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Abstract. The goal of this paper is to demonstrate how the internal symmetry of theN-body celestial-mechanics problem can
be exploited in orbit calculation.
We start with summarising research reported in (Efroimsky 2002, 2003; Newman & Efroimsky 2003; Efroimsky & Goldreich
2003) and develop its application to planetary equations in non-inertial frames. This class of problems is treated by the variation-
of-constants method. As explained in the previous publications, whenever a standard system of six planetary equations (in the
Lagrange, Delaunay, or other form) is employed forN objects, the trajectory resides on a 9(N-1)-dimensional submanifold
of the 12(N-1)-dimensional space spanned by the orbital elements and their time derivatives. The freedom in choosing this
submanifold reveals an internal symmetry inherent in the description of the trajectory by orbital elements. This freedom is
analogous to the gauge invariance of electrodynamics. In traditional derivations of the planetary equations this freedom is
removed by hand through the introduction of the Lagrange constraint, either explicitly (in the variation-of-constants method)
or implicitly (in the Hamilton-Jacobi approach). This constraint imposes the condition (called “osculation condition”) that both
the instantaneous position and velocity be fit by a Keplerian ellipse (or hyperbola), i.e., that the instantaneous Keplerian ellipse
(or hyperbola) be tangential to the trajectory. Imposition of any supplementary constraint different from that of Lagrange (but
compatible with the equations of motion) would alter the mathematical form of the planetary equations without affecting the
physical trajectory.
However, for coordinate-dependent perturbations, any gauge different from that of Lagrange makes the Delaunay system non-
canonical. Still, it turns out that in a more general case of disturbances dependent also upon velocities, there exists a “generalised
Lagrange gauge”, i.e., a constraint under which the Delaunay system is canonical (and the orbital elements are osculating in the
phase space). This gauge reduces to the regular Lagrange gauge for perturbations that are velocity-independent.
Finally, we provide a practical example illustrating how the gauge formalism considerably simplifies the calculation of satellite
motion about an oblate precessing planet.

Key words. celestial mechanics – reference systems – solar system: general – methods:N-body simulations –
methods: analytical – methods: numerical

1. Introduction

1.1. Prefatory notes

On the 6th of November 1766 young geometer Giuseppe
Lodovico Lagrangia, invited from Turin at d’Alembert’s rec-
ommendation by King Friedrich the Second, succeeded Euler
as the Director of Mathematics at the Berlin Academy.
Lagrange held the position for 20 years, and this fruitful period
of his life was marked by an avalanche of excellent results, and
by three honourable prizes received by him from the Acad´emie
des Sciences of Paris. All three prizes (one of which he shared
with Euler) were awarded to Lagrange for his contributions to
celestial mechanics. Among these contributions was a method
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introduced by Newton and Euler and furthered by Lagrange
for his studies of planet-perturbed cometary orbits and only
later applied to planetary motion (Lagrange 1778, 1783, 1808,
1809, 1810). The method was based on an elegant mathemati-
cal device, the variation of constants emerging in solutions of
differential equations. This approach was pioneered by Newton
in his unpublished Portsmouth papers and described very suc-
cintly in Cor. 3 ans 4 of Prop. 17 in Book I of his “Principia”.
The first attempts of practical implementation of this tool were
presented in a paper on Jupiter’s and Saturn’s mutual distur-
bances, submitted by Euler to a competition held by the French
Academy of Sciences (Euler 1748), and in the treatise on the lu-
nar motion, published by Euler in 1753 in St. Petersburg (Euler
1753). However, it was Lagrange who revealed the full power
of this approach.
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Fig. 1.Two coplanar ellipses, having one common focus, are assumed
to rotate about this focus, always remaining within their plane. Let
a planet be located at one of the points of the ellipses’ intersection,
P, and assume that the rotation of the ellipses is such that the planet
is always at the instantaneous point of their intersection. At some in-
stant of time, the rotation of one ellipse will be faster than that of the
other. On these grounds one may state that the planet is rapidly mov-
ing along the slower rotating ellipse. On the other hand, though, it is
also true that the planet is slowly moving along the faster rotating el-
lipse. Both viewpoints are equally valid, because one can divide, in an
infinite number of ways, the actual motion of the planet into a motion
along some ellipse and a simultaneous evolution of this ellipse. The
Lagrange constraint (7) singles out, of all the sequences of evolving
ellipses, that unique ellipse sequence which is always tangential to the
physical velocity of the planet.

Below we shall demonstrate that the equations for the in-
stantaneous orbital elements possess a hidden symmetry sim-
ilar to the gauge symmetry of electrodynamics. Derivation of
the Lagrange system involves a mathematical operation equiv-
alent to the choice of a specific gauge. As a result, trajec-
tories get constrained to some 9-dimensional submanifold in
the 12-dimensional space constituted by the orbital elements
and their time derivatives, as demonstrated in (Efroimsky 2002,
2003; Newman & Efroimsky 2003; Efroimsky & Goldreich
2003). However, the choice of this submanifold is essentially
ambiguous, and this ambiguity gives birth to an internal sym-
metry. The symmetry is absent in the two-body case, but comes
into being in theN-body setting (N ≥ 3) where each body fol-
lows an ellipse of varying shape whose time evolution contains
an inherent ambiguity.

For a simple illustration of this point imagine two coplanar
ellipses sharing one focus (Fig. 1). Suppose they rotate at dif-
ferent rates in their common plane. Let a planet be located at
one of the intersection points of these ellipses. The values of the
elliptic elements needed to describe its trajectory would depend
upon which ellipse was chosen to parameterise the orbit. Either
set would be equally legitimate and would faithfully describe
the physical trajectory. Thus we see that there exists an infinite

number of ways of dividing the actual planet’s movement into
motion along its orbit and the simultaneous evolution of the or-
bit. Although the physical trajectory is unique, its description
(i.e., its parametrisation in terms of Kepler’s elements) is not.
A map between two different (though physically equivalent)
sets of orbital elements is a symmetry transformation (a gauge
transformation, in physicists’ jargon).

Lagrange never dwelled upon that point. However, in his
treatment (based on direct application of the method of varia-
tion of constants) he passingly introduced a convenient math-
ematical condition which removed the said ambiguity. This
condition and possible alternatives to it will be the topics of
Sects. 1–3 of this paper.

In 1834–1835 Hamilton put forward his theory of canoni-
cal transformations. Several years later this approach was fur-
thered by Jacobi who brought Hamilton’s technique into as-
tronomy and, thereby, worked out a new method of deriving
the planetary equations (Jacobi 1866), a method that was soon
accepted as standard. Though the mathematical content of the
Hamilton-Jacobi theory is impeccably correct, its application
to astronomy contains a long overlooked aspect that needs at-
tention. This aspect is: where is the Lagrange constraint tacitly
imposed, and what happens if we impose a different constraint?
This issue will be addressed in Sect. 4 of our paper.

The main line of reasoning and the principal results pre-
sented in this paper are the following. In a concise introduction,
to be presented in the next subsection, we derive Eq. (16) which
is the most general form of the gauge-invariant perturbation
equation of celestial mechanics, written in terms of a disturbing
force. Then we transform it into (25), which is the most gen-
eral gauge-invariant perturbation equation expressed through a
disturbance of the Lagrangian. The next step is to show that, in
the case of velocity-dependent perturbations, the equations for
the Delaunay elements are, generally, not canonical. However,
they become canonical in a special gauge (which is, generally,
different from the customary Lagrange constraint).

