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In most books the Delaunay and Lagrange equations for the orbital elements are
derived by the Hamilton—Jacobi method: one begins with the two-body Hamilton
equations in spherical coordinates, performs a canonical transformation to the or-
bital elements, and obtains the Delaunay system. A standard trick is then used to
generalize the approach to tikebody case. We reexamine this step and demon-
strate that it contains an implicit condition which restricts the dynamics toNa 9(
—1)-dimensional submanifold of the 12¢ 1)-dimensional space spanned by the
elements and their time derivatives. The tacit condition is equivalent to the con-
straint that Lagrange imposed “by hand” to remove the excessive freedom, when
he was deriving his system of equations by variation of parameters. It is the con-
dition of the orbital elements being osculating, i.e., of the instantaneous gltipse
hyperbola being always tangential to the physical velocity. Imposure of any
supplementary condition different from the Lagrange constréiot compatible

with the equations of motigris legitimate and will not alter the physical trajectory

or velocity (though will alter the mathematical form of the planetary equajions
This freedom of nomination of the supplementary constraint reveals a gauge-type
internal symmetry instilled into the equations of celestial mechanics. Existence of
this internal symmetry has consequences for the stability of numerical integrators.
Another important aspect of this freedom is that any gauge different from that of
Lagrange makes the Delaunay system noncanonical. In a more general setting,
when the disturbance depends not only upon positions but also upon velocities,
there is a “generalized Lagrange gauge” wherein the Delaunay system is symplec-
tic. This special gauge renders orbital elements that are osculating in the phase
space. It coincides with the regular Lagrange gauge when the perturbation is ve-
locity independent.

[DOI: 10.1063/1.1622447

I. EULER AND LAGRANGE
A. The history

The planetary equations, which describe the evolution of the orbital elements, constitute the
cornerstone of the celestial mechanics. Description of orbits in the language of Keplerian elements
(rather than in terms of the Cartesian coordinaigsnot only physically illustrative but also
provides the sole means for analysis of resonant interactions. These equations exist in a variety of
equivalent formgqthose of Lagrange, Delaunay, Gauss, Poincarel can be derived by several
different methods.

The earliest sketch of the method dates back to Euler's paper of 1748, which addresses the
perturbations exerted upon one another by Saturn and Jupiter. In the publication on the Lunar
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motion, dated by 1753, Euler derived the equations for the longitude of the fodke inclina-
tion, i, and the quantitp=a(1—e?). Time derivatives of these three elements were expressed
through the components of the disturbing force. Sixty years later the method was amended by
Gauss who wrote down similar equations for the other three elements and, thus, obtained what we
now call the Gauss system of planetary equations. The history of this scientific endeavour was
studied by Subbotif1958, who insists that the Gauss system of planetary equations should rather
be called Euler system. A modern but still elementary derivation of this system belongs to Burns
(1976.

In his mamoires of 1778, which received an honorable prize from the Atéeleles Sciences
of Paris, Lagrange employed the method of variation of paraméw®$) to express the time
derivatives of the orbital elements through the disturbing functions’ partial derivatives with respect
to the Cartesian coordinates. In hismmre of 1783, Lagrange furthered this approach, while in
Lagrange(1808, 1809, 1810these equations acquired their final, closed, shape: they expressed
the orbital elements’ evolution in terms of the disturbing potentials’ derivatives with respect to the
elements. Lagrange’s derivation rested upon an explicit imposure of the osculation condition, i.e.,
of a supplementary vector equatigcalled the Lagrange constrainvhich guaranteed that the
instantaneous ellipsém the case of bound motioper hyperboladin the case of flyby onesre
always tangential to the physical trajectory. Though it has been long kitamd) very possibly,
appreciated by Lagrange himsethat the choice of the supplementary conditions is essentially
arbitrary, and though a couple of particular examples of use of nonosculating elements appeared in
the literature(Goldreich, 1965; Brumbergt al, 1971; Borderies and Longaretti, 1982 com-
prehensive study of the associated freedom has not appeared until very réeénilypsky, 2002,
2003.

In the middle of the 19th century Jacobi applied a canonical-transformation-based procedure
(presently known as the Hamilton—Jacobi approdatihe orbital dynamics, and offered a method
of deriving the Lagrange system. This technique is currently regarded standard and is offered in
many books. Though the mathematical correctness of the Hamilton—Jacobi method is beyond
doubt, its application to celestial mechanics contains an aspect that has long been ovedboked
least, in the astronomical literatyreThis overlooked question is as follows: where in the
Hamilton—Jacobi derivation of the planetary equations is the Lagrange constraint tacitly imposed,
and what happens if we impose a different constraint? This issue will be addressed in our article.

B. The gauge freedom

Mathematically, we shall concentrate on thebody problem of celestial mechanics, a prob-
lem that for each body can be set as

T+ 5 —=AF, (1)

N

| =

AF being the disturbing force that vanishes in tireduced two-body case and being the
position relative to the primary, andstanding forG(mpaneit- Mgy - A solution to the unperturbed
problem is a Keplerian ellips@r hyperbola

r=f(Cy,....Cs,t) 2

parametrized by six constantwhich may be, for example, the Kepler or Delaunay elemeints
the framework of the VOP approach it gives birth to the ansatz

r=f(Cy(t),... Ce(t),1), 3
the “constants” now being time dependent and the functional forrh reimaining the same as in

(2). Substitution of(3) into (1) results in three scalar equations for six independent functions
Ci(t). In order to make the problem defined, Lagrange applied three extra conditions
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s of dC, o .

= oC; dt @

that are often referred to as “the Lagrange constraint.” This constraint guarantees osculation, i.e.,
that the functional dependence of the perturbed velocity upon the “constants” is the same as that
of the unperturbed one. This happens because the physical velocity is

. of dC
F=g+ >, aC at’ 5)

whereg stands for the unperturbed velocity that emerged in the two-body setting. This velocity is,
by definition, a partial derivative df with respect to the last variable:

af(Cy,....Cq,t)

g(Cl!'--1C6|t)E ot

6)

This choice of supplementary conditions is convenient, but not at all necessary. A choice of any
other three scalar relatiorisonsistent with one another and with the equations of mptia
give the same physical trajectory, even though the appropriate solution for nonosculating variables
C; will differ from the solution for osculating ones.

