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Abstract. The goal of this paper is to demonstrate how the internal symmetry M-#hedy celestial-mechanics problem can

be exploited in orbit calculation.

We start with summarising research reported in (Efroimsky 2002, 2003; Newman & Efroimsky 2003; Efroimsky & Goldreich
2003) and develop its application to planetary equations in non-inertial frames. This class of problems is treated by the variation-
of-constants method. As explained in the previous publications, whenever a standard system of six planetary equations (in the
Lagrange, Delaunay, or other form) is employed foobjects, the trajectory resides on a9{)-dimensional submanifold

of the 12(N-1)-dimensional space spanned by the orbital elements and their time derivatives. The freedom in choosing this
submanifold reveals an internal symmetry inherent in the description of the trajectory by orbital elements. This freedom is
analogous to the gauge invariance of electrodynamics. In traditional derivations of the planetary equations this freedom is
removed by hand through the introduction of the Lagrange constraint, either explicitly (in the variation-of-constants method)
or implicitly (in the Hamilton-Jacobi approach). This constraint imposes the condition (called “osculation condition”) that both
the instantaneous position and velocity be fit by a Keplerian ellipse (or hyperbola), i.e., that the instantaneous Keplerian ellipse
(or hyperbola) be tangential to the trajectory. Imposition of any supplementary constféentiati from that of Lagrange (but
compatible with the equations of motion) would alter the mathematical form of the planetary equations wfitctiricathe

physical trajectory.

However, for coordinate-dependent perturbations, any gadfggeatit from that of Lagrange makes the Delaunay system non-
canonical. Still, it turns out that in a more general case of disturbances dependent also upon velocities, there exists a “generalised
Lagrange gauge”, i.e., a constraint under which the Delaunay system is canonical (and the orbital elements are osculating in the
phase space). This gauge reduces to the regular Lagrange gauge for perturbations that are velocity-independent.

Finally, we provide a practical example illustrating how the gauge formalism considerably simplifies the calculation of satellite
motion about an oblate precessing planet.

Key words. celestial mechanics — reference systems — solar system: general — méthmmtly simulations —
methods: analytical — methods: numerical

1. Introduction introduced by Newton and Euler and furthered by Lagrange
for his studies of planet-perturbed cometary orbits and only
later applied to planetary motion (Lagrange 1778, 1783, 1808,

On the 6th of November 1766 young geometer Giusepﬂ)éog’ 1810). The method was based on an elegant mathemati-
Lodovico Lagrangia, invited from Turin at d’Alembert’s rec.cal device, the variation of constants emerging in solutions of

ommendation by King Friedrich the Second, succeeded Eu%ﬁfgrential equations. This approach was pioneered by Newton
as the Director of Mathematics at the Berlin Academif} his unpublished Portsmouth papers and described very suc-
Lagrange held the position for 20 years, and this fruitful peridgdntly in Cor. 3 ans 4 of Prop. 17 in Book | of his “Principia”.

of his life was marked by an avalanche of excellent results, ah€ first attempts of practical implementation of this tool were
by three honourable prizes received by him from the &raid’ Presented in a paper on Jupiter's and Saturn’s mutual distur-
des Sciences of Paris. Al three prizes (one of which he shaR&1ces, submitted by Euler to a competition held by the French
with Euler) were awarded to Lagrange for his contributions fo¢@demy of Sciences (Euler 1748), and in the treatise on the lu-

celestial mechanics. Among these contributions was a mett motion, published by Euler in 1753 in St. Petersburg (Euler
1753). However, it was Lagrange who revealed the full power
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number of ways of dividing the actual planet’s movement into
motion along its orbit and the simultaneous evolution of the or-
bit. Although the physical trajectory is unique, its description
(i.e., its parametrisation in terms of Kepler's elements) is not.
A map between two dierent (though physically equivalent)
sets of orbital elements is a symmetry transformation (a gauge
transformation, in physicists’ jargon).

Lagrange never dwelled upon that point. However, in his
treatment (based on direct application of the method of varia-
tion of constants) he passingly introduced a convenient math-
ematical condition which removed the said ambiguity. This
condition and possible alternatives to it will be the topics of
Sects. 1-3 of this paper.

In 1834-1835 Hamilton put forward his theory of canoni-
cal transformations. Several years later this approach was fur-
thered by Jacobi who brought Hamilton’s technique into as-
tronomy and, thereby, worked out a new method of deriving
the planetary equations (Jacobi 1866), a method that was soon
accepted as standard. Though the mathematical content of the
Hamilton-Jacobi theory is impeccably correct, its application
Fig. 1. Two coplanar ellipses, having one common focus, are assuni@c@stronomy contains a long overlooked aspect that needs at-
to rotate about this focus, always remaining within their plane. Légntion. This aspect is: where is the Lagrange constraint tacitly
a planet be located at one of the points of the ellipses’ intersectidimposed, and what happens if we imposeféedént constraint?

P, and assume that the rotation of the ellipses is such that the planeis issue will be addressed in Sect. 4 of our paper.

is always at the instantaneous point of their intersection. At some in- The main line of reasoning and the principal results pre-

stant of time, the rotation of one ellipse will be faster thgn the_lt of ”E’ented in this paper are the following. In a concise introduction,

other. On these grounds one may state that the planet is rapidly MYbe presented in the next subsection, we derive Eq. (16) which

ing along the slower rotating ellipse. On the other hand, though, itiIS the most aeneral form of the gauge-invariant perturbation
also true that the planet is slowly moving along the faster rotating & 9 gaug P

lipse. Both viewpoints are equally valid, because one can divide, in %ﬂuat'on of celestial meChe_m_'CS' written 'n_terms ofa disturbing

infinite number of ways, the actual motion of the planet into a motidiefce. Then we transform it into (25), which is the most gen-

along some ellipse and a simultaneous evolution of this ellipse. TBEI gauge-invariant perturbation equation expressed through a

Lagrange constraint (7) singles out, of all the sequences of evolvidigturbance of the Lagrangian. The next step is to show that, in

ellipses, that unique ellipse sequence which is always tangential tothe case of velocity-dependent perturbations, the equations for

physical velocity of the planet. the Delaunay elements are, generally, not canonical. However,
they become canonical in a special gauge (which is, generally,

Below we shall demonstrate that the equations for the igierent from the customary Lagrange constraint).

stantaneous orbital elements possess a hidden symmetry sSimoyr other goal is to explore how the freedom of gauge

ilar to the gauge symmetry of electrodynamics. Derivation ghoice is supplemented by the freedom of choice of a coor-

the Lagrange system involves a mathematical operation equjifiate frame in which to implement the method of variation of

alent to the choice of a specific gauge. As a result, traj&&nstants. This investigation, carried out in Sect. 3, provides a

tories get constrained to some 9-dimensional submanifoldgRysical example of a nontrivial gauge being instrumental in

the 12-dimensional space constituted by the orbital elemegisp|ifying orbit calculations. In this way we demonstrate that

and their time derivatives, as demonstrated in (Efroimsky 20Qg,,ge freedom in celestial dynamics is not only a cultural ac-

2003; Newman & Efroimsky 2003; Efroimsky & Goldreichqisition, but can be exploited to improve computations.

