1700,
and 2000 km. The criteria used to determine which mean
radii would be studied in detail are (1) the zero pressure
density for the core of the 800 km model is 22.418 g/cm>.
This density is much greater than the zero pressure density
of either nickel (8.90 g/cm?) or iron (7.86 g/cm?), the most
likely dense components to be found in the core, and only
slightly less than that of osmium (22.48 g/cm?), the densest
known naturally occurring substance. Therefore, the core
density at a mean core radius of 800 km is an absolute lower
bound for the mean core radius. (2) At a mean radius of
2000 km, the zero pressure density of the core has decreased
to only 5.334 g/cm?, significantly less than that of the ex-
pected core constituents. In addition, the core now has a
radius that is 60% that of the entire planet, so the 2000 km
core radius model represents a reasonable upper bound to
the size of the core. The mean core radius of 1500 km was
chosen to give a model with a mean core radius that is half-
way in between the radii of the two extreme cases. The core
with the mean radius of 1700 km was chosen so that the
models developed here could be directly comparable with
the main Mars model of Okal & Anderson (1978).

The 1700 km mean core radius Mars model is shown in
Table 1. In this table columns 1 and 7 give the identification
number of each of the tabulated radii in the model; column 2,
the mean radius; column 3, the geometric flattening; column
4, the density at the tabulated radius; column 5, the total
mass enclosed by the radius; column 6, the gravitational ac-
celeration at the radius; column 8, the pressure at the radius;
column 9, the equatorial radius; column 10, the incompress-
ibility at the tabulated radius; column 11, the Lamé param-
eter at the model tabulated radius; and column 12, the k, + 1
Love number.

Table 2 shows the change in model results as various pa-
rameters are adjusted. In the second section, where the iner-
tia ratio is varied, the equatorial radius changes from 3392.8
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TABLE 1. Fluid core Mars model with a mean core radius of 1700 km. TABLE 2. Significant properties of liquid core models for Mars.
No. ~ Mean Flattening Density Total Grav.
Radius ) Mass Aaeg. (Change in Core Size)
(dam) (kg/m”) (kg) (mfs) Mean Core Equatorial Zero Pressure Density k Free Core Chandler
0 0.0 0.000000 70868  0.000E+00 0.0000 Raduus  Radivs - Core Mange Nuiaton - Wobbe
1 100.0 0003882 70855  2.968E+19 0.1980 (eg/m?) (ay ) (day)
2 200.0 0.003883  7081.6 2.373E+20 0.3959 800.0 33929 224185  3487.1 0.1695 -0.0016253 0.0062530
P ooaws o Toml ER O pmilm ol non smmn tome
‘; ‘;%;8 8%%%2? ;823:8 ;;23251%} 8:9223 20000 33928 53339 33513 02271 -0.0050508 0.0059476
6 600.0 0.003889  7039.5  6.381E+21 1.1 ) o s the radi
7 700.0 0.003898 70222 1.012E+22 1.3775 All models were calculated with a muesé?a?ef‘l%%?G?«tm divided by the mass times the radius
8 800.0 0.003914  7002.1 1.507E+22 1.5714
9 900.0 0.003930  6979.2  2.142E+22 1.7642 . )
10 1000.0 0.003944  6953.4 2.931E+22 1'9‘5@2 (Change in Core Density)
11 1100.0 0.003957  6924.6  3.891E+22 2.1 sl Zero Pressure Dens « Free C Chandl
2 12000 Qooleer 8527 SONEW2 23340 0 B \ smmﬁ.}" Numﬁ§§° Wo'l‘:b?
13 1300. 77 68577  6.385E+22 . o " " . day’ day”
14 14000 0003986  6819.3  7947E+22 27053 o) (Gem)  Ggfm) (kg ) Gy ) Gy )
15 1500.0 0.003994 6771.6 9.738E+22 2.8878 0.3452 33924 7693.9 3157.1 0.1691 -0.0037205 0.0064053
16 1600.0 0.004002  6732.3 1.177E+23 3.0680 0644 328 62569 3/S4 O.I704 0004305 0060E3
}; iggg:g gg%g;g gggz; igg?g:g gfggg 03664 33928  6108.3  3419.5 0.1805 -0.0044129 0.0060424
19 1900.0 0.004080 3649.9 1.704E+23 3.1493 All models were calculated with a mean core radius of 1700 km.
20 2000.8 0.004144-  3635.7 1.3@2%3 gggg
21 2100 0.00421 4 2.069E+ .
2 2200.0 0,()0429g gg(z)é 9 22(7)35.5.23 g%z;(l) (Change in Rigidity, W, and/or Bulk Modulus, K, as a function of pressure)
23 2300.0 0.004370 35923  2.507E+23 . ) )
24 24000 0004447 35774 2.755E+23 31917 parameier Equatorial Zero Pressure ensity  k FreCore  Chandler
25 2500.0 0.004521 35622  3.024E+23 3.2284 () ) g (kg v’ )
26 2600.0 0.004592  3546.7 3.314E+23 3.2709 (day
27 2700.0 0.004659  3530.8 3.626E+23 3.3183 standard 33928  6180.0 34079 0.1800 -0.0043778 0.0060624
28 2800.0 0.004722 35144 3.960E+23 3.3697 Ap (5%) 33928 6180.0 34079 0.1788 -0.0043778  0.0060676
29 2900.0 0.004781 3497.6 4.317E+23 3.4246 AK (2%) 3392.8 6182.1 3408.0 0.1811 -0.0043776 0.0060572
30 3000.0 0.004837 3480.3 4.697E+23 3.4823 A, AK 3392.8 6182.1 34084 0.1799 -0.0043776  0.0060625
g; gé%g 8%323 g:ﬁ 3 g;g%%:%g gggig All models were calculated with a mean core radius of 1700 km and a g of 0.3654.
33 3300.0 0004982 34250  5.986E+23 3.6676
34 3387.2 0.005019 34079  6.404E+23 3.7240
No.  Pressure Equatoral . Lambda k+1 tia ratio. This indicates a preference for the Reasenberg val-
(Pa) () (Pa) (Pa) ue of the inertia ratio.
0 3.972E+10 00 0.0 3.559E+11
1 3.965E+10 100.1 0.0 3.557E+11 0.0011 3.3.1 The Chandler wobble
2 3.943E+10 %oo.z 8.8 ggi(l)g+}} 8'00900448
3 3.908E+10 00.4 X .S40E+ ; - ;
3 3860E+10 2005 00 3324E411 00175 ';‘he penogl of: the Chandler wobble for a rigid Mars with a
5  3.797E+10 5006 0.0 3.505E+11  0.0273 solid center is simply
6 3.720E+10 6008 0.0 3.480E+11  0.0392
7 3.630E+10 7009 0.0 3452E+11  0.0533 2r A
8  3.527E+10 801.0 0.0 3.419E+11  0.0695 W = —— ———, 2
9  3.410E+10 9012 0.0 3.382E+11  0.0879 &0 A—C
10 3.281E+10 10013 0.0 3.340E+11  0.1083 ) o
11 3.139E+10  110L5 0.0 3.294E+11  0.1307 Using the values of e, 2, 4, and C for Mars in Hilton (1990,
12 2984E+10  1201.6 0.0 3.243E+11  0.1552 1991). the rigid bodv Chandl bbl iod i
13 2817E+10 13017 0.0 3.188E+11  0.1817 ), the rigid body Chandler wobble period is
14  2638E+10 14018 0.0 3.129E+11  0.2101
15 2.448E+10 15020 0.0 3.065E+11  0.2405 Tew = 154.6 days,
16  2247E+10  1602.1 0.0 2997E+11 02727 .
17 2035E+10 17023 0.0 2925E+11  0.3068 corresponding to a frequency of |
18  1.869E+10  1802.4 1.562E+11  1.828E+11  0.3416 .
19 © 1753E+10  1902.6  1.545E+11  1.801E+11 03792 Sew = 0.006468 day ~'.
20 1.639E+10 200%.8 }gﬁg»f}: 1.;"3?11 8.:;3_5’ " b half of the Eartl's th |
21 1.525E+10 2103. . + 1. +11 X i 1 is about of the Earth’s theoretical rigi
22 1.412E+10 22032 1.498E+11 1.723E+11  0.5028 Thls plerlod 18 . P : a hlg d
23 1298E+10 23034  1482E+11  1697E+11  0.5479 Chandler wobble period of 303.4 days (Smith & Dahlen
g«; 1. (1)8(4)E+ig 2£g.g l.:gl!ﬂl l.gngH 1 8.232; 1981).
1.070E+ 2503. 1.450E+11  1.643E+11 . . . . . ..
26 §.§42|5+09 2604.0 1.434E+11 “6135_"} 1 8238(7) The effect of the various modifications going from a rigid
27  8376E+09  2704.2 1417E+11  1.589E+11 . ;
It T108E100 38044 TaolEnl I3l o3ose body Chz.md.ler wobble to the Chandler wobl?le for an elastic
2(9) g,gg;g:gg zw,(, Lgsagm 1_§g§5+u 8,8232 mantle, liquid core Mars model are made using a mean core
3 .802E 3004.8 1.367E+11  1.503E+11 H ; ;
31 ISSIEM0S 31081 13%0B411 147311 09865 radius pf 1700 km or‘l/2 of the‘mean radius of Mars. This
32 2349E+09 32053 1.333&11 l.ﬁZEﬂl 1. 055(3) model is compared with the Smith & Dahlen (1981) Earth
33 L100E+09  3305.5 1.315E+11  1411E+11  L11 ; o, : -
34__OOOOEF0 33928 _ L300E+l1l _ L383E+1l 11800 model. Introducing the liquid core in the Earth model re