Efroimsky (2002, 2003 suggested to relax the Lagrange condition and to consider

of dC, .
> o ar ~®(Ci.-.Co.b), 7)
|

d being an arbitrary function of time, “constant€; and their time derivatives of all orders. For
practical reasons it is convenient to restdeto a class of functions that depend upon the time and
the “constants” only.(The dependence upon derivatives would yield higher-than-first-order time
derivatives of theC; in the subsequent developments, which would require additional initial
conditions, beyond those ohandf, to be specified in order to close the systemifferent
choices of® entail different forms of equations fdE; and, therefore, different mathematical
solutions in terms of these “constants.” A transition from one such solution to another will,
though, be a mere reparametrization of the orbit. The physical orbit itself will remain invariant.
Such invariance of the physical content of a theory under its mathematical reparametrizations is
called gauge symmetry. On the one hand, it is in a close analogy with the gradient invariance of
the Maxwell electrodynamics and other field theories. On the other hand, it illustrates some
general mathematical structure emerging in the ODE th@dgwman and Efroimsky, 2003

If the Lagrange gaug#?) is fixed, the parameters obey the equation

dc, o
2 [Co Cl—g; = 50 AF, t)
J
[C, Cj] standing for the unperturbede., defined as in the two-body cadeagrange brackets:

[Cn G =3C, iC, iC, iC, ©)
To arrive at formulg8), one should, according to Lagran@e’78, 1783, 1808, 180differentiate
(5), insert the outcome int@l), and then combine the result with the Lagrange constfdjni(In
the modern literature, this derivation can be found, for example, in Brouwer and Cle&eds
Efroimsky (2002, 2003, Newman and Efroimsk{2003, Efroimsky and Goldreici2003.) In the
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simplest case the perturbing force depends only upon positions and is conservefive:
=JR(T)/of. Then the right-hand side @8) will reduce to the partial derivative of the disturbing
functionR(¥) with respect taC,,, whereafter inversion of the Lagrange-bracket matrix will entail’
the Lagrange system of planetary equatifios C; being the Kepler elementer the Delaunay
system(for the parameters chosen as the Delaunay elements

As explained in Efroimsky(2003, in an arbitrary gaugab Eq. (8) will generalize to its
gauge-invariant form

of L of ddb ag&)
aC, JC, dt aC,

dC;
2 [Ch Gl = (10
J
the Lagrange brackef<, C;] being still defined througke). If we agree thatb is a function of
both time and the parametets, but not of their derivatives, then the right-hand side k) will

implicitly contain the first time derivatives @, . It will then be reasonable to move them into the
left-hand side. Hencd10) will be reshaped into

ot ob\dc  of . ot 0d gy .

2 ([Ch 1% e e )t ~ac,AF ac, a ac,

(11)

This is the general form of the gauge-invariant perturbation equations of celestial mechanics,
which follows from the VOP method, for an arbitrary disturbing foﬂ:é(?,?,t) and under the
simplifying assumption that the arbitrary gauge functbris chosen to depend on the time and
the parameter€;, but not on their derivatives.

For performing further algebraic developments(d0) and (11), let us decide what sort of
interactions will fall within the realm of our interest. On general grounds, it would be desirable to
deal with forces that permit description in the language of Lagrangians and Hamiltonians.

II. DELAUNAY

A. Perturbations of Lagrangians and Hamiltonians

Contributions to the disturbing forc&F generally consist of two types, physical and inertial.
Inputs can depend upon velocity as well as upon positions. As motivation for this generalization
we consider two practical examples. One is the problem of orbital motion around a precessing
planet: the orbital elements are defined in the precessing frame, while the velocity-dependent
fictitious forces play the role of the perturbati@@oldreich, 1965; Brumbergt al,, 1971; Efroim-
sky and Goldreich, 2003Another example is the relativistic two-body problem where the rela-
tivistic correction to the force is a function of both velocity and position, as explained, for
example, in Brumberg1992 and Klioner and Kopeiki1994). (It turns out that in relativistic
dynamics even the two-body problem is disturbed, the relativistic correction acting as disturbance.
This yields the gauge symmetry that will cause ambiguity in defining the orbital elements of a
binary) Finally, we shall permit the disturbances to bear an explicit time dependence. Such a level
of generality will enable us to employ our formalism in noninertial coordinate systems.

Let the unperturbed Lagrangian B2 — U(F). The disturbed motion will be described by the
new, perturbed, Lagrangian
P2 .
L= §—U(F)+A£(F,F,t), (12

and the appropriately perturbed canonical momentum and Hamiltonian,
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. . OAL
p=f+—, (13
ar
- p2 1[0AL\?
H=pF—L=—+U+AH, AH=—AL->|—] . (14)
2 2 (9F

The Euler—Lagrange equations written for the perturbed Lagran@@rare

N 15
r__ﬁ ’ ( )

where the disturbing force is given by

AF= TG

JAL d [JAL
=

oF

We see that in the absence of velocity dependence the perturbation of the Lagrangian plays the
role of disturbing function. Generally, though, the disturbing force is not equal to the gradient of
AL, but has an extra term called into being by the velocity dependence.

As we already mentioned, this setup is sufficiently generic. For example, it is convenient for
description of a satellite orbiting a wobbling planet: the inertial forces, which emerge in the
planet-related noninertial frame, will nicely fit in the above formalism.

It is worth emphasizing once again that, in the case of velocity-dependent disturbances, the
disturbing force is equal neither to the gradient of the Lagrangian’s perturbation nor to the gradient
of negative Hamiltonian’s perturbation. This is an important thing to remember when comparing
results obtained by different techniques. For example, in Goldr@i®B5 the term “disturbing
function” was used for the negative perturbation of the Hamiltonian. For this reason, the gradient
of a so defined disturbing function was not equal to the disturbing force. A comprehensive com-
parison of the currently developed theory with that offered in Goldrél€@85 will be presented
in a separate publicatiofEfroimsky and Goldreich, 2003where we shall demonstrate that the
method used there was equivalent to fixing a special g&oge described in Sec. Il C of this
article).