2003). However, the choice of this submanifold is essentially

ambiguous, and this ambiguity gives birth to an internal syn1-2. Osculating elements vs. orbital elements

metry. The symmetry is absent in the two-body case, but comes . - )

into being in theN-body setting Kl > 3) where each body fol- We st{;\rt in the spirit of Lagrange. Before addressing the

lows an ellipse of varying shape whose time evolution contaifsParticle case, Lagrange referred to the reduced two-body

an inherent ambiguity. problem,

For a simple illustration of this pointimagine two coplanar ,, ¢

ellipses sharing one focus (Fig. 1). Suppose they rotate at dift 27 0,

ferent rates in their common plane. Let a planet be located,at F planet— Tsurs t = G(Mpanet+ Msun), (1)

one of the intersection points of these ellipses. The values of the

elliptic elements needed to describe its trajectory would depenHose generic solution, a Keplerian ellipse or a hyperbola, can

upon which ellipse was chosen to parameterise the orbit. Eitleyrexpressed, in some fixed Cartesian frame, as

set would be equally legitimate and would faithfully describe

the physical trajectory. Thus we see that there exists an infinite f (Cq,...,Cs, t), i =¢g(Cyq, .., Cg, 1), (2)

CoOMMON
® Focus
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where be interpreted as parameters of an instantaneous ellipse (in a
of bound-orbit case) or an instantaneous hyperbola (in a flyby sit-
g = (E) : 3) uation). Lagrange found it natural to make the instantaneous
C=const

orbital element<; such that, at each moment of time, this el-
Since the problem (1) constitutes by three second-order djfse (hyperbola) coincides with the unperturbed (two-body)
ferential equations, its general solution naturally contains shbit that the body would follow if the disturbances were to
adjustable constan€. At this point it is irrelevant which par- cease instantaneously. In other words, these ellipses (hyperbo-
ticular set of the adjustable parameters is employed. (It mg) are tangential to the physical trajectory. This is the well
be, for example, a set of Lagrange or Delaunay orbital elghown condition of osculation, which is mathematically im-
ments or, alternatively, a set of initial values of the Coordinatﬁﬁ;mented by (7). The appropriate orbital elements are called
and velocities.) osculating elements. This way, Lagrange restricted his use of
Following Lagrange (1808-1810), we takeas an ansatz the orbital elements to elements that osculate in the reference
for a solution to theN-particle problem, the disturbing forceframe wherein ansatz (5) is employed. Lagrange never explored

acting at a particle being denoted hf*: alternative options; he simply imposed (7) and used it to derive
S LS @) his famous system of equations for orbital elements.

rZr ' Such a restriction, though physically motivated, is com-
Now the “constants” become time dependent: pletely arbitrary from the mathematical point of view. While

the imposition of (7) considerably simplifies the subsequent
r=f(Cib), ... Ce(t). 1), (5)  calculations it in no way influences the shape of the physical
whence the velocity trajectory and the rate of motion along it. As emphasised in
ar of 5 dC ot dG Efroimsky (2002, 2003) and Newman & Efroimsky (2003), a
— - —— =g+ Z — = (6) choice of any other supplementary constraint
dt ot — 0C; dt — 0C; dt
' ' I dC _ pcy . Gl ) ®)

acquires an additional termy,(8f /0C;)(dC; /dt). i 9C; dt b M0 5

Substitution of (5) and (6) into the perturbed equation of bei bi ¢ . £ d
motion (4) leads to three independent scalar second-order dif- eing an arbitrary function of time and paramet€ls

ferential equations which contain one independent parame\’&?md_le"’}d to the same physical orbit and the same veIo%iti_es
time, and six function€; (t). These are to be found from theSubstltutlon of the Lagrange constraint (7) by its generalisa-
’ ion (8) would not influence the motion of the body, but would

three scalar equations comprised by the vector Eq. (4),

this makes the essence of the variation-of-constants meth"itj)d.1r,ItS mathematlcgl description (i.e., WOUld. entaifetient
However, the latter task cannot be accomplished in a uni utl_ons for the orbital elements). Such.mvgna_nce of a phys-
way because the number of variables exceeds, by three, picture under a change of parametrlsa_tlo_n Is called gauge
number of equations. Hence, though thieysical trajectory freedom or gauge symmetr)_/. It parallels a similar ph_en_omenon
(comprised by the locus of points in the Cartesian frame alg!l knowniin electrodynamics an‘(‘j, thet’efore_, has similar con-
by the values of velocity at each of these points) is uniq@?quences' On. the one hand, a good chmce of gauge often
its parametrisation through the orbital elements is ambiguoﬁg].qp,“f'es solut!qn of th_e equations qf motion. (In Sect. 3 we
This circumstance was appreciated by Lagrange, who amenbE ide a specific application to motion in an accelerated co-
the system, by hand, with three independent conditions, ordinate sy;tem.) On the oth(_ar hand_, one should expect a dis-
placement in the gauge functid@m owing to the accumulated

ﬂ ﬁ _ (7) error in the constants.

— oC; dt ’ A simple case of the same motion being described by
two different families of instantaneous ellipses is presented in
Fig. 1. Two coplanar ellipses have a common focus and are ro-
qéfing about it, in the same plane but afféient rates. Assume
that one ellipse is rotating rapidly and another slowly. Then it

1 The treatment ered by Lagrange, as well as its gauge-invariarWi" be Iegitimate to state that the point of their intersection, P,
generalisation presented in (Efroimsky 2002, 2003; Newman i& moving rapidly along a slowly rotating ellipse. At the same
Efroimsky 2003), addressed only the case of a coordinate-dependémte, it will be right to say that it is moving slowly along a
perturbationAF(r). The treatment presented in this paper covers diswiftly rotating ellipse.
turbing forcesAF(r, 1,t) that are arbitrary vector-valued functions of  Derivation of the conventional Lagrange and Delaunay
position, velocity, and time. planetary equations by the variation-of-constants method incor-

? Insertion of (5) into (4) makes Eq. (4) a vector equation of thg., ases the Lagrange constraint (Brouwer & Clemence 1961).
second order, with respect to functio@g(t). This is equivalent to

three scalar equations of the second order. However, these may Beln principle, one may also impa® with dependence upon the
interpreted as three scalar equations of the first order, written for parameters’ time derivatives of all orders. This would yield higher-
variablesC;i(t), Ci(t), provided we amend them with six trivial equa-than-first-order time derivatives of ti in subsequent developments
tionsCi(t) = dC;(t)/dt. This gives, for each particle, nine scalar firstrequiring additional initial conditions, beyond those oand, to be
order equations for twelve quantiti€s(t), Ci(t). Three constraints specified in order to close the system. We avoid this unnecessary com-
will then make this system fully defined. plication by restrictingb to be a function of time and thg,.

and thus made it solvalfleHis choice of constraints was mo-
tivated by both physical considerations and mathematical
pediency. Physically, the set of functio@,(t), ..., Cs(t)) can
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Both systems of equations get altered underfiedint gauge This is the most general form of the gauge-invariant perturba-
choice, as we now show. The essence of a derivation suitatibm equations of celestial mechanics. In the Lagrange gauge,
for a general choice of gauge starts with (6) from which thehen the® terms are absent, we can obtain an immediate so-
formula for the acceleration follows: lution for the individual &;/dt by exploiting the well known