Our other goal is to explore how the freedom of gauge
choice is supplemented by the freedom of choice of a coor-
dinate frame in which to implement the method of variation of
constants. This investigation, carried out in Sect. 3, provides a
physical example of a nontrivial gauge being instrumental in
simplifying orbit calculations. In this way we demonstrate that
gauge freedom in celestial dynamics is not only a cultural ac-
quisition, but can be exploited to improve computations.

1.2. Osculating elements vs. orbital elements

We start in the spirit of Lagrange. Before addressing the
N-particle case, Lagrange referred to the reduced two-body
problem,

r̈ +
µ

r2

r
r
= 0,

r ≡ rplanet− rsun, µ ≡ G(mplanet+msun), (1)

whose generic solution, a Keplerian ellipse or a hyperbola, can
be expressed, in some fixed Cartesian frame, as

r = f (C1, ...,C6, t) , ṙ = g (C1, ..., C6, t) , (2)
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where

g ≡
(
∂ f
∂t

)
C=const

· (3)

Since the problem (1) constitutes by three second-order dif-
ferential equations, its general solution naturally contains six
adjustable constantsCi . At this point it is irrelevant which par-
ticular set of the adjustable parameters is employed. (It may
be, for example, a set of Lagrange or Delaunay orbital ele-
ments or, alternatively, a set of initial values of the coordinates
and velocities.)

Following Lagrange (1808–1810), we takef as an ansatz
for a solution to theN-particle problem, the disturbing force
acting at a particle being denoted by∆F1:

r̈ +
µ

r2

r
r
= ∆F. (4)

Now the “constants” become time dependent:

r = f (C1(t), ...,C6(t), t) , (5)

whence the velocity

dr
dt
=
∂ f
∂t
+

∑
i

∂ f
∂Ci

dCi

dt
= g +

∑
i

∂ f
∂Ci

dCi

dt
, (6)

acquires an additional term,
∑

(∂ f /∂Ci)(dCi/dt).
Substitution of (5) and (6) into the perturbed equation of

motion (4) leads to three independent scalar second-order dif-
ferential equations which contain one independent parameter,
time, and six functionsCi(t). These are to be found from the
three scalar equations comprised by the vector Eq. (4), and
this makes the essence of the variation-of-constants method.
However, the latter task cannot be accomplished in a unique
way because the number of variables exceeds, by three, the
number of equations. Hence, though thephysical trajectory
(comprised by the locus of points in the Cartesian frame and
by the values of velocity at each of these points) is unique,
its parametrisation through the orbital elements is ambiguous.
This circumstance was appreciated by Lagrange, who amended
the system, by hand, with three independent conditions,
∑

i

∂ f
∂Ci

dCi

dt
= 0, (7)

and thus made it solvable2. His choice of constraints was mo-
tivated by both physical considerations and mathematical ex-
pediency. Physically, the set of functions(C1(t), ...,C6(t)) can

1 The treatment offered by Lagrange, as well as its gauge-invariant
generalisation presented in (Efroimsky 2002, 2003; Newman &
Efroimsky 2003), addressed only the case of a coordinate-dependent
perturbation∆F(r). The treatment presented in this paper covers dis-
turbing forces∆F(r, ṙ, t) that are arbitrary vector-valued functions of
position, velocity, and time.

2 Insertion of (5) into (4) makes Eq. (4) a vector equation of the
second order, with respect to functionsCi(t). This is equivalent to
three scalar equations of the second order. However, these may be
interpreted as three scalar equations of the first order, written for six
variablesCi(t), Ċi(t), provided we amend them with six trivial equa-
tionsĊi(t) = dCi (t)/dt. This gives, for each particle, nine scalar first-
order equations for twelve quantitiesCi(t), Ċi(t). Three constraints
will then make this system fully defined.

be interpreted as parameters of an instantaneous ellipse (in a
bound-orbit case) or an instantaneous hyperbola (in a flyby sit-
uation). Lagrange found it natural to make the instantaneous
orbital elementsCi such that, at each moment of time, this el-
lipse (hyperbola) coincides with the unperturbed (two-body)
orbit that the body would follow if the disturbances were to
cease instantaneously. In other words, these ellipses (hyperbo-
lae) are tangential to the physical trajectory. This is the well
known condition of osculation, which is mathematically im-
plemented by (7). The appropriate orbital elements are called
osculating elements. This way, Lagrange restricted his use of
the orbital elements to elements that osculate in the reference
frame wherein ansatz (5) is employed. Lagrange never explored
alternative options; he simply imposed (7) and used it to derive
his famous system of equations for orbital elements.

Such a restriction, though physically motivated, is com-
pletely arbitrary from the mathematical point of view. While
the imposition of (7) considerably simplifies the subsequent
calculations it in no way influences the shape of the physical
trajectory and the rate of motion along it. As emphasised in
Efroimsky (2002, 2003) and Newman & Efroimsky (2003), a
choice of any other supplementary constraint∑

i

∂ f
∂Ci

dCi

dt
= Φ(C1, ..., C6, t), (8)

Φ being an arbitrary function of time and parametersCi ,
would lead to the same physical orbit and the same velocities3.
Substitution of the Lagrange constraint (7) by its generalisa-
tion (8) would not influence the motion of the body, but would
alter its mathematical description (i.e., would entail different
solutions for the orbital elements). Such invariance of a phys-
ical picture under a change of parametrisation is called gauge
freedom or gauge symmetry. It parallels a similar phenomenon
well known in electrodynamics and, therefore, has similar con-
sequences. On the one hand, a “good” choice of gauge often
simplifies solution of the equations of motion. (In Sect. 3 we
provide a specific application to motion in an accelerated co-
ordinate system.) On the other hand, one should expect a dis-
placement in the gauge functionΦ, owing to the accumulated
error in the constants.

A simple case of the same motion being described by
two different families of instantaneous ellipses is presented in
Fig. 1. Two coplanar ellipses have a common focus and are ro-
tating about it, in the same plane but at different rates. Assume
that one ellipse is rotating rapidly and another slowly. Then it
will be legitimate to state that the point of their intersection, P,
is moving rapidly along a slowly rotating ellipse. At the same
time, it will be right to say that it is moving slowly along a
swiftly rotating ellipse.

Derivation of the conventional Lagrange and Delaunay
planetary equations by the variation-of-constantsmethod incor-
porates the Lagrange constraint (Brouwer & Clemence 1961).

3 In principle, one may also impartΦ with dependence upon the
parameters’ time derivatives of all orders. This would yield higher-
than-first-order time derivatives of theCi in subsequent developments
requiring additional initial conditions, beyond those onr and ṙ, to be
specified in order to close the system. We avoid this unnecessary com-
plication by restrictingΦ to be a function of time and theCi .
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Both systems of equations get altered under a different gauge
choice, as we now show. The essence of a derivation suitable
for a general choice of gauge starts with (6) from which the
formula for the acceleration follows:

d2r
dt2
=
∂g

∂t
+

∑
i

∂g

∂Ci

dCi

dt
+

dΦ
dt
=

∂2 f
∂2t
+

∑
i

∂g

∂Ci

dCi

dt
+

dΦ
dt
· (9)

Together with the equation of motion (4), it yields:

∂2 f
∂t2
+
µ

r2

f
r
+

∑
i

∂g

∂Ci

dCi

dt
+

dΦ
dt
= ∆F, (10)

r ≡ |r| = | f |.
The vector functionf was from the beginning introduced as
a Keplerian solution to the two-body problem; hence it must
obey the unperturbed Eq. (1). On these grounds the above for-
mula simplifies to:

∑
i

∂g

∂Ci

dCi

dt
= ∆F − dΦ

dt
· (11)