B. Gauge-invariant planetary equations

Insertion of the generic forc€l6) into (10) will bring us

S e, ¢ dc; of oA of d Gy ALY 98 o .
= [Co Clgr =3¢, o s, at| ®t 7] e ® (7
If we recall that, for a velocity-dependent disturbance,
AL IAL of  9AL oF  IAL dF AL I(G+D)
=— + — =— + — , (18
dC, df dC, g 9C, df dC, sz  IC,
then equality(17) will look like this:
S e, c dC; AL GAL 9B of d . AL\ G B AL 1
j [Cn S5t = e, g¢ 9C, dC,dt gt | 9C, g | (9

After subsequent addition and subtraction}-M(aAC/a?)z)/acn on the right-hand side, the gauge
function @ will everywhere appear in the company 6fd(A L)/ or:
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s (e ot gf o (9AL .\ dC

=\ LG Gl 5e5e, | 5 7] e
0 +1 IAL)\ 2 a@+ of a+aA£ P <i>+0m£ 20
- 9C, 2\ ¢ dC, dC,dt g5 IC, o | (20

the sum in square brackets being equaHA 7. While (11) expressed the VOP method in the
most generic form it can have in terms of disturbing foraé47,7,t), Eq.(20) furnishes the most
general form in terms of the Lagrangian perturbatdofi(7,7,t) (under the simplifying assumption

that the arbitrary gauge functich is set to depend only upon the time and the paramé&grbut
not upon their derivativgs

The Lagrange brackets i19) are gauge-invariant; they contain only functicfnand@ that
were defined in the unperturbed, two-body, setting. This enables us to exploit the well-known
expressions for the inverse of this matrix. These look most siiigvid are either zero or unjtyn
the case when one chooses as the “constants” the Delaunay set of orbital variables. As is well
known, this simplicity of the Lagrange and their inverse, Poisson, brackets of the Delaunay
elements is the proof of these elements’ canonicity in the unperturbed, two-body, problem. When
only a position-dependent disturbing functi®{r)=AL(7) is “turned on,” the Delaunay ele-
ments still remain canonical, provided the Lagrange gauge is imposed. This happens because, as
is well known(Brouwer and Clemence, 1961he equations of motion together with the Lagrange
constraint yield, in that case, the following equation,

dC; JAL " .
; [Co Clgr =g AL=ALE(C1...Co)=R(E(Cr...Co i), (2D

which, is its turn, results in the standard Delaunay system.

In our case, though, the perturbation depends also upon velocities; beside this, thé)g'auge
set arbitrary. Then our Eq20) will entail the gauge-invariant Lagrange-type and Delaunay-type
systems of equations that are presented in Appendix A. Interestingly, the gauge-invariant
Delaunay-type system is, generally, nonsymplectic. It regains the canonical form only in one
special gauge considered belda gauge which coincides with the Lagrange gauge when the
perturbation bears no velocity dependendehis can be proven by a direct substitution of that
special gauge condition into the gauge-invariant Delaunay-type system given in Appendix A. An
easier way would be to fix the gauge already(20), and this is what we shall do in the next
subsection.

C. The generalized Lagrange gauge: Gauge wherein the Delaunay-type system
becomes canonical

We transformed17) into (20) for two reasons: to single out the negative perturbation of the
Hamiltonian and to reveal the advantages of the gauge

b=——, (22)

which reduces t@b=0 for velocity-independent perturbations. The first remarkable peculiarity of
(22) is that in this gauge the canonical momentfns equal tog [as can be seen froifd) and

(13)]:

s = o AL
g=r—¢=r+?=p. (23
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We see that in this gauge not the velocity but the momentum in the disturbed setting is the same
function of time and “constants” as it used to be in the unperturbed, two-body case. Stated
differently, the instantaneous ellipsés hyperbolagdefined in this gauge will osculate the orbit
in the phase space For this reason our special gau¢2?) will be called the “generalized
Lagrange gauge.”

Another good feature dR2) is that in this gauge Eq20) acquires an especially simple form:

S (e, o986 _ A .y

whose advantage lies not only in its brevity, but also in the invertibility of the matrix emerging on
its left-hand side.

As already mentioned above, the gauge invariance of definiipenables us to employ the
standardLagrange-gaugesxpressions fofC,, CJ-]‘1 and, thus, to get the planetary equations by
inverting matrix[C, C;] in (19). The resulting gauge-invariant Lagrange- and Delaunay-type
systems are presented in Appendix A. In the special g&aRge however, the situation is much
better. Comparing21) with (24), we see that in the general case of an arbitReyA £(T,7,t) one
arrives from(24) to the same equations as frai@l), except that now they will contairr AH
instead ofR=A L. These will be the Delaunay-type equation in the generalized Lagrange gauge:

dL 0AH  d(—M,)  dAH

dt a(—My)’ dt Tl (25)
dG  JAH d(-w)  JAH 26
dt d(—w)’ dt 4G’ (26)
dH_ IAH d(—Q)_ IANH )
dat a(—-Q)’ dt ~ oH ° @7
where
LE,LLllzallz, GE,ul/Zal/Z(l_eZ)l/Z' HE,l,Ll/zal/z(l_ez)l/ZCOSi ) (28)

We see that in this special gauge the Delaunay-type equations indeed become canonical, and the
role of the effective new Hamiltonian is played exactly by the Hamiltonian perturbation which
emerged earlier if14).

