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Abstract. It was believed until very recently that a near-equatorial satellite would always keep
up with the planet’s equator (with oscillations in inclination, but without a secular drift).
As explained in Efroimsky and Goldreich [Astronomy & Astrophysics (2004) Vol. 415,
pp. 1187-1199], this misconception originated from a wrong interpretation of a (mathemati-
cally correct) result obtained in terms of non-osculating orbital elements. A similar analysis
carried out in the language of osculating elements will endow the planetary equations with
some extra terms caused by the planet’s obliquity change. Some of these terms will be non-
trivial, in that they will not be amendments to the disturbing function. Due to the extra terms,
the variations of a planet’s obliquity may cause a secular drift of its satellite orbit inclination.
In this article we set out the analytical formalism for our study of this drift. We demonstrate
that, in the case of uniform precession, the drift will be extremely slow, because the first-order
terms responsible for the drift will be short-period and, thus, will have vanishing orbital
averages (as anticipated 40 years ago by Peter Goldreich), while the secular terms will be of the
second order only. However, it turns out that variations of the planetary precession make the
first-order terms secular. For example, the planetary nutations will resonate with the satellite’s
orbital frequency and, thereby, may instigate a secular drift. A detailed study of this process
will be offered in a subsequent publication, while here we work out the required mathematical
formalism and point out the key aspects of the dynamics.
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1. Physical Motivation and the Statement of Purpose

Ward (1973, 1974) noted that the obliquity of Mars may have suffered large-
angle motions at long time scales. Later, Laskar and Robutel (1993) and
Touma and Wisdom (1994) demonstrated that these motions may have been
chaotic. This would cause severe climate variations and have major conse-
quences for development of life.

It is a customary assumption that a near-equatorial satellite of an oblate
planet would always keep up with the planet’s equator (with only small

'In this article, as well as in (Efroimsky 2004), we use the word *“precession” in its most
general sense which embraces the entire spectrum of changes of the spin-axis orientation —
from the long-term variations down to the Chandler Wobble down to nutations and to the
polar wonder.
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oscillations of the orbit inclination) provided the obliquity changes are suf-
ficiently slow (Goldreich, 1965; Kinoshita, 1993). As demonstrated in
Efroimsky and Goldreich (2004), this belief stems from a calculation per-
formed in the language of non-osculating orbital elements. A similar analysis
carried out in terms of osculating elements will contain hitherto overlooked
extra terms entailed by the planet’s obliquity variations. These terms
(emerging already in the first order over the precession-caused perturbation)
will cause a secular angular drift of the satellite orbit away from the planetary
equator.

The existence of Phobos and Deimos, and the ability of Mars to keep them
close to its equatorial plane during obliquity variations sets constraints on the
obliquity variation amplitude and rate. Our eventual goal is to establish such
constraints. If the satellites’ secular inclination drifts are slow enough that the
satellites stay close to Mars’ equator during its obliquity changes through
billions of years, then the rigid-planet non-dissipative models used by Ward
(1973, 1974), Laskar and Robutel (1993), and Touma and Wisdom (1994)
will get a totally independent confirmation. If the obliquity-change-caused
inclination drifts are too fast (fast enough that within a billion or several
billions of years the satellites get driven away from Mars’ equatorial plane),
then the inelastic dissipation and planetary structure must play a larger role
than previously assumed.

Having this big motivation in mind, we restrict the current article to
building the required mathematical background: we study the obliquity-
variation-caused terms in the planetary equations, calculate their secular
components and point out the resonant coupling emerging between a
satellite’s orbiting frequency and certain frequencies in the planet axis’ pre-
cession. A more thorough investigation of this interaction will be left for our
next paper.

2. Mathematical Preliminaries: Osculating Elements vs Orbital Elements

Whenever one embarks on integrating a satellite orbit and wants to take into
account direction variations of the planet’s spin, it is most natural to carry
out this work in a co-precessing coordinate system. This always yields orbital
elements which are defined in the said frame and, therefore, ready for
immediate physical interpretation by a planet-based observer. A well cam-
ouflaged pitfall of this approach lies in that these orbital elements may come
out non-osculating, i.e., that the instantancous ellipses (or hyperbolae)
parametrised by these elements will not be tangent to the physical trajectory
as seen in the frame of reference.
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2.1. THE OSCULATION CONDITION AND ALTERNATIVES TO IT

An instantaneous orbit is defined by a set of six parameters. Systems of
planetary equations for these parameters may be derived either through the
variation-of-parameters (VOP) method or via the Hamilton-Jacobi one.
The latter approach, though fine and elegant, lacks the power instilled into
the direct VOP technique: it cannot account for the gauge invariance of the
N-body problem (Efroimsky, 2002a,b), important feature intiantely con-
nected with some general concepts in ODE (Newman and Efroimsky, 2003).
The Hamilton-Jacobi technique implicitly fixes the gauge and thus leaves the
internal symmetry heavily veiled (Efroimsky and Goldreich, 2003).
As well known, a solution

-

F:f(Cl,...,C6,t) (1)
to the reduced two-body problem

- Gmr
= - 2
r + 2 ( )

is a Keplerian ellipse or hyperbola parametrised with some set of six inde-

pendent orbital elements C; which are constants in the absence of disturbances.

In the presence of disturbances, each body becomes subject to a total
perturbing force AF :

= Gm F =

= AF, G)

Solving the above equation of motion by the VOP method implies the use of

(1) as an ansatz,

F:f(cl(t)a'-',c6(t)7t)7 (4)
the function fbeing the same as in (1), and the “constants” C; now being
endowed with a time dependence of their own. Insertion of (4) into (3) is
insufficient for determining the six functions C;(¢). To furnish a solution,
three more equations are needed. Since the age of Lagrange it has been
advised in the literature to employ, for this purpose, the conditions of
osculation,

=0 (5)

the imposition whereof ensures that, in the disturbed case, the physical
velocity
dr  of of dC;
- _Z 6
& o 2-9G dr ©)
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is expressed by the same function g(Cy,...,Cs, ) as in the two-body con-
figuration:
of
g =, 7
T (7)

Condition (5) being arbitrary, its choice affects only mathematical develop-
ments, and not the physical orbit. This is merely a matter of ambiguous
parametrisation. Together, (5) and (3), with ansatz (4) inserted therein, yield
the following equation of the elements’ evolution:

—

dc;  of
2 (G el = 5c, AF ®)

[C,, Cj] being the matrix of Lagrange brackets introduced as
of g of 0g
C,Cl=—n— — . 9
So defined, the brackets depend neither on the time evolution of C; nor on the
choice of supplementary conditions, but solely on the functional form of

f(Cy..6,7) and g = Of /0.
In case we decide to relax the Lagrange constraint and to substitute it by
of dC; -
) t 1
aC,- dr (Cl, ...... ,65 )7 ( 0)

® being some arbitrary function of time and parameters C; (but, for the
reasons of sheer convenience, not of time derivatives of C;), then instead of
(8) we shall get, forn=1,...,6,

of od\dc, of . of o0& 0g -
oy o) dG of g Of 0B OF & 1
Z:([C 3¢, ac,) & ac,™ ~ac, o ac, (1)

This equation, derived in Efroimsky (2002b), gives us an opportunity to use,
in an arbitrary gauge (_25, the Lagrange brackets (9) defined in terms of the
unperturbed functions f and g. Expression (11) is the most general form of
the planetary equations, in terms of the disturbing force. To get the generic
form in terms of the Lagrangian disturbance, begin with the two-body
Lagrangian L, (¥,¥,7) = */2 — U(¥, ), momentum p = ¥, and Hamiltonian
H,(F,p, 1) = p*>/2 + U(F, t). Their perturbed counterparts will look, respec-
tively:
32
L(F.F,1) :£0+AL:%— U, 1) + AL E, 1), (12)
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) =2
H(F,ﬁ,z):ﬁF—E:%Jr U+ AH, (14)