This equation describes the perturbed motion in terms of
the orbital elements. Together with constraint (8) it consti-
tutes a well-defined system which may be solved with respect
to dCi/dt. An easy way to do this is to use the elegant trick
suggested by Lagrange: to multiply the equation of motion
by ∂ f /∂Cn and to multiply the constraint by−∂g/∂Cn. The
former operation results in

∂ f
∂Cn


∑

j

∂g

∂Cj

dCj

dt

 = ∂ f
∂Cn
∆F − ∂ f

∂Cn

dΦ
dt
, (12)

while the latter gives

− ∂g
∂Cn


∑

j

∂ f
∂Cj

dCj

dt

 = − ∂g∂Cn
Φ. (13)

Having summed these two equalities, we arrive at:

∑
j

[Cn Cj ]
dCj

dt
=
∂ f
∂Cn
∆F − ∂ f

∂Cn

dΦ
dt
− ∂g
∂Cn
Φ, (14)

[Cn Cj ] standing for the unperturbed (i.e., defined as in the
two-body case) Lagrange brackets:

[Cn Cj ] ≡ ∂ f
∂Cn

∂g

∂Cj
− ∂ f
∂Cj

∂g

∂Cn
· (15)

It was selected above thatΦ is a function of time and of the
“constants”Ci , but not of their time derivatives. Under this con-
vention, the above equation may be shaped into a more conve-
nient form by splitting the full derivative ofΦ into a partial and
a convective one, and by moving the latter to the left-hand side:

∑
j

(
[Cn Cj ] +

∂ f
∂Cn

∂Φ

∂Cj

)
dCj

dt
=

∂ f
∂Cn
∆F − ∂ f

∂Cn

∂Φ

∂t
− ∂g
∂Cn
Φ· (16)

This is the most general form of the gauge-invariant perturba-
tion equations of celestial mechanics. In the Lagrange gauge,
when theΦ terms are absent, we can obtain an immediate so-
lution for the individual dCi/dt by exploiting the well known
expression for the Poisson-bracket matrix which is inverse to
the Lagrange-bracket one and is offered in the literature for the
two-body problem. (Be mindful that our brackets (15) are de-
fined in the same manner as in the two-body case; they contain
only functionsf andg that are defined in the unperturbed, two-
body, setting.) In an arbitrary gauge the presence of the term
proportional to∂Φ/∂Cj on the left-hand side of (16) compli-
cates the solution for dCi/dt, but only to the extent of requir-
ing the resolution of a set of six simultaneous linear algebraic
equations.

To draw to a close, we again emphasise that, for fixed in-
teractions and initial conditions, all possible (i.e., compatible
and sufficient) choices of gauge conditions expressed by the
vector functionΦ lead to a physically equivalent picture. In
other words, the real trajectory is invariant under reparametri-
sations permitted by the ambiguity of the choice of gauge. This
invariance has the following meaning. Suppose the equations
of motion for C1, ..., C6, with some gauge conditionΦ im-
posed, render the solutionC1(t), ..., C6(t). The same equations
of motion, with another gaugẽΦ enforced, furnish the solu-
tion C̃i(t) that has a different functional form. Despite this dif-
ference, both solutions,Ci(t) andC̃i(t), when substituted back
in (5), yield the same curver(t) with the same velocities ˙r(t).
In mathematics this situation is called a fiber bundle, and it
gives birth to a 1-to-1 map ofCi(t) ontoC̃i(t), which is merely
a reparametrisation. In physics this map is called a gauge trans-
formation. The entire set of these reparametrisations constitute
a group of symmetry known as a gauge group.

Just as in electrodynamics, where the fieldsE andB stay in-
variant under gradient transformations of the four-potentialAµ,
so the invariance of the orbit implements itself through the
form-invariance of expression (5) under the aforementioned
map. The vectorr and its full time derivative ˙r, play the role
of the physical fieldsE and B, while the Keplerian coordi-
natesC1, ...,C6 play the role of the four-potentialAµ.

No matter whether the role of constantsCi is played by
the six Kepler variables(e, a, M0, ω, Ω, i ) or by some six
combinations thereof (like, say, the Delaunay set (27) or the
Jacobi set or the Poincare set), these constants are always called
“orbital elements”. Only in the case when the condition (7)
of Lagrange is imposed will these orbital elements be called
“osculating”. This is called an osculating solution, because the
particles’ positions and velocities are instantaneously tangent
to, i.e., touch, the Keplerian ellipses (or hyperbolae). It is easy
to see that, by virtue of the differentiation chain rule, the oscu-
lation condition (7) remains form-invariant under a transition
from the Kepler set of elements to any other set. This is most
natural, because the osculation condition is purely geometric
one and does not depend upon our preferences in the choice of
convenient parameters.

A comprehensive discussion of all the above-raised issues
can be found in Efroimsky (2003). The interconnection be-
tween the internal symmetry and multiple time scales, both
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in celestial mechanics and in a more general ODE context, is
addressed in Newman & Efroimsky (2003).

2. Planetary equations in an arbitrary gauge

2.1. Lagrangian and Hamiltonian perturbations

We can proceed further by restricting the class of perturbations
we consider to those in which∆F is derivable from a perturbed
Lagrangian. Such a restricted class of disturbances is still broad
enough to encompass most applications of celestial-mechanics
perturbation theory. This happens largely because we shall con-
sider Lagrangian perturbations dependent not only upon coor-
dinates but also upon velocities. It will enable us to describe
in a perturbative manner not only physical but also velocity-
dependent, inertial forces emerging in non-inertial frames of
reference. This, in its turn, will provide us with an opportunity
to work in the coordinate system precessing with the planet of
interest.

Let the unperturbed dynamics be described by the unit-
mass LagrangianL0(r, ṙ, t) = ṙ 2/2 − U(r, t), canonical mo-
mentump= ṙ and HamiltonianH0(r, p, t) = p 2/2 + U(r, t).
The disturbed motion will be described by the new, perturbed,
functions:

L(r, ṙ, t) = L0 + ∆L = ṙ 2

2
− U(r, t) + ∆L(r, ṙ, t), (17)

p= ṙ +
∂∆L
∂ ṙ
, (18)

and

H(r, p, t) = p ṙ − L = p 2

2
+ U + ∆H ,

∆H(r, p, t) ≡ −∆L − 1
2

(
∂∆L
∂ ṙ

)2

, (19)

∆H being introduced as a variation of the functional form, i.e.,
as∆H ≡ H(r, p, t) − H0(r, p, t). The Euler-Lagrange equa-
tions written for the perturbed Lagrangian (17) will give:

r̈ = −∂U
∂r
+ ∆F, (20)

where the new term

∆F ≡ ∂∆L
∂r
− d

dt

(
∂∆L
∂ ṙ

)
(21)

is the disturbing force. Expression (21) reveals that whenever
the Lagrangian perturbation is velocity-independent, it plays
the role of the disturbing function. Generally, though, the dis-
turbing force is not equal to the gradient of∆L, but has an extra
term generated by the velocity dependence.

Examples in which a velocity dependent∆L has been used
in a celestial mechanics setting include: the treatment of inertial
forces in a coordinate system tied to the spin axis of a precess-
ing planet (Goldreich 1965) and the velocity-dependent cor-
rections to Newton’s law of gravity in the relativistic two-body
problem (Brumberg 1992).

Our next goal will be to employ the above formula (21) to
translate the gauge-invariant perturbation Eq. (16) from the lan-
guage of disturbing forces into that of Lagrangian disturbances.