km for the Reasenberg (1977) value for the inertia ratio,
0.3654, to 3392.4 km for the Bills (1989) inertia ratio of
0.3452. The measured equatorial diameter for Mars is
3393.4km (Davies et al. 1985), so the Reasenberg value for
the inertia ratio does not require as large a nonhydrostatic
component for Mars’ structure as the Bills value for the iner-

duces the period of the Chandler wobble to 253.9 days, a
reduction of 50.5 days from the rigid Earth model. For Mars,
however, a liquid core 1700 km in mean diameter reduces
the period of the Chandler wobble to 145.2 days, a reduction
of only 9.4 days, even though the ratio of the core and mantle
radii is comparable to the same ratio for the Earth. Changing
the character of the mantle from rigid to elastic in the model
increases the period of the Martian Chandler wobble by only
19.5 days, to a period of 164.7 days. This is much smaller
than the 143.0 day increase that an elastic mantle adds to the
period of the Earth’s Chandler wobble. The reason for the
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much smaller effect of planetary elasticity on the Chandler
wobble. The reason for the much smaller effect of planetary
elasticity on the Chandler wobble period is Mars’ higher ri-
gidity.

The third source of change in the Chandler wobble period
for Mars is dispersion within the mantle. This modification
causes only a small change in the period because the change
in the quality factor with radius for Mars is much smaller
than the uncertainty in the quality factor (Smith & Born
1976). The small change in the quality factor means that the
dispersion effect on the Chandler wobble period is unknown,
but it is probably insignificant. The effect of the quality fac-
tor on the motion of Mars’ pole will be discussed in more
detail in Sec. 3.3.3.

The change in the frequency of the Chandler wobble as a
function of the various model parameters is given in Tables 2
and 3. The latter table shows the Chandler wobble frequency
as a function of mean core radius tabulated at 100 km inter-
vals from a core radius of 800-2000 km. The additional mod-
el values for the Chandler wobble period are shown, since it
is obvious from the four standard models that the frequency
is nonlinear (Fig. 3). The frequency of the wobble is sensi-
tive to the change in the core radius (5.13% change over the
range of core size) and change in the inertia ratio of Mars
(6.01% change in g). However, the range for ¢ includes the
rather large central condensation determined by Bills
(1989), which is not likely, given the arguments by Kaula
et al. (1989). Limiting the uncertainty in ¢ to that of Rea-
senberg (1977), the range for the frequency of the Chandler
wobble due to uncertainty in g is only 0.68%. Over the entire
range of core models, the frequency of the Chandler wobble
is determined empirically to within 2% of its actual value by

JSew = 0.004523 + 1.141X 10~ % — 2.978 X 10 ~°F

+6.320x10 12 P, (22)

where 7 is the radius of the core in kilometers. For core radii
of 1100-2000 km the relation between the frequency of the

TABLE 3. Frequency of the Chandler wobble of Mars as a func-
tion of the core radius (liquid core).

Core Radius Chandier Wobble

(km) (day’ )

800 0.0062530
900 0.0063126
1000 0.0063291
1100 0.0063209
1200 0.0062953
1300 0.0062584
1400 0.0062138
1500 0.0061637
1600 0.0061126
1700 0.0060624
1800 0.0060161
1900 0.0059766
2000 0.0059476
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F1G. 3. The liquid core Chandler wobble frequency as a function of mean
core radius. The frequency of the Chandler wobble for a liquid core, elas-
tic Mars’ models is computed with mean core radii from 800 to 2000 km in
radius (squares). The change in frequency with radius is nonlinear, but it
is well fitted by a cubic polynomial (line). If the uncertainty in the period
is 2 days and the frequency is less than 0.00625 day ~ ', the radius of the
core can be determined to an accuracy of 180 km. The frequency does not
correspond to a unique radius at frequencies greater than 0.00625 day ~'.

Chandler wobble and the radius of the core is nearly linear
and approximated by

Sew =0.006812 — 4.322 10~ °r. (23)

However, a given frequency for the Chandler wobble does
not correspond to a single core radius for frequencies greater
than about 0.00625 day ~!.

The best determination of the Chandler wobble period for
the Earth (Smith & Dahlen 1981) has an uncertainty of 2.0
days. Assuming that the Chandler wobble period of Mars
can be determined with the same uncertainty, the radius of
the core can be determined from the Chandler wobble only
with an uncertainty of 180 km if the mean core radius is
greater than 1300 km.

There are three reasons why the Chandler wobble of Mars
is less sensitive to the planet’s structure than the Earth’s
Chandler wobble is to the Earth’s structure.

First, the inherent dynamical oblateness of Mars is a fac-
tor of 1.814 greater than that of the Earth. The larger dy-
namical oblateness is evident in Mars’ higher rigid body
Chandler wobble frequency. Therefore, to have the equiva-
lent effect on Mars, a modification to the basic Chandler
wobble must be nearly a factor of two larger than the equiva-
lent modification to the Chandler wobble theory for the
Earth.

Second, the ratio of the moment of inertia of the core to
the moment of inertia of the entire planet for all of the mod-
els are either smaller than, or approximately equal to, the
same ratio for the Earth. Thus, the effect of the abstinence of
the core from the Chandler wobble for Mars will be smaller
than the similar effect is for the Earth.
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Third, the value for the Love number, &, , for Mars is only
0.18 in comparison to the Earth’s k, of 0.35. This smaller
value of k, is expected from the Love (1909) approximation
for k,,

3 190 \~!
=21+ 227
2T +2ng

zM; _1_91“_> 1, (24)
194~ 2gpR

where p is the rigidity of the material of which the planet is
composed, g is the gravitational acceleration at the surface, p
is the mean density of the planet, and R is the mean radius.
The gravitational acceleration, mean density, and mean ra-
dius of Mars are all smaller than the same quantities for the
Earth. The assumption that both the Earth and Mars are
composed of similar materials means that the material rigid-
ity of the two planets will be the same. Therefore, the right-
hand side of Eq. (24) and the value of k, is smaller for Mars
than it is for the Earth. The smaller value for k, means that,
for a comparable amount of exterior force, the ratio of defor-
mation of Mars from the force with the deformation result-
ing from Mars’ rotation is significantly smaller for Mars
than it is for the Earth. Thus, the ratio of the change in the
difference between the polar and equatorial moments of in-
ertia resulting from an exterior force with respect to the hy-
drostatic difference is smaller for Mars than for the Earth,
and the effect of elasticity is smaller for Mars than for the
Earth.

