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In most books the Delaunay and Lagrange equations for the orbital elements are
derived by the Hamilton–Jacobi method: one begins with the two-body Hamilton
equations in spherical coordinates, performs a canonical transformation to the or-
bital elements, and obtains the Delaunay system. A standard trick is then used to
generalize the approach to theN-body case. We reexamine this step and demon-
strate that it contains an implicit condition which restricts the dynamics to a 9(N
21)-dimensional submanifold of the 12(N21)-dimensional space spanned by the
elements and their time derivatives. The tacit condition is equivalent to the con-
straint that Lagrange imposed ‘‘by hand’’ to remove the excessive freedom, when
he was deriving his system of equations by variation of parameters. It is the con-
dition of the orbital elements being osculating, i.e., of the instantaneous ellipse~or
hyperbola! being always tangential to the physical velocity. Imposure of any
supplementary condition different from the Lagrange constraint~but compatible
with the equations of motion! is legitimate and will not alter the physical trajectory
or velocity ~though will alter the mathematical form of the planetary equations!.
This freedom of nomination of the supplementary constraint reveals a gauge-type
internal symmetry instilled into the equations of celestial mechanics. Existence of
this internal symmetry has consequences for the stability of numerical integrators.
Another important aspect of this freedom is that any gauge different from that of
Lagrange makes the Delaunay system noncanonical. In a more general setting,
when the disturbance depends not only upon positions but also upon velocities,
there is a ‘‘generalized Lagrange gauge’’ wherein the Delaunay system is symplec-
tic. This special gauge renders orbital elements that are osculating in the phase
space. It coincides with the regular Lagrange gauge when the perturbation is ve-
locity independent.
@DOI: 10.1063/1.1622447#

I. EULER AND LAGRANGE

A. The history

The planetary equations, which describe the evolution of the orbital elements, constitu
cornerstone of the celestial mechanics. Description of orbits in the language of Keplerian ele
~rather than in terms of the Cartesian coordinates! is not only physically illustrative but also
provides the sole means for analysis of resonant interactions. These equations exist in a va
equivalent forms~those of Lagrange, Delaunay, Gauss, Poincare! and can be derived by sever
different methods.

The earliest sketch of the method dates back to Euler’s paper of 1748, which address
perturbations exerted upon one another by Saturn and Jupiter. In the publication on the
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motion, dated by 1753, Euler derived the equations for the longitude of the node,V, the inclina-
tion, i, and the quantityp[a(12e2). Time derivatives of these three elements were expres
through the components of the disturbing force. Sixty years later the method was amend
Gauss who wrote down similar equations for the other three elements and, thus, obtained w
now call the Gauss system of planetary equations. The history of this scientific endeavou
studied by Subbotin~1958!, who insists that the Gauss system of planetary equations should r
be called Euler system. A modern but still elementary derivation of this system belongs to
~1976!.

In his mémoires of 1778, which received an honorable prize from the Acade´mie des Sciences
of Paris, Lagrange employed the method of variation of parameters~VOP! to express the time
derivatives of the orbital elements through the disturbing functions’ partial derivatives with re
to the Cartesian coordinates. In his me´moire of 1783, Lagrange furthered this approach, while
Lagrange~1808, 1809, 1810! these equations acquired their final, closed, shape: they expre
the orbital elements’ evolution in terms of the disturbing potentials’ derivatives with respect t
elements. Lagrange’s derivation rested upon an explicit imposure of the osculation conditio
of a supplementary vector equation~called the Lagrange constraint! which guaranteed that th
instantaneous ellipses~in the case of bound motions! or hyperbolae~in the case of flyby ones! are
always tangential to the physical trajectory. Though it has been long known~and, very possibly,
appreciated by Lagrange himself! that the choice of the supplementary conditions is essent
arbitrary, and though a couple of particular examples of use of nonosculating elements appe
the literature~Goldreich, 1965; Brumberget al., 1971; Borderies and Longaretti, 1987!, a com-
prehensive study of the associated freedom has not appeared until very recently~Efroimsky, 2002,
2003!.

In the middle of the 19th century Jacobi applied a canonical-transformation-based proc
~presently known as the Hamilton–Jacobi approach! to the orbital dynamics, and offered a meth
of deriving the Lagrange system. This technique is currently regarded standard and is offe
many books. Though the mathematical correctness of the Hamilton–Jacobi method is b
doubt, its application to celestial mechanics contains an aspect that has long been overloo~at
least, in the astronomical literature!. This overlooked question is as follows: where in t
Hamilton–Jacobi derivation of the planetary equations is the Lagrange constraint tacitly imp
and what happens if we impose a different constraint? This issue will be addressed in our

B. The gauge freedom

Mathematically, we shall concentrate on theN-body problem of celestial mechanics, a pro
lem that for each body can be set as

r¢̈1
m

r 2

r¢

r
5DF¢ , ~1!

DF¢ being the disturbing force that vanishes in the~reduced! two-body case andr¢ being the
position relative to the primary, andm standing forG(mplanet1msun). A solution to the unperturbed
problem is a Keplerian ellipse~or hyperbola!

r¢5 f¢~C1 ,...,C6 ,t ! ~2!

parametrized by six constants~which may be, for example, the Kepler or Delaunay elements!. In
the framework of the VOP approach it gives birth to the ansatz

r¢5 f¢~C1~ t !,...,C6~ t !,t !, ~3!

the ‘‘constants’’ now being time dependent and the functional form off¢ remaining the same as i
~2!. Substitution of~3! into ~1! results in three scalar equations for six independent funct
Ci(t). In order to make the problem defined, Lagrange applied three extra conditions
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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(
i

] f¢

]Ci

dCi

dt
50 ~4!

that are often referred to as ‘‘the Lagrange constraint.’’ This constraint guarantees osculatio
that the functional dependence of the perturbed velocity upon the ‘‘constants’’ is the same
of the unperturbed one. This happens because the physical velocity is

r¢̇5g¢1(
i

] f¢

]Ci

dCi

dt
, ~5!

whereg¢ stands for the unperturbed velocity that emerged in the two-body setting. This veloc
by definition, a partial derivative off¢ with respect to the last variable:

g¢~C1 ,...,C6 ,t ![
] f¢~C1 ,...,C6 ,t !

]t
. ~6!

This choice of supplementary conditions is convenient, but not at all necessary. A choice
other three scalar relations~consistent with one another and with the equations of motion! will
give the same physical trajectory, even though the appropriate solution for nonosculating va
Ci will differ from the solution for osculating ones.

Efroimsky ~2002, 2003! suggested to relax the Lagrange condition and to consider

(
i

] f¢

]Ci

dCi

dt
5F¢ ~C1,...,C6 ,t !, ~7!