2.2. Gauge-invariant planetary equations

When the expression (21) for the most general force emerging
within the Lagrangian formalism is substituted into the gauge-
invariant perturbation Eq. (14), it yields:

∑
j

[Cn Cj ]
dCj

dt
=

∂ f
∂Cn

∂∆L
∂r
− ∂ f
∂Cn

d
dt

(
Φ +

∂∆L
∂ ṙ

)
− ∂g
∂Cn
Φ, (22)

[Cn Cj ] being the Lagrange brackets defined through (15).
Since, for a velocity-dependent disturbance, the chain rule

∂∆L
∂Cn

=
∂∆L
∂r

∂ f
∂Cn
+
∂∆L
∂ ṙ

∂ ṙ
∂Cn
=

∂∆L
∂r

∂ f
∂Cn
+
∂∆L
∂ ṙ

∂(g +Φ)
∂Cn

, (23)

takes place, formula (22) may be reshaped into:

∑
j

[Cn Cj ]
dCj

dt
=

∂∆L
∂Cn

− ∂∆L
∂ ṙ

∂Φ

∂Cn
−

(
∂ f
∂Cn

d
dt
− ∂g
∂Cn

) (
Φ +

∂∆L
∂ ṙ

)
· (24)

Next we group terms so that the gauge functionΦ everywhere
appears added to∂(∆L)/∂ ṙ, and bring the term proportional
to dCj/dt to the left hand side of the equation:

∑
j

{
[Cn Cj ] +

∂ f
∂Cn

∂

∂Cj

(
∂∆L
∂ ṙ
+Φ

) }
dCj

dt
=

∂

∂Cn

∆L + 1
2

(
∂∆L
∂ ṙ

)2
−

(
∂g

∂Cn
+
∂ f
∂Cn

∂

∂t
+
∂∆L
∂ ṙ

∂

∂Cn

) (
Φ +

∂∆L
∂ ṙ

)
· (25)

These modifications help us to recognise the special nature of
the gaugeΦ = −∂(∆L)/∂ ṙ, which will be the subject of dis-
cussion in the next subsection.

Contrast (25) with (16): while (16) expresses the variation-
of-constants method in the most general form it can have in
terms of the disturbing force∆F(r, ṙ, t), Eq. (25) renders the
most general form in the language of a Lagrangian perturba-
tion∆L(r, ṙ, t).

The applicability of so generalised planetary equations in
analytical calculations is complicated by the nontrivial nature
of the left-hand sides of (16) and (25). Nevertheless, the struc-
ture of these left-hand sides leaves room for analytical simpli-
fication in particular situations. One such situation is when the
gauge is chosen to be

Φ = −∂∆L
∂ ṙ
+ η(r, t), (26)

η(r, t) being an arbitrary vector function linear inr. (It may
be, for example, proportional tor or may be equal, say, to
a cross product ofr by some time-dependent vector.) Under
these circumstances the left-hand side in (25) reduces to the
Lagrange brackets. The situation becomes especially simple
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when∂∆L/∂ ṙ happens to be linear inr, in which case we may
put η(r, t) = ∂∆L/∂ ṙ and, thus, employ the trivial Lagrange
gaugeΦ = 0 instead of the generalised Lagrange gauge. We
shall encounter one such example in Sect. 3.4.

As already stressed above, the Lagrange brackets are
gauge-invariant because functionsf andg are defined within
the unperturbed, two-body, problem (1–3) that lacks gauge
freedom. For this reason, one may exploit, to solve (25), the
well-known expression for the inverse of matrix [Ci Cj ]. Its
elements are simplest (and are either zero or unity) when one
chooses as the “constants” the Delaunay set of orbital variables
(Plummer 1918):

Ci = {L, G, H, M0, ω, Ω}
L ≡ √µa, G ≡

√
µa

(
1− e2

)
, H ≡

√
µa

(
1− e2

)
cosi, (27)

whereµ ≡ G(msun+ mplanet) and(e, a, M0, ω, Ω, i) are the
Keplerian elements:e anda are the eccentricity and semima-
jor axis, M0 is the mean anomaly at epoch, and the Euler an-
glesω, Ω, i are the the argument of pericentre, the longitude
of the ascending node, and the inclination, respectively.

The simple forms of the Lagrange and Poisson brackets in
Delaunay elements is the proof of these elements’ canonicity
in the unperturbed, two-body, problem: the Delaunay elements
give birth to three canonical pairs (Qi , Pi) corresponding to a
vanishing Hamiltonian: (L, −M0), (G, −ω), (H, −Ω). In a
perturbed setting, when only a position-dependent disturbing
functionR(r, t) is “turned on”, it can be expressed through the
Lagrangian and Hamiltonian perturbations in a simple manner,
R(r, t) = ∆L(r, t) = −∆H(r, t), as can be seen from the
formulae presented in the previous subsection. Under these cir-
cumstances, the Delaunay elements remain canonical, provided
the Lagrange gauge is imposed (Brouwer & Clemence 1961).
This long known fact can also be derived from our Eq. (25):
if we putΦ = 0 and assume∆L velocity-independent, we
arrive to
∑

j

[Cn Cj ]
dCj

dt
=
∂∆L
∂Cn
, (28)

where

∆L=∆L ( f (C, t), t)=R( f (C, t), t) =

−∆H ( f (C, t), t) . (29)

This, in its turn, results in the well known Lagrange system of
planetary equations, provided the parametersCi are chosen as
the Kepler elements. In case they are chosen as the Delaunay
elements, then (28) leads to the standard Delaunay equations,
i.e., to a symplectic system wherein the pairs (L, −M0),
(G, −ω), (H, −Ω) again play the role of canonical variables,
but the Hamiltonian, in distinction to the unperturbed case, no
longer vanishes, instead being equal to∆H = − ∆L.

In our more general case, the perturbation depends also
upon velocities (and, therefore,∆L is no longer equal
to −∆H). Beside this, the gaugeΦ is set arbitrary. As demon-
strated in Efroimsky (2003), under these circumstances the
gauge-invariant Delaunay-type system is no longer canonical.
However, it turns out that this system regains the canonical

form in one special gauge, one that coincides with the Lagrange
gauge when the perturbation bears no velocity dependence. The
issue is explained at length in our previous paper (Efroimsky &
Goldreich 2003). Here we offer a brief synopsis of this study.

2.3. Generalised Lagrange gauge wherein
the Delaunay-type system is canonical

Equation (22) was cast in the form of (25) not only to demon-
strate the special nature of the gauge

Φ = −∂∆L
∂ ṙ
, (30)

but also to single out the terms in the square brackets on the
right-hand side of (25): together, these terms give exactly the
Hamiltonian perturbation. Thus, we come to the conclusion
that in the special gauge (30) our Eq. (25) simplifies to

∑
j

[Cn Cj ]
dCj

dt
= −∂ ∆H

∂Cn
· (31)

As emphasised in the preceding subsection, the gauge in-
variance of definition (15) enables us to use the standard
(Lagrange-gauge)expressions for the matrix inverse to [Cn Cj ],
to get the planetary equations from (31).

Comparing (31) with (28), we see that in the general case
of an arbitrary∆L(r, ṙ, t) one arrives from (31) to the same
equations as from (28), except that now they contain−∆H in-
stead of∆L. When the orbit is parametrised by the Delaunay
variables, those equations take the form:

dL
dt
=
∂∆H
∂(−M0)

,
d(−M0)

dt
= −∂∆H

∂L
, (32)

dG
dt
=
∂∆H
∂(−ω)

,
d(−ω)

dt
= −∂∆H

∂G
, (33)

dH
dt
=
∂∆H
∂(−Ω)

,
d(−Ω)

dt
= −∂∆H

∂H
· (34)

which is a symplectic system. For this reason we name this spe-
cial gauge the “generalised Lagrange gauge”. In any different
gaugeΦ the equations for the Delaunay variables would con-
tainΦ-dependent terms and would not be symplectic. (Those
gauge-invariant equations, for both Lagrange and Delaunay
elements are presented in Efroimsky 2003 and Efroimsky &
Goldreich 2003.) This analysis proves the following.