3.3.2 The free-core nutation

In the Earth, the free-core nutation itself appears to be
unexcited. Again assuming that Mars is similar to the Earth,
itis not likely that the FCN can be directly detected for Mars
either. If, on the other hand, the lack of a detectable FCN is a
peculiarity of the Earth alone, then the FCN frequency for
Mars would be extremely useful in determining the size of
Mars’ core. First, the sensitivity of the FCN to changes in the
inertia ratio of the planet is much smaller than the sensitivity
of Mars’ Chandler wobble (Table 2). The change in the
Chandler wobble frequency from one extreme to the other of
the value for inertia ratio is 119% of the change in the fre-
quency over the extremes in the core size of the model. How-
ever, the change in the frequency of the FCN over the ex-
tremes in inertia ratio is only 20% of the change of frequency
over the extremes in the core size. The FCN is also less sensi-
tive to uncertainties in the elasticity of the planet, so the
FCN is less affected by the two greatest sources of uncertain-
ty in the Mars models. Second, the FCN period, unlike the
Chandler wobble, is a nearly linear function of the mean core
radius and is single valued over the range in model core sizes
(Fig. 4 and Table 2). The negative sign preceding the fre-
quencies in the table denotes that the free-core nutation is a
retrograde (clockwise) motion of the pole. Finally, the slope
of the mean core radius-frequency relation is steep enough
to allow the radius of the core to be determined to an uncer-
tainty of only 6 km if the uncertainty in the FCN period is 2
days. ‘

3.3.3 Nutation

The smaller k&, Love number reduces the effect of elasti-
city on the Chandler wobble. But the smaller k, also means
Mars’ normal mode oscillations have a greater effect on the
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FIG. 4. The frequency of the free-core nutation (FCN) as a function of
mean core radius. The FCN period as a function of the mean core radii
between 800 and 2000 km. Only the four closely studied models are shown
Unlike the Chandler wobble the FCN is nearly linear (the line fit to the
data shown is quadratic) with core radius. The change in frequency with
core radius is quite steep. If the period of the FCN is known with an
accuracy of 2 days, the mean core radius can be determined to an uncer-
tainty of only 6 km.

amplitude of the nutation of Mars than the Earth’s normal
mode oscillations have on the Earth. This is seen clearly in
Table 4, which shows the amplitude of the nutation compo-
nents as a function of the change in the mean radius of the
core. This phenomenon can be understood in terms of the
quality factor, Q. The quality factor is defined as

Total Energy (25)
Energy Dissipated per Cycle
For the liquid core Mars models the two sources of dissipa-
tion in the Chandler wobble will be core-mantle coupling
processes and inelasticity of the mantle of the planet.

The first of these two sources an be immediately ruled out
as a source of significant damping. The estimates for the
value of Q, based on the largest estimates available for the
known core-mantle coupling mechanisms for the Earth, is
greater than or equal to 12 000 (Smith & Dahlen 1981).
Again, because Mars is similar to the Earth in its structure,
the estimate for dissipation between the core and the mantle
should hold for Mars. Even if the structural differences be-
tween the Earth and Mars are large, the strength of the core-
mantle coupling mechanisms for Mars need to be more than
an order of magnitude greater than they are in the Earth
before they would become a significant source of damping.

Smith & Dahlen (1981) show from the normal mode per-
turbation theory that the amount of energy in the Chandler
wobble lost to friction is related by a complicated function to
the rigidity and the Lamé parameter. However, the relation-
ship between Q and the rigidity is also an inverse relation-
ship, as is the relationship between &, and rigidity. There-

Q=2

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1992AJ....103..619H&db_key=AST&nosetcookie=1

rT992AT.~ - CI03 Z610H:

628 JAMES L. HILTON: MARS’ MANTLE AND CORE

628

TABLE 4. Nutation amplitudes for different liquid core models of Mars.

(Different Core Sizes) (Change in Core Density)
Nutation in Obliquity Nutation in Longitude
Core Size } q
Period Rigid 800km 1500km 1700km 2000 km Period 0.3452  0.3644  0.3654 0.3664
(day) (day)
686.72 -0.0493 -0.0419 -0.0435 -0.0439 -0.0444 686.72 -0.1236 -0.1252  -0.1252  -0.1252
343.41 0.5158  0.4687 0.4793 0.4824 0.4866 343.41 1.0294 1.0264 1.0251 1.0238
228.96 0.1130  0.1074 0.1089 0.1094 0.1100 228.96 0.2358  0.2329 0.2324 0.2320
171.72 0.0193  0.0189 0.0191 0.0191 0.0192 171.72 0.0416  0.0407 0.0406 0.0405
137.38 0.0030  0.0030 0.0030 0.0030 0.0030 137.38 0.0661  0.0644 0.0642 0.0640
686.93 -0.0004 -0.0003 -0.0004 -0.0004 -0.0004 114.48 0.0010 0.0010 0.0010 0.0010
828.5 -0.0040 -0.0034 -0.0035 -0.0035 -0.0036 686.93 -0.5585 -0.5658 -0.5657  -0.5655
19850 -0.0028 -0.0022 -0.0023 -0.0023  -0.0024 343.46 -0.0418 -0.0417 -0.0416 -0.0416
228.98 -0.0040 -0.0040 -0.0039  -0.0039
Nutation in Longitude 828.5 -0.20 -0.20 -0.20 -0.20
19850 -0.047 -0.049 -0.049 -0.049
Core Size
Period Rigid 800km 1500km 1700km 2000 km All models were calculated with a core diameter of 1700 km.
—day) (Change in Rigidity, p and/or Bulk Modulus, K as a function of Pressure)
686.72 -0.1407 -0.1197 -0.1240  -0.1252  -0.1268 . -
343.41 10962 09962 1018 10251  1.0340 Nutation in Obliquity
228.96 0.2401  0.2283 0.2315 0.2324 0.2338
l71.7§ 0.0409  0.0402 88225 0.0405 8%2 parameter
137.3 0.0634  0.0639 .0641 0.064 . Period standard 5%) AK %) Ap, AK
11448 00009 00010 00010 00010  0.0009 (day) A G%) aKQ%) - Au
382.92 -8.6357 -0.5409 83203 -8.3252 -8(5)1;8
43.4 -0.0445  -0.0404 00414  -0.0416 -0 686.72 -0.0439 00439  -0.0439  -0.0439
228.98 -0.0041  -0.0039  -0.0039  -0.0039  -0.0040 343.41 04824 04824 04823  0.4824
828.5 023 -0.19 -0.20 -0.20 -0.21 228.96 0.1094 0.1094  0.1094  0.1094
19850 -0.060  -0.046 -0.049 -0.049 -0.050 ];1 gg gg(l)g(lj 0.0191 0.0191 0.0191
137. X X .0030 0.0030
All models were calculated with a value for g of 0.3654. 686.93 -0.0004 4888(3)2 _800(3)4 -0.0004
828.5 -0.0035 -0.0035 -0.0035 -0.0035
19850 -0.0023 -0.0023  -0.0023  -0.0023
(Change 1n Core Density) Nutation in Longitude
Nutation in Obliquity
parameter
q Period standard Ap(5%) AK 2%) Ap, AK
Period 0.3452 0.3644  0.3654 0.3664 __(day)
da
(dap) 686.72 -0.1252  -0.1252  -0.1252 -0.1252
686.72 -0.0433  -0.0439  -0.0439  -0.0439 343.41 1.0251 1.0252 1.0250 1.0251
343.41 0.4840  0.4829 0.4824 0.4818 228.96 02324 0.2324 0.2324 0.2324
228.96 0.1110  0.1096 0.1094 0.1092 171.72 0.0406  0.0406 0.0406 0.0406
171.72 0.0195  0.0191 0.0191 0.0191 137.38 0.0642  0.0642 0.0642 0.0642
137.38 0.0031 0.0030 0.0030  0.0030 114.48 0.0010 0.0010  0.0010  0.0010
686.93 -0.0004 -0.0004 -0.0004  -0.0004 686.93 -0.5657 -0.5658  -0.5655  -0.5657
828.5 -0.0035 -0.0035 -0.0035  -0.0035 343.46 -0.0416 -0.0416 -0.0416 -0.0416
19850 -0.0022 -0.0023  -0.0023 -0.0023 228.98 -0.0039 -0.0039 -0.0039  -0.0039
828.5 -0.20 -0.20 -0.20 -0.20
19850 -0.049 -0.049 -0.049 -0.0055

All models were calculated with a core diameter of 1700 km.

All models were calculated with a core diameter of 1700 km.

fore, the relationship between Q and k, is a direct relation.
Smith & Born (1976) show that, for Mars, this relation is
approximately linear. Since Mars’ k, is smaller than the
Earth’s, Mars is expected to have a lower quality factor than
the Earth. Smith & Born’s (1976) determination, based on
the change in the orbital motion of Phobos, indicates a Q of

50 < Opmars < 150,

which is much smaller than the Q of the Earth found by
Smith & Dahlen (1981) of

350 < Qraren < 600.
For lightly damped systems,
0=0./6Q, (26)

where () is the resonance frequency of the system and 5 is
the frequency interval on the resonance curve when the am-

plitude is y2/2 of its maximum. Thus, the range of frequen-

cies over which the amplitudes of the nutation components
for Mars will be affected by the resonance with a normal
mode oscillation will be 2.3-12 times wider than the range of
frequencies in nutation that are affected by a normal mode
oscillations of the Earth. The amplitude of the nutation com-
ponents as a function of the mean core radius are given in
Table 4.