L L L 1 (OAL?
AH(Y,p,t) = H(F,p,t) — Ho(F,p, 1) = —AL — 3 < pe ) . (15)
Iy
The Euler—Lagrange equations, written for the perturbed Lagrangian, will
read:

ou

f=——+AF 1
r 5 T AF, (16)
the new term being the disturbing force:
- OAL d [(OAL
AF = —— — — — . 1
or dt( ar~> {17

Substitution of (17) into (11) then yields

of 0 (9AL -\ \dG 9
Zogq+ﬁﬁaﬁf+®>a—m;

2
1 (28)
2\ or

9 o 0 OAL 9 \ [~ OAL
- — : ()] — . 18
(ac,facn o oF acn>< " a;) 18)
The latter not only reveals the convenience of the generalised Lagrange gauge
> A
& -2 (19)
or

(which reduces to ® =0 for velocity-independent perturbations), but also
demonstrates how the Hamiltonian variation comes into play: the sum in
square brackets is equal to —AH. When C; are chosen as the Kepler or
Delaunay variables, (18) entails the gauge-invariant versions of the Lagrange
or Delaunay planetary equations (see Appendix 1 to Efroimsky and
Goldreich, 2003).

2.2. GOLDREICH (1965)

The earliest attempts to describe satellite motion about the precessing and
nutating Earth were undertaken by Brouwer (1959), Proskurin and Batrakov
(1960), and Kozai (1960). In 1965, Goldreich accomplished a ground-
breaking work that marked the beginning of studies of the Martian satellite
dynamics. He started out with two major assertions. One was that the
Martian satellites had either been formed in the equatorial plane or been
brought therein very long ago. The second was that Mars has experienced,
through its history, a uniform precession. While the former proved to be
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almost certainly correct (Murison, 1988), the validity of the latter remains
model-dependent. While, in the simplest approximation, the planetary pre-
cession is uniform, a more involved analysis, carried out by Ward (1973,
1974), Laskar and Robutel (1993), and Touma and Wisdom (1994), offers
evidence of strongly non-uniform, perhaps even chaotic, variations of the
Martian obliquity at long time scales. It should be said, though, that the
analysis presented by these authors was model-dependent. In particular, it
was performed in the approximation of the planet being a nondissipative
rigid rotator. Since the orbits of both satellites are located <2° from the
equator, the two assertions contradict each other, unless there exists a
mechanism constraining satellite orbits within the vicinity of the primary’s
equator. (Otherwise, as Goldreich noted in his paper, “the present low
inclinations of these satellites’ orbits would amount to an unbelievable
coincidence.”) In quest of such a mechanism, Goldreich (1965) investigated
the evolution of the Kepler elements of a satellite in a reference system co-
precessing with the planet. He followed the traditional VOP scheme, i.c.,
assumed a two-body setting as an undisturbed problem and then treated the
inertial forces, emerging in the co-precessing frame, as perturbation (along
with another perturbation caused by the oblateness of the planet). Below, we
present a brief summary of Goldreich’s results, with only minor comments.

Goldreich began by applying formulae (12—-17) to motion in a coordinate
system attached to the planet’s centre of mass and precessing (but not
spinning) with the planet. In this system, the equation of motion includes
inertial forces and, therefore, reads:

io U i ixr i< (i X T)
=52 i TR(T

Uy OAU L
:_ﬁ—w—zﬁxf—ﬁxf—ﬁx(ﬁxﬁ, (20)

with dots denoting time derivatives in the co-precessing frame and p
standing for the coordinate system angular velocity relative to an inertial
frame.! Here the physical (i.e., not associated with inertial forces) potential
U(Y) consists of the (reduced) two-body part U,(r) = —GMr/r* and a term

'Be mindful that [, though being a precession rate relative to an inertial frame, is a vector
defined in the precessing frame. For details see section 8.6 in Marsden and Ratiu (2003) or
section 27 in Arnold (1989). In this frame:

L. dip—i-A dh, . . e dhy,
=é—+é—=sini, + é3——
b=y g ey,
angles i, and 5, being the inclination and the longitude of the node of the planetary equator of
date relative to that of epoch; unit vector é; being orthogonal to the equator of date; and é,
being aimed along the line of the moving equator’s ascending node on the plane of the equator
of epoch.

COS iy,
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AU(F) caused by the planet’s oblateness. The overall disturbing force on the
right-hand side of the above equation is generated, according to (17), by

AL(F,F, 1) = —AU() +T- (i x ) + 4 x ) - (i x D). (21)
Since in this case
OAL ix P
or ’
then
A
p=r af:F+ﬁXF (22)
or

and, therefore, the appropriate Hamiltonian variation will look:

2
AL + ! (aAfC>

2\ or

AH = —

= —[-AU+pP (ixP]=AU—- (Fxp) fi=AU—-J [ (23)
This way, AH becomes expressed through quantities defined in the co-
precessing frame: the satellite’s orbital momentum vector J=Fx p and the
precession rate [i.
Goldreich employed the above expression in the role of a disturbing
function R in the planetary equations:

di cosi d(—AH) 1 I(—AH)

— = - , 24
dt pa2(1 —e2)sini 0w na?(1 —e2)sin i 0Q 24)
dQ 1 I(—A
da _ ___ oAH) (25)
dt pa2(1—¢2)Psini  Oi
where
~AH=R= Roplate + Rinertial (26)
consists, according to (23), of two inputs:?
GmJ,p? . .
Robate(v) = —AU = ”27 2‘;—3 [1 — 3sin® i sin®(e + v)], (27)

2Qur formula (27) slightly differs from the one employed by Goldreich (1965), because
here we use the modern definition of J5:

o Sl o\ .
U= —7{1 — ,;Jm<;) Py, (sin O‘)}>

o being the satellite’s latitude in the planet-related coordinate system. The coefficient J used by
Goldreich (1965) differs from our J, by a constant factor: J = (3/2)J2p?/a>.
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and
Rinertial = j : ﬁ = Gma(l — €2) W - ﬁ (28)

Here m = (Mprimary + Msecondary)- The mean motion is, as ever,
n= (Gm)l/za*m, while p stands for the mean radius of the primary, v de-
notes the true anomaly, and

1—¢?
y=aq—— 29
14+ecosv (29)
is the instantaneous orbital radius. In the right-hand side of (28) it was
assumed that the angular momentum is connected with the orbital elements

through the well-known formula

-

J=rxp=4/Gma(l —e*)w (30)
where

W = X; sin i sin Q — X, sin i cos Q + X3 cos i
is a unit vector normal to the instantaneous ellipse, expressed through unit
vectors X, X», X3 associated with the co-precessing frame xi, x», x3 (the axes
x1 and x; lie in the planet’s equatorial plane of date, x; pointing along the

fiducial line wherefrom the longitude of the ascending node of the satellite
orbit Q is measured). The aforewritten expression for w evidently yields:

Rinertial = \/Gma(l — e2)(u; sin isin Q — p, sinicos Q + 5 cos i), (31)

while (27) may be, in the first approximation, substituted with its secular
part, i.e., with its average over the orbital period:

n’J, ,3cos?i—1

<R0blate> — 4 P (1 _ 62)3/2 ;

(32)

the averaging having been carried out through the medium of formula (112)
from the Appendix, with (29) inserted. With the aid of (31) and (32), the
planetary equations (25) and (26) will simplify to:

di .
d—;: —u; cosQ — u, sin Q, (33)
dQ 3 p\2 cos i ||
—=—=nhh|=) ——+0|-—|. 34
ds 2" 2(a> (1— ) + <J2n (34)
The latter results in the well-known node-precession formula,
3 p\2 cosi
Q=Q,—-nhh(-) ——t. 35
S (2) e (35)

Its insertion into the former entails
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i —%cos(—xt+Q)+% sin (=t + Q) + i, (36)
where »
_3 (B)z cosi_ (37)
1= 2 2 a (1 _ 62)2 :

In (Goldreich 1965), equation (36) was the main result, its derivation being
valid for wobble which is slow (|| < J>n) and close to uniform (|f|/|{| < Jan).