2 expression for the Poisson-bracket matrix which is inverse to

Ezr = 2—? + Z j—g % + ddit) = the Lagrange-bracket one and i$awed in the literature for the
i ! two-body problem. (Be mindful that our brackets (15) are de-
o°f dg dC; do fined in the same manner as in the two-body case; they contain
2t T iac dt T at ) only functionsf andg that are defined in the unperturbed, two-
' body, setting.) In an arbitrary gauge the presence of the term
Together with the equation of motion (4), it yields: proportional tod®/aC; on the left-hand side of (16) compli-
2y f dg dC, d cates the solution for@/dt, but only to the extent of requir-
—+ = — — — + — =AF, (10) ing the resolution of a set of six simultaneous linear algebraic
otz r2r — 9C; dt  dt ;
i equations.
r=rl=Ifl. To draw to a close, we again emphasise that, for fixed in-

The vector functionf was from the beginning introduced ageractions_ and init?al conditions, all po_s_sible (i.e., compatible
a Keplerian solution to the two-body problem; hence it mu@fd stiicient) choices of gauge conditions expressed by the

obey the unperturbed Eq. (1). On these grounds the above H§StOr function® lead to a physically equivalent picture. In -
mula simplifies to: other words, the real trajectory is invariant under reparametri-
sations permitted by the ambiguity of the choice of gauge. This
9g dC — _do (11) invariance has the following meaning. Suppose the equations

— 0C; dt dt of motion for Cy, ..., Cs, with some gauge conditio® im-

. . , o pased, render the soluti@\ (t), ..., Cs(t). The same equations
This equation describes the perturbed motion in terms 8Fmotion, with another gaug® enforced, furnish the solu-

the orbital elements. Together with constraint (8) it consti,, (1) that has a dferent functional form. Despite this dif-
tutes a well-defined system which may be solved with respegfo,ce hoth solutions (t) andC;(t), when substituted back

to dCi/dt. An easy way to do this is to use the elegant tricf, ) vield the same curve(t) with the same velocities(t).
suggested by Lagrange: to multiply the equation of motiqR athematics this situation is called a fiber bundle, and it

by 91/9Cq and to multiply the constraint by-dg/dCn. The  giyes hirth to a 1-to-1 map i (t) ontoC;(t), which is merely
former operation results in a reparametrisation. In physics this map is called a gauge trans-

_ formation. The entire set of these reparametrisations constitute
of Z 99 ﬁ _ o AF - of di) (12) agroup of symmetry known as a gauge grou
aC, |44 ac; dt |~ ac, 9C, dt’ grouip ot symmeTry known as a galige group. _
] Just as in electrodynamics, where the fididmndB stay in-
while the latter gives variant under gradient transformations of the four-poteitial
so the invariance of the orbit implements itself through the
g af dC; g form-invariance of expression (5) under the aforementioned
- Z — —|=- D. (13) . ! R
doCy | &4 OC; dt oCy map. The vector and its full time derivativer, play the role
. of the physical fieldsE and B, while the Keplerian coordi-
Having summed these two equalities, we arrive at: natesCy, ..., Cg play the role of the four-potentia¥.
dc; of of d® g No matter whether the role of constar@@sis played by
Z [Cn Ci] Tt~ ac, AF - aC, dt  aC, @, (14) the six Kepler variablege, a, Mo, w, ©Q, i) or by some six
]

combinations thereof (like, say, the Delaunay set (27) or the
[Ch Cj] standing for the unperturbed (i.e., defined as in thkacobi set or the Poincare set), these constants are always calle

two-body case) Lagrange brackets: “orbital elements”. Only in the case when the condition (7)
of Lagrange is imposed will these orbital elements be called
of ag of og “ S Thic ; ;
[ChCil= o -2 — o o (15) ‘“osculating”. This is called an osculating solution, because the
dC, 0Cj  4Cj 4Cy particles’ positions and velocities are instantaneously tangent

It was selected above thdi is a function of time and of the t0. i-€., touch, the Keplerian ellipses (or hyperbolae). Itis easy
“constants'C;, but not of their time derivatives. Under this cont0 See that, by virtue of the fllerentiation chain rule, the oscu-
vention, the above equation may be shaped into a more corf@dion condition (7) remains form-invariant under a transition
nient form by splitting the full derivative ab into a partial and from the Kepler set of elements to any other set. This is most

a convective one, and by moving the latter to the left-hand sidtural, because the osculation condition is purely geometric
one and does not depend upon our preferences in the choice of

Z ([Cn Cil+ ot 82) ac; _ convenient parameters.
i 9Cq 9C;) dt A comprehensive discussion of all the above-raised issues
of of 0 og can be found in Efroimsky (2003). The interconnection be-

aC, T ac, ot _aC, (16) tween the internal symmetry and multiple time scales, both
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in celestial mechanics and in a more general ODE contextA2. Gauge-invariant planetary equations

addressed in Newman & Efroimsky (2003). When the expression (21) for the most general force emerging

. . _ within the Lagrangian formalism is substituted into the gauge-
2. Planetary equations in an arbitrary gauge invariant perturbation Eq. (14), it yields:

2.1. Lagrangian and Hamiltonian perturbations

dc;
Lo . [Cn Cj] d_ =

We can proceed further by restricting the class of perturbati L
we consi_der to those in V\{hiojnF is deriva.ble froma pt_arturbed of oanr of d OAL o9
Lagrangian. Such a restricted class of disturbancesis stillbroad = —— 7= = |P+ —— |~

N ! ) oC, oar oC, dt or oCy
enough to encompass most applications of celestial-mechanics
perturbation theory. This happens largely because we shall cffi: Cj] being the Lagrange brackets defined through (15).
sider Lagrangian perturbations dependent not only upon co8ince, for a velocity-dependent disturbance, the chain rule
Filnates but al_so upon velocities. It will gnable us to descpggL OAL Of  GAL OF
in a perturbative manner not only physical but also velocit = aC. + F TR o
dependent, inertial forces emerging in non-inertial frames QFH r n r n

o, (22)

reference. This, in its turn, will provide us with an opportunity 9AL of + % d(g + (D)’ (23)
to work in the coordinate system precessing with the planet of gr 9C,  or 9Cx
interest. takes place, formula (22) may be reshaped into:
Let the unperturbed dynamics be described by the unit- q
mass Lagrangiafo(r, r,t) = r /2 — U(r, t), canonical mo- Z [Cn Ci] & -
mentump = i and HamiltoniarHy(r, p, t) = p 2/2 + U(r, t). dt
The disturbed motion will be described by the new, perturb%iAL OAL oD of d  ag OAL
ions: - — === = - == — - 24
functions: _2 ac, o  ac, (acn at acn) ( ar ) (24)
, r .
L 1) =Lo+AL=— -U(r Y+ AL T 0, (17)  Next we group terms so that the gauge funceverywhere
appears added t@AL)/dr, and bring the term proportional
. OAL to dCj/dt to the left hand side of the equation:
p=r+—r> (18)
of o0 (AL dC;
) - — |[Z=i| = =
and , Z{[C“C’]Jracn ac ( ar )} dt
: p
H(r,pt)=pr—L="—7+U+AH, 2
2 "0 0 |apad (2L

1(0AL 0Cn 2\ or
AH(r, pt)y=-AL-= (—) , (19)

2\ ar (S DA (e, 20L) (25)
AH being introduced as a variation of the functional form, i.e., \0Cn 9Cn 0t dr dCy or

asAH = H(r, p. t) = Ho(r, p. 1). The Euler-Lagrange equa-rnase modifications help us to recognise the special nature of
tions written for the perturbed Lagrangian (17) will give: the gaugab = —a(AL)/dt, which will be the subject of dis-
- _ou L AF (20) cussion in the next subsection.