The change of the forced nutation amplitudes with the
mean radius of the core, like the frequency of the FCN, is
nearly linear. In Fig. 5 the change in amplitude with mean
core radius is plotted for the three largest nutation compo-
nents (two in longitude and one in obliquity). Measure-
ments of the amplitudes of these three nutation components
to an accuracy of 07001 produce estimates of the mean core
radius with uncertainties of 67, 38, and 32 km. The uncer-
tainty of the core radius found from the mean of all three
measurements is 28 km. There are a total of five nutation
components that change significantly over the range of the
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FIG. 5.(a, b) The amplitudes of the two largest Martian nuta-
tion components in longitude as a function of mean core radi-
us. (¢) The amplitude of the largest Martian nutation in lati-
tude as a function of the mean core radius. All three of the
nutation amplitudes are plotted with mean core radii varying
from 800 to 2000 km. All have significant, nearly linear,
changes in their amplitudes with core radius. Measuring the
amplitudes of these nutation components with an accuracy of
07001 determines the mean core radius to an accuracy of 67,
32, and 38 km, respectively.
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models at the milliarcsecond level, and three of those change
at the 10 milliarcsec level. Also, there is little chance of con-
fusing the amplitudes of a fluid core Mars with those of the
rigid model for Mars, since the difference between the fluid
core, elastic models and the rigid Mars’ model can be as large
as 0”1 (main 343.5 day component in longitude) and is larg-
er than 0704 for two nutation components in longitude
(main 343.5 day and secondary 687.0 day components) and
one nutation in obliquity, 343.5 day component (Table 4)!

The nutation in longitude driven by the motion of Phobos’
node (Hilton 1990, 1991) may also be usable as an indicator
of the radius of Mars’ core, since the amplitude is fairly large
and its period is rather short. However, before it can be used
as a core radius indicator, the two largest sources of uncer-
tainty in its amplitude (the rate of motion of Phobos’ node
and Phobos’ mass) need to be known with at least an order of
magnitude greater precision.

A test for the effect of the uncertainties in the rigidity and
the bulk modulus profiles used in the models on the ampli-
tude of the nutation is made by computing three variations of
the 1700 km radius core model. The three variations are (1)
bulk modulus increased by 2%, (2) rigidity increased by
5%, and (3) both the bulk modulus increased by 2% and the
rigidity increased by 5%. The absolute difference between
the nutation amplitude in the standard model and the varied
models were all less than 0.1 milliarcsec (Table 4).

The change in the Mars’ principal moment of inertia has
an effect on the amplitude of the nutation only an order of
magnitude larger than the uncertainty in the rigidity and
compressibility parameters (Tables 2 and 4). Its greatest
effect is on the main 343.5 day nutation in longitude with a
change of 5.6 milliarcsec from extremum to extremum. Us-
ing just the uncertainty in the Reasenberg (1977) value for
the inertia ratio, the largest uncertainty for the main 343.5
day nutation in longitude is only + 1.3 milliarcsec.

Therefore, the liquid core Mars models show it is possible
to determine the size of the core to 70 km or less from the
amplitudes of several of the nutation components and from
the period of the free-core nutation, if it is excited. Neither
the nutation components nor the FCN are significantly af-
fected by the uncertainties in the rigidity and compressibility
of the planet’s materials or the uncertainty in the inertia
ratio. The Chandler wobble can determine the core radius
with an uncertainty of 180 km for mean core radii greater
than 1300 km if the period is known with an uncertainty of 2
days. For mean core radii less than 1300 km, the frequency
of the Chandler wobble is not unique.

3.4 Solid Core Mars Models

Like the liquid core models, the primary solid core models
are calculated with mean core radii of 800, 1500, 1700, and
2000 km. The ratio of the core to mantle mass is varied until
the value for the inertia ratio, g, for the standard models is
0.3654.

The results for the model with a 1700 km mean core radius
are given in Table 5. The identical radial profiles for the
flattening, density, total mass, gravitational acceleration,
pressure, and equatorial radius for both the solid core and
theliquid core models is expected since all the models use the
assumption that Mars is in hydrostatic equilibrium. The
only differences between the basic solid core and liquid core
models are (1) the value for the rigidity in the core, y, is not
0but continues to increase according to the empirical formu-
la givenin Eq. (2), and (2) the value of the Lamé parameter
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TABLE 5. Solid core Mars model with a mean core radius of 1700 km.

JAMES L. HILTON: MARS’ MANTLE AND CORE

No. ‘Mean Flattening Density Total Grav.
Radius Mass Aceg‘
(k) (kg/m’) (kg) (mis?)
0 0.0 0. 7086.8 0.000E+00 0.0000
1 100.0 0.003882 7085.5 2.968E+19 0.1980
2 200.0 0.003883 7081.6 2.373E+20 0.3959
3 300.0 0.003884 7075.1 8.004E+20 0.5934
4 400.0 0.003886 7065.9 1.896E+21 0.7904
5 500.0 0.003887 7054.0 3.698E+21 0.9869
6 600.0 0.003889 7039.5 6.381E+21 1.1827
7 700.0 0.003898 7022.2 1.012E+22 1.3775
8 800.0 0.003914 7002.1 1.507E+22 1.5714
9 900.0 0.003930 6979.2 2.142E+22 1.7642
10 1000.0 0.003944 6953.4 2.931E+22 1.9556
11 1100.0 0.003957 6924.6 3.891E+22 2.1456
12 1200.0 0.003967 6892.7 5.037E+22 2.3340
13 1300.0 0.003977 6857.7 6.385E+22 2.5206
14 1400.0 0.003986 6819.3 7.947E+22 2.7053
15 1500.0 0.003994 6777.6 9.738E+22 2.8878
16 1600.0 0.004002 6732.3 1.177E+23 3.0680
17 1700.0 0.004010 6683.3 1.406E+23 3.2457
18 1800.0 0.004032 3664.2 1.547E+23 3.1856
19 1900.0 0.004080 3649.9 1.704E+23 3.1493
20 2000.0 0.004144 3635.7 1.878E+23 3.1320
21 2100.0 0.004216 3621.4 2.069E+23 3.1303
22 2200.0 0.004292 3606.9 2.279E+23 3.1410
23 2300.0 0.004370 35923 2.507E+23 3.1621
24 2400.0 0.004447 3577.4 2.755E+23 3.1917
25 2500.0 0.004521 3562.2 3.024E+23 3.2284
26 2600.0 0.004592 3546.7 3.314E+23 3.2709
27 2700.0 0.004659 3530.8 3.626E+23 3.3183
28 2800.0 0.004722 35144 3.960E+23 3.3697
29 2900.0 0.004781 3497.6 4.317E+23 3.4246
30 3000.0 0.004837 3480.3 4.697E+23 3.4823
31 3100.0 0.004889 3462.4 5.102E+23 3.5423
32 3200.0 0.004937 3444.0 5.532E+23 3.6042
33 3300.0 0.004982 3425.0 5.986E+23 3.6676
34 3387.2 0.005019 3407.9 6.404E+23 3.7240
No. Pressure Equatorial n Lambda k+1
Radius
(Pa) (km) (Pa) (Pa)
0 3.972E+10 0.0 1.856E+11  2.322E+11
1 3.965E+10 100.1 1.855E+11  2.321E+11 0.0011
2 3.943E+10 200.3 1.852E+11 2.316E+11 0.0043
3 3.908E+10 300.4 1.847E+11 2.308E+11 0.0094
4 3.860E+10 400.5 1.840E+11 2.297E+11 0.0164
5 3.797E+10 500.6 1.832E+11 2.283E+11 0.0254
6 3.720E+10 600.8 1.821E+11 2.266E+11 0.0364
7 3.630E+10 700.9 1.808E+11 2.246E+11 0.0495
8 3.527E+10 801.0 1.794E+11 2.223E+11 0.0645
9 3.410E+10 901.2 1.777E+11  2.197E+11 0.0816
10 3281E+10 10013 1.759E+11  2.167E+11 0.1007
11 3.139E+10 1101.5 1.739E+11 2.134E+11 0.1218
12 2.984E+10 1201.6 1.718E+11 2.098E+11 0.1449
13 2.817E+10 1301.7 1.694E+11 2.059E+11 0.1700
14 2.638E+10 1401.9 1.669E+11 2.016E+11 0.1971
15 2.448E+10 1502.0 1.643E+11 1.970E+11 0.2261
16 2.247E+10 1602.1 1.615E+11 1.921E+11 0.2572
17 2.035E+10 1702.3 1.585E+11 1.868E+11 0.2871
18 1.869E+10 1802.4 1.562E+11 1.828E+11 0.3164
19 1.753E+10 1902.6 1.545E+11 1.801E+11 0.3485
20 1.639E+10  2002.8 1.529E+11  1.775E+11 0.3828
21 1.525E+10 2103.0 1.513E+11 1.749E+11 0.4194
22 1.412E+10 2203.2 1.498E+11 1.723E+11 0.4581
23 1.298E+10 2303.4 1.482E+11 1.697E+11 0.4989
24 1.184E+10 2403.6 1.466E+11 1.670E+11 0.5417
25 1.070E+10 2503.8 1.450E+11 1.643E+11 0.5866
26 9.542E+09 2604.0 1.434E+11 1.616E+11 0.6334
27 8.376E+09 2704.2 1.417E+11 1.589E+11 0.6821
28 7.198E+09  2804.4 1.401E+11 1.561E+11 0.7328
29 6.007E+09  2904.6 1.384E+11 1.532E+11 0.7855
30 4.802E+09  3004.8 1.367E+11  1.503E+11 0.8400
31 3.583E+09 3105.1 1.350E+11 1.473E+11 0.8965
32 2.349E+09 3205.3 1.333E+11 1.442E+11 0.9549
33 1.100E+09 3305.5 1.315E+11 1.411E+11 1.0152
34 0.000E+00 _ 3392.8 1.300E+11 1.383E+11 1.0692
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planet, as seen by comparing column 12 of Table 5 with
column 12 of Table 1. The Love number k, at the surface of
Mars is reduced by a factor of about 2 for the solid core
model. In short, the overall elasticity of the solid core planet
model is about half of that of the liquid core planet model.
Therefore, the effect of planetary elasticity on the amplitude
of the forced nutation will be much smaller for the solid core
case than it was for the liquid core models. Although a lower
k, is indicative of a lower Q and, hence, a wider range of
frequencies over which the amplitudes of forced oscillations
are affected, it also means that the magnitude of the reso-
nance effect is reduced (Table 6).