Thus we have proven an interestiitHEOREM: Even though the gauge-invariant
Delaunay-type system(A7)—(Al12) is not generally canonical, it becomes canonical in one
special gauge(22) which we call the “generalized Lagrange gauge."This theorem can be
proved in a purely Hamiltonian language, as is done in Sec. llIC.

lll. HAMILTON AND JACOBI

A. The concept

A totally different approach to derivation of the planetary equations is furnished by the
technigque worked out in 1834—-1835 by Hamilton and refined several years later by Jacobi. In the
lecture course shaped by 1842 and published as a book in 1866, Jacobi formulated his famous
theorem and applied it to the celestial motions. Jacobi chose orbital elements that were some
combinations of the Keplerian ones. His planetary equations can be easily transformed into the
Lagrange system by the differentiation chain r(Bebbotin, 1968 Later authors used this method
for a direct derivation of the Lagrange and Delaunay systems, and thus the Hamilton—Jacobi
approach became a part and parcel of almost any course in celestial mechanics. To some of these
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CoMMON
® Focus

FIG. 1. These two coplanar ellipses share one of their foci and are assumed to rotate about this common focus in the same
direction, always remaining within their plane. Suppose that the rotation of one ellipse is faster than that of the other, and
that a planet is located at one of the points of these ellipses’ interseBtiand that the rotation of the ellipses is such that

the planet is always at the instantaneous point of their intersection. We may say that the planet is swiftly moving along the
slower rotating ellipse, while it would be equally legitimate to state that the planet is slowly moving along the fast-rotating
ellipse. Both interpretations are valid, because one can divide, in an infinite number of ways, the actual motion of the planet
into a motion along some ellipse and a simultaneous evolution of that ellipse. The Lagrange co@steamfles out, of

all the multitude of evolving ellipses, that unique ellipse which is always tangential to the total, physical, velocity of the
planet.

sources we shall refer below. The full list of pertinent references would be endless, so it is easier
to single out a couple of books that break the code by offering alternative proofs: these exceptions
are Kaula(1968 and Brouwer and Clemenc&9617).

Brouwer and Clemenc€l961) use the VOP methoflike in Lagrange(1808, 1809, 181\,
which makes the imposition of the Lagrange constraint explicit. Kal&68 undertakes, by
means of the differentiation chain rule, a direct transition from the Hamilton equations in a
Cartesian frame to those in terms of orbital elements. As explained in Efroi(@8K2, 2003, in
Kaula’s treatment the Lagrange constraint was imposed tacitly.

It is far less easy to understand where the implicit gauge fixing is used in the Hamilton—Jacobi
technique. This subtlety of the Hamilton—Jacobi method is so well camouflaged that through the
century and a half of the method’s life this detail has never been brought ta(digtgast, in the
astronomical literatune The necessity of such a constraint is evident: one has to choose one out of
infinitely many sets of orbital elements describing the physical trajectory. Typically, one prefers
the set of orbital elements that osculates with the trajectory, so that the physical orbit be always
tangential to the instantaneous ellipse, in the case of bound orbits, or to the instantaneous hyper-
bola, in the case of flybys. This point is most easily illustrated by the following simple example
depicted on Fig. 1. Consider two coplanar ellipses with one common focus. Let both ellipses
rotate, in the same direction within their plane, about the shared focus; and let us assume that the
rotation of one ellipse is faster than that of the other. Now imagine that a planet is located at one
of the points of these ellipses’ intersection, and that the rotation of the ellipses is such that the
planet is always at the instantaneous point of their intersection. One observer will say that the
planet is swiftly moving along the slower rotating ellipse, while another observer will argue that
the planet is slowly moving along the fast-rotating ellipse. Both viewpoints are acceptable, be-
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cause one can divide, in an infinite number of ways, the actual motion of the planet into a motion
along some ellipse and a simultaneous evolution of that ellipse. The Lagrange congraint
singles out, of all the multitude of evolving ellipses, that unique ellipse which is always tangential
to the total(physica) velocity of the body. This way of gauge fixing is natural but not necessary.
Besides, as we already mentioned, the chosen g&t)geill not be preserved in the course of
numerical computations. Sometimes osculating elements do not render an intuitive picture of the
motion. In such situations other elements are preferred. One such example is a circular orbit about
an oblate planet. The osculating ellipse precesses with the angular velocity of the satellite, and its
eccentricity is proportional to the oblateness factpr Under these circumstances the so-called
geometric elements are more convenient than the osculatingBaegeries and Longaretti 1987

We remind the reader that the Hamilton—Jacobi treatment is based on the simple facts that the
same motion can be described by different mutually interconnected canonicat| §&t&(q,p))
and @Q,P,H*(Q,P)), and that fulfilment of the Hamilton equations along the trajectory makes
the infinitesimally small quantities

do=pdg—Hdt (29
and
d6=PdQ—H*dt (30)
perfect differentials. Subtraction of the former from the latter shows that their difference,
—dW=d6-de=PdQ-pdqg— (H* —H)dt, (31)
is a perfect differential, too. Herg, p, Q andP containN components each. If we start with a
system described by q(p,#(q,p)), it is worth looking for such a reparametrization
(Q,P,H*(Q,P)) that the new Hamiltoniakl* is constant in time, because in these variables the
canonical equations simplify. Especially convenient is to find a transformation that nullifies the
new Hamiltoniar+*, for in this case the new canonical equations will render the varidQieB)

constant. One way of seeking such transformations is to condidera function of only, Q, and
t. Under this assertion, the above equation will entail

Whence
P= w — w W_ * 33

The functionW can be then found by solving the Jacobi equation
H W t|+ &W—H* 34
qr (7q 1 at - ) ( )
whereH* is a constant. It is very convenient to make it equal to zero. Then the above equation
can be easily solved in the unperturbieeduced two-body setting. This solution, which has long
been known, is presented, in a very compact form, in Appendix B. It turns out that, if the spherical

coordinates and their conjugate momenta are taken as a starting point, then the eventual canonical
variablesQ, P corresponding t&{* (Q,P)=0 are the Delaunay elements:

QlEL: V/-La! Pl:_Moy
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Q=G=ua(l-e%), P,=-o, (35
Qs=H=+ua(l—e?)cosi, Pz=-Q.

B. Where can free cheese be found?

The transition from two-body tdl-body celestial mechanics is presented in numerous books.
However, none of them explain how the Lagrange constraint is implicitly involved in the formal-
ism.

