12. Environment Figure 12.1 Carbon Dioxide Emissions From Energy Consumption by Source (Million Metric Tons of Carbon Dioxide) ^a Excludes emissions from biomass energy consumption. Web Page: http://www.eia.gov/totalenergy/data/monthly/#environment. Source: Table 12.1. ^b Includes coal coke net imports. **Carbon Dioxide Emissions From Energy Consumption by Source** | | | | | | | <u> </u> | | Petrole | um | | | | | | |--|---|---|--|---|---|---|--|---|--|---|--|---|---|---| | | Coal ^b | Natural
Gas ^c | Aviation
Gasoline | Distillate
Fuel Oild | Jet
Fuel | Kero-
sene | LPG ^e | Lubri-
cants | Motor
Gasoline ^f | Petroleum
Coke | Residual
Fuel Oil | Otherg | Total | Total ^{h,i} | | 1973 Total 1975 Total 1985 Total 1985 Total 1995 Total 1995 Total 1995 Total 1996 Total 1997 Total 1997 Total 1998 Total 1997 Total 2000 Total 2001 Total 2002 Total 2003 Total 2004 Total 2005 Total 2006 Total 2007 Total 2008 Total 2008 Total 2009 Total 2010 Total 2010 Total 2011 Total 2011 Total 2012 Total 2013 Total | 1,207
1,181
1,436
1,632
1,913
1,995
2,040
2,062
2,155
2,085
2,136
2,136
2,136
2,140
2,142
2,147
2,172
2,172
2,177
2,177
1,986
1,876
1,876
1,876
1,876 | 1,178
1,046
1,061
926
1,024
1,183
1,204
1,210
1,189
1,193
1,243
1,183
1,183
1,183
1,183
1,183
1,183
1,183
1,245
1,245
1,246
1,245
1,246
1,246
1,305
1,365
1,365
1,363
1,400 | 6543333322222222222222222222222222222222 | 480
443
446
445
470
498
534
537
555
579
597
586
610
632
639
645
647
610
559
585
599
574
581 | 155
146
156
178
223
222
234
238
245
254
243
237
231
246
246
248
226
209
209
206
210 | 32
24
24
17
8
8
9
10
12
11
11
16
8
8
10
10
10
10
11
10
11
11
11
11
11
11
11 | 92
82
87
87
80
86
86
87
82
99
97
88
87
87
87
87
87
87
88
83
79
78
88 | 13
11
13
12
13
13
13
14
14
14
14
11
12
12
11
11
10
9 |
911
911
900
930
988
1,045
1,063
1,075
1,107
1,128
1,136
1,136
1,136
1,187
1,210
1,210
1,217
1,211
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,143
1,14 | 54
51
49
54
70
76
79
80
93
96
86
96
96
107
106
100
93
87
82
79 | 508
443
453
216
220
152
152
142
158
163
144
125
138
155
165
122
128
110
90
93
79
65
56 | 100
97
142
93
127
121
139
145
128
133
118
135
130
142
144
143
150
132
112
117
113 | 2,350
2,212
2,275
2,036
2,187
2,216
2,300
2,323
2,372
2,479
2,479
2,479
2,513
2,598
2,617
2,576
2,409
2,229
2,252
2,252
2,252
2,252
2,252 | 4,735
4,439
4,771
4,609
5,039
5,323
5,584
5,638
5,868
5,761
5,804
5,853
5,970
6,000
5,809
5,386
5,386
5,582
5,432
5,432
5,432
5,432
5,436 | | 2014 January February March April May June July August September October November December Total | 166
152
145
118
129
148
162
161
139
124
131
137
1,713 | 173
148
138
105
97
93
101
104
97
103
127
144
1,430 | (S)
(S)
(S)
(S)
(S)
(S)
(S)
(S)
(S)
(S) | 56
49
52
50
51
49
50
49
55
49
54 | 17
16
18
18
17
19
19
18
18
18
19
216 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 10
7
7
6
5
6
6
6
6
7
8
8
8 | 1
1
1
1
1
1
1
1
1
1 | 86
81
91
90
94
91
96
97
89
95
90
93
1,095 | 8
5
3
6
7
6
8
6
7
7
7
7
5
7 | 5
3
4
4
4
4
4
5
4
45 | 8
9
9
10
9
9
11
10
9
110 | 191
171
184
185
188
193
193
186
197
187
193
2,252 | 531
472
468
409
416
426
457
458