Theorem: though the gauge-invariant equations for
Delaunay elements are, generally, not canonical, they be-
come canonical in the “generalised Lagrange gauge”.

That this Theorem is not merely a mathematical coincidence,
but has deep reasons beneath it, will be shown in Sect. 4
where the subject is to be approached from the Hamilton-Jacobi
viewpoint.

The above Theorem gives one example of the gauge for-
malism being of use: an appropriate choice of gauge can con-
siderably simplify the planetary equations (in this particular
case, it makes them canonical).
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According to (18), the momentum can be written as:

p= ṙ +
∂∆L
∂ ṙ
= g +Φ +

∂∆L
∂ ṙ
, (35)

which, in the generalised Lagrange gauge (30), simply
reduces to:

p= g. (36)

Vectorg was introduced back in (2–3) to denote the functional
dependence of the unperturbed velocity upon the time and the
parametersCi . In the unperturbed, two-body, setting this ve-
locity is equal to the momentum canonically conjugate to the
position r (this is obvious from (18), for zero∆L). This way,
in the unperturbed case equality (36) is fulfilled trivially. The
fact that it remains valid also under perturbation means that,
in the said gauge, the canonical momentum in the disturbed
setting is the same function of time and “constants” as in the
unperturbed, two-body, case. Thus, we have shown, follow-
ing Goldreich (1965), Brumberg et al. (1971), and Ashby &
Allison (1993)4 that the instantaneous Keplerian ellipses (hy-
perbolae) defined in gauge (30) osculate the trajectoryin phase
space.

Not surprisingly, the generalised Lagrange gauge (30) re-
duces toΦ = 0 in the simple case of velocity-independent
disturbances.

3. Gauge freedom and freedom of frame choice

3.1. Osculating ellipses described in different frames
of reference

The essence of the variation-of-constants method in celestial
mechanics is the following. A generic two-body-problem solu-
tion expressed by

r = f (C, t) , (37)(
∂ f
∂t

)
C

= g (C, t) , (38)

(
∂g

∂t

)
C

= − µ
f 2

f
f
, (39)

is employed as an ansatz to solve the disturbed problem:

r = f (C(t), t), (40)

ṙ =
∂ f
∂t
+
∂ f
∂Ci

dCi

dt
= g +Φ, (41)

r̈ =
∂g

∂t
+
∂g

∂Ci

dCi

dt
+

dΦ
dt

= − µ
f 2

f
f
+
∂g

∂Ci

dCi

dt
+

dΦ
dt
· (42)

4 Treatment presented in these publications was equivalent to
choosing the generalised Lagrange gauge. Below, in Sect. 3.3, we
shall consider that development from the viewpoint of gauge-invariant
theory. The papers Goldreich (1965), Brumberg et al. (1971), and
Ashby & Allison (1993) are unique examples of non-osculating el-
ements being employed. One more such example appeared in 1987
when Borderies & Longaretti (1987) put forward their theory of geo-
metric elements, to be used in the the planetary ring dynamics.

As evident from (41), our choice of a particular gauge is equiv-
alent to decomposition of the physical motion into a movement
with velocity g along the instantaneous ellipse (or hyperbola,
in the flyby case), and a movement associated with the ellipse’s
(or hyperbola’s) deformation that goes at the rateΦ. It is then
tempting to state that a choice of gauge is equivalent to a choice
of an instantaneous comoving reference frame whereby we de-
scribe the motion. Such an interpretation is, however, incom-
plete. Beside the fact that we decouple the physical velocity
in a certain proportion betweeng andΦ, it also matters which
physical velocity (i.e., velocity relative to what frame) is decou-
pled in this proportion. In other words, our choice of the gauge
does not yet exhaust all freedom: we can still choose in which
frame to write ansatz (40). We may write it in inertial axes or in
some accelerated system. For example, in the case of a satellite
orbiting an accelerated and precessing planet it isconvenientto
write the ansatz for the planet-related position vector.

The above kinematic formulae (40)–(42) do not yet contain
information about our choice of the reference system in which
we implement the variation-of-constants method. This infor-
mation shows up at the next stage, when expression (42) is in-
serted into the dynamical equation of motion ¨r = − (µr/r3) +
∆F to yield:

∂g

∂Ci

dCi

dt
+

dΦ
dt
= ∆F =

∂∆L
∂r
− d

dt

(
∂∆L
∂ ṙ

)
· (43)

Complete information about the reference system in which we
put the method to work (and, therefore, in which we define
the orbital elementsCi) is contained in the expression for the
perturbation force∆F. For example, if the operation is car-
ried out in an inertial coordinate system,∆F contains physical
forces solely. However, if we wish to implement the variation-
of-constants approach in a frame moving with a linear acceler-
ationa, then∆F also contains the inertial force−a. In case this
coordinate system rotates relative to inertial ones at a rateµ,
then∆F also includes the inertial terms−2µ × ṙ − µ̇ × r − µ ×
(µ × r). In considering the motion of a satellite orbiting an
oblate precessing planet it is most reasonable, though not oblig-
atory, to apply the method (i.e., to define the time derivative)
in axes that precess with the planet. However, this reasonable
choice of coordinate system still leaves us with the freedom of
gauge nomination. This will become clear in the example con-
sidered below in Sects. 3.2–3.5.

3.2. Relevant example

Gauge freedom of the perturbation equations of celestial me-
chanics finds an immediate practical implementation in the de-
scription of test particle motion around an precessing oblate
planet (Goldreich 1965). It is trivial to extend this to account
for acceleration of the planet’s centre of mass.

Our starting point is the equation of motion in the inertial
frame:

r ′′ =
∂U
∂r
, (44)

whereU is the total gravitational potential and time deriva-
tives in the inertial axes are denoted by primes. Suppose that
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the planet’s spin axis precesses at angular rateµ(t) and that the
acceleration of its centre of mass is given bya(t). Physically,
this acceleration originates both due to the circumsolar motion
and due to the gravitational pull from the other planets (Krivov
1993). It is a very natural (and very common in celestial and
planetary dynamics) technique to switch to a comoving or/and
corotating reference frame, in order to better visualise the prop-
erties of the physical system. For example, in oceanography
and atmospheric science almost all work is carried out in a
frame corotating with the Earth. In our case, our preference will
be to use not a corotating but rather a coprecessing frame, i.e.,
a coordinate system attached to the planet’s centre of mass and
precessing (but not spinning) with the planet. In the new coor-
dinate frame the inertial forces modify the equation of motion
so that it assumes the form:

r̈ =
∂U
∂r
− 2µ × ṙ − µ̇ × r − µ × (µ × r) − a, (45)

time derivatives in the accelerated frame being denoted by dots.
To implement the variation-of-constants approach in terms

of the orbital elements defined in the accelerated frame, we note
that the disturbing force on the right-hand side of (45) is gen-
erated according to (21) by:

∆L (r, ṙ, t) = R+ ṙ · (µ × r) +
1
2

(µ × r) · (µ × r) − a · r, (46)

where we denote byR(r, t) the gravitational-potential pertur-
bation (which is the perturbation of the overall gravitational
potentialU). Since

∂∆L
∂ṙ
= µ × r, (47)

the corresponding Hamiltonian perturbation reads:

∆H = −
∆L + 1

2

(
∂∆L
∂ṙ

)2 =
− [

R+ p · (µ × r) − a · r] = − [
R+ (r × p) · µ − a · r] , (48)

with vectorJ = r × p being the satellite’s orbital angular mo-
mentum in the inertial frame.