Before we move on, let us cast a look back at what has been accomplished in the two-body
case. We started out with a Hamiltonian problemp,#) and reformulated its equations of

motion
. dH . JH 36
in terms of another set@,P,H*):
q=¢(Q,P,1),
(37)
pP=¢(Q,P,t),
so that the above equations are mathematically equivalent to the new system
. OH* b IH* 38
Q_F’ =T 50 (39

The simple nature of the two-body setting enabled us to carry out this transition so that our new
HamiltonianH* vanishes and the variabl€andP are, therefore, constants. This was achieved
by means of a transformation-generating functidiq,Q,t) obeying the Jacobi equatidi34).
After formula(B12) for this function is written down, the explicit form of depender8®@) can be
found through the relationB= — dW/9Q. This is given by(B15).

To make this machinery function in ax+body setting, let us first consider a disturbed two-
body case. The number of degrees of freedom is still the déinmee coordinateg and three
conjugate momentp), but the initial Hamiltonian is perturbed:

g 20LEATD)

I(H+AH)
ap ’

20 (39

Trying to implement the Hamilton-Jacobi methd@82)—(34), for the new Hamiltonians #{
+AH), (H*+A™H) and for some generating functiaf(q,Q,t), we shall arrive at

N at- Y dgo- Y ag=PdQ-pdq[(H+A *+AH)]dt 40
— 54t 5gdQ— 55 da=PdQ—pda+[(H+AH)—(H* +AH)]dt, (40)
A U TTRAGR VY 41

- F7Q' p_ (9q! ot - ! ( )

N |V 42

Ha Gt g TR (42)
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We see thaV obeys the same equation Aéand, therefore, may be chosen to coincide with it.
Hence, the new, perturbed, solutiog,p) will be expressed through the perturbed “constants”
Q(t) andP(t) in the same fashion as the old, undisturlkegedndp were expressed through the old
constantQ andP:

q=¢(Q(1),P(1),1),
(43
pP=4(Q(1),P(1),1),

¢ and ¢ being the same functions as those&3). Benefitting from this form-invariance, one can

now master théN-particle problem. To this end, one should choose the transformation-generating
functionV to be additive over the particles, whereafter the content of Sec. Ill A shall be repeated
verbatim for each of the bodies, separately. In the end of this endeavour one will ariNe to
—1 Delaunay sets similar tB15), except that now these sets will be constituteditstanta-
neousorbital elements. The extension of the preceding subsection’s content d-libdy case
seems to be most straightforward and to involve no additional assumptions. To dispel this illusion,
two things should be emphasized. One, self-evident, fact is that the quatites! P are no

longer conserved after the disturbanse{ is added to the zero Hamiltoniah*. The second
circumstance is that a change in a Hamiltonian implies an appropriate alteration of the Lagrangian.
In the simple case oA+ being a function of the coordinates and time ofript of velocities or
momenty, addition of A to the Hamiltonian implies addition of its opposite to the Lagrangian.
Since this extra term bears no dependence upon velocities, the expressions for momenta through
the coordinates and time will stay form-invariant. Herfifethe Lagrangian is not singulgrthe
functional dependence of the velocities upon the coordinates and momenta will, also, preserve
their functional formv(q,p,t):

9£(9,q,1)

without perturbation: p= 2

= q=v(q,p,t),
(44)

9(£(9,9,0)+AL(q,1)  9£(9,9,1)

with perturbation: p= 74 2

= q=v(q,p,t),

where the new, perturbed dependerigev[q(Q(t),P(t),t),p(Q(t),P(t),t),t] has the same
functional form as the old on&=v[q(Q,P,t),p(Q,P,t),t]. Together with(43), this means that
the dependence of the neéywpon the newP(t) andQ(t) will have the same functional form as
the dependence of the otdupon the constant® andP:

d d
GrA(Q(D,P(1),)=—-q(Q(t),P(1),1). (45)
In other words,
6
g .
;1 &—DiDi—O, (46)

whereD; denotes the set of perturbed variabl€{1),P(t)). In the astronomical applicationB;
may stand for the Delaunay set.

This is the implicit condition under which the Hamilton—Jacobi method wéirkshe above
case of velocity-independent disturbanc¥iolation of (46) would invalidate our cornerstone
assumption(38). This circumstance imposes a severe restriction on the applicability of the
Hamilton—Jacobi theory. In the astronomical context, this means that the Delaunay elé@i&jts
must be osculating. Indeed,0f; denote a set of orbital elements, then expres§i@his equiva-
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lent to the Lagrange constraif#) discussed in Sec. |. There the constraint was imposed upon the
Keplerian elements; however, its equivalencg46), which is written in terms of the Delaunay
variables, can be easily proven by the differentiation chain rule.

C. The case of momentum-dependent disturbances

When the perturbation of the Lagrangian depends also upon veloGites therefore, the
Hamiltonian perturbation carries dependence upon the canonical mgptaetapecial gauge?2)
wherein the Delaunay-type system preserves its canonicity differs from the Lagrange gauge. This
was proven in Sec. Il C in the Lagrangian language. Now we shall study this in Hamiltonian terms.
Our explanation will be sufficiently general and will surpass the celestial-mechanics setting. For
this reason we shall use notatiogsp, notr, p. The development will, as ever, begin with an
unperturbed system described by canonical variables obeying

oH oH

= P g (47)

q

This dynamics may be reformulated in terms of the new quantit@g$y:
a=¢(Q,P,1),
pP=4(Q,P1),

so that the Hamiltonian equatio47) are equivalent to

(48)

. JH* b IH* 49
G PT “9
For simplicity, we shall assume thai* is zero. Then the new canonical variables will play the
role of adjustable constants upon which the soluti®) of (47) depends.
We now wish to know under what circumstances a modified canonical system

. d(H+AH)
, P=—————, AH=AH(q,p,) (50

A(H+AH)
4= 7

p

will be satisfied by the solution

q=¢(Q(1),P(1),1),

(51)
pP=¢(Q(t),P(1),t)
of the same functional form a@8) but with time-dependent parameters obeying
. JAH b IAH 52
Q=—p P= PR (52