Despite a warning issued by Goldreich in his paper, this result has often
been misinterpreted and, therefore, misused in publications devoted to sat-
ellites and rings of wobbling planets, as well as in the literature on orbits
about tumbling galaxies.

In (36) ‘7’ stands for the inclination defined in co-precessing axes associated
with the planet’s equator, and therefore (36) clearly demonstrates that, in the
course of obliquity changes, this inclination oscillates about zero, with no
secular shift accumulated. Does this necessarily mean that the satellite orbit,
too, oscillates about the equatorial plane, without a secular deviation there-
from? Most surprisingly, the answer to this question is negative. The reason
for this is that the so-calculated orbital elements, though defined in the co-
precessing frame, are not osculating therein. In other words, in the frame
where the elements are introduced, the instantaneous ellipses parametrised by
these elements are not tangent to the physical orbit as seen in this frame.

This circumstance was emphasised yet by Goldreich, who noticed that
formula (30) normally (i.e., when employed in an inertial frame) connects the
osculating elements defined in that frame with the angular momentum r x p
defined in the same inertial frame (i.e., with ¥ x F). Since, in the above cal-
culation, the frame is not inertial (and, therefore, the angular momentum is
different from r x r but is equal to F X p =T x (F+ ji X F)), the orbital ele-
ments returned by (30) cannot be osculating in this frame.? On these grounds,
Goldreich warned the reader of the peculiar nature of the elements used in his
integration.

To this we would add that it is not at all evident that the inertial-forces-
caused alteration of the planetary equations should be achieved through

3Were these elements osculating in the frame wherein they had been defined, then formula
(30) would read: ¥ x ¥ = /Gma (1 — €)W, i.e., would connect the elements with the velocity
in that frame. In reality, though, it reads: ¥ x p = /G ma (1 — e?) W, i.e., connects the elements
with the momentum p =r+ i X ¥ which happens to coincide with the satellite’s velocity
relative to the inertial axes. This situation was formulated by Goldreich in the following terms:
the orbital elements emerging in the above derivation are defined in the co-precessing frame
but are osculating in the inertial one. This illustrative metaphor should not, though, be
overplayed: the fact that the elements emerging in Goldreich’s computation return the inertial-
frame-related velocity does not mean that this inclination may be interpreted as that relative to
the invariable plane. (The elements were introduced in the co-precessing frame!)
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amending the disturbing function with the momentum-dependent variation
of the negative Hamiltonian, J - i. While the common fallacy identifies the
disturbing function with the negative Hamiltonian perturbation, in reality
this rule-of-thumb works (and yields elements that are osculating) only for
disturbances dependent solely upon positions, but not upon velocities (i.e.,
for Hamiltonian perturbations dependent only upon coordinates, but not
upon momenta). Ours is not that case and, therefore, more alterations in the
planetary equations are needed to account for the frame precession, if we
wish these equations to render osculating elements. However, if one neglects
this circumstance and simply amends the disturbing function with J. i, then
the planetary equations will give some elements different from the osculating
ones. It will then become an interesting question as to whether such elements
will or will not coincide with those rendered by (29) when this formula is used
in non-inertial frames.

All these subtle issues get untangled in the framework of the gauge for-
malism. Application of this formalism to motions in non-inertial frames of
references was presented in Efroimsky and Goldreich (2004). The main re-
sults proven there are the following:

1. If one attempts to account for the inertial forces by simply adding the term
J. [ to the disturbing function, with no other alterations made in the
planetary equations, then these equations indeed do render quantities that
may be interpreted as some orbital elements (i.e., as parameters of some
instantaneous conics). These elements are not osculating and, therefore,
the instantaneous conics parameterised by these elements are not tangent
to the physical orbit. Hence, these elements cannot, generally, be attrib-
uted a direct physical interpretation,* except in the situations when their
deviation from the osculating elements remains sufficiently small.

2. By a remarkable coincidence, these non-osculating elements turned out to
be identical with those emerging in formula (30). This coincidence was
implicitly taken for granted by Goldreich (1965), which reveals his truly
incredible scientific intuition.

3. To build up a system of planetary equations that render the osculating
elements of the orbit as seen in the co-precessing coordinate system, one has
not only to add J. [ to the disturbing function, but also to amend each of
these equations with several extra terms. Some of those terms are of order
(I&]/(Jan))?, some others are of order |ji|/(|ji|J> 7). Most importantly, some
terms are of the first order in the precession-caused perturbation |j|/(J2n),

“When the orbit evolution is suffciently slow, the observer can attribute some physical
meaning to elements of the osculating conic. For example, whenever an observer talks about
the inclination or the eccentricity of a perturbed orbit, he naturally implies those of the
osculating ellipse or hyperbola.
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which means right away that the non-osculating elements used by Goldr-
eich (1965) differ from the osculating ones already in the first order. While
more comprehensive account on this topic, with the resulting equations,
will be offered in the end of this section, here we shall touch upon only one
question which gets immediately raised by the presence of such first-order
differences. This question is: what are the averages of these differences?
Stated alternatively, do the secular components of the said non-osculating
elements differ considerably from those of the osculating ones? Goldreich
(1965) stated, without a proof, that the secular components differ only in
high orders over the velocity-dependent part of the perturbation. In our
paper we shall probe the limits for this assumption.

2.3. BRUMBERG AND KINOSHITA

A development, part of which was similar to that of Goldreich (1965), was
independently carried out by Brumberg et al. (1971) who studied the orbits of
artificial lunar satellites in a coordinate system co-precessing with the Moon.
In that article, too, the non-osculating nature of the resulting orbital vari-
ables did not go unnoticed. The authors called these variables “‘contact ele-
ments” and stated (though never proved) that these variables do not return
the correct value of the velocity but that of the momentum. Later, one of
these authors rightly noted in his book (Brumberg, 1992) that the contact
elements differ from the osculating ones already in the first order over the
velocity-dependent part of the perturbation. In subsection 1.1.3 of that book,
he unsuccessfully tried to derive analytical transformations interconnecting
these sets of variables.’

>Contrary to the author’s statement, formula (1.1.41) in (Brumberg 1992) is not rigorous,
but is valid only to first order. (To make it rigorous, one should substitute everywhere, except
in the denominators, r with ¥ — 9R/0¥.) Besides, the author did not demonstrate his derivation
of formula (1.1.43) from (1.1.42). (In Brumberg’s book the mean anomaly is denoted with /,
not with M.) Most importantly, the qualitative reasoning presented by the author in the
paragraph preceding formula (1.1.43) is un-rigorous and essentially incorrect. The cause of
this is that the author compares the planetary equations for contact elements, written in a
precessing frame, with the equations for osculating ones, written in an inertial frame, instead
of comparing two such systems (for contact and for osculating elements) both of which are
written in a precessing frame. This makes a big difference because, as we already explained
above, transition to a precessing frame does not simply mean addition of an extra term to the
disturbing function.