F¢ being an arbitrary function of time, ‘‘constants’’Ci and their time derivatives of all orders. Fo
practical reasons it is convenient to restrictF¢ to a class of functions that depend upon the time a
the ‘‘constants’’ only.~The dependence upon derivatives would yield higher-than-first-order
derivatives of theCi in the subsequent developments, which would require additional in

conditions, beyond those onr¢ and r¢̇, to be specified in order to close the system.! Different
choices ofF¢ entail different forms of equations forCi and, therefore, different mathematic
solutions in terms of these ‘‘constants.’’ A transition from one such solution to another
though, be a mere reparametrization of the orbit. The physical orbit itself will remain inva
Such invariance of the physical content of a theory under its mathematical reparametrizat
called gauge symmetry. On the one hand, it is in a close analogy with the gradient invaria
the Maxwell electrodynamics and other field theories. On the other hand, it illustrates
general mathematical structure emerging in the ODE theory~Newman and Efroimsky, 2003!.

If the Lagrange gauge~4! is fixed, the parameters obey the equation

(
j

@Cn Cj #
dCj

dt
5

] f¢

]Cn
DF¢ , ~8!

@Cn Cj # standing for the unperturbed~i.e., defined as in the two-body case! Lagrange brackets:

@Cn Cj #[
] f¢

]Cn

]g¢

]Cj
2

] f¢

]Cj

]g¢

]Cn
. ~9!

To arrive at formula~8!, one should, according to Lagrange~1778, 1783, 1808, 1809!, differentiate
~5!, insert the outcome into~1!, and then combine the result with the Lagrange constraint~4!. ~In
the modern literature, this derivation can be found, for example, in Brouwer and Clemence~1961!,
Efroimsky~2002, 2003!, Newman and Efroimsky~2003!, Efroimsky and Goldreich~2003!.! In the
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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simplest case the perturbing force depends only upon positions and is conservativDF¢
5]R(r¢)/]r¢. Then the right-hand side of~8! will reduce to the partial derivative of the disturbin
functionR(r¢) with respect toCn , whereafter inversion of the Lagrange-bracket matrix will enta
the Lagrange system of planetary equations~for Ci being the Kepler elements! or the Delaunay
system~for the parameters chosen as the Delaunay elements!.

As explained in Efroimsky~2003!, in an arbitrary gaugeF¢ Eq. ~8! will generalize to its
gauge-invariant form

(
j

@Cn Cj #
dCj

dt
5

] f¢

]Cn
DF¢2

] f¢

]Cn

dF¢

dt
2

]g¢

]Cn
F¢ , ~10!

the Lagrange brackets@Cn Cj # being still defined through~9!. If we agree thatF¢ is a function of
both time and the parametersCi , but not of their derivatives, then the right-hand side of~10! will
implicitly contain the first time derivatives ofCi . It will then be reasonable to move them into th
left-hand side. Hence,~10! will be reshaped into

(
j

S @Cn Cj #1
] f¢

]Cn

]F¢

]Cj
D dCj

dt
5

] f¢

]Cn
DF¢2

] f¢

]Cn

]F¢

]t
2

]g¢

]Cn
F¢ . ~11!

This is the general form of the gauge-invariant perturbation equations of celestial mech

which follows from the VOP method, for an arbitrary disturbing forceDF¢ (r¢,r¢̇,t) and under the
simplifying assumption that the arbitrary gauge functionF¢ is chosen to depend on the time an
the parametersCi , but not on their derivatives.

For performing further algebraic developments of~10! and ~11!, let us decide what sort o
interactions will fall within the realm of our interest. On general grounds, it would be desirab
deal with forces that permit description in the language of Lagrangians and Hamiltonians.

II. DELAUNAY

A. Perturbations of Lagrangians and Hamiltonians

Contributions to the disturbing forceDF¢ generally consist of two types, physical and inerti
Inputs can depend upon velocity as well as upon positions. As motivation for this generali
we consider two practical examples. One is the problem of orbital motion around a prec
planet: the orbital elements are defined in the precessing frame, while the velocity-dep
fictitious forces play the role of the perturbation~Goldreich, 1965; Brumberget al., 1971; Efroim-
sky and Goldreich, 2003!. Another example is the relativistic two-body problem where the re
tivistic correction to the force is a function of both velocity and position, as explained,
example, in Brumberg~1992! and Klioner and Kopeikin~1994!. ~It turns out that in relativistic
dynamics even the two-body problem is disturbed, the relativistic correction acting as disturb
This yields the gauge symmetry that will cause ambiguity in defining the orbital elements
binary.! Finally, we shall permit the disturbances to bear an explicit time dependence. Such a
of generality will enable us to employ our formalism in noninertial coordinate systems.

Let the unperturbed Lagrangian ber¢̇2/22U(r¢). The disturbed motion will be described by th
new, perturbed, Lagrangian

L5
r¢̇2

2
2U~r¢!1DL~r¢,r¢̇,t !, ~12!

and the appropriately perturbed canonical momentum and Hamiltonian,
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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p¢5r¢̇1
]DL
]r¢̇

, ~13!

H5p¢r¢̇2L5
p¢2

2
1U1DH, DH[2DL2

1

2 S ]DL
]r¢̇

D 2

. ~14!

The Euler–Lagrange equations written for the perturbed Lagrangian~12! are

r¢̈52
]U

]r¢
1DF¢ , ~15!

where the disturbing force is given by

DF¢[
]DL
]r¢

2
d

dt S ]DL
]r¢̇

D . ~16!

We see that in the absence of velocity dependence the perturbation of the Lagrangian pl
role of disturbing function. Generally, though, the disturbing force is not equal to the gradie
DL, but has an extra term called into being by the velocity dependence.

As we already mentioned, this setup is sufficiently generic. For example, it is convenie
description of a satellite orbiting a wobbling planet: the inertial forces, which emerge in
planet-related noninertial frame, will nicely fit in the above formalism.

It is worth emphasizing once again that, in the case of velocity-dependent disturbance
disturbing force is equal neither to the gradient of the Lagrangian’s perturbation nor to the gr
of negative Hamiltonian’s perturbation. This is an important thing to remember when comp
results obtained by different techniques. For example, in Goldreich~1965! the term ‘‘disturbing
function’’ was used for the negative perturbation of the Hamiltonian. For this reason, the gra
of a so defined disturbing function was not equal to the disturbing force. A comprehensive
parison of the currently developed theory with that offered in Goldreich~1965! will be presented
in a separate publication~Efroimsky and Goldreich, 2003!, where we shall demonstrate that th
method used there was equivalent to fixing a special gauge~one described in Sec. II C of thi
article!.