This situation is of a more general sort than that addressed in Sec. Il B, in that the perturbation
A’H now depends also upon the momentum.
Under the assumption @¢f18) being(at least, locally invertible, substitution of the equalities

. JAH OJAH dq JAH dp
= = —+ — (53
JP dq JP ap P

and
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o JAH  OAH dq IAH p -
~Q  da Q p iQ 59

into the expression for velocity

99 9. 9.
q_ﬁ+% +(?_PP (55)

leads to

dQ dP  dP 9Q

. dq dq dq dq dq\JdAH [(dq dp Jq Ip\ JAH
- 9Q 9P 3P 3Q

LS g o .
Here the coefficient accompanyingAH/dq identically vanishes, while that accompanying

dAH/dp coincides with the Jacobian of the canonical transformation and is, therefore, unity:

Jq dp  dq Jp
QP Q- 7
So if we introduce, in the spirit of6), notation
_
9= (58
then (56) will lead to
IAH
a=o+| %7 (59
ap at

Expression(59) establishes the link between the regular VOP method and the canonical treatment.
It shows that, to preserve the symplectic description, one must always choose a particular gauge
®=09AH/dp. Needless to say, this is exactly the generalized Lagrange d@a@peiscussed in
Sec. IIC. A direct, though very short, proof is as follows.

On the one hand, the Hamilton equation for the perturbed Hamiltaididnis

. A(H+AH) IAH
4= =p+

ap ap "’ (60
while, on the other hand, the definition of momentum entails, for the Lagrarig&n
o= ﬁ(ﬁ(q.q,t);rqAE(q,q,t)):q+(7aA_q£_ 61)
By comparing the latter with the former we arrive at
o=(22) (2] -
ap at aq at

which coincides with(22). Thus we see that transformati¢f8) being canonical is equivalent to

the partition of the physical velocit§f in a manner prescribed H$9), where® = dAH/Jp. This

is equivalent to our theorem from Sec. Il C. Evidently, for disturbances dependent solely upon the
coordinates, we return to the case explained in Sec. [Egs. (45 and (46)]: in that case, the
Hamiltonian formulation of the problem demanded imposition of the Lagrange cond#éjnt
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To draw to a close, the generalized Lagrange constrdint— dAL]4q, is stiffly embedded
in the Hamilton—Jacobi technique. Hence this technique breaks the gauge invariance and is unfit
(at least, in its straightforward fornto describe the gauge symmetry of the planetary equations. It
is necessary to sacrifice gauge freedom by imposing the generalized Lagrange constraint to make
use of the Hamilton—Jacobi development.

In this special gauge, the perturbed momentum coincides with the unperturbegioch
was equal taj). Indeed, we can rewrité61) as

d(L£(q,9,t)+AL(q,q,t))
99 B

p= q-®=g, (63

which means that, in the astronomical implementation of this theory, the Hamilton—Jacobi treat-
ment necessarily demands the orbital elements to osculate in the phase space. Naturally, this
demand reduces to that of regular osculation in the simple case of velocity-indepandi&mit

was explored in Sec. Il B.

IV. CONCLUSIONS

We have studied, in an arbitrary gauge, the VOP method in celestial mechanics in the case
when the perturbation depends on both positions and velocities. Such situations emerge when
relativistic corrections to the Newton law are taken into account or when the VOP method is
employed in noninertial frames of referen@esatellite orbiting a precessing planet being one such
example. The gauge-invariantand generalized to the case of velocity-dependent disturbances
Delaunay-type system of equations is not canonical. We, though, have proven a theorem estab-
lishing a particular gaugéwhich coincides with the Lagrange gauge in the absence of velocity
dependence of the perturbatjothat renders this system canonical. We called that gauge the
“generalized Lagrange gauge.”

We have explained where the Lagrange constraint tacitly enters the Hamilton—Jacobi deriva-
tion of the Delaunay equations. This constraint turns out to be an insepattatlggh not easily
visible) part of the method: in the case of momentum-independent disturbancebl-tibdy
generalization of the two-body Hamilton—Jacobi technique is legitimate only if we use orbital
elements that are osculating, i.e., if we exploit only the instantaneous ellipségperbolae, in
the flyby casgthat are always tangential to the velocity vector. Oddly enough, an explicit mention
of this circumstance has not appeared in the astronomical literétileast to the best of our
knowledge.

In the case of momentum-dependent disturbances, the above restriction generalizes, in that the
instantaneous ellipsébyperbolag must be osculating in the phase space. This is equivalent to the
imposition of the generalized Lagrange gauge.

Comparing the good old VOP method with that based on the Jacobi theorem, we have to
acknowledge that the elegance of the latter does not outweigh the power of the former. If we
decide to explore the infinite multitude of gauges or to study the numerical-error-invoked gauge
drift, we shall not be able to employ the Hamilton—Jacobi theory without additional structure.
However, the direct VOP method unencumbered with the canonicity demand will immediately
yield gauge-invariant equations for the Delaunay elements obeying an arbitrary gauge condition

of dD; .
> a_IDiW:q)(Di’t)’ (64)

® being some function of time and elemer®s. In Efroimsky (2002 these equations were

written down for the case of velocity-independent perturbation. If the disturbing force depends
also upon velocities, the Delaunay-type equations will acquire even more terms and will read as
(A7)—(A12). In the simple case of a velocity-independent disturbance, any supplementary condi-
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tion different from that of Lagrange will drive the Delaunay system away from its canonical form.
If we permit the disturbing force to depend also upon velocities, the Delaunay equations will retain
their canonicity only in the generalized Lagrange gauge.

In the language of modern physics, this may be put in the following wordNrpdy celestial
mechanics is a gauge theory but is not genuinely symplectic insofar as the language of orbital
elements is used. It, though, becomes canonical in the generalized Lagrange gauge.