Despite all these mathematical irregularities, the averaged system of planetary equations
(1.1.44), proposed by Brumberg for the first-order secular perturbations, turns out to be
correct in the limit of uniform precession. Just as in the preceding subsection we had a reason
to praise the unusual intuition of Goldreich, so here we have to pay tribute to the excellent
intuition of Brumberg, intuition which superseded his mathematics.
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A similar attempt was undertaken in a very interesting article by Ashby
and Allison (1993). Though the authors succeeded in many other points, their
attempt to derive formulae for such a gauge transformation was not suc-
cessful.®

The setting, considered by Goldreich (1965) in the context of Martian
satellites and by Brumberg et al. (1971) in the context of circumlunar orbits,
later emerged in the article by Kinoshita (1993) who addressed the satellites
of Uranus.

Kinoshita’s treatment of the problem was based on the following math-
ematical construction. Denote satellite’s positions and velocities in the iner-
tial and in the co-precessing axes with {r’,v'} and with {r,v},
correspondingly.” Interconnection between them will be implemented by an
orthogonal matrix A,

F=Af, V=F=Af' + At = A4 T+ AV = —fixt+4Ap’,  (38)
with i being the precession rate as seen in the co-precessing coordinate
system, and the inertial velocity v’ being identical to the inertial momentum
p’. Kinoshita suggested to interpret this interconnection as a canonical
transformation between variables {r’,p’} and {r,p}, implemented by a
generating function

B=p- At = (A'p) 7" (39)
This choice of generating function rightly yields
oF, -
— 2t A—'/ 40
S AT (40)

while the interconnection between momenta will look:

5 8F2 ~T_, . N T _ 15 o
B=n =4 ie. p=(4) 'p = Ap/, (41)

whence p= v+ pi x ¥. The Hamiltonian in precessing axes will read

S i . OF
H(E,p) = H* '@ 5') +

= H"(f',p') — (Fx P) - K. (42)

6 To carry out the gauge transformation, the authors used a set of intermediate variables
{Q{‘DVPI("O)} which were canonical and, at the same time, osculating. As follows from the
theorem proven by Efroimsky & Goldreich (2003), these variables are nonexistent when the
perturbation depends upon velocities.

"We use notations opposite to those in Kinoshita (1993), in order to conform with
Goldreich (1965).
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The Hamiltonian perturbation, caused by the inertial forces, is —(F x p) - i =
—J x i, vector J being the orbital angular momentum as seen in the co-
precessing frame. Comparing this with (23), we see that employment of the
above canonical transformation is but another method of stepping on the
same rake. In distinction from Goldreich (1965) and Brumberg et al. (1971),
Kinoshita in his paper did not notice that he was working with
non-osculating elements.

The problem with Kinoshita’s treatment is that the condition of can-
onicity in some situations comes into contradiction with the osculation
condition. In other words, canonicity sometimes implicitly contains a
constraint which is sometimes different from the Lagrange constraint (5).
This issue was comprehensively elucidated in the work Efroimsky and
Goldreich (2003). The authors began with the reduced two-body setting
and thoroughly re-examined the Hamilton-Jacobi procedure, which leads
one from the spherical coordinates and the corresponding canonical mo-
menta to the set of Delaunay variables. While, in the undisturbed two-
body case, this procedure yields the Delaunay variables which are trivially
osculating (and parameterise a fixed Keplerian ellipse or hyperbola), in the
perturbed case the situation becomes more involved. According to the
theorem proven in that paper, the resulting Delaunay elements are oscu-
lating (and parameterise a conic tangent to the perturbed trajectory) if the
Hamiltonian perturbation depends solely upon positions, and not upon
momenta (or, the same: if the Lagrangian perturbation depends upon
positions but not upon velocities). Otherwise, the Delaunay elements turn
out to be non-osculating (and parameterise the physical trajectory with a
sequence of non-tangent conics). As one can see from the above equation,
the Hamiltonian perturbation, caused by the inertial forces, depends upon
the momentum, and this circumstance indicates the problem. This trap, in
which many have fallen, is of a special importance in the general rela-
tivity, because the relativist corrections to the equations of motion are
velocity-dependent.®

8 In an interesting article (Chernoivan & Mamaev 1999), the authors addressed the two-
body problem on a curved background. The curvature entailed a velocity-dependent relativist
correction, which was treated as a perturbation. After carrying out the Hamilton-Jacobi
development, the authors arrived at canonical variables analogous to the Delaunay elements.
Orbit integration in terms of these variables would be as correct as in terms of any others. The
problems began when the authors used these elements to arrive at some conclusions regarding
the perihelion precession. Those conclusions need to be reconsidered, because they were
rendered on the basis of Delaunay elements that were non-osculating. Similar comments may
be made about the work by Richardson & Kelly (1988) who addressed, using a Hamiltonian
language, the two-body problem in the post-Newtonian approximation.
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3. Planetary Equations

In this section we briefly spell out some results obtained by Efroimsky and
Goldreich (2004) and use these results to derive the Lagrange-type planetary
equations (60-65) for osculating elements in a coordinate system co-
precessing with an oblate primary.

3.1. PLANETARY EQUATIONS FOR CONTACT ELEMENTS

Above, in subsection 2.1, we provided a very short account of the gauge
formalism. Expression (18), presented there, is the most general form of the
planetary equations for an arbitrary set of six independent orbital elements,
written in terms of an arbitrary disturbance of the Lagrangian.

When the elements C; are chosen to be the Keplerian or Delaunay sets of
variables, we arrive at the gauge-invariant versions of the Lagrange or
Delaunay planetary equations, correspondingly. They are written down in
Appendix to the paper (Efroimsky and Goldreich 2003). The interplay
between gauge freedom and the freedom of frame choice is explained at
length in Section 3 of Efroimsky and Goldreich (2004) which addresses
orbits about a precessing planet. It is demonstrated in that work that, if one
chooses to describe the motion in terms of the non-osculating elements that
were introduced in a co-precessing frame and were defined in the generalised
Lagrange gauge’ (19), then the corresponding Hamiltonian perturbation
will read:

AR = —[Ropiace (F) + i - (F x 8)], (43)
while the planetary equations (18) acquire the form
dC;  9(—AH)

e ="
or
ac; 9 ez
[C, Ci] a1 ocC, [Roblate (f) + 1 - (£ x g)], (44)

where f and g stand for the undisturbed (two-body) functional expressions of
the position and velocity, respectively, via the time and the chosen set of
orbital elements:

% It is an absolutely crucial point that choice of a gauge and choice of a reference frame
are two totally independent procedures. In each frame one has an opportunity to choose
among an infinite variety of gauges.
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(45)

—

Vzg(cl,...,c6,[)5 f(C],...,C6,l)

0
ot
(so that T (C\(¢), ..., Ce(1), 1) and g(Cy (1), ..., Cs(1), 1) become the ansatz for
solving the disturbed problem). For Rgpne in (43)—(44), one can employ,
dependent upon the desired degree of rigour, either the exact expression (27)
or its orbital average (32).

In the generalised Lagrange gauge (19) the canonical momentum becomes:

p‘:?+aA.£:g'+<f>+aA.£:§, (46)
or or
which means that its functional dependence upon the time and the chosen set
of orbital elements is the same as in the unperturbed case where both the
velocity and the momentum were simply equal to g(Cy, ..., Cs, ). This also
means that AH" coincides with Goldreich’s AH given by (27).