According to (35) and (47), the momentum can be writ-
ten as:

p= g +Φ + µ × f , (49)

whence the Hamiltonian perturbation becomes

∆H = − [
R+ ( f × g) · µ + (Φ + µ × f ) · (µ × f ) − a · f

]
. (50)

3.3. Elements defined in an accelerated, rotating
frame, that osculate in the comoving inertial frame

In this subsection we recall a calculation carried out by
Goldreich (1965), Brumberg et al. (1971), and Ashby &
Allison (1993) and demonstrate that it may be interpreted as
an example of nontrivial gauge fixing.

Let us implement the variation-of-constants method in a
frame that is accelerating at ratea and rotating at angular
rateµ relative to some inertial system S. This means that, in the

variation-of-constants Eq. (43),∆L is given by formula (46)
and∆H by (50).

We now choose to describe the motion in the generalised
Lagrange gauge (30), so the expression(Φ + µ × r) on the
right-hand side of (50) vanishes (as follows from (47)), and the
expression for∆H in terms of f andg has the form:

∆H = − [
R( f , t) + µ · ( f × g) − a · f

]
. (51)

At the same time, the generic expression for the
variation-of-constants method given by (25) simplifies
to (31). Insertion of (51) therein leads us to

[Cr Ci ]
dCi

dt
=
∂

∂Cr

[
R( f , t) + µ · ( f × g) − a · f

]
. (52)

Interestingly, this equation does not contain ˙µ even though it is
valid for nonuniform precession.

As explained in Sect. 2.3, in the generalised Lagrange
gauge the vectorg is equal to the canonical momentump =
ṙ + ∂∆L/∂ ṙ. In the case when the velocity dependence of∆L
is called into being by inertial forces, the momentum is, ac-
cording to (47),

p= ṙ +
∂∆L
∂ ṙ
= ṙ + µ × r, (53)

which is the particle’s velocity relative to the inertial frame co-
moving with the accelerated, rotating frame. In this sense we
may say that our elements are defined in the accelerated, rotat-
ing frame, but osculate in the comoving inertial one.

In the Appendix we provide explicit expression for each
of the partial derivatives ofµ · J that appears in the planetary
Eq. (52).

3.4. Elements defined in the accelerated, rotating
frame, that osculate in this frame

Here we not only define the elements in the accelerated, rotat-
ing frame, but we also make them osculate in this system, i.e.,
we make them satisfyΦ = 0. In this gauge, expression (50)
takes the following form:

∆H = − [
R( f , t) + µ · ( f × g) + (µ × f ) · (µ × f ) − a · f

]
, (54)

while Eq. (25), after some algebra5, looks like this:

[Cn Ci ]
dCi

dt
= −∂∆H

∂Cn

+µ ·
(
∂ f
∂Cn
× g − f × ∂g

∂Cn

)

−µ̇ ·
(
f × ∂ f
∂Cn

)
− (µ × f )

∂

∂Cn
(µ × f ) . (55)

When substituting (54) into (55), it is convenient to rent the
expression for∆H apart and to group the term (µ× f ) · (µ× f )

5 Due to (47), the second term on the left-hand side in (25) is pro-
portional to [∂(µ × f )/∂Cj ] Ċj = µ ×Φ and, therefore, vanishes. The
second term on the right-hand side simplifies in accordance with the
simple ruleA · (B × C) = (C× A) · B.
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with the last term on the right-hand side of (55):

[Cn Ci ]
dCi

dt
=
∂

∂Cn

[
R( f , t) + µ · ( f × g) − a · f

]

+µ ·
(
∂ f
∂Cn
× g − f × ∂g

∂Cn

)

−µ̇ ·
(
f × ∂ f
∂Cn

)
+ (µ × f )

∂

∂Cn
(µ × f ) .

In so writing (56) we have deliberately cast it into a form that
eases comparison with (52).

In the Appendix we set up an apparatus from which the par-
tial derivatives of the inertial terms with respect to the orbital
elements may be obtained. We also show that some of these
derivatives vanish. However, a complete evaluation of the iner-
tial input to the planetary equations in the ordinary Lagrange
gauge involves a long and tedious calculation which we do not
carry out.

3.5. Comparison of the two gauges

One of the powers of gauge freedom lies in the availability of
gauge choices that simplify the planetary equations, as we can
see from contrasting (52) with (56). While the latter equation
is written under the customary Lagrange constraint (i.e., for
elements osculating in the frame where they are defined), the
former equation is written under a nontrivial constraint called
the “generalised Lagrange gauge”. The simplicity of (52), in
contrast with (56), is evident.

By identifying the parametersCi with the Delaunay vari-
ables, one arrives from (52) and (56) to the appropriate
Delaunay-type equations (see Appendix I to Efroimsky &
Goldreich 2003). The Lagrange equations corresponding to
(52) and to (56) may be easily derived from each of these two
equations by choosingCi as the Kepler elements and using the
appropriate Lagrange brackets.

Although the planetary equations are much simpler in the
generalised Lagrange gauge than in the ordinary Lagrange
gauge, some of these differences are less important than oth-
ers. In many physical situations, though not always, theµ2 and
µ̇ terms in (56) are of a higher order of smallness compared to
those linear inµ, and therefore may be neglected, at least for
sufficiently short times6.

3.6. Further applications

In the above example of a satellite orbiting a wobbling planet,
an evident simplification of the planetary equations (both in the
Lagrange and Delaunay forms) was achieved through imposi-
tion of the generalised Lagrange gauge. This optimal gauge
differed from the standard Lagrange constraint, because in
the said example the Lagrangian perturbation depended upon
velocities.

A similar situation emerges in the relativistic two-body
problem. In the relativistic dynamics, even the two-body

6 As an example of an exception to this rule, we mention Venus
whose wobble is considerable. This means that, for example, the ˙µ
term cannot be neglected in computations of circumvenusian orbits.

problem is perturbed, the role of perturbation being played
by the relativistic correction to the Newton law of gravity.
Interestingly, this correction depends not only upon the posi-
tions, but also upon the velocities of the binary components
(Brumberg 1992). For this reason, to simplify the orbit integra-
tion of a binary, the generalised Lagrange gauge (not the cus-
tomary Lagrange constraint) should be imposed. In this gauge
the calculations will be very considerably simplified (and, for
example, it is in the generalised Lagrange gauge that the equa-
tions for the Delaunay elements will retain their canonicity).

Another simple example is a non-relativistic reduced two-
body problem with a variable mass. In this case, too, the
Lagrangian acquires a velocity-dependent correction. Hence,
in this case, the orbital elements will be convenient to intro-
duce in the generalised Lagrange gauge, not in the customary
Lagrange gauge.

4. Planetary equations and gauges
in the hamilton-Jacobi approach

In this section we demonstrate that the derivation of planetary
equations in theN-particle (N ≥ 3) case, performed through
the medium of Hamilton-Jacobi method, implicitly contains a
gauge-fixing condition not visible to the naked eye. We present
a compact account of our study; a comprehensive descrip-
tion containing technical details may be found in Efroimsky
& Goldreich (2003).