The third immediately obvious difference between the sol-
id core and liquid core models for Mars is the absence of the
free-core nutation for the solid core model. The FCN cannot
exist in the solid core models since it is the result of the
pressure coupling between the core and the mantle caused by
the difference in the Eulerian precession rates of the liquid
core and the solid mantle. ‘

3.4.1 The Chandler wobble

The effect of the lower planetary elasticity and the solid
core participation in the Chandler wobble is very pro-
nounced. The Chandler wobble period for the solid core
models are much closer to the rigid Mars Chandler wobble
period than to the periods of the liquid core models. For
example, the frequency for a core with a mean diameter of
1700 km is

Sfcew = 0.0065624 day .

TABLE 6. Significant properties of solid core models from Mars.

(Change in Core Sizc)

Mean Core Equatorial Zero Pressure Density k Chandler
Radius Radius  Core Man Wobble
Gm) _ Gm)  Ggm) (kg @ay’h
800.0 33929 224185 3487.1 0.1110  0.0065030
1500.0 3392.8 7149.6 34343 0.0714  0.0065496
1700.0 3392.8 6180.0 34079 0.0692  0.0065624
2000.0 3392.8 53339 33513 0.0673  0.0067146

All models were calculated with a value for g (the polar inertia divided by the mass times the radius

squared) of 0.3654.

(Change in Core Density)

q Equatorial Zero Pressure Density k Chandler

Radius Oore Mnn ‘Wobble

() (m) 3 agmd) @y
03452 33924 7693.9 3157.1 0.0686  0.0068963
03644 33928 6256.9 33954  0.0692  0.0065837
03654 33928 6180.0 34079 0.0692  0.0065624
03664 33928 6108.3 3419.5 0.0693  0.0065429

in the core is not based on the assumption that it is neutrally
stable, but follows Eq. (3) as it does in the mantle.

" Although it has little effect on the immediate shape, pres-
sure, and density of the planet, the assumption of a solid core
for Mars has a very profound effect on the elasticity of the

All models were calculated with a mean core radius of 1700 km.

(Change in Rigidity, L, and/or Bulk Modulus, K, as a function of pressure)

parameter Equatonal Zero Pressure Density k Chandler
Radius  Core Man ‘Wobble

Gm)__ (gm®) _(gm’) @y’

standard  3392.8 6180.0 34079 0.0692  0.0065624
Ap (5%) 3392.8 6180.0 3407.9 0.0678  0.0065690
AK (2%) 3392.8 6182.1 3408.0 0.0700  0.0065589
Ap, AK 33928 6182.1 34084 0.0685  0.0065655

All models were calculated with a mean core radius of 1700 km and a g of 0.3654.
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This frequency differs from the rigid body frequency by only
9.4x10~° day !, while the difference between the solid
core and the liquid core frequency is 5.00X 10~ day ~'.

The change of frequency with mean core radius given in
Table 7 and Fig. 6 is much smaller than for the liquid core
models. Also, like the liquid core models, the relation be-
tween the frequency of the Chandler wobble and the core
size is definitely nonlinear. Like the liquid core model Chan-
dler wobble, the solid core model Chandler wobble can also
be characterized by an empirical cubic function,

J

0.0060766 + 5.33 10~ 7r;

Jew = {0.0054706 +6.22X10 7r;

Because the rate of change of the Chandler wobble frequency
with mean core radius is much lower for the solid core mod-
els than for the liquid core models, a measurement of the
period of the Chandler wobble with an uncertainty of 2 days
leads to an uncertainty in the mean core radius of 1700 km in
the 800 km <7 <900 km range and 1400 km in the 1800
km < r <2000 km range. Therefore, the frequency of the
Chandler wobble is not a usable indicator of the mean core
radius for a solid core Mars.

The frequency of the Chandler wobble, shown in Table 6,
is rather insensitive to the uncertainties in the rigidity and
compressibility of the materials that make up the planet. The
frequency changes only 6.6X 10~ ¢ day ~' from one ex-
treme to the other. Also, like the liquid core models, the solid
core models of Mars are insensitive to the inertia ratio of the
planet. The only significant frequency change is for the ex-
treme inertia ratio of Bills (1989). The change in the fre-
quency with inertia ratio is linear over the entire range of g.

3.4.2 Nutation

Table 8 gives the amplitudes of the nutation components
for the solid core, elastic Mars models. The amplitudes are

TABLE 7. Frequency of the Chandler wobble of Mars as a func-
tion of the mean core radius (solid core).

(km) (day’})
800 0.0065030
900 0.0065563
1000 0.0065785
1100 0.0065817
1200 0.0065772
1300 0.0065668
1400 0.0065562
1500 0.0065496
1600 0.0065505
1700 0.0065624
1800 0.0065902
1900 0.0066394
2000 0.0067146
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Sew =0.0049341 4 3.8610 X 10~ — 2.968 X 10~ °7
+7.413X10~ 137, 27

where the mean radius, 7, is in kilometers and the frequency
is in day~'. The range over which the frequency corre-
sponds to a single value of the mean core radius is small (800
km <7<900 km and 1800 km <7 <2000 km). Over these
two ranges the value of the Chandler wobble as a function of
radius can be calculated using

800 km <7 <900 km,
1800 km <7 <2000 km.

(28)

shown, as with the liquid core models, for changes in the size
of the core, the rate of change in the incompressibility and
rigidity with pressure, and the inertia ratio of the planet. The
amplitudes of the nutation components are affected by
neither the mean core radius nor the uncertainty in the rigid-
ity and incompressibility. In fact, to the number of signifi-
cant digits given, there is no difference in nutation amplitude
between the solid core, elastic Mars models and the rigid
Mars model.

Chandler Wobble Frequency
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FIG. 6. The solid core Chandler wobble frequency as a function of
the mean core radius. The frequency of the Chandler wobble for
solid core, elastic Mars models is computed with mean core radii
from 800 to 2000 km in radius (squares). The change in frequency
with radius is nonlinear, but it is well fitted by a cubic polynomial
(line). If the uncertainty in the period is 2 days and the frequency
is not between 0.00655 and 0.0066 day ~ ! the radius of the core can
be determined to an accuracy of between 1400 and 1700 km. The
frequency does not correspond to a unique radius at frequencies
between 0.00655 and 0.00660 day ~'.
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TABLE 8. Nutation amplitudes for different solid core models of Mars.