T ’ Contrast (25) with (16): while (16) expresses the variation-
where the new term of-constants method in the most general form it can have in

OAL d (JAL terms of the disturbing forcAF(r, r, t), Eq. (25) renders the
AF= —— - — (—) (21) most general form in the language of a Lagrangian perturba-
or dt\ or tion AL(r, , 1).
is the disturbing force. Expression (21) reveals that whenever The applicability of so generalised planetary equations in
the Lagrangian perturbation is velocity-independent, it plagdalytical calculations is complicated by the nontrivial nature
the role of the disturbing function. Generally, though, the digf the left-hand sides of (16) and (25). Nevertheless, the struc-
turbing force is not equal to the gradientaf,, but has an extra ture of these left-hand sides leaves room for analytical simpli-
term generated by the velocity dependence. fication in particular situations. One such situation is when the
Examples in which a velocity dependénf has been used gauge is chosen to be
in a celestial mechanics setting include: the treatment of inertial
forces in a coordinate system tied to the spin axis of a precegs= _% +(r, ) (26)
mr., ),
ing planet (Goldreich 1965) and the velocity-dependent cor- 0
rections to Newton’s law of gravity in the relativistic two-bodyy(r, t) being an arbitrary vector function linear m (It may
problem (Brumberg 1992). be, for example, proportional to or may be equal, say, to
Our next goal will be to employ the above formula (21) t@a cross product of by some time-dependent vector.) Under

translate the gauge-invariant perturbation Eq. (16) from the lathese circumstances the left-hand side in (25) reduces to the
guage of disturbing forces into that of Lagrangian disturbancésgrange brackets. The situation becomes especially simple
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whendAL/dr happens to be linear in in which case we may form in one special gauge, one that coincides with the Lagrange
put p(r, t) = 0AL/or and, thus, employ the trivial Lagrangegauge when the perturbation bears no velocity dependence. The
gauge® = O instead of the generalised Lagrange gauge. Wsue is explained at length in our previous paper (Efroimsky &
shall encounter one such example in Sect. 3.4. Goldreich 2003). Here weffer a brief synopsis of this study.

As already stressed above, the Lagrange brackets are

gauge-invariant because functiohsandg are defined within 2 3. Generalised Lagrange gauge wherein
the unperturbed, two-body, problem (1-3) that lacks gaugé™ - .
freedom. For this reason, one may exploit, to solve (25), the the Delaunay-type system is canonical
well-known expression for the inverse of matr; [Cj]. Its  Equation (22) was cast in the form of (25) not only to demon-
elements are simplest (and are either zero or unity) when aiigate the special nature of the gauge
chooses as the “constants” the Delaunay set of orbital variables
(Plummer 1918): @ - _‘96&,

r

Ci={L G, H, Mo, w, O} but also to single out the terms in the square brackets on the

L= via G= jua(l-€?), H= /ya(l— e?) cosi, (27) rght-hand side of (25): together, these terms give exactly the
Hamiltonian perturbation. Thus, we come to the conclusion

wherey = G(Msun + Myianey and (e, a, Mo, w, Q, i) are the that in the special gauge (30) our Eg. (25) simplifies to

Keplerian elementse anda are the eccentricity and semima- ac: o AH

jor axis, Mg is the mean anomaly at epoch, and the Euler arny- [C,, C|] i . (31)

glesw, Q, i are the the argument of pericentre, the longitu dt 9Cn

of the ascending node, and the inclination, respectively. As emphasised in the preceding subsection, the gauge in-

The simple forms of the Lagrange and Poisson braCk(atsvlgriance of definition (15) enables us to use the standard

(30)

Delaunay elements is the proof of these elements’ canonic ya range-gauge) expressions for the matrix inversS46]
in the unperturbed, two-body, problem: the Delaunay elements grange-gaug P il

. ) : : _ ; to get the planetary equations from (31).
give birth to three canonical pair§)}, P;) corresponding to a Comparing (31) with (28), we see that in the general case

vanishing Hamlltoman.L(, Mo), (G.’. ), (H, -Q). !n a .of an arbitraryAL(r, r, t) one arrives from (31) to the same

perturbed setting, when only a position-dependent disturbin : S

. 5 v eguations as from (28), except that now they contairt in-

functionR(r, t) is “turned on”, it can be expressed through thé o .

. L . . : stead ofAL. When the orbit is parametrised by the Delaunay
Lagrangian and Hamiltonian perturbations in a simple manngr, . : )
variables, those equations take the form:

R(r,t) = AL(r,t) = —AH(r, t), as can be seen from the
formulae presented in the previous subsection. Under these dit- 0 AH d(-Mo)  OAH 32
cumstances, the Delaunay elements remain canonical, proviggd™ (- Mo)’ da oL (32)
the Lagrange gauge is imposed (Brouwer & Clemence 1961).
This long known fact can also be derived from our Eq. (254 g A d(-w) O AH
if we put® = 0 and assume.L velocity-independent, we G = 5= R Teu (33)
arrive to
dCj dAL dH oAH d-Q) dAH

C C - = N 28 —_— = 5 = - . 34
Zj e Gl & = e, @8) & (-Q) at oH (34)
where which is a symplectic system. For this reason we name this spe-

cial gauge the “generalised Lagrange gauge”. In affgdint
AL=AL(T(C 1), )=R(f(C 1), t) = gauge® the equations for the Delaunay variables would con-
~AH (F(C, 1), 1). (29) tain (I)-(_jepepdent terms and would not be symplectic. (Those
gauge-invariant equations, for both Lagrange and Delaunay
This, in its turn, results in the well known Lagrange system @lements are presented in Efroimsky 2003 and Efroimsky &
planetary equations, provided the parame@rare chosen as Goldreich 2003.) This analysis proves the following.
the Kepler elements. In case they are chosen as the DeIau.Pﬁ\gorem_

elements, then (28) leads to the standard Delaunay equati%aaunay elements are, generally, not canonical, they be-

he., to a symplectic system wherein the paits (- Mo), come canonical in the “generalised Lagrange gauge”
(G, —w), (H, —Q) again play the role of canonical variables; 9 grange gauge-.

but the Hamiltonian, in distinction to the unperturbed case, fidnat this Theorem is not merely a mathematical coincidence,
longer vanishes, instead being equalhttf = — AL. but has deep reasons beneath it, will be shown in Sect. 4
In our more general case, the perturbation depends algloere the subjectis to be approached from the Hamilton-Jacobi
upon velocities (and, thereforeAL is no longer equal viewpoint.
to —AH). Beside this, the gaug® is set arbitrary. As demon-  The above Theorem gives one example of the gauge for-
strated in Efroimsky (2003), under these circumstances tmalism being of use: an appropriate choice of gauge can con-
gauge-invariant Delaunay-type system is no longer canonicgtlerably simplify the planetary equations (in this particular
However, it turns out that this system regains the canonicase, it makes them canonical).