B. Gauge-invariant planetary equations

Insertion of the generic force~16! into ~10! will bring us

(
j

@Cn Cj #
dCj

dt
5

] f¢

]Cn

]DL
]r¢

2
] f¢

]Cn

d

dt S F¢ 1
]DL
]r¢̇

D 2
]g¢

]Cn
F¢ . ~17!

If we recall that, for a velocity-dependent disturbance,

]DL
]Cn

5
]DL
]r¢

] f¢

]Cn
1

]DL
]r¢̇

]r¢̇

]Cn
5

]DL
]r¢

] f¢

]Cn
1

]DL
]r¢̇

]~g¢1F¢ !

]Cn
, ~18!

then equality~17! will look like this:

(
j

@Cn Cj #
dCj

dt
5

]DL
]Cn

2
]DL
]r¢̇

]F¢

]Cn
2

] f¢

]Cn

d

dt S F¢ 1
]DL
]r¢̇

D 2
]g¢

]Cn
S F¢ 1

]DL
]r¢̇

D . ~19!

After subsequent addition and subtraction of1
2]((]DL/]r¢̇)2)/]Cn on the right-hand side, the gaug

function F¢ will everywhere appear in the company of1](DL)/]r¢̇:
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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(
j

S @Cn Cj #1
] f¢

]Cn

]

]Cj
S ]DL

]r¢̇
1F¢ D D dCj

dt

5
]

]Cn
FDL1

1

2 S ]DL
]r¢̇

D 2G2S ]g¢

]Cn
1

] f¢

]Cn

]

]t
1

]DL
]r¢̇

]

]Cn
D S F¢ 1

]DL
]r¢̇

D , ~20!

the sum in square brackets being equal to2DH. While ~11! expressed the VOP method in th

most generic form it can have in terms of disturbing forcesDF¢ (r¢,r¢̇,t), Eq. ~20! furnishes the most

general form in terms of the Lagrangian perturbationDL(r¢,r¢̇,t) ~under the simplifying assumption
that the arbitrary gauge functionF¢ is set to depend only upon the time and the parametersCi , but
not upon their derivatives!.

The Lagrange brackets in~19! are gauge-invariant; they contain only functionsf¢ andg¢ that
were defined in the unperturbed, two-body, setting. This enables us to exploit the well-k
expressions for the inverse of this matrix. These look most simple~and are either zero or unity! in
the case when one chooses as the ‘‘constants’’ the Delaunay set of orbital variables. As
known, this simplicity of the Lagrange and their inverse, Poisson, brackets of the Dela
elements is the proof of these elements’ canonicity in the unperturbed, two-body, problem.
only a position-dependent disturbing functionR(r¢)5DL(r¢) is ‘‘turned on,’’ the Delaunay ele-
ments still remain canonical, provided the Lagrange gauge is imposed. This happens beca
is well known~Brouwer and Clemence, 1961!, the equations of motion together with the Lagran
constraint yield, in that case, the following equation,

(
j

@Cn Cj #
dCj

dt
5

]DL
]Cn

, DL5DL~ f¢~C1 ,...,C6 ,t !!5R~ f¢~C1 ,...,C6 ,t !!, ~21!

which, is its turn, results in the standard Delaunay system.
In our case, though, the perturbation depends also upon velocities; beside this, the gauF¢ is

set arbitrary. Then our Eq.~20! will entail the gauge-invariant Lagrange-type and Delaunay-t
systems of equations that are presented in Appendix A. Interestingly, the gauge-inv
Delaunay-type system is, generally, nonsymplectic. It regains the canonical form only in
special gauge considered below~a gauge which coincides with the Lagrange gauge when
perturbation bears no velocity dependence!. This can be proven by a direct substitution of th
special gauge condition into the gauge-invariant Delaunay-type system given in Appendix
easier way would be to fix the gauge already in~20!, and this is what we shall do in the nex
subsection.

C. The generalized Lagrange gauge: Gauge wherein the Delaunay-type system
becomes canonical

We transformed~17! into ~20! for two reasons: to single out the negative perturbation of
Hamiltonian and to reveal the advantages of the gauge

F¢ 52
]DL
]r¢̇

, ~22!

which reduces toF¢ 50 for velocity-independent perturbations. The first remarkable peculiarit
~22! is that in this gauge the canonical momentump¢ is equal tog¢ @as can be seen from~5! and
~13!#:

g¢5r¢̇2F¢ 5r¢̇1
]DL
]r¢̇

5p¢ . ~23!
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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We see that in this gauge not the velocity but the momentum in the disturbed setting is the
function of time and ‘‘constants’’ as it used to be in the unperturbed, two-body case. S
differently, the instantaneous ellipses~or hyperbolae! defined in this gauge will osculate the orb
in the phase space. For this reason our special gauge~22! will be called the ‘‘generalized
Lagrange gauge.’’

Another good feature of~22! is that in this gauge Eq.~20! acquires an especially simple form

(
j

@Cn Cj #
dCj

dt
52

]DH
]Cn

, ~24!

whose advantage lies not only in its brevity, but also in the invertibility of the matrix emergin
its left-hand side.

As already mentioned above, the gauge invariance of definition~9! enables us to employ th
standard~Lagrange-gauge! expressions for@Cn Cj #

21 and, thus, to get the planetary equations
inverting matrix @Cn Cj # in ~19!. The resulting gauge-invariant Lagrange- and Delaunay-t
systems are presented in Appendix A. In the special gauge~22!, however, the situation is muc

better. Comparing~21! with ~24!, we see that in the general case of an arbitraryR5DL(r¢,r¢̇,t) one
arrives from~24! to the same equations as from~21!, except that now they will contain2DH
instead ofR5DL. These will be the Delaunay-type equation in the generalized Lagrange g

dL

dt
5

]DH
]~2Mo!

,
d~2Mo!

dt
52

]DH
]L

, ~25!

dG

dt
5

]DH
]~2v!

,
d~2v!

dt
52

]DH
]G

, ~26!

dH

dt
5

]DH
]~2V!

,
d~2V!

dt
52

]DH
]H

, ~27!

where

L[m1/2a1/2, G[m1/2a1/2~12e2!1/2, H[m1/2a1/2~12e2!1/2cosi . ~28!

We see that in this special gauge the Delaunay-type equations indeed become canonical,
role of the effective new Hamiltonian is played exactly by the Hamiltonian perturbation w
emerged earlier in~14!.

Thus we have proven an interestingTHEOREM: Even though the gauge-invariant
Delaunay-type system„A7…–„A12… is not generally canonical, it becomes canonical in one
special gauge„22… which we call the ‘‘generalized Lagrange gauge.’’This theorem can be
proved in a purely Hamiltonian language, as is done in Sec. III C.