(Different Core Sizes)
Nutation in Obliquity
Core Size
Period Rigid 800km 1500km 1700km 2000 km
(day)
686.72 -0.0493  -0.0493  -0.0493  -0.0493  -0.0493
343.41 05158 0.5158  0.5158 0.5158  0.5158
228.96 0.1130  0.1130  0.1130 0.1130  0.1130
171.72 0.0193  0.0193  0.0193 0.0193  0.0193
137.38 0.0030 0.0030  0.0030 0.0030  0.0030
686.93 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004
828.5 -0.0040 -0.0040 -0.0040  -0.0040  -0.0040
19850 -0.0028 -0.0028 -0.0028  -0.0028  -0.0028
Nutation in Longitude
Core Size
Period Rigid 800km 1500km 1700 km 2000 km
(day)
686.72 -0.1407 -0.1407 -0.1407 -0.1407 -0.1407
343.41 1.0962 1.0962 1.0962 1.0962 1.0962
228.96 0.2401 0.2401 0.2401 0.2401 0.2401
171.72 0.0409 0.0409 0.0409 0.0409 0.0409
137.38 0.0634 0.0634 0.0634 0.0634 0.0634
114.48 0.0009 0.0009 0.0009 0.0009 0.0009
686.93 -0.6357 -0.6357 -0.6357 -0.6357 -0.6357
343.46 -0.0445 *-0.0445 -0.0445 -0.0445 -0.0445
22898 -0.0041 -0.0041 -0.0041 -0.0041 -0.0041
828.5 -0.23 -0.23 -0.23 -0.23 -0.23
19850 -0.060 -0.060 -0.060 -0.060 -0.060
All models were calculated with a value for g of 0.3654.
(Change in Core Density)
Nutation in Obliquity
q
Period 0.3452  0.3644  0.3654 0.3664
__(day)
686.72 -0.0507 -0.0494  -0.0493  -0.0492
343.41 05309 05170  0.5158 0.5148
228.96 0.1163  0.1133  0.1130 0.1128
171.72 0.0198 0.0193  0.0193 0.0192
137.38 0.0031 0.0030  0.0030 0.0030
686.93 -0.0004 -0.0004 -0.0004  -0.0004
828.5 -0.0041 -0.0040 -0.0040  -0.0040
19850 -0.0029 -0.0028 -0.0028  -0.0028
All models were d with a core di of 1700 km.

(Change in Core Density)
Nutation in Longitude
q
Period 03452 03644 03654  0.3664
__(day)
686.72 -0.1448  -0.1410  -0.1407  -0.1404
343.41 11282 1.0987 1.0962 1.0941
228.98 0.2471  0.2407  0.2401 0.2396
171.72 0.0421 0.0410  0.0409 0.0408
137.38 i 0.0653 0.0635  0.0634  0.0633
114.48 0.0010 0.0009  0.0009 0.0009
686.93 -0.6543 -0.6371  -0.6357  -0.6344
343.46 -0.0458 -0.0446  -0.0445  -0.0444
228.96 -0.0042 -0.0041 -0.0041  -0.0041
828.5 -0.24 -0.23 -0.23 -0.23
19850 -0.062  -0.060 -0.060 -0.060
All models were d with a core di of 1700 km.
(Change in Rigidity, mu and/or Bulk Modulus, K as a of P
Nutation in Obliquity
parameter
Period standard Ap (5%) AK (2%) Ap, AK
_(day)
686.72 -0.0493 -0.0493  -0.0493  -0.0493
343.41 0.5158 0.5158  0.5158 0.5158
228.96 0.1130 0.1130  0.1130  0.1130
171.72 0.0193  0.0193  0.0193 0.0193
137.38 0.0030 0.0030 0.0030  0.0030
686.93 -0.0004 -0.0004 -0.0004 -0.0004
828.5 -0.0040 -0.0040  -0.0040  -0.0040
19850 -0.0028 -0.0028 -0.0028  -0.0028
Nutation in Longitude
parameter
Period standard Ap(5%) AK (2%) Ap, AK(2%)
—_(day)
686.80 -0.1407 -0.1407 -0.1407  -0.1407
343.43 1.0962  1.0962 1.0962 1.0962
228.96 0.2401  0.2401  0.2401 0.2401
171.72 0.0409 0.0409  0.0409 0.0409
137.38 0.0634 00634  0.0634  0.0634
114.48 0.0009 0.0009  0.0009 0.0009
686.93 -0.6357 -0.6357 -0.6357  -0.6357
343.46 -0.0445 -0.0445  -0.0445  -0.0445
228.98 -0.0041 -0.0041 -0.0041  -0.0041
828.5 -0.23 -0.23 -0.23 -0.23
19850 -0.060  -0.060 -0.060 0.060
All models were calculated with a core d of 1700 km.

The only parameter which causes a significant change in
the amplitudes of the nutation components is the change in
Mars’ principal moment of inertia. The source of the change
in the amplitudes, however, is the indirect proportionality of
the amplitude of a nutation component to the inertia ratio, g,
in the rigid Mars model. The change in the amplitudes
caused by the change in the inertia ratio for the solid core
models are actually greater than they are for the liquid core
models. The smaller change in amplitudes of the nutation
components for the liquid core models shows that, for the
liquid core models, along with the change in the inertia ratio,
there is also a change in the planet’s elasticity. This change in
elasticity partially offsets the change in the amplitude caused
by the change in the inertia ratio for a rigid planet.

Overall, the solid core models have little ability to deter-
mine the size of Mars’ core, but they are better at determin-
ing the inertia ratio than the liquid core models. However,
the inertia ratio is easily determined from gravitational field
measurements, as shown by Reasenberg (1977), although

the present value for the inertia ratio does depend on the
particular planetary model being used (Bills 1989).

4, METHODS OF DETERMINING THE MOTION OF MARS’ POLE

There have been few attempts (e.g., Borderies et al. 1980)
to measure the precession and nutation of solar system bo-
dies aside from the Earth. There have been no attempts to
measure the polar motion of other planets. The reason so few
attempts to measure precession and nutation have been
made is because the measurement of nutation and the Chan-
dler wobble period require data to be taken over a long peri-
od of time and the orientation of the planet needs to be
known to a high precision. To achieve milliarcsecond preci-
sion for all of Mars’ nutation components >07001 in ampli-
tude, the horizontal displacement of the surface at the equa-
tor needs to be known to an accuracy of 1.6 cm over a period
of 54.34 years! To measure the 11 nutation components of
Mars that are larger than 10 milliarcsec to an accuracy of
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0”01 requires the orientation of the planet to be known to 16
cm for a period of 1.881 years.

4.1 Methods of Collecting Data

Methods of collecting data on the orientation of Mars can
be divided into three categories. (1) Indirect, Earth-based
determinations such as radio and radar ranging, (2) indirect
space-based determinations using observations of an artifi-
cial satellite near Mars, and (3) direct, Mars-based determi-
nations such as the use of a Mars-based photographic zenith
tube.

4.1.1 Earth-based methods

The Earth-based methods for observing the orientation of
Mars are (1) passive observation of the planet through tele-
scopes and (2) active methods such as ranging information
with a radio transponder as done in the Viking program and
radar ranging.

Telescopic observations of Mars have been made ever
since the invention of the telescope. They have provided ori-
entation information such as the rate of revolution of Mars
to an accuracy of 0.0026 s of time and the position of the
rotational pole to 0°01 (de Vaucouleurs 1964). To achieve
this accuracy, however, has required nearly ninety years of
observations. To achieve milliarcsecond precision from
telescopic observations requires an improvement of 4.6 or-
ders of magnitude over previous observations. The deter-
mination of the motion of Mars’ pole also requires a long
series of regular observations, so neither short period varia-
tions nor the highly accurate determinations of the orienta-
tion of Mars are possible from telescopic observation.

The most accurate ranging data that exists for Mars are
the radio transponder ranges made using the Viking landers.
These data represent the most accurate distance measure-
ment data available, having one way accuracies of 1-5 m
over distances on the order of 10'' m (Reasenberg & King
1979). This accuracy is equivalent to a displacement of
0706-0730 at the equator of Mars. However, the raw data are
somewhat misleading for their use in determining changes in
orientation. First, the uncertainty in the range is directly
translatable to the uncertainty in the planet’s orientation
only when the lander is on the limb of the planet and then
only for changes in longitude. When the lander is supposed
to be directly on the Earth-Mars line, it would take a rota-
tion of Mars of approximately 160" at mean opposition to
produce a 1 m change in the range. Second, there are large
(~60day) gaps in the Viking ranging data during the times
when Mars was too close to the Sun for accurate ranging.
Other problems involved in ranging include (1) modeling
the electronics time delay in the transponder, (2) density
changes in the solar wind which affect the velocity of the
electromagnetic waves, especially when the Sun is near the
Earth-Mars line, and (3) the ranging information deter-
mines the position of Mars relative to the observer so the
orientation of the Earth as well as the orientation of Mars is
convolved in the data. Therefore, an accurate determination
of the orientation of Mars from ranging data requires sophis-
ticated deconvolution.

Borderies et al. (1980) shows both the difficulties inher-
ent in using Viking data and the potential of radar ranging to
determine the amplitudes of nutation and the Chandler wob-
ble for Mars. Their data, which have been corrected for rigid
planet nutation, show definite periodic residuals. However,
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the scatter in the data is large and the time period covered by
the data is short; thus, it is not possible to determine if the
residuals are from a single nutation or normal model (e.g.,
the signature of a fairly large Chandler wobble) or from
multiple nutation components or simply result from some
systematic error in the data.