The applications of this formalism to motions in noninertial frames of reference will be
studied in Efroimsky and Goldreict2003. Some other applications were addressed in Slabinski
(2003.
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APPENDIX A: GAUGE-INVARIANT EQUATIONS OF LAGRANGE AND DELAUNAY
TYPES

We present the gauge-invariant Lagrange-type equations. They follow (ft®mf we take
into account the gauge-invariance of matfi®; C;] defined by(9). We denote byAH the per-
turbation of the Hamiltonian, connected througH) with that of the Lagrangian. The latter, in its
turn, is connected througti6) with the disturbing forcgand acts as the customary disturbing
function when the perturbations are devoid of velocity dependence

da_ 2 [d(—AH) JAL 4 (i)+aA£ ‘iH_aAE a9 of d[. oAL

dt na| oM, gt Mo ar ot |Mo  IM, dt at ||

de 1-€[d(—AH) JAL § (i)+aA£ (i)+aA£ ag  of d &H&AL

dt_ naze (9Mo 07? Ja &l;, 5? (9M0 (9M0 dt af’
(1_e2)l/2

na’e de gi 0w JgF g |dw

A—AH) AL 9 (9 aAc) (9 aAL) g
- O+ —|— | D+ —|—

, (A2)

e

oar

of d B AL
Jo dt

do —cosi
dt  na?(1-e?)¥sini

I—AH) JAL ¢ ( . aA[,)
dl or ol or
(1_62)1/2
na’e

ar

e

or

. OAL\ag of d . AL
— (I)+_ T
oe of e

I—AH) AL 9 ( . &Ac)
— — | D+

. JdAL\ 9§ of d[. AL
o+ —= = - = = o+ — ||, (A3)

of
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di CoSi
dt  na%(1-e?)Psini

I—AH) AL 9 <a aAL‘,) <9 aAﬁ) g
- O+ —|— | P+ — | —
g | dw

Jw t?l:; 0_a) (9%

1
~ na’(1—e?)Yginj

>

9 o 00 aF

e

or

of d @ AL
Jo dt

A—AH) AL 9 <a aAL)
- D+

(i>+aA£ a9 of d|. IAL A4
i o et ) -
a0 1 H-AH) AL (o AL
dt " nad(1-e)Psini|  ai 7 al CT e

B AL\ g of d B OAL A5
AT E T aa ) -

dM,  1-¢?
dt =~ na’e

de Jdedt

.

ar

N—AH) AL . IA . dAL\ag of d . AL
- | B+ —| o+ —=| = - ——= —
oe oF e oF oF

2 |d(—AH) AL 9 [ . AL . OAL\ag of d . IAL
-— —— |+ —| | D+ — - — .
naj| Jda gf oa IF gF | 0a dadt IF
(A6)
Similarly, the gauge-invariant Delaunay-type system can be written down as
dL  d(—AH) JAL 9 [. OAL . OAL\ g af d[. IAL
—= - — ®+ —| ®+ — - — —,
dt M, gt Mo aF gt |IMo  IM, dt ar
(A7)
dM, a(—AH)+aA£ ] (i)+aAc . (i)+aA£ a§+af d e+&A£ A8
dt —aL o L aF of L L dt ar | (A9
dG a(—AH) AL 9 [ . JIAL . AAL\Ig af d[. OAL
= —— | P+ —| P+ — —— | ®P+t——|, (A9)
dt Jw JgF do IF gF |do  do dt
do a(—AH)+0A£ d (i)+&A£ . (iH_aAE a§+ of d *+¢9A£
dt G o 9G ar o |9G G dt gt |’
(A10)

Q) 9Q dt

dH d(—AH) AL d [ . JAL . dAL\ oy of d . IAL
—= e — o —| [ D+ — o+ —|, (A1)
dt Q) ot 9Q ar ar ar

. aAﬁ)ag afd(e AL
(I) -

A0 o(-AM) AL o (o ALY [ .
dt oH of OH of of |oH ~ 9H dt o |
(A12)
where
LE,LLl/Za.l/Z, G= /-Ll/2a1/2(1_ 92)1/2, H= Ml/Zal/Z(l_ e2)1/2 cosi, (A13)
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and the symbolﬁ),f,@ denote the functional dependencies of the gauge, position and velocity

upon the Delaunay, not Keplerian, elements, and therefore these are functions differeirl;fnjm
used in(Al)—(A6) where they stood for the dependencies upon the Kepler elenjientsfroim-

sky (2002 the dependencieé),f,@ upon the Delaunay variables were equipped with tilde, to
distinguish them from the dependencies upon the Kepler coordihates.

The above equations do not merely repeat those derived earlier in Efro{@®8&, 2003, but
generalize them to the case of a perturbathah which is both position and velocity dependent.
For this reason, our gauge-invariant equations can be employed not only in an inertial frame but
also in a wobbling one.

To employ the gauge-invariant equations in analytical calculations is a delicate task: one
should always keep in mind that, in cadbeis chosen to depend not only upon time but also upon
the “constants”(but not upon their derivativésthe right-hand sides of these equation will im-
plicitly contain the first derivatived C; /dt, and one will have to move them to the left-hand sides
[much like in the transition frong10) to (11)].

APPENDIX B: THE HAMILTON—-JACOBI METHOD IN CELESTIAL MECHANICS

The Jacobi equatiofi34) is a PDE of the first order, inN+ 1) variables ¢,,t), and its
complete integraW(q,Q,t) will depend uponN+1 constants, (Jeffreys and Jeffreys, 1972;
Courant and Hilbert 19890ne of these constants, , 1, will be additive, becaus®@/ enters the
above equation only through its derivatives. Since both Hamiltonians are, too, defined up to some
constantf, then the solution t@¢34) must contain that constant multiplied by the time:

W(Q, ap,....ay, ans1,H)=W(a, aj,....an, t)—(t—t)f(as,....an)