The Hamilton-Jacobi analysis rests on the availabil-
ity of different canonical descriptions of the same physi-
cal process. Any two such descriptions, (q, p, H(q, p)) and
(Q, P, H∗(Q,P)), correspond to different parametrisations of
the same phase flow, and both obey Hamilton’s equations. Due
to the latter circumstance the infinitesimally small variations

dθ = pdq − H dt (56)

and

dθ̃ = PdQ − H∗ dt (57)

are perfect differentials, and so is their difference

−dW ≡ dθ̃ − dθ = PdQ− pdq− (H∗ −H) dt. (58)

Here, vectorsq, p, Q, and P each containN components.
Given a phase flow parametrised by a set (q, p, H(q, p, t)),
it is always useful to simplify the description by a canonical
transformation to a new set (Q, P, H∗(Q,P, t)), with the new
HamiltonianH∗ being constant in time. Most advantageous are
transformations that nullify the new HamiltonianH∗, because
then the new canonical equations render the variables (Q, P)
constant. A powerful method of generating such transforma-
tions stems from (58) being a perfect differential. It is sufficient
to considerW to be a function of the time and only two other
canonical variables, for exampleq and Q. Then (58) may be
written as:

−∂W
∂t

dt − ∂W
∂Q

dQ− ∂W
∂q

dq =

PdQ− pdq+ (H −H∗) dt (59)
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from which it follows that

P = −∂W
∂Q
, p =

∂W
∂q
,

H(q, p, t) +
∂W
∂t
= H∗(Q, P, t). (60)

Inserting the second equation into the third and assuming that
H∗(Q, P, t) is simply a constant, we get the famous Jacobi
equation:

H
(
q,
∂W
∂q
, t

)
+
∂W
∂t
= H∗ (61)

whose solution furnishes the transformation-generating func-
tion W. The elegant power of the method becomes most vis-
ible if the constantH∗ is set to zero. Under this assumption
the reduced two-body problem is easily resolved. Starting with
the three spherical coordinates and their canonical momenta as
(q, p), one arrives to canonically conjugate constants (Q, P)
that coincide with the Delaunay elements (27):
(Q1, P1) = (L,−M0); (Q2, P2) = (G, −ω);
(Q3, P3) = (H, −Ω).
Extension of this approach to theN-particle problem begins
with consideration of a disturbed two-body setting. The num-
ber of degrees of freedom is still the same (three coordinatesq
and three conjugate momentap), but the initial Hamiltonian is
perturbed:

q̇ =
∂(H + ∆H)
∂p

, ṗ = −∂(H + ∆H)
∂q

· (62)

While in (59)–(61) one begins with the initial HamiltonianH
and ends up withH∗ = 0, the method may be extended
to the perturbed setting by accepting that now we start with
a disturbed initial HamiltonianH + ∆H and arrive, through
the same canonical transformation, to an equally disturbed
eventual HamiltonianH∗ + ∆H = ∆H . Plugging these new
Hamiltonians into (59) leads to cancellation of the distur-
bance∆H on the right-hand side, whereafter one arrives to the
same equation forW(q, Q, t) as in the unperturbed case. Now,
however, the new canonical variables are no longer conserved
but obey the dynamical equations:

Q̇ =
∂∆H
∂P
, Ṗ = −∂∆H

∂Q
· (63)

Because the same generating function is used in the perturbed
and unperturbed cases, the new, perturbed, solution (q, p) is ex-
pressed through the perturbed “constants”Q(t) andP(t) in the
same manner as the old, undisturbed,q and p were expressed
through the old constantsQ andP. This form-invariance pro-
vides the key to theN-particle problem: one should choose
the transformation-generating functionW to be additive over
the particles and repeat this procedure for each of the bodies,
separately.

Armed with this preparation, we can proceed to uncover
the implicit gauge choice made in using the Hamilton-Jacobi
method to derive evolution equations for the orbital elements.
To do this we substitute the equalities:

Q̇ =
∂∆H
∂P

=
∂∆H
∂q

∂q
∂P
+
∂∆H
∂p

∂p
∂P

(64)

and

Ṗ = −∂∆H
∂Q

= −∂∆H
∂q

∂q
∂Q
− ∂∆H
∂p

∂p
∂P

(65)

into the expression for the velocity:

q̇ =
∂q
∂t
+
∂q
∂Q

Q̇+
∂q
∂P

Ṗ. (66)

This leads to:

q̇ =
∂q
∂t
+

(
∂q
∂Q
∂q
∂P
− ∂q
∂P
∂q
∂Q

)
∂∆H
∂q

+

(
∂q
∂Q
∂p
∂P
− ∂q
∂P
∂p
∂Q

)
∂∆H
∂p

= g +

(
∂∆H
∂p

)
q, t

, g ≡ ∂q
∂t
, (67)

where we have taken into account that the Jacobian of the
canonical transformation is unity:

∂q
∂Q
∂p
∂P
− ∂q
∂P
∂p
∂Q
= 1. (68)

To establish the link between the regular variation-of-constsnts
method and the canonical treatment, compare (67) with (41).
We see that the symplectic description necessarily imposes a
particular gaugeΦ = ∂∆H/∂p.

It can be easily demonstrated that this special gauge coin-
cides with the generalised Lagrange gauge (30) discussed in
Sect. 2.2. To that end one has to compare the Hamilton equa-
tion for the perturbed Hamiltonian (19),

q̇ =
∂ (H + ∆H)

∂p
= p+

∂∆H
∂p
, (69)

with the definition of momentum from the Lagrangian (17),

p ≡ ∂ (L(q, q̇, t) + ∆L(q, q̇, t))
∂q̇

= q̇+
∂∆L
∂q̇
· (70)

Equating the above two expressions immediately yields:

Φ ≡
(
∂∆H
∂p

)
q, t

= −
(
∂ ∆L
∂q̇

)
q, t

(71)

which coincides with (30). Thus, the transformation generated
byW(q, Q, t) is canonical only if the physical velocity ˙q is split
in a fashion prescribed by (67), i.e., if (71) is fulfilled. This is
exactly what our Theorem from Sect. 2.2 says.

To summarise, the generalised Lagrange constraint,Φ =

−∂∆L/∂q̇, is tacitly instilled into the Hamilton-Jacobi method.
Simply by employing this method (at least, in its straightfor-
ward form), we automatically fix the gauge7. By sticking to the
Hamiltonian description we sacrifice gauge freedom.

7 An explanation of this phenomenon from a different viewpoint is
offered in Sect. 6 of Efroimsky (2003), where the Delaunay equations
are derived also through a direct change of variables. It turns out that
the outcome retains the symplectic form only if an extra constraint is
imposed by hand.
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Above, in Sect. 2.3, we established that in the generalised
Lagrange gauge the momentum coincides withg. We now can
get to the same conclusion from (67), (70) and (71):

p ≡ ∂ (L(q, q̇, t) + ∆L(q, q̇, t))
∂q̇

= q̇− Φ = g. (72)

Thus, implementation of the Hamilton-Jacobi theory in ce-
lestial mechanics demands the orbital elements to osculate in
phase space. Naturally, this demand reduces to that of regular
osculation in the simple case of velocity-independent∆L.

5. Conclusions

In the article thus far we have studied the topic recently
raised in the literature: the planetary equations’ internal sym-
metry that stems from the freedom of supplementary condi-
tion’s choice. The necessity of making such a choice con-
strains the trajectory to a 9-dimensional submanifold of
the 12-dimensional space spanned by the orbital elements and
their time derivatives. Similarly to the field theory, the choice
of the constraint (=the choice of gauge) is vastly ambiguous
and reveals a hidden symmetry instilled in the description of
theN-body problem in the language of orbital elements.

We addressed the issue of internal freedom in a sufficiently
general setting where a perturbation to the two-body problem
depends not only upon positions but also upon velocities. Such
situations emerge when relativistic corrections to Newton’s
law are taken into account or when the variation-of-constants
method is employed in rotating systems of reference.

We derived the most general form of the gauge-invariant
perturbation equation of celestial mechanics, written in terms
of a disturbing force. Then we transformed it into the most gen-
eral gauge-invariant perturbation equation expressed through
the Lagrangian disturbance.