III. HAMILTON AND JACOBI

A. The concept

A totally different approach to derivation of the planetary equations is furnished by
technique worked out in 1834–1835 by Hamilton and refined several years later by Jacobi.
lecture course shaped by 1842 and published as a book in 1866, Jacobi formulated his
theorem and applied it to the celestial motions. Jacobi chose orbital elements that were
combinations of the Keplerian ones. His planetary equations can be easily transformed in
Lagrange system by the differentiation chain rule~Subbotin, 1968!. Later authors used this metho
for a direct derivation of the Lagrange and Delaunay systems, and thus the Hamilton–
approach became a part and parcel of almost any course in celestial mechanics. To some
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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sources we shall refer below. The full list of pertinent references would be endless, so it is
to single out a couple of books that break the code by offering alternative proofs: these exce
are Kaula~1968! and Brouwer and Clemence~1961!.

Brouwer and Clemence~1961! use the VOP method@like in Lagrange~1808, 1809, 1810!#,
which makes the imposition of the Lagrange constraint explicit. Kaula~1968! undertakes, by
means of the differentiation chain rule, a direct transition from the Hamilton equations
Cartesian frame to those in terms of orbital elements. As explained in Efroimsky~2002, 2003!, in
Kaula’s treatment the Lagrange constraint was imposed tacitly.

It is far less easy to understand where the implicit gauge fixing is used in the Hamilton–J
technique. This subtlety of the Hamilton–Jacobi method is so well camouflaged that throu
century and a half of the method’s life this detail has never been brought to light~at least, in the
astronomical literature!. The necessity of such a constraint is evident: one has to choose one
infinitely many sets of orbital elements describing the physical trajectory. Typically, one pr
the set of orbital elements that osculates with the trajectory, so that the physical orbit be a
tangential to the instantaneous ellipse, in the case of bound orbits, or to the instantaneous
bola, in the case of flybys. This point is most easily illustrated by the following simple exa
depicted on Fig. 1. Consider two coplanar ellipses with one common focus. Let both el
rotate, in the same direction within their plane, about the shared focus; and let us assume
rotation of one ellipse is faster than that of the other. Now imagine that a planet is located
of the points of these ellipses’ intersection, and that the rotation of the ellipses is such th
planet is always at the instantaneous point of their intersection. One observer will say th
planet is swiftly moving along the slower rotating ellipse, while another observer will argue
the planet is slowly moving along the fast-rotating ellipse. Both viewpoints are acceptable

FIG. 1. These two coplanar ellipses share one of their foci and are assumed to rotate about this common focus in
direction, always remaining within their plane. Suppose that the rotation of one ellipse is faster than that of the oth
that a planet is located at one of the points of these ellipses’ intersection,P, and that the rotation of the ellipses is such th
the planet is always at the instantaneous point of their intersection. We may say that the planet is swiftly moving al
slower rotating ellipse, while it would be equally legitimate to state that the planet is slowly moving along the fast-ro
ellipse. Both interpretations are valid, because one can divide, in an infinite number of ways, the actual motion of th
into a motion along some ellipse and a simultaneous evolution of that ellipse. The Lagrange constraint~4! singles out, of
all the multitude of evolving ellipses, that unique ellipse which is always tangential to the total, physical, velocity
planet.
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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cause one can divide, in an infinite number of ways, the actual motion of the planet into a m
along some ellipse and a simultaneous evolution of that ellipse. The Lagrange constra~4!
singles out, of all the multitude of evolving ellipses, that unique ellipse which is always tange
to the total~physical! velocity of the body. This way of gauge fixing is natural but not necess
Besides, as we already mentioned, the chosen gauge~4! will not be preserved in the course o
numerical computations. Sometimes osculating elements do not render an intuitive picture
motion. In such situations other elements are preferred. One such example is a circular orbi
an oblate planet. The osculating ellipse precesses with the angular velocity of the satellite,
eccentricity is proportional to the oblateness factorJ2 . Under these circumstances the so-cal
geometric elements are more convenient than the osculating ones~Borderies and Longaretti 1987!.

We remind the reader that the Hamilton–Jacobi treatment is based on the simple facts t
same motion can be described by different mutually interconnected canonical sets (q,p,H(q,p))
and (Q,P,H* (Q,P)), and that fulfillment of the Hamilton equations along the trajectory ma
the infinitesimally small quantities

du5pdq2Hdt ~29!

and

dũ5PdQ2H* dt ~30!

perfect differentials. Subtraction of the former from the latter shows that their difference,

2dW[dũ2du5PdQ2pdq2~H* 2H!dt, ~31!

is a perfect differential, too. Hereq, p, Q, andP containN components each. If we start with
system described by (q,p,H(q,p)), it is worth looking for such a reparametrizatio
(Q,P,H* (Q,P)) that the new HamiltonianH* is constant in time, because in these variables
canonical equations simplify. Especially convenient is to find a transformation that nullifie
new HamiltonianH* , for in this case the new canonical equations will render the variables~Q, P!
constant. One way of seeking such transformations is to considerW as a function of onlyq, Q, and
t. Under this assertion, the above equation will entail

2
]W

]t
dt2

]W

]Q
dQ2

]W

]q
dq5PdQ2pdq1~H2H* !dt, ~32!

whence

P52
]W

]Q
, p5

]W

]q
, H1

]W

]t
5H* . ~33!

The functionW can be then found by solving the Jacobi equation

HS q,
]W

]q
,t D1

]W

]t
5H* , ~34!

whereH* is a constant. It is very convenient to make it equal to zero. Then the above equ
can be easily solved in the unperturbed~reduced! two-body setting. This solution, which has lon
been known, is presented, in a very compact form, in Appendix B. It turns out that, if the sph
coordinates and their conjugate momenta are taken as a starting point, then the eventual ca
variablesQ, P corresponding toH* (Q,P)50 are the Delaunay elements:

Q1[L5Ama, P152Mo ,
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oks.
mal-

-body
f

r new
ed

o-

5967J. Math. Phys., Vol. 44, No. 12, December 2003 Gauge symmetry of the N-body problem

Downloade
Q2[G5Ama~12e2!, P252v, ~35!

Q3[H5Ama~12e2! cosi , P352V.

B. Where can free cheese be found?

The transition from two-body toN-body celestial mechanics is presented in numerous bo
However, none of them explain how the Lagrange constraint is implicitly involved in the for
ism.