though the gauge-invariant equations for
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According to (18), the momentum can be written as: As evident from (41), our choice of a particular gauge is equiv-

. OANL OAL alent to decomposition of the physical motion into a movement
p=r+——=g+®+—-, (35) with velocity g along the instantaneous ellipse (or hyperbola,
which, in the generalised Lagrange gauge (30) simpi[] the flyby case),andam_ovementassociated with j[he ellipse’s
reducés to: ' Sr hyperbola’s) deformation that goes at the mdtdt is then

tempting to state that a choice of gauge is equivalent to a choice
p=g. (36) of aninstantaneous comoving reference frame whereby we de-

Vectorg was introduced back in (2-3) to denote the functiond ribe the motion. Such an interpretation is, however, incom-

dependence of the unperturbed velocity upon the time and gte- Be_3|de the ff"‘Ct that we deCO“P'e the physical v_elouty
parameter<;. In the unperturbed, two-body, setting this vell a certain proportion betwegnand®, it also matters which

locity is equal to the momentum canonically conjugate to t ys@cal \_/elocity (i._e., velocity relative to what ffame) is decou-
positionr (this is obvious from (18), for zera.£). This way, P ed in this proportion. In other words, our chmce of th? gauge
in the unperturbed case equality (36) is fulfilled trivially. ThgOes not yet exhaust e:llgfr?/(\a/dom. we can fSt'.” chqolse n Wh'.Ch
fact that it remains valid also under perturbation means th emeto write ansatz (40). We may write '.t In inertial axes or n
in the said gauge, the canonical momentum in the disturb%‘?g]_e accelerated system. Forexam_ple, mthe_cgse qfasatelllte
setting is the same function of time and “constants” as in tf&- iting an accelerated and precessing plqnemm/enlento
unperturbed, two-body, case. Thus, we have shown followrite the ansatz for the planet-related position vector.

ing Goldreich (1965), Brumberg et al. (1971), and Ashby
Allison (1993} that the instantaneous Keplerian ellipses (h
perbolae) defined in gauge (30) osculate the trajedtophase

space

duces to® = 0 in the simple case of velocity-independe
disturbances.
3. Gauge freedom and freedom of frame choice

3.1. Osculating ellipses described in different frames
of reference

The essence of the variation-of-constants method in celesﬁ

Not surprisingly, the generalised Lagrange gauge (30) I%Qrted into the dynamical equation of MOtIoR:"— (ur /r

The above kinematic formulae (40)—(42) do not yet contain

& . X : .
%formatlon about our choice of the reference system in which

e implement the variation-of-constants method. This infor-
mation shows up at the next stage, when expression (42) is in-

3) +
r{PFtoyieId:
dg dCi d®  _ 9AL d [4AL
ac o T ar dt(a'r) (43)

Complete information about the reference system in which we
put the method to work (and, therefore, in which we define
the orbital element€;) is contained in the expression for the
erturbation forceAF. For example, if the operation is car-
8l out in an inertial coordinate systenik- contains physical

mechanics is the following. A generic two-body-problem solyqces solely. However, if we wish to implement the variation-

tion expressed by

r=1(C1), (37)
of

(E)C =9 (C’ t) > (38)
og\ _u f

(). --f+ %)

is employed as an ansatz to solve the disturbed problem:

r = f(C(t), t), (40)
. of of dG
r—ﬁ'f'a—c:ia— + D, (41)
_0g 0g dC; d®
Tt Tac dt
_u f g oG do
TTRET T @ a (42)

4

choosing the generalised Lagrange gauge. Below, in Sect. 3.3,

Treatment presented in these publications was equivalent

of-constants approach in a frame moving with a linear acceler-
ationa, thenAF also contains the inertial forcea. In case this
coordinate system rotates relative to inertial ones at ajurate
thenAF also includes the inertial term2u x r — g x r — pu X

(u x r). In considering the motion of a satellite orbiting an
oblate precessing planet it is most reasonable, though not oblig-
atory, to apply the method (i.e., to define the time derivative)
in axes that precess with the planet. However, this reasonable
choice of coordinate system still leaves us with the freedom of
gauge nomination. This will become clear in the example con-
sidered below in Sects. 3.2-3.5.

3.2. Relevant example

Gauge freedom of the perturbation equations of celestial me-
chanics finds an immediate practical implementation in the de-
scription of test particle motion around an precessing oblate
planet (Goldreich 1965). It is trivial to extend this to account
fgy acceleration of the planet's centre of mass.

we Our starting point is the equation of motion in the inertial

shall consider that development from the viewpoint of gauge-invariaii@me:

theory. The papers Goldreich (1965), Brumberg et al. (1971), an(/j/
Ashby & Allison (1993) are unique examples of non-osculating el-" =

ou

ements being employed. One more such example appeared in 1987 . o . . _
when Borderies & Longaretti (1987) put forward their theory of gedwhereU is the total gravitational potential and time deriva-

metric elements, to be used in the the planetary ring dynamics.

tives in the inertial axes are denoted by primes. Suppose that
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the planet’s spin axis precesses at angulargéjeand that the variation-of-constants Eq. (43M\L is given by formula (46)
acceleration of its centre of mass is givend(y). Physically, andA# by (50).
this acceleration originates both due to the circumsolar motion We now choose to describe the motion in the generalised
and due to the gravitational pull from the other planets (Krivavagrange gauge (30), so the express{dn+ u x r) on the
1993). It is a very natural (and very common in celestial amijht-hand side of (50) vanishes (as follows from (47)), and the
planetary dynamics) technique to switch to a comovirigrd expression foA?H in terms off andg has the form:
corotating reference frame, in order to better visualise the prop-
erties of the physical system. For example, in oceanographff = — [R(f, ) + - (f xg) —a- f]. (51)
and atmospheric science almost all work is carried out in
Lrame corotating with the Earth. In our case, ourpreferencew 0 riation-of-constants method given by (25) simplifies
e to use not a corotating but rather a coprecessing frame, i.€. N » £ (51) th lead ¢
a coordinate system attached to the planet’s centre of mass ang3 )- Insertion of (51) therein leads us to
precessing (but not spinning) with the planet. In the new coaor- dci 4
dinate frame the inertial forces modify the equation of motiofrr Gl 4 dt ~ oc, [R(F. O +p-(fxg)-a-f]. (52)
so that it assumes the form:
Interestingly, this equation does not contaiaven though it is

= oy _ 2uXTt—uXr—pux(uxr)—a, (45) valid for nonuniform precession.

or As explained in Sect. 2.3, in the generalised Lagrange
time derivatives in the accelerated frame being denoted by d@guge the vectay is equal to the canonical momentuym=

To implement the variation-of-constants approach in terms- d AL/dt. In the case when the velocity dependenca &f
of the orbital elements defined in the accelerated frame, we nist€alled into being by inertial forces, the momentum is, ac-
that the disturbing force on the right-hand side of (45) is gepording to (47),
erated according to (21) by:

the same time, the generic expression for the

1 p:'r+é)6i.r‘£='r+y><r, (53)
AL, i, )=R+1-(uxr)+ z(uxr)-(uxr)y—a-r, (46)

2 which is the particle’s velocity relative to the inertial frame co-
where we denote bR(r, t) the gravitational-potential pertur-moving with the accelerated, rotating frame. In this sense we
bation (which is the perturbation of the overall gravitationahay say that our elements are defined in the accelerated, rotat-

potentialU). Since ing frame, but osculate in the comoving inertial one.