Just as a choice of an appropriate gauge simplifies solution
of the equations of motion in electrodynamics, an alternative
(to that of Lagrange) choice of gauge in the celestial mechan-
ics can simplify orbit calculations. We provided one such ex-
ample, a satellite orbiting a precessing planet. In this exam-
ple, the choice of the generalised Lagrange gauge considerably
simplifies matters. To achieve this simplification, we not only
exercised our right to choose a convenient gauge, but we also
chose a preferred coordinate system in which to implement the
variation-of-constants method. This interplay of the two types
of freedom enabled us to eliminate some of the mathematical
complications associated with the inertial forces. Not surpris-
ingly, it has turned out to be convenient to define the orbital
elements in the precessing frame of the planet; however, for
the sake of mathematical simplification, it also turned out to be
beneficial to make these elements osculate in a different, iner-
tial frame of reference.

We have explained where the Lagrange constraint tacitly
enters the Hamilton-Jacobi derivation of the Delaunay equa-
tions. This constraint turns out to be an inseparable (though not
easily visible) part of the method: in the case of momentum-
independent disturbances, theN-body generalisation of the
two-body Hamilton-Jacobi technique is legitimate only if we
use orbital elements that are osculating. In the situation where

the disturbance depends not only upon positions but also upon
velocities, another constraint (which we call the “generalised
Lagrange constraint”) turns out to be stiffly embedded in the
Hamilton-Jacobi development of the problem.

Unless a specific constraint (gauge) is imposed by hand,
the planetary equations assume their general, gauge-invariant,
form. In the case of a velocity-independent disturbance, any
gauge different from that of Lagrange drives the Delaunay sys-
tem away from its symplectic form. If we permit the disturbing
force to depend also upon velocities, the Delaunay equations
retain their canonicity only in the generalised Lagrange gauge.
Interestingly, in this special gauge the instantaneous ellipses
(hyperbolae) osculate in phase space.

Briefly speaking,N-body celestial mechanics, expressed in
terms of orbital elements, is a gauge theory, but it is not strictly
canonical. It becomes canonical in the generalised Lagrange
gauge.
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Appendix

In this Appendix we set up an apparatus from which one may
evaluate the partial derivatives with respect to the orbital ele-
ments of inertial terms that appear in the planetary equations
derived in Sects. 3.3 and 3.4. We then show that some of these
derivatives vanish. Following that, we derive explicit expres-
sions for each derivative ofµ · ( f × g), which provides a com-
plete analytic evaluation of the rotational input in the gener-
alised Lagrange gauge. The topic is further developed (and the
appropriate generalised Lagrange system of equations is pre-
sented) in Efroimsky & Goldreich (2003).

To find the explicit form of the dependencef = f (Ci , t), it
is conventional to introduce an auxiliary set of Cartesian coor-
dinatesq, with an origin at the gravitating centre, and with the
first two axes located in the plane of orbit. Theq coordinates
are easy to express through the semimajor axisa, the eccentric-
ity e and the eccentric anomalyE:

q1 ≡ a (cosE − e) , q2 ≡ a
√

1− e2 sinE, q3 = 0, (73)

whereE itself is a function of the semimajor axisa, the eccen-
tricity e, the mean anomaly at epoch,M0, and the time,t. The
time dependence is realised through the Kepler equation

E − e sinE = M, (74)

where

M ≡ M0 + µ
1/2

∫ t

t0

a−3/2 dt. (75)

The inertial-frame-related position of the body reads:

r = f (Ω, i, ω, a, e, M0; t) =

R̂(Ω, i, ω) q (a, e, E(a, e, M0, t)) , (76)
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R̂(Ω, i, ω) being the matrix of rotation from the orbital-plane-
related coordinate systemq to the fiducial frame (x, y, z) in
which the vectorr is defined. This rotation is parametrised by
the three Euler angles: inclination,i; the longitude of the node,
Ω; and the argument of the pericentre,ω.

In the unperturbed two-body setting the velocity is
expressed by

g =
∂

∂t
f (Ω, i, ω, a, e, M0; t) =

(
∂E
∂t

)
a, e,M0

R̂(Ω, i, ω)

(
∂q
∂E

)
a,e

· (77)

One can similarly calculate partial derivatives off with respect
to M0:

∂

∂M0
f (Ω, i, ω, a, e, M0; t) =

(
∂E
∂M0

)
a,e, t

R̂(Ω, i, ω)

(
∂q
∂E

)
a,e

, (78)

whence it becomes evident that∂ f /∂M0 is parallel tog and,
hence,

g ×
(
∂ f
∂M0

)
Ω, i, ω,a,e, t

= 0. (79)

By a similar trick it is possible to demonstrate that∂( f ×g)/∂M0

is proportional to∂( f × g)/∂E and, therefore, to∂( f × g)/∂t.
Hence, this derivative vanishes (because in the two-particle
case the cross productf × g is an integral of motion). This
vanishing of∂( f × g)/∂M0, along with (79), implies:

f ×
(
∂g

∂M0

)
Ω, i, ω,a,e, t

= 0. (80)

In the situation when the parametersCi are implemented by the
Delaunay elements, a similar sequence of calculations leads to

g ×
(
∂ f
∂M0

)
Ω, ω, L,G,H, t

= 0 (81)

and, appropriately, to:

f ×
(
∂g

∂M0

)
Ω, ω, L,G,H, t

= 0. (82)

We can proceed much farther in the generalised Lagrange
gauge, at least in so far as derivatives of the rotational input
J/µ = f × g are concerned. (We remind that here and ev-
erywhereµ stands for the reduced mass, whileµ denotes the
precession rate.)

As we proved above, this cross product is independent
of M0 and, hence,

µ · ∂( f × g)
∂M0

= 0. (83)

Since J is orthogonal to the orbit plane, it is invariant under
rotations of the orbit within its plane, whence

µ · ∂( f × g)
∂ω

= 0. (84)

To continue, we note that in the two-body setting the ratioJ/µ,
is known to be equal to

√
a(1 − e2) ŵ whereŵ is a unit vec-

tor perpendicular to the unperturbed orbit’s plane. Moreover, in
planet-associated noninertial axes (x, y, z) with corresponding
unit vectors (̂x, ŷ, ẑ), the normal to the orbit is expressed by:

ŵ = x̂ sini sinΩ − ŷ sini cosΩ + ẑ cosi. (85)

Hence,

µ · ∂ ( f × g)
∂a

= µ · ŵ
∂

(√
a(1 − e2)

)
∂a

=
1
2

√
1 − e2

a
µ⊥(86)

and

µ · ∂ ( f × g)
∂e

= µ · ŵ
∂

(√
a(1 − e2)

)
∂e

= −
√

a e2

1 − e2
µ⊥ (87)

whereµ⊥ = µx sini sinΩ − µy sini cosΩ + µz cosi is
the orthogonal-to-orbit component of the precession rate. The
remaining two derivatives look:

µ · ∂ ( f × g)
∂Ω

=

√
a

(
1 − e2

)
µ · ∂ŵ
∂Ω
=

√
a

(
1 − e2

) {
µx sini cosΩ + µy sini sinΩ

}
(88)

and

µ · ∂ ( f × g)
∂i

=

√
a

(
1 − e2

)
µ · ∂ŵ

∂i
=

√
a

(
1− e2

) {
µx cosi sinΩ − µy cosi cosΩ − µz sini

}
. (89)

As for the derivatives ofa · f , they may be calculated di-
rectly from the expression forf (Ω, ω, i, a, e, M0; t) presented
above. However, the resulting expressions are cumbersome so
we do not present them here.
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