Before we move on, let us cast a look back at what has been accomplished in the two
case. We started out with a Hamiltonian problem (q,p,H) and reformulated its equations o
motion

q̇5
]H
]p

, ṗ52
]H
]q

~36!

in terms of another set (Q,P,H* ):

q5f~Q,P,t !,
~37!

p5c~Q,P,t !,

so that the above equations are mathematically equivalent to the new system

Q̇5
]H*

]P
, Ṗ52

]H*

]Q
. ~38!

The simple nature of the two-body setting enabled us to carry out this transition so that ou
HamiltonianH* vanishes and the variablesQ andP are, therefore, constants. This was achiev
by means of a transformation-generating functionW(q,Q,t) obeying the Jacobi equation~34!.
After formula ~B12! for this function is written down, the explicit form of dependence~37! can be
found through the relationsP52]W/]Q. This is given by~B15!.

To make this machinery function in anN-body setting, let us first consider a disturbed tw
body case. The number of degrees of freedom is still the same~three coordinatesq and three
conjugate momentap!, but the initial Hamiltonian is perturbed:

q̇5
]~H1DH!

]p
, ṗ52

]~H1DH!

]q
. ~39!

Trying to implement the Hamilton-Jacobi method~32!–~34!, for the new Hamiltonians (H
1DH), (H* 1DH) and for some generating functionV(q,Q,t), we shall arrive at

2
]V

]t
dt2

]V

]Q
dQ2

]V

]q
dq5PdQ2pdq1@~H1DH!2~H* 1DH!#dt, ~40!

P52
]V

]Q
, p5

]V

]q
, H1DH1

]V

]t
5H* 1DH, ~41!

HS q,
]V

]q
,t D1

]V

]t
1H* . ~42!
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We see thatV obeys the same equation asW and, therefore, may be chosen to coincide with
Hence, the new, perturbed, solution~q,p! will be expressed through the perturbed ‘‘constan
Q(t) andP(t) in the same fashion as the old, undisturbed,q andp were expressed through the o
constantsQ andP:

q5f~Q~ t !,P~ t !,t !,
~43!

p5c~Q~ t !,P~ t !,t !,

f andc being the same functions as those in~37!. Benefitting from this form-invariance, one ca
now master theN-particle problem. To this end, one should choose the transformation-gene
function V to be additive over the particles, whereafter the content of Sec. III A shall be rep
verbatim for each of the bodies, separately. In the end of this endeavour one will arriveN
21 Delaunay sets similar to~B15!, except that now these sets will be constituted byinstanta-
neousorbital elements. The extension of the preceding subsection’s content to theN-body case
seems to be most straightforward and to involve no additional assumptions. To dispel this ill
two things should be emphasized. One, self-evident, fact is that the quantitiesQ and P are no
longer conserved after the disturbanceDH is added to the zero HamiltonianH* . The second
circumstance is that a change in a Hamiltonian implies an appropriate alteration of the Lagra
In the simple case ofDH being a function of the coordinates and time only~not of velocities or
momenta!, addition ofDH to the Hamiltonian implies addition of its opposite to the Lagrangi
Since this extra term bears no dependence upon velocities, the expressions for momenta
the coordinates and time will stay form-invariant. Hence~if the Lagrangian is not singular!, the
functional dependence of the velocities upon the coordinates and momenta will, also, pr
their functional formv(q,p,t):

without perturbation: p[
]L~q,q̇,t !

]q̇
⇒ q̇5v~q,p,t !,

~44!

with perturbation: p[
]~L~q,q̇,t !1DL~q,t !!

]q̇
5

]L~q,q̇,t !

]q̇
⇒ q̇5v~q,p,t !,

where the new, perturbed dependenceq̇5v@q(Q(t),P(t),t),p(Q(t),P(t),t),t# has the same
functional form as the old one,q̇5v@q(Q,P,t),p(Q,P,t),t#. Together with~43!, this means that
the dependence of the newq̇ upon the newP(t) andQ(t) will have the same functional form a
the dependence of the oldq̇ upon the constantsQ andP:

d

dt
q~Q~ t !,P~ t !,t !5

]

]t
q~Q~ t !,P~ t !,t !. ~45!

In other words,

(
i 51

6
]q

]Di
Ḋi50, ~46!

whereDi denotes the set of perturbed variables (Q(t),P(t)). In the astronomical applications,Di

may stand for the Delaunay set.
This is the implicit condition under which the Hamilton–Jacobi method works~in the above

case of velocity-independent disturbance!. Violation of ~46! would invalidate our cornerston
assumption~38!. This circumstance imposes a severe restriction on the applicability of
Hamilton–Jacobi theory. In the astronomical context, this means that the Delaunay elements~B15!
must be osculating. Indeed, ifDi denote a set of orbital elements, then expression~46! is equiva-
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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lent to the Lagrange constraint~4! discussed in Sec. I. There the constraint was imposed upon
Keplerian elements; however, its equivalence to~46!, which is written in terms of the Delauna
variables, can be easily proven by the differentiation chain rule.

C. The case of momentum-dependent disturbances

When the perturbation of the Lagrangian depends also upon velocities~and, therefore, the
Hamiltonian perturbation carries dependence upon the canonical momenta!, the special gauge~22!
wherein the Delaunay-type system preserves its canonicity differs from the Lagrange gaug
was proven in Sec. II C in the Lagrangian language. Now we shall study this in Hamiltonian t
Our explanation will be sufficiently general and will surpass the celestial-mechanics settin
this reason we shall use notationsq, p, not r¢, p¢ . The development will, as ever, begin with a
unperturbed system described by canonical variables obeying

q̇5
]H
]p

, ṗ52
]H
]q

. ~47!

This dynamics may be reformulated in terms of the new quantities (Q,P):

q5f~Q,P,t !,
~48!

p5c~Q,P,t !,

so that the Hamiltonian equations~47! are equivalent to

Q̇5
]H*

]P
, Ṗ52

]H*

]Q
. ~49!

For simplicity, we shall assume thatH* is zero. Then the new canonical variables will play t
role of adjustable constants upon which the solution~48! of ~47! depends.

We now wish to know under what circumstances a modified canonical system

q̇5
]~H1DH!

]p
, ṗ52

]~H1DH!

]q
, DH5DH~q,p,t ! ~50!

will be satisfied by the solution

q5f~Q~ t !,P~ t !,t !,
~51!

p5c~Q~ t !,P~ t !,t !

of the same functional form as~48! but with time-dependent parameters obeying

Q̇5
]DH
]P

, Ṗ52
]DH
]Q

. ~52!

This situation is of a more general sort than that addressed in Sec. III B, in that the pertur
DH now depends also upon the momentum.