We see that the generalised Lagrange gauge (19) singles out the same set of
non-osculating elements which showed up in the studies by Goldreich (1965)
and Brumberg, et al. (1971), — the set of ““‘contact elements.” This is why in
(43) the Hamiltonian perturbation was written with the superscript “cont.”

In (44) the Lagrange-bracket matrix is defined in the unperturbed two-
body fashion (9) and can, therefore, be trivially inverted. Hence, when the
elements are chosen as the Keplerian ones, the appropriate equations look
like the customary Lagrange-type equations (i.e., like (25) and (26) above),
with the disturbing function given by (26) or, the same, by (43):

da 2 9(—AH™M)

dtr na oM. 4
dt na oM, ’ (47)
% B 1 — 2 a(_AH(cont)) (1 _ ez)l/z a(_AH(com)) (48)
di na% oM, nae dw ’
d_w_ —COS1I 8<_A’H(cont)) (1 _ 82)1/26<_AH(cont))
dz _naz(l—ez)l/zsini oi nate De '
(49)
di B —Ccosi o (_AH(cont)) 1 o (AH(cont))
dr naz(l—ez)l/2 sin i Ow na2(1_€2)1/2 sin 7 B1e) ’
(50)
do 1 —A (cont)
_ 9 ( H ) (s1)

g_naz(l — ) sin i 0i ’
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dM, 1-¢%*0 (_AH(Cont)) 29 (_AH(cont))

dt  nale Oe na Oa

: (52)

3.2. PLANETARY EQUATIONS FOR OSCULATING ELEMENTS

When one introduces elements in the precessing frame and also demands that
they osculate in this frame (i.e., makes them obey the Lagrange gauge ® = 0)
then the Hamiltonian variation reads:!°

-

AR = —[Roppae(v) + i - (Fx 8) + (i x T) - (ji x 1), (53)

while equation (18) becomes:

dc;  OAH©  [of . . og

[QCHET___7%7_+"‘Q%;Xg_fxaq

. (- of Y, R
_"'(fxacn)_(“Xf)aCn("Xf)' (54)

To ease the comparison of this equation with (44), it is convenient to split the
expression for AH(* in (53) into two parts:

A = — [Roptaie (F.1) + i - ( x 8)] (55)
and

(i xT)- (i xT), (56)
and then to group the latter part with the last term on the right-hand side
of (54):

dc; OAHE™ [ of | 4 o8 L (= Of
G Gl g =~ %¢ +lll‘(acnxg_fxacn B Lieres

— —

(B (< T, (57)

n

One other option is to fully absorb the O(|i|*) term into A, i.e., to intro-
duce the amended ‘““Hamiltonian”

— — —

“AH = —[Roaie(v) + - (Fx @) 45 (1 < B) - (i x ) (58)

10 Just as AR in (43), this Hamiltonian variation is still equal to
—[R(E,)+H-I]=—[R(f,)) +H-(fxp)

-

However, the canonical momentum now is different from g and reads as: g =g+ (i x f).
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and to write down the equations like this:

ac; 9 AW> . (of . - 08\ . [+ Of
G Gl = "¢ +"'(acnxg_fxacn)_”'<fxacn>‘
(59)

For C; being chosen as the Keplerian elements, inversion of the Lagrange
brackets will yield the following Lagrange-type system:

da 2 |0(—"AH") . [+ Of
E‘%[—am ‘"'(“aMo)]’ (60

de 1-€|d(—AH") ' of
dt  nale oM, H oM,

(1—A"o(=“AH”) _ (of _ . 0og
na*e 0w T 8_a)xg_f><8_w
. (e Of
[ Fx 2=
i ()] )
do _ —cos i 8(—“AH”)+4 ifxﬁ_fx@'
di na2(1—e2)sini i Hlai® i

L (= Of\| =AD"V |o(=<An?) _ [(of . - og
_"'<fxa>]+ na’e ge  TH g ey,

_i. (r?)] ()

o(—“AH”) _ [of . . og
+u-<8—wxg—fxa—w>

S (A Y RN N TS
ow na(1 — ¢2)"?sin i oQ

L (of | . Og (s of
+ll a_QXg_fxa_Q —'1 fxa—Q

, (63)
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dQ O(="AKY) o ok . o 08
dz 7na2(1 —62)1/2 sin { i i E

dM(,__l—ez 8(—“AH”)+_,. ix_’—fx@ __',' fxﬁ_f
dt ndle Oe 2 Oe g Oe K Oe

2 [a(=“AH”) _ [(of _ - 08\ . (. Of
‘ﬁ[T“"(—axg‘“%)‘"'(“ﬁ)]’

(65)

terms fi - ( (OF/OM,) x g — (88/OM,) x f) being omitted in (60—61), because
these terms vanish identically (see the” Appendix). In equations (59-65),
“AH” is given by (58). With (27-28) and (31) taken into account, it will look
like this:

MM = — [Robmm Pl g+ h (i E) - (i x f)}
= GH;J”’; [1 =3 sin’isin®(0+v)] +/Gma(l — ) &. - i
-1—1( f) (uxf)

GmJ2p2< + e cosv
3

> [1 -3 sin®i sin*(w +v)]

a 1 —e2
+1/Gma(l —e?) (u;sinisin Q — p, sin i cos Q + p5 cos i)
+2(u><f) (uxf) (66)

To compute the secular parts of the elements, one can use, on the right-hand
side of (60-65), the orbital averages (denoted with the (...) symbol). The

averaged ‘“Hamiltonian” will look:
(AR = {<Robm> Pl Exg) 2 (i T) - (i ?)ﬁ

_GmJyp*3costi—1 \/—2
= 5(1_62)3/2+ Gma(l —¢?)

| =
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X (py sin isin Q — p, sin i cos Q + 3 cos i)
1./ N /L =

+§<(u><f>-<uxf>>. (67)
The expression for f x g is true-anomaly-independent and, therefore, does
not need to be bracketed with the averaging symbols (- - ). The expression for
(ﬁ x f) - [ x f) through the orbital elements is too cumbersome, and here
we do not write’it down explicitly. (See formula (188) in the Appendix to our
preprint Efroimsky, 2004.) When we permit ourselves to neglect the O(|ji]?)

inputs, all three functions, AH(*®), AH ") and “AH” coincidard so do their
averages. In this approximation, they all are equal to:

AHED = (“AH) ~ (AR (AH) = — [(Roae) + - (Fx B

_GmJyp*3 coszi—1+
- 4 a3 (1 B 62)3/2
X (u; sin isin Q — p, sin 7 cos Q + 5 cos i). (68)

Gma(l —e?)

Two important issues should be dwelt upon at this point. First, we would
remind that the function AH©™), given by expression (43), yields the correct
functional form of the Hamiltonian only in the case where we express the
Hamiltonian through the contact elements (and calculate these through (44)
or (47-52)). In the currently considered case of osculating elements, this
AH©™ is nor the correct expression for the Hamiltonian. The correct
functional dependence of the Hamiltonian upon the osculating elements,
AH®) is given by formula (53). Though in this dynamical problem the
Hamiltonian is unique, its functional dependencies through the contact and
through the osculating elements differ from one another, one being A"
as in (43), and the other being AH(®) as in (53). As for the function “AH”
rendered by (58), it is not really a Hamiltonian, but is simply a convenient
mathematical entity. In the approximation, where O(|f|°) terms are ne-
glected, there is no difference between these three functions. Despite this, the
O(||) and O(|ﬁ|2) terms do stay in equations (59-65) for osculating elements.