4.1.2 Space-based methods

The second method of indirect determination of the
precession and nutation of Mars is to observe the motion of a
satellite circling the planet. Since the orbit of a satellite
around a planet is determined by the planet’s gravitational
field, a change in the orientation of the planet will cause a
change in the satellite’s orbit. Thus, an observer not on the
planet, able to determine the orientation of the satellite orbit
with sufficient accuracy, over a long enough period of time,
can convert the orbit information into a measure of the mo-
tion of the planet’s pole. An observer on the planet that a
satellite is orbiting also has to include additional geometric
effect of the motion of the platform. For example, the geo-
metric effect of precession just cancels out the dynamic effect
on the satellite, so it is impossible to observe from the Earth
the effect of the Earth’s precession on Earth-orbiting satel-
lites.

To determine the polar motion of the planet the long-peri-
od changes in the orbit’s orientation that would appear on
top of the short-period changes caused by the movement of
the satellite through the gravitational field of the planet need
to be observed. Variations caused by the gravitational field
can be minimized by putting a satellite in synchronous equa-
torial orbit. The chief difficulties in using observations of
satellite orbits for the motion of the Earth’s pole are (1)
secular changes in the satellite’s orbit from atmospheric drag
and (2) the effects of long-period ocean tides that look the
same as nutation. Smith ez a/. (1990) have already modeled
the effect of atmospheric drag for the low-orbiting Mars Ob-
server mission. There are no oceans to cause additional long-
term tidal effects. Thus, the two largest sources of error in
determining the Earth’s polar motion from satellite observa-
tions have been addressed for the satellite determination of
Mars’ polar motion. Mars will also cause a larger change in
the orbit of a satellite for a given change in orientation than
the Earth because of Mars’ greater dynamical oblateness.

The ability to collect the high precision data needed to
determine the polar motion of Mars with present technology
is shown to be possible, at least over short timescales, by
Christiansen & Balmino (1979), who used orbital ranging
data to Mariner 9 and the Viking orbiters to determine a
twelfth degree and order model for the gravitational field of
Mars, while Mars Observer is expected to determine Mars’
gravitational field to the fiftieth degree and order over the
two year lifetime of its mission (Smith ez al. 1990). Thus, the
use of artificial satellites to determine the polar motion of
Mars is a strong possibility. Mars Observer is one potential
source of orientation information.

4.1.3 Mars-based methods

A Mars-based determination of its orientation can be done
using the same instruments that are used for direct measure-
ment of the Earth’s orientation (1) polar telescopes, (2)
radio interferometry, and (3) photographic zenith tubes.

A polar telescope, as the name implies, is designed to point
toward the pole of rotation at all times. This telescope ob-
serves the diurnal trails of close circumpolar stars (Roches-
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ter et al. 1974). Hence, a polar telescope can be used to di-
rectly observe both the precession and nutation of the
Martian pole. However, such an instrument would have to
be located at a high latitude to minimize refraction effects of
the Martian atmosphere. Atmospheric refraction and the
inhospitable climate at very high latitudes on the Earth have
led to very limited use of polar telescopes on Earth. Except
for occasional dust storms, Mars’ atmosphere is much
clearer than the Earth’s and it has a lower index of refrac-
tion, since it is only about 1/100 as dense. The main draw-
back of polar telescopes is that they are insensitive to
changes in the latitude of the observatory. This insensitivity
to latitude changes makes the nutation of the planet easier to
observe, but the Chandler wobble can not be observed. Over-
all, the polar telescope is a very good instrument for observ-
ing the precession, nutation, and FCN, but not the Chandler
wobble.

Very long base line interferometry and connected element
interferometry are the most accurate methods of determin-
ing the Earth’s orientation in space. Using these techniques,
it is possible to obtain results that are accurate at the submil-
liarcsecond level (e.g., Himwich & Harder 1988; Herring
et al. 1988). However, radio interferometry requires multi-
ple sites, massive amounts of equipment (including radio
antennae with apertures that are tens of meters in diameter),
and well coordinated observing schedules. The equipment
and timing requirements make radio interferometry difficult
to accomplish on the Earth and would make such observa-
tions impossible on another planet such as Mars.

Finally, there is the photographic zenith tube (PZT).
This is a combination refractor-reflector telescope designed
to observe stars as they pass directly through the zenith at
the observatory’s location. In a PZT the light passes through
a refracting lens that is parallel to the ground, bounces off a
pool of mercury, and is then focused on a detector located
directly behind the refracting lens. Nutation is determined
from the north-south change in the chord that the observed
stars make between observations (latitude) and the change
in the time of passage of the stars (longitude). Precession is
measured by the secular drift of the stars with time. Polar
motion appears as changes in the position of the center of the
arc of motion of the observed stars. McCarthy (1980) shows
that, with proper reduction, the accuracy of individual PZT
plates can be as high as 0”01. This accuracy represents an
upper bound on the accuracy obtainable from a Mars-based
PZT, since no Earth-based PZT has made use of recent im-
provements in technology such as the CCD, and the size of
the stellar image by the Martian atmosphere would be much
smaller than the image produced by the Earth’s atmosphere.
The technological improvements have not been made to
PZTs because radio interferometry methods are superior to
the PZT for making Earth orientation measurements, rather
than any unsuitability of the technology. The seeing disk for
a PZT on Mars would be smaller because the Martian atmo-
sphere is much thinner than the Earth’s and would produce
less turbulence. Since the PZT observes solely at the zenith,
the problems of atmospheric refraction are minimized. Fin-
ally, the operation of a PZT is routine and easily automated.

- QOverall, the Mars-based methods of determining the
precession and nutation of the planet are the most desirable.
First, the Mars-based methods do not require the separation
of other sources of motion included in the indirect methods
of measuring polar motion. Second, the direct methods rely
on simple, well developed, highly accurate devices. Some of
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these devices, such as the PZT, would produce results supe-
rior to the results produced on the Earth because of local
conditions such as Mars’ thinner atmosphere. There is also
room for technological improvement in these devices such as
the use of CCDs instead of photographic plates in PZTs.
Third, although the instruments would need to be placed on
the surface of Mars, both the PZT and the polar telescope are
simple enough to be relatively inexpensive to deploy. Be-
sides, any significant improvement in the knowledge of
Mars’ orientation in space will require the placement of
some sort of device either in Mars’ orbit or on its surface.

4.2 Precession and Nutation of Other Planets

As demonstrated in Sec. 3 observing the motion of Mars’
pole is a useful probe of its structure. There is no basic phys-
ical reason why such a method cannot be used as a probe of
the structure of other planets as well. It is worthwhile to take
a look at the other planets in the solar system and try to
determine those planets for which this technique might be
useful. The numerical quantities used in this section unless
otherwise attributed are taken from the Astronomical Al-
manac for the Year 1992 (1991).

Mercury is believed to have a liquid core that is large in
comparison toits mantle. It should therefore show very large
core effects in the motion of its pole. In addition, Mercury’s
short distance from the Sun and its eccentric orbit indicate
that it should have large precession and nutation. However,
Mercury rotates slowly, completing one sidereal rotation in
58.646 days. Since this rate of rotation is in a 3-to-2 reso-
nance with its orbital period, the amplitudes of some of its
nutation components may actually be enhanced by the reso-
nance between its orbital period and its rotation rate. Its slow
rate of rotation also means, however, that the planet is nearly
spherical, so there is very little difference between the polar
and equatorial moments of inertia to drive the motion of the
planet’s pole. The J, coefficient of the potential for Mercury
is unknown, but the measured geometric flattening is 0.
Also, the inclination of Mercury’s equator to its orbit is only
about 0°01. Finally, Mercury does not have any satellites to
aid in driving precession and nutation, so it is doubtful that
the motion of Mercury’s pole is significant.

Venus, like Mercury, has the advantage of being close to
the Sun, so that the Sun’s mass can be a significant driver of
precession and nutation. However, also like Mercury, Venus
rotates very slowly on its axis with a sidereal period of 243.0
days. Venus’ J, gravitational coefficient is only 2.5% that of
the Earth’s. However, because its rotation is retrograde rath-
er than direct, its solar diurnal period is 116.7 days. Venus
also has an absolute inclination of its equator to its orbit of
2%66. The basic formula for the precession of a rigid body
[Eq. (28) Hilton 1991], with the parameters for Venus,
gives a precessional motion of 270" per year. This number is
deceptively large because this is the motion of the pole
around the small circle it traces on the sky. In terms of the
actual motion in seconds of arc on the sky, the precession is
only 270" sin2'66 = 13" in comparison to 507291
X sin 237439 = 207005 for the Earth and 7'295 sin 25”20
= 37106 for Mars. Knowledge of Venus’ precession only
determines the values of its principal moments of inertia,
which are more easily determined by other methods. How-
ever, the size of Venus’ nutation must be small because its
orbit is the most nearly circular of the planets, so solar driven
nutation will be small and there is no satellite to help drive
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precession and nutation. Therefore, despite its closeness to
the Sun, Venus must have small nutation terms and a preces-
sion that is smaller in terms of the motion on the sky than the
Earth’s. Detection of the precession and nutation of Venus
would also be difficult because of its cloudy atmosphere. It
would be impossible to observe changes in Venus’ orienta-
tion from its surface except at radio wavelengths. The only
reasonable method of determining the precession and nuta-
tion is the observation of a satellite in orbit about Venus. This
method would be difficult to accomplish because Venus’
small J, means that a change in Venus’ orientation would
cause only a small change in the satellite’s orbit. Thus, the
prospects of observing the precession and nutation of Venus
are also poor.