Under the assumption of~48! being~at least, locally! invertible, substitution of the equalitie

Q̇5
]DH
]P

5
]DH
]q

]q

]P
1

]DH
]p

]p

]P
~53!

and
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Ṗ52
]DH
]Q

52
]DH
]q

]q

]Q
2

]DH
]p

]p

]Q
~54!

into the expression for velocity

q̇5
]q

]t
1

]q

]Q
Q̇1

]q

]P
Ṗ ~55!

leads to

q̇5
]q

]t
1S ]q

]Q

]q

]P
2

]q

]P

]q

]QD ]DH
]q

1S ]q

]Q

]p

]P
2

]q

]P

]p

]QD ]DH
]p

. ~56!

Here the coefficient accompanying]DH/]q identically vanishes, while that accompanyin
]DH/]p coincides with the Jacobian of the canonical transformation and is, therefore, unit

]q

]Q

]p

]P
2

]q

]P

]p

]Q
51. ~57!

So if we introduce, in the spirit of~6!, notation

g[
]q

]t
, ~58!

then ~56! will lead to

q̇5g1S ]DH
]p D

q,t

. ~59!

Expression~59! establishes the link between the regular VOP method and the canonical trea
It shows that, to preserve the symplectic description, one must always choose a particular
F5]DH/]p. Needless to say, this is exactly the generalized Lagrange gauge~22! discussed in
Sec. II C. A direct, though very short, proof is as follows.

On the one hand, the Hamilton equation for the perturbed Hamiltonian~14! is

q̇5
]~H1DH!

]p
5p1

]DH
]p

, ~60!

while, on the other hand, the definition of momentum entails, for the Lagrangian~12!,

p[
]~L~q,q̇,t !1DL~q,q̇,t !!

]q̇
5q̇1

]DL
]q̇

. ~61!

By comparing the latter with the former we arrive at

F[S ]DH
]p D

q,t

52S ]DL
]q̇ D

q,t

, ~62!

which coincides with~22!. Thus we see that transformation~48! being canonical is equivalent t
the partition of the physical velocityq̇ in a manner prescribed by~59!, whereF5]DH/]p. This
is equivalent to our theorem from Sec. II C. Evidently, for disturbances dependent solely up
coordinates, we return to the case explained in Sec. III B@Eqs. ~45! and ~46!#: in that case, the
Hamiltonian formulation of the problem demanded imposition of the Lagrange constraint~46!.
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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To draw to a close, the generalized Lagrange constraint,F¢ 52]DL/]q̇, is stiffly embedded
in the Hamilton–Jacobi technique. Hence this technique breaks the gauge invariance and
~at least, in its straightforward form! to describe the gauge symmetry of the planetary equation
is necessary to sacrifice gauge freedom by imposing the generalized Lagrange constraint t
use of the Hamilton–Jacobi development.

In this special gauge, the perturbed momentum coincides with the unperturbed one~which
was equal tog¢). Indeed, we can rewrite~61! as

p[
]~L~q,q̇,t !1DL~q,q̇,t !!

]q̇
5q̇2F5g, ~63!

which means that, in the astronomical implementation of this theory, the Hamilton–Jacobi
ment necessarily demands the orbital elements to osculate in the phase space. Natura
demand reduces to that of regular osculation in the simple case of velocity-independentDL that
was explored in Sec. III B.

IV. CONCLUSIONS

We have studied, in an arbitrary gauge, the VOP method in celestial mechanics in th
when the perturbation depends on both positions and velocities. Such situations emerge
relativistic corrections to the Newton law are taken into account or when the VOP meth
employed in noninertial frames of reference~a satellite orbiting a precessing planet being one s
example!. The gauge-invariant~and generalized to the case of velocity-dependent disturban!
Delaunay-type system of equations is not canonical. We, though, have proven a theorem
lishing a particular gauge~which coincides with the Lagrange gauge in the absence of velo
dependence of the perturbation! that renders this system canonical. We called that gauge
‘‘generalized Lagrange gauge.’’

We have explained where the Lagrange constraint tacitly enters the Hamilton–Jacobi d
tion of the Delaunay equations. This constraint turns out to be an inseparable~though not easily
visible! part of the method: in the case of momentum-independent disturbances, theN-body
generalization of the two-body Hamilton–Jacobi technique is legitimate only if we use o
elements that are osculating, i.e., if we exploit only the instantaneous ellipses~or hyperbolae, in
the flyby case! that are always tangential to the velocity vector. Oddly enough, an explicit men
of this circumstance has not appeared in the astronomical literature~at least to the best of ou
knowledge!.

In the case of momentum-dependent disturbances, the above restriction generalizes, in
instantaneous ellipses~hyperbolae! must be osculating in the phase space. This is equivalent to
imposition of the generalized Lagrange gauge.

Comparing the good old VOP method with that based on the Jacobi theorem, we ha
acknowledge that the elegance of the latter does not outweigh the power of the former.
decide to explore the infinite multitude of gauges or to study the numerical-error-invoked g
drift, we shall not be able to employ the Hamilton–Jacobi theory without additional struc
However, the direct VOP method unencumbered with the canonicity demand will immed
yield gauge-invariant equations for the Delaunay elements obeying an arbitrary gauge con

(
i

] f¢

]Di

dDi

dt
5F¢ ~Di ,t !, ~64!

F¢ being some function of time and elementsDi . In Efroimsky ~2002! these equations wer
written down for the case of velocity-independent perturbation. If the disturbing force dep
also upon velocities, the Delaunay-type equations will acquire even more terms and will re
~A7!–~A12!. In the simple case of a velocity-independent disturbance, any supplementary c
d 18 Nov 2003 to 192.5.41.254. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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tion different from that of Lagrange will drive the Delaunay system away from its canonical f
If we permit the disturbing force to depend also upon velocities, the Delaunay equations will
their canonicity only in the generalized Lagrange gauge.

In the language of modern physics, this may be put in the following wording.N-body celestial
mechanics is a gauge theory but is not genuinely symplectic insofar as the language of
elements is used. It, though, becomes canonical in the generalized Lagrange gauge.

The applications of this formalism to motions in noninertial frames of reference wil
studied in Efroimsky and Goldreich~2003!. Some other applications were addressed in Slabin
~2003!.
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APPENDIX A: GAUGE-INVARIANT EQUATIONS OF LAGRANGE AND DELAUNAY
TYPES

We present the gauge-invariant Lagrange-type equations. They follow from~19! if we take
into account the gauge-invariance of matrix@Ci Cj # defined by~9!. We denote byDH the per-
turbation of the Hamiltonian, connected through~14! with that of the Lagrangian. The latter, in it
turn, is connected through~16! with the disturbing force~and acts as the customary disturbin
function when the perturbations are devoid of velocity dependence!:

da

dt
5

2

na F ]~2DH!