OAL In the Appendix we provide explicit expression for each
—— =uxf, (47) of the partial derivatives gf - J that appears in the planetary

or
Eq. (52).
the corresponding Hamiltonian perturbation reads:
AL 3.4. Elements defined in the accelerated, rotating

AH =—|AL+ ( oF ) frame, that osculate in this frame

—[R+p-(uxr)—a-r[=-[R+(rxp-u—a-r], (48) Here we notonly define the elements in the accelerated, rotat-
ing frame, but we also make them osculate in this system, i.e.,

with vectorJ = r x p being the satellite’s orbital angular Mo+, make them satisfp = 0. In this gauge, expression (50)
mentum in the inertial frame. takes the following form:

According to (35) and (47), the momentum can be writ-

ten as: AH = = [R(f, ) +u- (f xg)+ (ux f)-(ux f)-a-f], (54)
p=g+@+uxf, (49) while Eq. (25), after some algelStdooks like this:
whence the Hamiltonian perturbation becomes [c C] OAH
n = -
AH=-[R+(fxg) - u+(@+uxf)-(uxf)-—a-f]. (50) dt 8C”8f 5
)
—xg-fx
o | " (ac e acn)

3.3. Elements defined in an accelerated, rotating of P

frame, that osculate in the comoving inertial frame (f X 8?) —(uxf) N (uxf). (55)

n

In this subsection we recall a calculation carried out I . i .
Goldreich (1965), Brumberg et al. (1971), and Ashby @(/hen s_ubstltutlng (54) into (55), it is convenient to rent the
Allison (1993) and demonstrate that it may be interpreted ggpression fon# apart and to group the terp & 1) - (ux f)

an example of nontrivial gauge fixing. 5 Due to (47), the second term on the left-hand side in (25) is pro-

Let us implement the variation-of-constants method inrtional to p(u x £)/6C;] C; = u x ® and, therefore, vanishes. The
frame that is accelerating at rateand rotating at angular second term on the right-hand side simplifies in accordance with the
rateu relative to some inertial system S. This means that, in thienple ruleA - (B xC) = (Cx A) - B.
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with the last term on the right-hand side of (55): problem is perturbed, the role of perturbation being played
: by the relativistic correction to the Newton law of gravity.
dC; 0 X . _ .
[Ch Ci o [R(f, ) +u-(f xg)—a- f] Interestingly, this correction depends not only upon the posi-
" tions, but also upon the velocities of the binary components
- (ﬂ xg—fx 8_9) (Brumberg 1992). For this reason, to simplify the orbit integra-
9Cy dCy tion of a binary, the generalised Lagrange gauge (not the cus-

: f 0 tomary Lagrange constraint) should be imposed. In this gauge
TH (f X a_cn) * uxf) aCp (). the calculations will be very considerably simplified (and, for

. . . xample, it is in the generalised Lagrange gauge that the equa-
In so writing (56) we.have deliberately cast it into a form th"’ﬁons for the Delaunay elements will retain their canonicity).
eases comparison with (52).

. . Another simple example is a non-relativistic reduced two-
In the Appendix we set up an apparatus from which the par- . . .

. L ST . " body problem with a variable mass. In this case, too, the
tial derivatives of the inertial terms with respect to the orbni ; . : .
elements may be obtained. We also show that some of theg%]rangmn acquires a velocity-dependent correction. Hence,
derivatives va};ish However. a complete evaluation of the in il this case, the orbital elements will be convenient to intro-
L ) » 8 Compf . Ylce in the generalised Lagrange gauge, not in the customary
tial input to the planetary equations in the ordinary Lagran%e

) . . . grange gauge.
gauge involves a long and tedious calculation which we do no%
carry out.

4. Planetary equations and gauges

3.5. Comparison of the two gauges in the hamilton-Jacobi approach

One of the powers of gauge freedom lies in the availability (I)@ thi; sect.ion we demonstrate that the derivation of planetary
gauge choices that simplify the planetary equations, as we grjijatmdn_s In t?:\"p"’_‘{t'de N Zb_3) ca;}sed, perf?rrrwled throygh
see from contrasting (52) with (56). While the latter equatidh® Medium of Hamilton-Jacobi method, implicitly contains a
is written under the customary Lagrange constraint (i.e., f3pu9€-fixing condition notvisible to the naked eye. We present
elements osculating in the frame where they are defined), ﬁjé:ompac_t _accounl;c (.)f (I)l(er St.lljdy’ a (k:)omfprehdeljswi d_escknp-
former equation is written under a nontrivial constraint callelP containing technical details may be found in Efroimsky

“ : " L Goldreich (2003).
the “generalised Lagrange gauge”. The simplicity of (52), i X _ ) .
contrast with (56), is evident. The Hamilton-Jacobi analysis rests on the availabil-

By identifying the parameter§; with the Delaunay vari- ity of different canonical descriptiqns of the same physi-
ables, one arrives from (52) and (56) to the appropria 8' proc?ss. Any two such descriptions, P, ﬂ(qf p))_ and f
Delaunay-type equations (see Appendix | to Efroimsky Q. P #°(Q. P)), correspond to dierent pgran?etnsatlpns °
Goldreich 2003). The Lagrange equations correspondingﬂf@ same phase flow, and both obey Hamilton’s equations. Due

(52) and to (56) may be easily derived from each of these t\%the latter circumstance the infinitesimally small variations

equations by choosing; as the Kepler elements and using thg, _ pdq — H dt (56)
appropriate Lagrange brackets.

Although the planetary equations are much simpler in ttaad
generalised Lagrange gauge than in the ordinary Lagrange

gauge, some of thesefflirences are less important than ot 10 =PdQ — H"dt (57)
ers. In many physical situations, though not always ythand are perfect dferentials, and so is theirfiérence

p terms in (56) are of a higher order of smallness compared to '

those linear inu, and therefore may be neglected, at least fordw = dé — do = PdQ — pdq — (H* — H) dt. (58)

sufficiently short time% .
Here, vectorsg, p, Q, and P each containN components.

o Given a phase flow parametrised by a sgtg, H(q, p.t)),
3.6. Further applications it is always useful to simplify the description by a canonical

In the above example of a satellite orbiting a wobbling plandfansformation to a new se@Q( P, +*(Q. P.1)), with the new

an evident simplification of the planetary equations (both in t#miltonian’{* being constant in time. Most advantageous are
Lagrange and Delaunay forms) was achieved through impotggnsformanons that nullify the new Hamiltonigif*, because
tion of the generalised Lagrange gauge. This optimal gaufén the new canonical equations render the varial@e$)
differed from the standard Lagrange constraint, becausecffistant. A powerful method of generating such transforma-

the said example the Lagrangian perturbation depended ufiéRs stéms from (58) being a perfectférential. It is sticient
velocities. to consideW to be a function of the time and only two other

A similar situation emerges in the relativistic two-bodyganonical variables, for exampteand Q. Then (58) may be
problem. In the relativistic dynamics, even the two-body/tten as:

6 As an example of an exception to this rule, we mention VenusM dt — M dQ - M da =
whose wobble is considerable. This means that, for exampley the ot 9Q aq
term cannot be neglected in computations of circumvenusian orbits. P dQ — pdqg+ (H — H™) dt (59)
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from which it follows that and

oW oW i A A A

2—%, p=8—, pz_ﬂz_ﬂﬁ_ﬂ% (65)
aq 9Q dq 0Q dp 9P
oW

H@ p. Y+ —- =H(Q P 1) (60) into the expression for the velocity:
Inserting the second equation into the third and assuming that 9q adq - 4dq -
H*(Q, P, 1) is simply a constant, we get the famous JacoBi~ 3 * 0 " ap P. (66)
equation:

oW P This leads to:
H(o G- Y= G = O 29, (2 09 _ o9 da) 9aH

ot \9Q aP 9P 9Q/) dq

whose solution furnishes the transformation-generating func-
tion W. The elegant power of the method becomes most vis- +(ﬂ 9p _9q @) 9AH
ible if the constantH* is set to zero. Under this assumption 9Q aP 9P 9Q) dp

the reduced two-body problem is easily resolved. Starting with OAH _0q 67
the three spherical coordinates and their canonical momenta as ¢ (a_p)q t’ 9= (67)
(g, p), one arrives to canonically conjugate constafds ) ’

that coincide with the Delaunay elements (27): where we have taken into account that the Jacobian of the
(Q1, P1) = (L, —Mo); (Q2, P2) = (G, -w); canonical transformation is unity:

(Qs, Pg) =(H, —Q).

Extension of this approach to tHé-particle problem begins 09 op _ 99 9p _ 1 (68)

with consideration of a disturbed two-body setting. The nunfQ 9P 9P 9Q B

ber of degrees of freedom is still the same (three coordimptes, establish the link between the regular variation-of-constsnts
and three conjugate momerg but the initial Hamiltonian is ethod and the canonical treatment, compare (67) with (41).

perturbed: We see that the symplectic description necessarily imposes a
. O(H+AH) . O(H + AH) particular gaug® = 9 AH/ap.
q= ap ’ P=- aq ’ (62) It can be easily demonstrated that this special gauge coin-

cides with the generalised Lagrange gauge (30) discussed in

While in (59)—(61) one begins with the initial Hamiltoni@  sect 2.2, To that end one has to compare the Hamilton equa-
and ends up wittH* = 0, the method may be extendeq,, for the perturbed Hamiltonian (19),

to the perturbed setting by accepting that now we start with

a disturbed initial Hamiltoniar{ + AH and arrive, through . 9 (H + AH) OAH
the same canonical transformation, to an equally disturb®d ap =P+ 6—p
eventual Hamiltoniar{* + AH = AH. Plugging these new o )
Hamiltonians into (59) leads to cancellation of the distulvith the definition of momentum from the Lagrangian (17),

banceAH on the right-hand side, whereafter one arrives to the 8 (£ 6 1) + AL & 1) ONS
— = =

(69)

same equation fo(g, Q, t) as in the unperturbed case. Nowp = 3 P (70)
however, the new canonical variables are no longer conserved q q
but obey the dynamical equations: Equating the above two expressions immediately yields:
. O0AH : OAH
O="2", P=-—1". (63) _(aAﬂ) B (8 A.[Z)
oP 0 O=(—"—-| =—-|—F (71)
Q op at aq at

Because the same generating function is used in the perturbed

and unperturbed cases, the new, perturbed, solugiop) §s ex- Which coincides with (30). Thus, the transformation generated

pressed through the perturbed “constaréf) andP(t) in the by W(q, Q, t) is canonical only if the physical velocityi$ split

same manner as the old, undisturbgdnd p were expressed in a fashion prescribed by (67), i.e., if (71) is fulfilled. This is

through the old constan® andP. This form-invariance pro- exactly what our Theorem from Sect. 2.2 says.

vides the key to theN-particle problem: one should choose To summarise, the generalised Lagrange constréin

the transformation-generating functitv to be additive over —0 AL/dq, is tacitly instilled into the Hamilton-Jacobi method.

the particles and repeat this procedure for each of the bod@nply by employing this method (at least, in its straightfor-

separately. ward form), we automatically fix the gaugdy sticking to the
Armed with this preparation, we can proceed to uncov&tamiltonian description we sacrifice gauge freedom.

the implicit gauge choice made in using the Hamilton-Jacobi

method to derive evolution equations for the orbital elements, AAn €xplanation of this phenomenon from afdrent viewpoint is
To do this we substitute the equalities: offered in Sect. 6 of Efroimsky (2003), where the Delaunay equations

are derived also through a direct change of variables. It turns out that
OANH  OAH aq OAH ap (64) the outcome retains the symplectic form only if an extra constraint is

oP ~  oq 5p+ dp 9P imposed by hand.

Q‘:
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Above, in Sect. 2.3, we established that in the generalisin disturbance depends not only upon positions but also upon
Lagrange gauge the momentum coincides wyithive now can velocities, another constraint (which we call the “generalised
get to the same conclusion from (67), (70) and (71): Lagrange constraint”) turns out to befBi embedded in the

. : Hamilton-Jacobi development of the problem.

(L@ 6 Y + AL@ G 1) =q-Dd=g. (72) Unless a specific constraint (gauge) is imposed by hand,

aq the planetary equations assume their general, gauge-invariant,
Thus, implementation of the Hamilton-Jacobi theory in cderm. In the case of a velocity-independent disturbance, any
lestial mechanics demands the orbital elements to osculatg@uge diferent from that of Lagrange drives the Delaunay sys-
phase space. Naturally, this demand reduces to that of regtésn away from its symplectic form. If we permit the disturbing
osculation in the simple case of velocity-independefit force to depend also upon velocities, the Delaunay equations
retain their canonicity only in the generalised Lagrange gauge.
Interestingly, in this special gauge the instantaneous ellipses
(hyperbolae) osculate in phase space.
In the article thus far we have studied the topic recently Briefly speakingN-body celestial mechanics, expressed in
raised in the literature: the planetary equations’ internal syerms of orbital elements, is a gauge theory, but it is not strictly
metry that stems from the freedom of supplementary condanonical. It becomes canonical in the generalised Lagrange
tion’s choice. The necessity of making such a choice cogauge.
strains the trajectory to a 9-dimensional submanifold of

the. 12_-dimen§ioqal Spa.ce.spanned by.the orbital element§ ﬂegnowledgementsThe authors are grateful to William Newman and
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the N-body problem in the language of orbital elements. ority in developing the variation-of-constants method. Research by
We addressed the issue of internal freedom inflacsently ME was supported by NASA grant W-19948. Research by PG was

general setting where a perturbation to the two-body problg@tially supported by NSF grant AST 00-98301.

depends not only upon positions but also upon velocities. Such

situations emerge when relativistic corrections to Newtornppendix

law are taken into account or when the variation-of-constarats his A di f hich
method is employed in rotating systems of reference. n this Appendix we set up an apparatus from which one may

We derived the most general form of the gauge-invaria‘ﬁ‘faluate the partial derivatives with respect to the orbital ele-
perturbation equation of celestial mechanics, written in ter e_nts O_f inertial terms that appear in the planetary equations
of adisturbing force. Then we transformed it into the most ge erived in Sects. 3.3 and 3.4. We then show that some of these

eral gauge-invariant perturbation equation expressed thro vatives vanlsh: Fo_llowmg that, we (_jerlve e_pr|C|t expres-
the Lagrangian disturbance sions for each derivative @f - (f x g), which provides a com-