Jupiter, like all of the gas giant planets, cannot be de-
scribed as having a definite surface. Therefore, any observa-
tion of its precession and nutation would have to be done by
observing the effect of the motion of its pole on a spacecraft,
such as Galileo, in orbit about it. The inner structure of the
planet is believed to be the inverse of the terrestrial planets,
consisting of a solid core surrounded by a liquid mantle.
Smith (1977) has shown that the methods used for analyz-
ing the polar motion of a planet with a liquid core can easily
be extended to the case of a planet with a liquid mantle, and
Smith (1976) shows how extensions of the normal mode
method is used to analyze the effects of a solid inner core on
the motion of the Earth. Thus, the techniques for studying
the effects of a planet with a solid core and a liquid mantle on
the motion of its poles already exist. One of the problems in
analyzing the motion of the Earth (Wahr 1982) is the divi-
sion of the effects into tidal and nutational components. This
problem disappears for Jupiter, since the entire mantle of the
planet would be seen to shift in a single tide-nutation term.
Jupiter has two further properties that lend it to polar mo-
tion analysis. (1) It has a very large value for J, (0.01475)
and (2) it has a small inertia ratio (0.25; Fish 1967). Despite
these advantages, it is expected that the motion of Jupiter’s
pole are rather small. The precession and nutation driven by
the Sun will be small because Jupiter’s equator is tilted only
3°13 degrees to its orbit and its distance from the Sun is 5.2
AU. Using the values for J, and the inertia ratio for Jupiter,
a zeroth order estimate for the Jovian precession driven by
the Sun in terms of its motion on the sky is only 0792 per
year. Also, all of the Galilean satellites have orbits with
mean inclinations of less than a degree to Jupiter’s equator.
However, as shown in the case of Mars, it is possible for such
low inclination satellites to drive significant long-period nu-
tation components. A combined Chandler wobble FCN
(Smith 1976) should be easily detectable; that is, the normal
modes of the planet, rather than the forced nutation, would
be the source of the greatest information. Since the struc-
tural situation of Jupiter is the reverse of the terrestrial plan-
ets, other normal modes that are restricted to the Earth’s
core should be observable on Jupiter. This means an addi-
tional method of determining the structure of Jupiter is to
study the other normal mode oscillations using Jovian seis-
mology (Schmider et al. 1991).

The increasing distance from the Sun and the major satel-
lites’ preference to orbit Saturn and Uranus in planes near
the equator of the planets make it difficult to drive preces-
sions and nutation that would be detectable for either of
these two planets. However, observations of the normal
mode oscillations of these planets, like the observations sug-
gested for Jupiter, is a possibility.
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The only exception to the prospect of small nutation am-
plitudes among the outer gaseous giant planets is Neptune.
Neptune’s largest satellite, Triton, is approximately the size
of the Moon and orbits Neptune at 92% of the Moon’s dis-
tance from the Earth. Also, like the Moon, Triton’s orbit is
inclined to Neptune’s equator (159°00). This combined
with Neptune’s large J, (0.004) and small inertia ratio
(0.29; Fish 1967) gives a zeroth order estimate for the
precession caused by Triton of 40" per year. Although Tri-
ton’s orbit is nearly circular, there should also be at least one
large nutation associated with the motion of the node of Tri-
ton’s orbit. However, the motion of the node itself should be
slow because of the low eccentricity of the orbit. The main
problem in observing Neptune is its remoteness; otherwise, it
would be the best giant planet candidate for observation of
precession and nutation.

Pluto is so remote from the Sun that its solar-driven
precession and nutation is extremely small. In addition Plu-
to’s only known satellite, Charon, although massive and
close to Pluto, is in an orbit that is totally evolved rotational-
ly, making it useless as a driver of precession and nutation.
Finally, Pluto is so extremely remote that observations of
precession and nutation are impossible with present technol-

ogy.
5. CONCLUSIONS

There are seven conclusions to be drawn from this study of
the effect of planetary structure of the motion of Mars’ pole.

(1) The inertia ratio, ¢, of Mars, that is the polar principal
moment of inertia divided by the mass times the equatorial
radius squared, is most likely to be near 0.3654 (Reasenberg
1977). The more centrally condensed value, g = 0.345 (Bills
1989) is not as likely because the hydrostatic polar and equa-
torial radii for the less centrally condensed, larger g, models
more closely resemble the measured polar and equatorial
radii of the planet.

(2) The effect of the possible off-center position of the
core (Reasenberg 1977) and other core-mantle boundary
relief effects are too small to affect the nutation at the 07001
level.

(3) The effect of the structure of Mars on precession and
nutation is significant only for the case of a liquid core. The
Mars models produce a planet that is more rigid than the
Earth. Because of the increased planetary rigidity, the Chan-
dler wobble period of Mars is not as sensitive to either the
existence of a liquid core or the change from rigid mantle to
elastic mantle models as these same changes are in the mod-
els for the Earth’s Chandler wobble. If the period of the Mar-
tian Chandler wobble is known with the same accuracy as
the period of the Earth’s Chandler wobble, then the low sen-
sitivity of Mars’ Chandler wobble period means that the un-
certainty in the core radius is 180 km. The period of the
Chandler wobble is also highly nonlinear with core radius
and produces a unique value for the core radius for only a
restricted range in its period.

(4) The increased rigidity of the mantle also leads to a
lower value for the quality factor for Mars’ normal modes of
oscillation. Therefore, a nutation frequency can be farther
from one of Mars’ normal modes and still show a greater
change in the amplitude from the rigid body solution than a
similar nutation of the Earth would. As a result, the ampli-
tudes of the nutation components of Mars show a significant
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amplitude change with change in the core size. The sensitiv-
ity is high enough that, if the measured amplitudes of the
nutation components are accurate to 07001, the uncertainty
in the core size would be 32 km for the largest nutation in
longitude. The nutation in longitude driven by the motion of
Phobos’ node may also be usable as a probe of the interior of
the planet. However, the two main sources of uncertainty
(the rate of motion of the node and Phobos’ mass) need to be
known to higher accuracy.

(5) The free-core nutation period is found to be a sensi-
tive, nearly linear function of the mean core radius. A deter-
mination of the period of the FCN to an accuracy of 2 days
produces an uncertainty in the core radius of only 6 km. In
all cases the amplitude of the nutation components and the
periods of the Chandler wobble and free-core nutation were
several times more sensitive to the size of the core than they
were to the uncertainty in any other parameter, such as the
rigidity and bulk modulus of the Martian mantle and the
inertia ratio of Mars.

(6) Present technology is sufficient to obtain the data nec-
essary to determine whether the planet has a solid or a liquid
core. If the core is liquid, its mean radius can be determined
to an uncertainty of at most 25 km and possibly as small as 6
km.

(7) The ability of polar motion observations to determine
the interior structure of Mars gives rise to the question of
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whether this method can be used for other planets in the
solar system. A preliminary appraisal of the other planets
shows that Jupiter and Neptune are the only other candi-
dates for which precession and nutation might be significant.
The lack of significant precession and nutation in the other
planets results from one or more of the following: (1) having
a nearly spherical mass distribution; (2) too remote for the
Sun to drive significant precession and nutation; and (3) the
obliquity with respect to those other gravitational sources
that could drive precession and nutation is very low. A more
thorough study would have to be made on both Jupiter and
Neptune to determine their suitability for nutation studies
because they are both marginal cases. Jupiter, Saturn, Ura-
nus, and Neptune, however, may all have significant polar
motion. It has also been suggested for the giant planets, that
the observation of the other normal modes of oscillation that
are confined to the cores of the terrestrial planets can be
studied as a probe of their interiors.

Overall, the observation of the polar motion of Mars
would lead to a much better understanding of the structure
of the planet and give a better notion of the similarities and
differences between the terrestrial planets in the solar sys-
tem. The study of the motion of the pole by observing the
changes in the orbits of artificial satellites around the giant
planets such as Jupiter is one method to study the interior
structure of these planets.
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