]Mo
2

]DL
]r¢̇

]

]Mo
S F¢ 1

]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]Mo
2

] f¢

]Mo

d

dt S F¢ 1
]DL
]r¢̇

D G ,

~A1!

de

dt
5

12e2

na2e F ]~2DH!

]Mo
2

]DL
]r¢̇

]

]a S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]Mo
2

] f¢

]Mo

d

dt S F¢ 1
]DL
]r¢̇

D G
2

~12e2!1/2

na2e F ]~2DH!

]v
2

]DL
]r¢̇

]

]v S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]v

2
] f¢

]v

d

dt S F¢ 1
]DL
]r¢̇

D G , ~A2!

dv

dt
5

2cosi

na2~12e2!1/2sin i F ]~2DH!

] i
2

]DL
]r¢̇

]

] i S F¢ 1
]DL
]r¢̇

D
2S F¢ 1

]DL
]r¢̇

D ]g¢

] i
2

] f¢

] i

d

dt S F¢ 1
]DL
]r¢̇

D G1
~12e2!1/2

na2e F ]~2DH!

]e
2

]DL
]r¢̇

]

]e S F¢ 1
]DL
]r¢̇

D
2S F¢ 1

]DL
]r¢̇

D ]g¢

]e
2

] f¢

]e

d

dt S F¢ 1
]DL
]r¢̇

D G , ~A3!
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di

dt
5

cosi

na2~12e2!1/2sin i F ]~2DH!

]v
2

]DL
]r¢̇

]

]v S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]v

2
] f¢

]v

d

dt S F¢ 1
]DL
]r¢̇

D G2
1

na2~12e2!1/2sin i F ]~2DH!

]V
2

]DL
]r¢̇

]

]V S F¢ 1
]DL
]r¢̇

D
2S F¢ 1

]DL
]r¢̇

D ]g¢

]V
2

] f¢

]V

d

dt S F¢ 1
]DL
]r¢̇

D G , ~A4!

dV

dt
5

1

na2~12e2!1/2sin i F ]~2DH!

] i
2

]DL
]r¢̇

]

] i S F¢ 1
]DL
]r¢̇

D
2S F¢ 1

]DL
]r¢̇

D ]g¢

] i
2

] f¢

] i

d

dt S F¢ 1
]DL
]r¢̇

D G , ~A5!

dMo

dt
52

12e2

na2e F ]~2DH!

]e
2

]DL
]r¢̇

]

]e S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]e
2

] f¢

]e

d

dt S F¢ 1
]DL
]r¢̇

D G
2

2

na F ]~2DH!

]a
2

]DL
]r¢̇

]

]a S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]a
2

] f¢

]a

d

dt S F¢ 1
]DL
]r¢̇

D G .

~A6!

Similarly, the gauge-invariant Delaunay-type system can be written down as

dL

dt
5

]~2DH!

]Mo
2

]DL

]r¢̇

]

]Mo
S F¢ 1

]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]Mo
2

] f¢

]Mo

d

dt S F¢ 1
]DL
]r¢̇

D ,

~A7!

dMo

dt
52

]~2DH!

]L
1

]DL
]r¢̇

]

]L S F¢ 1
]DL
]r¢̇

D 1S F¢ 1
]DL
]r¢̇

D ]g¢

]L
1

] f¢

]L

d

dt S F¢ 1
]DL
]r¢̇

D , ~A8!

dG

dt
5

]~2DH!

]v
2

]DL
]r¢̇

]

]v S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]v
2

] f¢

]v

d

dt S F¢ 1
]DL
]r¢̇

D , ~A9!

dv

dt
52

]~2DH!

]G
1

]DL
]r¢̇

]

]G S F¢ 1
]DL
]r¢̇

D 1S F¢ 1
]DL
]r¢̇

D ]g¢

]G
1

] f¢

]G

d

dt S F¢ 1
]DL
]r¢̇

D ,

~A10!

dH

dt
5

]~2DH!

]V
2

]DL
]r¢̇

]

]V S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]V
2

] f¢

]V

d

dt S F¢ 1
]DL
]r¢̇

D , ~A11!

dV

dt
52

]~2DH!

]H
1

]DL
]r¢̇

]

]H S F¢ 1
]DL
]r¢̇

D 1S F¢ 1
]DL
]r¢̇

D ]g¢

]H
1

] f¢

]H

d

dt S F¢ 1
]DL
]r¢̇

D ,

~A12!

where

L[m1/2a1/2, G[m1/2a1/2~12e2!1/2, H[m1/2a1/2~12e2!1/2cosi , ~A13!
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and the symbolsF¢ ,f¢,g¢ denote the functional dependencies of the gauge, position and vel
upon the Delaunay, not Keplerian, elements, and therefore these are functions different fromF¢ ,f¢,g¢
used in~A1!–~A6! where they stood for the dependencies upon the Kepler elements.@In Efroim-
sky ~2002! the dependenciesF¢ ,f¢,g¢ upon the Delaunay variables were equipped with tilde,
distinguish them from the dependencies upon the Kepler coordinates.#

The above equations do not merely repeat those derived earlier in Efroimsky~2002, 2003!, but
generalize them to the case of a perturbationDL which is both position and velocity dependen
For this reason, our gauge-invariant equations can be employed not only in an inertial fram
also in a wobbling one.

To employ the gauge-invariant equations in analytical calculations is a delicate task
should always keep in mind that, in caseF¢ is chosen to depend not only upon time but also up
the ‘‘constants’’~but not upon their derivatives!, the right-hand sides of these equation will im
plicitly contain the first derivativesdCi /dt, and one will have to move them to the left-hand sid
@much like in the transition from~10! to ~11!#.

APPENDIX B: THE HAMILTON–JACOBI METHOD IN CELESTIAL MECHANICS

The Jacobi equation~34! is a PDE of the first order, in (N11) variables (qn ,t), and its
complete integralW(q,Q,t) will depend uponN11 constantsan ~Jeffreys and Jeffreys, 1972
Courant and Hilbert 1989!. One of these constants,aN11 , will be additive, becauseW enters the
above equation only through its derivatives. Since both Hamiltonians are, too, defined up to
constantf, then the solution to~34! must contain that constant multiplied by the time:

W~q, a1 ,...,aN , aN11 ,t !5W̃~q, a1 ,...,aN , t !2~ t2to! f ~a1 ,...,aN!