Just as a choice of an appropriate gauge simplifies solutf(])lﬁte analytic evaluation of the _ro_tational input in the gener-
of the equations of motion in electrodynamics, an alternatifd’Sed ngrange gauge. The topicis further develop(_ad (af‘d the
(to that of Lagrange) choice of gauge in the celestial mechdRPropriate generalised Lagrange system of equations is pre-

ics can simplify orbit calculations. We provided one such e)§_ented)_ in Efr0|msI§y_& Goldreich (2003). .
ample, a satellite orbiting a precessing planet. In this exam- To fmd_the exp_I|C|t form of the dg_pendend’:e: H(G, .t)' it

ple, the choice of the generalised Lagrange gauge considera I&)nventhnal to mtrpduce an au>f|I|a_ry set of CarteS|a_n coor-
simplifies matters. To achieve this simplification, we not on Inatesq, with an ongn at the gravitating F:entre, and.W|th the
exercised our right to choose a convenient gauge, but we aflet two axes located in the plane OT orp|t. The:oordlnatfes
chose a preferred coordinate system in which to implement & easy to express t.hrough the semimajoraptise eccentric-
variation-of-constants method. This interplay of the two typég/ eand the eccentric anomal

of freedom enabled us to eliminate some of the mathematigal= a(cosE —€), g =aVl-€ sinE, gz =0, (73)
complications associated with the inertial forces. Not surpris-

ingly, it has turned out to be convenient to define the orbit\lvlhereE ltself is a function of the semimajor axas the eccen-

elements in the precessing frame of the planet; however, F”C'ty € the mean anomaly at epodtly, and the timet. The

of
the sake of mathematical simplification, it also turned out to be

p=

5. Conclusions

ime dependence is realised through the Kepler equation

beneficial to make these elements osculate irfferint, iner- E—e sinE =M, (74)
tial frame of reference. where
We have explained where the Lagrange constraint tacitly t
enters the Hamilton-Jacobi derivation of the Delaunay equd-= Mg + u*/? f a 32 dt. (75)
to

tions. This constraint turns out to be an inseparable (though not

easily visible) part of the method: in the case of momenturihe inertial-frame-related position of the body reads:
independent d.isturbanceg, tihéb.ody gener_a_lisation of _ther = f(Q, 0, w a e My t)=

two-body Hamilton-Jacobi technique is legitimate only if we

use orbital elements that are osculating. In the situation wherB(Q, i, w) q(a, e, E(a, e, My, t)), (76)
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R(Q, i, w) being the matrix of rotation from the orbital-planeTo continue, we note that in the two-body setting the ratip,
related coordinate systemto the fiducial frame X, y, 2) in is known to be equal to/a(1 — €2) & wherew is a unit vec-
which the vector is defined. This rotation is parametrised byor perpendicular to the unperturbed orbit's plane. Moreover, in
the three Euler angles: inclination the longitude of the node, planet-associated noninertial axes, ) with corresponding

Q; and the argument of the pericentze, unit vectors §, g, 2), the normal to the orbit is expressed by:
In the unperturbed two-body setting the velocity is = = | L . )

expressed by w = X sini sinQ —# sini cosQ + Z cosi. (85)
0 Hence,

=— f(Q,i e Mg; t) =
g 8t(’7wva9s 01)

9(fxg) _ 0(Val-&)) 1 [1-@&

3 § po ————= = = 1.(86)

(ﬁ) R, i, w) (@) : 77) da 9a 2 a

Ot o emy OE), o and
One can similarly calculate partial derivativesfoivith respect
e g P P Lalixg (A e

Ho e 7H de 1-et

8% f(Q i, w a6 Mg t) = whereu, = py sini sinQ -, sini cosQ + u, cosi is

0 the orthogonal-to-orbit component of the precession rate. The

E . . ) remaining two derivatives look:
(2] Redo () 79)
OMo /4 et 0E), e

o LD ey w2
whence it becomes evident that /My is parallel tog and,

hence, Ja(@ - ) {uy sini cosQ+p, sini sinQ} (88)
of

gx(—) =0. (79) and
Mo Qi w,a et

d(fxg) | ow
By a similar trick it is possible to demonstrate thét xg)/0Mg K 0i =al - &) u A

is proportional tod(f x g)/0E and, therefore, té(f x g)/ot. / _ CainO . B .
Hence, this derivative vanishes (because in the two-partic al-¢) {”X COSI SINQ — u, COSI COSQ = u1 sm|}. (89)

case the cross prOdU¢tX g is an integral of motion). This As for the derivatives ofa - f, they may be calculated di-

vanishing ofd(f x g)/6Mo, along with (79), implies: rectly from the expression fdi(Q, w, i, a, €, Mo; t) presented

g above. However, the resulting expressions are cumbersome so
f x (—) =0. (80) we do not present them here.

Mo Qi,w, a6t

In the situation when the paramet&isare implemented by the g otarences

Delaunay elements, a similar sequence of calculations leads to
¢ Ashby, N., & Allison, T. 1993, Cel. Mech. Dyn. Astron., 57, 537
a i .
g x ( ) -0 (81) Borderies, N., & Longaretti, P. Y. 1987, Icarus, 72, 593
Q w,L,G H,t

0Mp Brouwer, D., & Clemence, G. M. 1961, Methods of Celestial
Mechanics (NY & London: Academic Press), Chapter Xl
and, appropriately, to: Brumberg, V. A., Evdokimova, L. S., & Kochina, N. G. 1971, Cel.
P Mech., 3, 197
f x (_g) =0. (82) Brumberg, V. A. 1992, Essential Relativistic Celestial Mechanics
Mo/ L6, H.t (Bristol: Adam Hilger)

We can proceed much farther in the aeneralised La ranEf([:‘OimSky’ M. 2002, Equations for the orbital elements. Hidden sym-
P u : 9 IS grang metry. Preprint No. 1844 of the Institute of Mathematics and its

gauge, at least in so far as derivatives of the rotational input Applications, University of Minnesota.

J/u = f x g are concerned. (We remind that here and ev- http://www.ima.umn.edu/preprints/feb®2/1844.pdf
erywhereu stands for the reduced mass, whilelenotes the Efroimsky, M. 2003, fistro-ph/0212245]

precession rate.) Efroimsky, M., & Goldreich, P. 2003, J. Math. Phys., 44, 5958
As we proved above, this cross product is independdsiler, L. 1748, Recherches sur la question degatites du mou-
of Mg and, hence, vement de Saturne et de Jupiter, sujet preppsur le prix de
I'année, Berlin. For modern edition see: Euler L. Opera mech.
. o(f xg) =0 (83) et astron. (Birkhauser-Verlag, Switzerland, 1999)
oMo ’ Euler, L. 1753, Theoria motus Lunae exhibens omnes ejus in-

aequalitates etc. Impensis Academiae Imperialis Scientarum

Petropolitanae (St. Petersburg, Russia). For modern edition see:

Euler L. Opera Mech. Astron. (Switzerland: Birkhauser-Verlag,
a(f xg) 1999)

po—5—=0 (84) Goldreich, P. 1965, AJ, 70, 5

Since J is orthogonal to the orbit plane, it is invariant under
rotations of the orbit within its plane, whence
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