:W(q, aq,..., AN, t)—tf(al,...,aN)—aN+1, (Bl)

where the fiducial epoch is connected to the constants thrtysgh ay .1 /f, and the functiov
depends upom constants only. As the total number of independent adjustable parametérs is
+1, the constant cannot be independent but must rather be a functicay, of.. ,ay,an: 1. Since

we agreed that the constamy, ; is additive and shows itself nowhere else, it will be sufficient to
considerf as a function of the redtl parameters onlyIn principle, it is technically possible to
involve the constandy, 1, i.e., the reference epoch, into the mutual transformations between the
other constants. However, in the applications that we shall consider, we shall encounter only
equations autonomous in time, and so there will be no need toageatas a parameter to vary.
Hence, in what follows we shall simply ignore its existencBhe new functionW obeys the
simplified Jacobi equation

aW(Q,ay,....ay,t) s AW(q,ay,....ay,t)

— *
7 , m =f(aq,...,ay) +H*. (B2)

As agreed abovel{* is a constant. Hence, we can state about this constant all the same as about
the constantf: since the integraMW/ can contain no more thahN+1 adjustable parameters
ai,...,an.an+ 1, and since we ignore the existenceagf, ;, the constant{* must be a function
of the remaining N parameter&(* =H* (a;,...,an).

Now, in caseH depends only upofy, p) and lacks an explicit time dependence, then so will
W; and the above equation will very considerably simplify:

aW(q,ay,...ay)

H qa &q

:f(al,...,aN)+H*(a1,...,aN), (B3)

where we deliberately avoided absorbing the constant Hamiltchifainto the functionf.
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Whenever the integralV can be found explicitly, the constanta,(...,ay) can be identified
with the new coordinates), whereafter the new momenta will be calculated through
=—JW/dQ. In the special case of zefd*, the new momenta become constants, because they
obey the canonical equations with a vanishing Hamiltonian. In the case vitfelis a nonzero
constant, it must, as explained above, be a function of all or some of the independent parameters
(a,...,ay), and, therefore, all or some of the new momeRtaill be evolving in time.

Since it is sufficient to find only one solution to the Jacobi equation, one can seek it by means
of the variable-separation method: E&3) will solve in the special case when the generating
function (B1) is separable:

N
W(Qy,....0n ,al,...,a,\,)=i§1 Wi(q;,ay,....ay). (B4)

This theory works very well in application to the unperturligdo-body) problem(1) of celestial
mechanics, a problem that is simple due to its mathematical equivalence to the gravitationally
bound motion of a reduced Mass,aneMsun/ (Mpianet- Msyn) @bout a fixed center of Maes;anet
+mg,,. If one begins with théreducedl two-body Hamiltonian in the spherical coordinates

di=r, d,=¢, 0z=6 (B5)

(wherex=r cos¢cosf, y=r cos¢sin g, z=r sin¢), then the expression for Lagrangian,

1 1 1
L=T-1I= E(fh)z"‘ E(Q1)2(Q2)2+ E(%)z(%)z cos g+ %r (B6)

will yield the following formulas for the momenta:

Py aL L

_ _ 2; _ 2;
=—= , = —= , = —= CO§ y B7
P1 FRR qi, P2 i, q:1dz2, Ps FER d:ds a2 (B7)

whence the initial Hamiltonian will read

1 1 1 w
= 0—L=-p>+ 2t —————Ppi— —.
H=2 pU~L=5Pit 5 oPot oz oo s o (88)

Then the Hamilton—Jacobi equati¢80) will look like this:
1 ( aw)2+ 1 (aw)2+ 1 (aw)z wo W 0 (89)
2\9a1) 29709,/  2gicosdpldds) g ot ’

while the auxiliary functiorW defined throughB1) will obey
1(aw)+ 1 (aw)+ 1 (aw
2149, 27\ 90, 245 cog gy | 903

2
S ) (B10)
of1

A lengthy but elementary calculatidpresented, with some inessential variations, in Plummer
(1918, Smart(1953, Pollard(1966, Kovalevsky(1967), Stiefel and Scheifel€l971), and many
other book$ shows that, for a constafit* and in the ansatéB4), the integral of(B3) takes the
form
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W=W,(qy,81,8,,83)+Wy(0y,a;,8,,a3) + Wa(ds,a;1 ,87,83)

a2 2 1/2

fqm 2(f+H*)+2M Z)Md +f¢ . +f0 d

= — - as— ——— asdqs,

Q1(to)61 . qai o 062 2 cosd, G 0 2 G
(B11)

where the epoch and factoes, €, may be taken as in Kovalevsk§967: time t, is the instant

of perigee passage; factef is chosen to be+1 wheng,=r is increasing, and is-1 whenr is
decreasing; factoe, is +1 whenq,= ¢ is increasing, and is-1 otherwise. This way the quan-
tities under the first and second integration signs have continuous derivatives. To draw conclu-
sions, in the two-body case we have a transformation-generating function

~ ay(t o 2 @)\
W=W-+tf(ay,...,ay) = i 2(f+H HE_? da;
1t%o 1
® g 1/2 0
2_ "
+fo € a2 COS2q2) qu+ fo a3dq3+tf, (BlZ)

whose time-independent componé&iitenters Eq(B3). The first integration ifB12) contains the
functionsf(ay,...,ay) and H*(a4,...,ay), SO that in the end of the day depends on the N
constants,,...,ay (not to mention the neglected, i.e., theay,1).

Different authors deal differently with the surh-¢ H#*) emerging in(B12). Smart(1953 and
Kovalevsky (1967 prefer to put

f=0, H*=a;, a;=-ul(2a), (B13)

whereupon the new momentuRy = — dW/9Q, = — dW/da; becomes time dependeg@nd turns
out to equal—t+t,). An alternative choice, which, in our opinion, better reflects the advantages
of the Hamilton-Jacobi theory, is furnished by Plumm&?18:

f=a;, H*=0, a;=+ua. (B14)

This entails the following correspondence between the new canonical varighde®elaunay
elements and the Keplerian orbital coordinates:

Qi=a;=vVua, P1=—M,,
Q=a,= Jpall- e, P=o, (B19
Q35a3=m°°5i’ Pe=—10.

Everywhere in this article we follow the conventigB14) and denote the above variabl€s,
Q,, Q3 by L, G, H, correspondinglyas is normally done in the astronomical literajure
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