5W̃~q, a1 ,...,aN , t !2t f ~a1 ,...,aN!2aN11 , ~B1!

where the fiducial epoch is connected to the constants throughto52aN11 / f , and the functionW̃
depends uponN constants only. As the total number of independent adjustable parametersN
11, the constantf cannot be independent but must rather be a function ofa1 ,...,aN ,aN11 . Since
we agreed that the constantaN11 is additive and shows itself nowhere else, it will be sufficient
considerf as a function of the restN parameters only.~In principle, it is technically possible to
involve the constantaN11 , i.e., the reference epoch, into the mutual transformations betwee
other constants. However, in the applications that we shall consider, we shall encounte
equations autonomous in time, and so there will be no need to treataN11 as a parameter to vary
Hence, in what follows we shall simply ignore its existence.! The new functionW̃ obeys the
simplified Jacobi equation

HS q,
]W̃~q,a1 ,...,aN ,t !

]q
,t D 1

]W̃~q,a1 ,...,aN ,t !

]t
5 f ~a1 ,...,aN!1H* . ~B2!

As agreed above,H* is a constant. Hence, we can state about this constant all the same as
the constantf: since the integralW can contain no more thanN11 adjustable parameter
a1 ,...,aN ,aN11 , and since we ignore the existence ofaN11 , the constantH* must be a function
of the remaining N parameters:H* 5H* (a1 ,...,aN).

Now, in caseH depends only upon~q, p! and lacks an explicit time dependence, then so w
W̃; and the above equation will very considerably simplify:

HS q,
]W̃~q,a1 ,...,aN!

]q
D 5 f ~a1 ,...,aN!1H* ~a1 ,...,aN!, ~B3!

where we deliberately avoided absorbing the constant HamiltonianH* into the functionf.
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Whenever the integralW can be found explicitly, the constants (a1 ,...,aN) can be identified
with the new coordinatesQ, whereafter the new momenta will be calculated throughP
52]W/]Q. In the special case of zeroH* , the new momenta become constants, because
obey the canonical equations with a vanishing Hamiltonian. In the case whereH* is a nonzero
constant, it must, as explained above, be a function of all or some of the independent para
(a1 ,...,aN), and, therefore, all or some of the new momentaP will be evolving in time.

Since it is sufficient to find only one solution to the Jacobi equation, one can seek it by m
of the variable-separation method: Eq.~B3! will solve in the special case when the generati
function ~B1! is separable:

W̃~q1 ,...,qN ,a1 ,...,aN!5(
i 51

N

W̃i~qi ,a1 ,...,aN!. ~B4!

This theory works very well in application to the unperturbed~two-body! problem~1! of celestial
mechanics, a problem that is simple due to its mathematical equivalence to the gravitat
bound motion of a reduced massmplanetmsun/(mplanet1msun) about a fixed center of massmplanet

1msun. If one begins with the~reduced! two-body Hamiltonian in the spherical coordinates

q15r , q25f, q35u ~B5!

~wherex5r cosf cosu, y5r cosf sinu, z5r sinf), then the expression for Lagrangian,

L5T2P5
1

2
~ q̇1!21

1

2
~q1!2~ q̇2!21

1

2
~q1!2~ q̇3!2 cos2 q21

m

q1
, ~B6!

will yield the following formulas for the momenta:

p1[
]L
]q̇1

5q̇1 , p2[
]L
]q̇2

5q1
2q̇2 , p3[

]L
]q̇3

5q1
2q̇3 cos2 q2 , ~B7!

whence the initial Hamiltonian will read

H5( pq̇2L5
1

2
p1

21
1

2q1
2 p2

21
1

2q1
2 cos2 q2

p3
22

m

q1
. ~B8!

Then the Hamilton–Jacobi equation~30! will look like this:

1

2 S ]W

]q1
D 2

1
1

2q1
2 S ]W

]q2
D 2

1
1

2q1
2 cos2 q2

S ]W

]q3
D 2

2
m

q1
2

]W

]t
2H* 50, ~B9!

while the auxiliary functionW̃ defined through~B1! will obey

1

2
S ]W̃

]q1
D 2

1
1

2q1
2 S ]W̃

]q2
D 2

1
1

2q1
2 cos2 q2

S ]W̃

]q3
D 2

2
m

q1
2 f 2H* 50. ~B10!

A lengthy but elementary calculation@presented, with some inessential variations, in Plumm
~1918!, Smart~1953!, Pollard~1966!, Kovalevsky~1967!, Stiefel and Scheifele~1971!, and many
other books# shows that, for a constantH* and in the ansatz~B4!, the integral of~B3! takes the
form
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W̃5W̃1~q1 ,a1 ,a2 ,a3!1W̃2~q2 ,a1 ,a2 ,a3!1W̃3~q3 ,a1 ,a2 ,a3!

5E
q1~ to!

q1~ t !
e1S 2~ f 1H* !1

2m

q1
2

a2
2

q1
2D 1/2

dq11E
0

f

e2S a2
22

a3
2

cos2 q2
D 1/2

dq21E
0

u

a3dq3 ,

~B11!

where the epoch and factorse1 , e2 may be taken as in Kovalevsky~1967!: time to is the instant
of perigee passage; factore1 is chosen to be11 whenq1[r is increasing, and is21 whenr is
decreasing; factore2 is 11 whenq2[f is increasing, and is21 otherwise. This way the quan
tities under the first and second integration signs have continuous derivatives. To draw c
sions, in the two-body case we have a transformation-generating function

W[W̃1t f ~a1 ,...,aN!5E
q1~ to!

q1~ t !
e1S 2~ f 1H* !1

2m

q1
2

a2
2

q1
2D 1/2

dq1

1E
0

f

e2S a2
22

a3
2

cos2 q2
D 1/2

dq21E
0

u

a3dq31t f , ~B12!

whose time-independent componentW̃ enters Eq.~B3!. The first integration in~B12! contains the
functions f (a1 ,...,aN) and H* (a1 ,...,aN), so that in the end of the dayW depends on the N
constantsa1 ,...,aN ~not to mention the neglectedto , i.e., theaN11).

Different authors deal differently with the sum (f 1H* ) emerging in~B12!. Smart~1953! and
Kovalevsky~1967! prefer to put

f 50, H* 5a1 , a152m/~2a!, ~B13!

whereupon the new momentumP152]W/]Q152]W/]a1 becomes time dependent~and turns
out to equal2t1to). An alternative choice, which, in our opinion, better reflects the advanta
of the Hamilton-Jacobi theory, is furnished by Plummer~1918!:

f 5a1 , H* 50, a15Ama. ~B14!

This entails the following correspondence between the new canonical variables~the Delaunay
elements! and the Keplerian orbital coordinates:

Q1[a15Ama, P152Mo ,

Q2[a25Ama~12e2!, P252v, ~B15!

Q3[a35Ama~12e2! cosi , P352V.

Everywhere in this article we follow the convention~B14! and denote the above variablesQ1 ,
Q2 , Q3 by L, G, H, correspondingly~as is normally done in the astronomical literature!.
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