Second, we would comment on our use of expressions (30-31) in our
derivation of (66-68). Above, in subsections 2.2 and 3.1, the use of (28) and
(31)  was based on formula (30) which 1nterconnected J=rx p=
fx (F+ [T f) with contact elements a, e, i, and Q. As _demonstrated in
Efroimsky and Goldreich (2004), in that frame ¥ r= g — u x f. Hence, formula
(30) interconnects the contact elements with J =f x g. In the present sub-
sectlon we _use formula (30) in its usual capacity, i.e., to interconnect
J=Fxr=1fx g with osculating elements «, e, i, and Q. It may seem con-
fusing that, though in both cases this formula can be written down in the
same way,
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fxg=1/Gma(l — )W, (69)

its meaning is so different. The clue to understanding this difference lies in the
fact that in one case ¥ = g — i x f (and, therefore, the elements are contact),
while in the other case ¥ = g (which makes the elements osculating). For more
details see Efroimsky and Goldreich (2004).

4. Comparison of the Orbital Calculations, Performed in Terms of the Contact
Elements, With those Performed in Terms of the Osculating Elements:
The Simplest Approximation

As explained in Section 2, it follows from equations (24-25) that an initially
small inclination remains so in the course of the oblate primary’s precession.
Whether this famous result may be interpreted as keeping of satellites in
the near-equatorial zone of a precessing planet will depend upon how well the
non-osculating (contact) inclination emerging in (24-37) approximates
the physical, osculating, inclination rendered by (60—-65).

4.1. THE AVERAGED PLANETARY EQUATIONS

Comparing equations (60-65) for osculating elements with equations (47—
52) for contact elements, we immediately see that they differ already in the
first order over the precession rate f and, therefore, the values of the
contact elements will differ from those of their osculating counterparts in
the first order, too. A thorough investigation of this difference would
demand numerical implementation of both systems and would be ex-
tremely time consuming. Meanwhile, we can get some preliminary esti-
mates by asking the following, simplified, question: how will the secular,
i.e., averaged over an orbital period, components of the contact and
orbital elements differ from one another? To answer this question, we
perform the following approximations:

(1). In equations (60—65), we substitute both the Ropate term in the Hamilto-
nian and the pi-dependent terms with their averages (so that, for example,
the Roplate term will be now substituted with (Ropjate) expressed via (32)).

(2). We neglect the terms of order ji>. This way, we restrict the length of time
scales involved. (Over sufficiently long times even small terms may
accumulate to a noticeable secular correction.) However, we can now
benefit from the approximate equality (68).
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So truncated and averaged system of Lagrange-type equations will read:

da 2 (. of
de_1-2| [ofz of \\| (1-&)"
dt  nd’e " oM, nate
L (of . L o8 (. of
d_w_ —cosi 6(—AH(em)+ . 8_fx_,_f»><8_§
di na2(1—e2)"sini i Hlai® o
L. of (1= [a(=AHCY [ (of . - og
_<u<fxg>>]+ na’e ge  T\Flae e g,
. of
—<u<fx§>>], (72)

di cos - a—fxﬁ—fxa—g — (g fxa—f
dt na2(1—¢2)Psin i # o0 " ® dw " do
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O(—AHCDY [/ fof _ - og
I A 7Rk e

(= oOf
9]

the Hamiltonian here being approximated by (68), and the angular brackets
signifying orbital averaging. In equations (70), (71) and (73) we took into
account that the averaged Hamiltonian (68) bears no dependence upon M,
and w. (This, though, will not be the case for the exact, v-dependent,
Hamiltonian given by (53) and (27)!) . o

Calculation of ( (0f/0C;) x g§ — (0g/0C;) x f) and —pi(f x 0g/0C; ) takes
pages of algebra. A short synopsis of this calculation is offered “in the
Appendix (while a detailed calculation is presented in the Appendix in
Efroimsky, 2004). Here follows the outcome:

_ (of . - 08\ 3 [Ggm(l-é&)
w(axg—fx%)—im g (76)
L (of . . o8 na* (3e+2 cos v+ e cos v)

# (86 5 86) + (14 ecosv)V1 —e? 77
L (of . . o8 na*v1—e? |
u(a—wxg—fxa—w ——2ﬂlm651nv, (78)

na*v1—e?

1 ifcos Qcosl?
[ Tecosy sini{cos Qcos[2(w+V)]

Lfof . . o8
H'(a—QXg—fXa—>:,u1

—sinQcosisin[2(w+v)]}

2

na*v'1—e?

Tcoseve sini{cos Qcos(v+2w)

—2sinQcosisin(w+v)cosw}
2 2

na-vl—e

T 1+ecosv

sini{sinQcos[2(w+v)]

+cosQcosisin[2(w+v)]}

na*V'1 —e?

+————esini{sinQcos(v+2w)
l+ecosv
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—

og

oi

=—jya

)

+2cosQcosisin(w+v) cos a)}]

na*V1i—e* . ,

+ 15 1+ecosvSin isin[2(w+v)]
2,/1_ 2
u2e{—sinv—i—sin2z'cosa)sin(a)+v)} ,
14ecosv
(79)

na*V'l — 2

—H 14+ecosv

x {[(—sin Q cos i cos 2w — cos Q sin 2w)

x (cos? v —sin® v) +2 sin v cos v

X (sin Q cos i sin 2w — cos Q cos 2m)]

+ e[(—sin Q cos icos 2w—cos Q sin 2w) cos v

+ (sin Q cos i sin 2w — 2cos Q cos® w) sin v] }
na’v/'1 —e?

T l+ecosv

—sin Q sin 2w) (cos

X (—cos Q cos iQsin 2w — sin Q cos 2m)]

+ e[(cos Q cos i Q cos 2w — sin Q sin 2w) cos v

+ (=2sin Q cos® w + cos Q sin 2w cos i)sinv] }

{[(cos Qcosicos 2w

2y —sin® v)—|— 2sin vy cos v

N na’v/1 —e?
#3 l+ecosv
—2sin 2w sin v cos v| + e [sin  cos 2w cos v

—sin i sin 2w sin v]}, (80)

sin i [cos 2w (cos? v —sin’ v
{sini] (

X 8§> =0, (81)

2&sin v. (83)

l1+ecosv
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. [+ Of (1—e)?
e (fx—]| = id———t 84
. ( 8@) H (1 +e cos v)* (84)
L of (1—e%)?
—ji- (Fx==) = ——2—{ji[cos Q cos(w + v
R ) = @ s e 7 Ul @ cos(o )
—sinQ sin(w + v) cos i] sin (w + v) sin i.
+ f1p[sin Q cos(w + v) + cos Q sin (w + v) cos i
X sin (@ + v) sin i

+ i [cos? (@ + v)+sin* (@ + v) cos® i] }, (85)

. (= of 1 —e?)?
_ﬁ.<f><a—,>:azﬁx{ﬂl[—cosglsin(wjtv)

— sin Q cos (@ + v) cos ] sin (@ + v).

+ [b[—sin Q sin(w + v)

+ cos Q cos (w + v) cos i sin (@ + v)

+ f13 sin (w + v) cos (@ + v) sin i} (86)

PO S N
‘W<“8M>=—mfwa—a, (87)

with p;, 1y, u3 being the Cartesian components of the precession rate, as seen
in the co-precessing frame, and p, being the component of the precession
rate, aimed in the direction of the angular momentum; it is given by (120).

It may seem strange that the right-hand side of (77) does not vanish in the
limit of ¢ — 0. The absurdity of this will be easily redeemed by the fact that
this term shows up only in the equation for dw/d¢ and, therefore, leads to no
physical paradoxes in the limit of a circular orbit. However, for finite values
of the eccentricity, this term contributes to the periapse precession.

Another seemingly calamitous thing is the divergence in (83). This
divergence, however, entails no disastrous physical consequences, because the
term (83) shows up only in the planetary equation for dM,/d¢ and simply
leads to a steady shift of the initial condition M,.

4.2 THE CASE OF A CONSTANT PRECESSION RATE

The situation might simplify very considerably if we could also assume that
the precession rate ji stays constant. Then in equations (70-75), we would
take i out of the angular brackets and proceed with averaging the expres-
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sions g(@f/ 0Cj) x g — fx (0g/ 0C;j) ) only (while all the terms with it will now
vanish). It is, of course, well known' that this is physically wrong, because the
planetary precession has a continuous spectrum of frequencies (some of
which are commensurate with the orbital frequency of the satellite).!' Nev-
ertheless, for the sake of argument let us go on with this assumption.

Averaging of (76) and (81) is self-evident. Averaging of (77-80) is lengthy
and is presented in the Appendix of Efroimsky (2004). All in all, we get, for
constant p:

_J(of . . 9g\\ . (of . . 08\ 3  [Gm(1-¢)
H'<<%Xg—f><%>>—ll'(&Xg—fxa>—EML 4

(88)

_ o . - 08 .
p<<a—cl><g—f><a—cl>>:0, Cj:G,Q,(D,l,Mg. (89)

Since the orbital averages (89) vanish, then e will, along with « , stay constant
for as long as our approximation remains valid. Besides, no trace of i will be
left in the equations for Q and 7 . This means that, in the assumed approx-
imation and under the extra assumption of constant ji, the aforequoted
analysis (24-37), offered by Goldreich (1965), will remain valid at time scales
which are not too long. At longer scales (of order dozens to hundreds of
millions of years) one has to take into consideration the back reaction of the
short-period terms upon the secular ones (Laskar, 1990). Besides the latter
issue, the problem with this approximation is that it ignores both the long-
term evolution of the spin axis and the short-term nutations. For these
reasons, this approximation will not be extendable to long periods of Mars’
evolution. This puts forward the bigger question: what maximal amplitude of
obliquity variations could Mars afford, to keep both its satellites so close to
its equatorial plane?

Even in the unphysical case of constant i the averaged equation (75)
for the osculating M, differs, already in the first order over @ , from
equation (49) for the contact M,. In the realistic case of time-dependent
precession, the averages of terms containing i and g do not vanish (except
T ((8f/8M0) xg —f x (0g/0M,)) which is identically nil). These terms

' The case of the Earth rotation and precession is comprehensively reviewed by Eubanks
(1993). The Martian short-time-scale rotational dynamics is of an equal complexity, even
though Mars lacks oceans and the coupling of its rotation with the atmospheric motions is
weaker than in the case of the Earth. (Defraigne etal. 2003, Van Hoolst et al. 2000, Dehant
etal. 2000).
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show up in all equations (except in that for a) and influence the motion.
They will be the key to our understanding the long-term satellite
dynamics, including the secular drift of the orbit plane, caused by the
precession .

5. An Outline of a More Accurate Analysis: Resonances between
the Planetary Nutation and the Satellite Orbital Frequency

Precession of any planet contains, in itself, a continuous spectrum of circular
frequencies involved:'?

i(r) = / Oo[ﬁm(u) sin (ut) + ' (u) cos (ut) | du. (90)

with some modes being more prominent than the others. Here we denote the
angular frequency by u, because letters w and Q are already in use and stand
for the angles.

For our present purposes, it will be advantageous to express the precession
rate as function of the satellite’s true anomaly:

i) = / h [ﬁ(“')(W)sin(Wv) + J5O(W) cos(Wv) |dW. (91)
0

with W being the circular “frequency” related to the true anomaly v.
Needless to say, j(z), g(v), i(u), and (W) are different functions. However,
we take the liberty of using the same notation ji(---) because the argument
will always reveal which of these functions we imply. Evidently, pi(v) is a
short notation for p(#(v)). It is also possible to demonstrate that, under the
assumption of vanishing eccentricity and slowly-changing semimajor axis,

B(W) ~ nii(W)| ), and n=(Gm)' a2, (92)

If we now plug the real part of (91) into (76-88) and carry out averaging in
accordance with formula (112) of the Appendix, we shall see that the secular
parts of these fi- dependent terms do not vanish. They reveal the influence of the
planetary precession upon the satellite orbital motion. Especially interesting
are the resonant contributions provided by the integer Ws, because these
nutation modes are commensurate with the orbital motion of the satellite.
Another important (though non-resonant) contribution will come from inte-

12°A more honest analysis should take into account also the direct dependence of
the planet’s precession rate upon the instantaneous position(s) of its satellite(s):
H=H(aeQ w,i M,). However, the back-reaction of the satellites upon the primary is
known to be an effect of a higher order of smallness (Laskar, 2004), at least in the case
of Mars; and therefore we shall omit this circumstance by simply assuming that

i = (1) = B (1(1)).
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gration over the interval 0 < W < 1, because this interval is “‘responsible” for

the influence of the long-term obliquity variations upon the satellite orbit.
Insertion of (91) into (76-87) will result in extremely sophisticated inte-

grals. For example, the term (76) will have the following orbital average:

_(of L . 98\\ 3 [Gm(1-¢)
<u-<%xg—fx%)>—§ f(#ﬁ

Ry /°° aw [ () sin(y) +u(f)(2W) cos(W)
4nV a 0 0 (I +ecos v)

(93)
(the averaging rule (112) being employed). Evaluation of the two integrals
emerging in this expression can, in principle, be carried out in terms of the
hypergeometric functions, but the outcome will be hard to work with and
hard to interpret physically. Even worse integrals will show up in the aver-
ages of (77-87).

To get an idea of how much the terms (76-87) contribute to the secular
drift of the satellite orbits from the planet’s equator, it may be good to first
calculate these term’s averages under the assumption of small eccentricity.
Then, for example, (93) will simplify to

L (of . . Og 3 [Gm w2 [
= —fx =2 Y= —4/—(1 - dw
<l'- <8axg fx8a>> 47 a( e)/o

2n
X / dv{uf)(W)sin(Wv)(l —2ecos v+ 3e*cos” v+ -+ )
0

—l-ﬂ(f)(W) cos(Wv)(1 —2ecos v + 3¢? cos® v+ - - )} 54)

This expression contains both non-resonant and resonant terms. The lead-
ing resonant term emerges from integration of uf)(W) cos(Wv)(—2e)cos v
and is of the first order in the eccentricity. This input describes the resonance at
W = 1. Under the assumption of vanishing e and slowly-changing a, this
resonance corresponds to the 1:1 commensurability between the orbital fre-
quency and the consonant nutational mode. The next resonance will emerge
from integration of |\ (W) sin(Wv) + u\” (W) cos(W) | (3¢?) cos? v. Tt will
produce resonance at W = 2 and will be of the second order in e. We also see
that the non-resonant term is of the zeroth order over e (though it will also
accept contributions of higher orders in e ). This feature, though, will not be
generic. For example, orbital averaging of expression (77) will yield a resonance
already in the zeroth order over e . (This resonance will emerge due to the term
2 cos v in the denominator, and will single out the mode W = 1.) At the same
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time, the non-resonant contribution will show up due to the term 3e in the
denominator and will, therefore, be only of the first order in the eccentricity.

This topic will be addressed in our subsequent paper where we shall try to
determine how much time is needed for these subtle effects to accumulate,
enough to cause a substantial secular drift of the orbit plane.

6. Conclusions

In this article we have prepared an analytical launching pad for the re-
search of long-term evolution of orbits about a precessing oblate primary.
This paper is the first in a series and is technical, so we deliberately
avoided making quantitative estimates, leaving those for the next part of
our project.

The pivotal question emerging in the context of this research is whether
the orbital planes of near-equatorial satellites will drift away from the
planetary equator in the cause of the planet’s obliquity changes. Several facts
have been established in this regard.

First, the planetary equations for osculating elements of the satellite do
contain terms responsible for such a drift. These terms contain inputs of first
order and second order in f{, and of first order in [ , where [i is the precession
rate of the primary.

Second, the first-order (but not the second-order) terms average out in the
case of a constant precession rate, which means that in this case their effect
will accumulate only over extremely long time scales. We would remind that
the short-period terms of the planetary equations do exert back-reaction
upon the secular ones. While in the artificial-satellite science, which deals
with short intervals of time, the short-period terms may often be omitted in
long-term astronomical computations (dozens of million years and higher),
the accumulated influence of short-period terms must be taken into account.
A simple explanation of how this should be done is offered in section 2 of
Laskar (1990). Besides, over very large time intervals accumulation of the
contribution from the secular second-order terms will be taking place.

Third, the first-order drift terms do not average out in the case of variable
precession. Under these circumstances they become secular. This means, for
example, that the turbulent history of Mars’ obliquity—history which includes
both long-term changes (Ward 1973, 1974, 1979; Laskar & Robutel 1993;
Touma & Wisdom 1994) and short-term nutations (Dehant et al. 2000; Van
Hoolst et al 2000; Defraigne et al 2004) — might have lead to a secular drift of
the initially near-equatorial satellites. If that were the case, then the current,
still near-equatorial, location of Phobos and Deimos may lead to restrictions
upon the rate and amplitude of the Martian obliquity variations. To render a
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judgement on this topic, one should compute how quickly this drift accu-
mulates. Very likely, this quest will demand heavy-duty numerics.
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Appendix: The Inertial Terms Emerging in the Planetary Equations

In this Appendix we explain how the ji- and ﬁ— dependent terms in (60-65)
should be rewritten as functions of the true anomaly, and how these func-
tions should be averaged over the orbital period. We present the averaging
rule and provide only one example. Comprehensive calculations for all terms
can be found in Efroimsky (2004).

A.l. THE BASIC FORMULAE

Formulae (60-65) contain the two-body unperturbed expressions for the
position and velocity as functions of the time and the six Keplerian elements,
(1) and (7). To find their explicit form, one can employ an auxiliary set of
dextral perifocal coordinates q , with an origin at the gravitating centre, and
with the first two axes located in the plane of orbit:

1= 2
Hﬁ{cos v, sin v, O}T (97)

The corresponding velocities will read:

g={rcosv, rsinv, 0}'=4a

q-_{ na sin v na(e+ cos v)

T

na . T
— , , 0 = —sinv, (e+cosv),0}.
R } { ( ).0f

V1—e?

(98)
the radius in (97) being a function of the major semiaxis a, the eccentricity e,
and the true anomaly v:
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1 —¢?

T T e cos v (99)
the true anomaly v itself being a function of «, e, and of the mean anomaly
M=M,+ [/ ndt, where n= (Gm)'?a=3/2. Then, in the two-body setting,
the position and ve1001ty, related to some fiducial inertial frame, will appear
as:

—

r=1(Cy,...,Co,1) =R(Q,i,0){(a,e, M,, 1),
r=g(C1,...,Cs, 1) = R(Q,i,0) 4(a, e, M,, 1),

with ﬁ(Q, i,w) being the matrix of rotation from the orbital-plane-related
axes ¢ to some fixed Cartesian axes (xi, X2, x3) in the fiducial inertial frame
wherein the vectors r and r are defined. The rotation is parameterised by the
three Euler angles: inclination, #; the longitude of the node, Q; and the
argument of the pericentre, @ . Thence, as well known (see, e.g. Morbidelli
(2002), subsection 1.2),

(100)

R=
cos Q cos w—sin Qsin w cosi  —cos Q sin w — sin Q cos w cosi sin Q sin i
sin Q cos w+cos Qsin wcosi —sin Q sin w + cos Q cos w cosi —cos Qsin i
sin w sin i cos w sin i cos i

(101)

insertion whereof, together with (97), into the first equation of (100) yields

1= 2
fi= aTceosv [cos Q cos(w + v) — sin Q sin(w + v) cos ], (102)
1 —¢? . . .
= T cosy [sin Q cos(w + v) + cos Q sin(w + v) cos i, (103)
fr=a L-e sin(w + v) sin i (104)
P T fecos v '

Similarly, substitution of (98) and (101) into the second equation of (100)
entails:

na
= —cos Q sin(w + v) — sin Q cos(w + v) cos i
+ e(—cos Q sinw — sin Q cos w cos )], (105)
na
= —sin Q sin(w + v) + cos Q cos(w + v) cos i
+ e(—sin Q sinw + cos Q cos w cos )], (106)

na

83 = 1o

sin i [cos(w + v) + e cos w], (107)
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with the subscripts 1, 2,3 denoting the xi, x5, x3 components in the fiducial
inertial frame wherein (100) is written.

A.2. THE AVERAGING RULE

From equations

V1 —eé?si
cosE:M, sinE:ﬂ, (108)
1 +ecosv 14+ ecosvy
it follows that
0E V1 -—¢?

e S 1
ov 1l+ecosv (109)

From the first of formulae (108) and from the Kepler equation one can
derive:

oM 11— 2

OE l+ecosv’
Together, (109) and (110) entail:

OM oMM (1- ¢

Oy OE dv  l+ecosv

whence
2n _ ,2\3/2 pon
1 AM — (1 —e%) / dv .
2m Jo 2m 0 (l4ecosv)

(110)

(111)

Calculation of the integral shows that the right-hand side of the above
equation is equal to unity, which means that the secular parts should be
calculated through the following averaging rule:

B (1 o 62)3/2 2n dv

+ e cos v)?

A.3. EXAMPLE: CALCULATION OF [ - (% xg—fx %)

As evident from (97) and from the first equation of (100),

of _ (of\ (of\ (ov\ T ofor(ov
da \da ‘ ov Oa W’M()_a ot ov \ Oa teM,

) (113)
a g ov \Oa LeM,
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and, therefore,

o . 1.
Similarly, from (98) and the second equation of (100) it ensues that
OF_ (0R\ (OB\ (&) _ & 0g0i(v
da  \oa), \0v), \Oa Le’M{f 2a = 0tdv\da/,, .
_ - (115)
__ 8 (_Gmg\oriov
 2a it ) ov\oa/), u,
wherefrom
- 8§ 1 b4 —

In the undisturbed two-body problem, f x g is the angular momentum (per
unit of the reduced mass) and is equal to \/Gma(l — e?)W , where the unit
vector

W =x; sin i sin Q — %, sin i cos Q + x3 cos | (117)
is normal to the instantaneous osculating ellipse, the unit vectors X, X, X3
making the basis of the co-precessing coordinate system X, x», x3 (the axes x)
and x, belonging to the planet’s equatorial plane).

Together, (114) and (116) give:

of . - 08 3. 4_3\/72q
%xg—fx%f%fng% Gma(l — &*)w

3 1 —e?
= M[Ql sin i sin Q — x sin i cos Q
2 a
+ x3 cos i
(118)
and, thereby,
L (of . . o8\ 3 Gm(1 — e2)
= —fx=2| ==C —_— 7 119
H <8a><g Xam) FHL p (119)
where
W, = py sin i sin Q — p, sin i cos Q + s cos i. (120)

Since, for constant f, (119) is v-independent, then in the uniform-precession
case it will coincide with its orbital average.
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