423
425
446
476
5,406 | | February February March March May June July August September October November December Total | R 143
134
118
99
115
137
151
R 145
129
R 108
100
102 | 169
159
140
R 108
100
103
112
111
103
R 107
122
140 | (S)
(S)
(S)
(S)
(S)
(S)
(S)
(S)
(S)
(S) | 54
53
53
50
49
49
50
50
51
52
47
49
607 | 17
16
19
18
19
20
21
20
18
20
18
20
22
20 | (S)
(S)
(S)
(S)
(S)
(S)
(S)
(S)
(S)
(S) | 9
8
7
6
6
6
7
7
6
7
8
8
85 | 1
1
1
1
1
1
1
1
1
1 | 90
83
94
93
96
95
99
94
96
92
95
1,126 | 7
4
7
7
7
7
8
5
6
5
76 | 4
3
4
2
4
3
5
4
4
4
4
4
5
4
4
4
5
4 | 8
9
9
12
11
11
10
9
7
9
10
115 | 192
177
195
187
194
192
201
198
187
193
184
195
2,295 | 504
470
R 455
R 395
410
R 432
R 464
R 456
R 419
R 410
R 406
438
R 5,259 | | Page 1 2016 January | 125
103
83
81
92
126
146
145
124 | 168
144
R 128
113
107
109
119
120
106 | (S)
(S)
(S)
(S)
(S)
(S)
(S)
(S) | 49
48
51
48
48
48
46
50
49 | 18
18
19
19
21
21
21
21
20 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 9
8
7
6
6
5
6
6
7
61 | 1
1
1
1
1
1
1
1
8 | 90
90
98
93
97
100
100
96
862 | 6
7
5
5
4
6
8
5
5
3 | 5
3
6
7
5
6
7
5
4
48 | 10
11
9
9
9
9
11
10
86 | 189
185
198
188
192
192
196
202
191
1,731 | 483
433
409
383
391
427
R 461
468
421
3,876 | | 2015 9-Month Total
2014 9-Month Total | 1,170
1,321 | 1,104
1,056 | 1
1 | 459
455 | 169
160 | 1
1 | 62
60 | 9
8 | 842
817 | 59
57 | 33
33 | 88
82 | 1,723
1,674 | 4,006
4,059 | R=Revised. (s)=Less than 0.5 million metric tons. Notes: • Data are estimates for carbon dioxide emissions from energy consumption, including the nonfuel use of fossil fuels. See "Section 12 Methodology and Sources" at end of section. • See "Carbon Dioxide" in Glossary. See Note 1, "Emissions of Carbon Dioxide and Other Greenhouse Gases," at end of section. • Data exclude emissions from biomass energy consumption. See Table 12.7 and Note 2, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. • Totals may not equal sum of components due to independent rounding. • Geographic coverage is the 50 states and the District of Columbia. Web Page: See http://www.eia.gov/totalenergy/data/monthly/#environment (Excel and CSV files) for all available annual and monthly data beginning in 1973. Sources: See end of section. ^{a Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. b Includes coal coke net imports. c Natural gas, excluding supplemental gaseous fuels. d Distillate fuel oil, excluding biodiesel. e Liquefied petroleum gases. f Finished motor gasoline, excluding fuel ethanol. 9 Aviation gasoline blending components, crude oil, motor gasoline blending components, pentanes plus, petrochemical feedstocks, special naphthas, still gas, unfinished oils, waxes, and miscellaneous petroleum products. h Includes electric power sector use of geothermal energy and non-biomass waste. See Table 12.6. I Excludes emissions from biomass energy consumption. See Table 12.7.} Figure 12.2 Carbon Dioxide Emissions From Energy Consumption by Sector (Million Metric Tons of Carbon Dioxide) ^a Excludes emissions from biomass energy consumption. total electricity retail sales. Web Page: http://www.eia.gov/totalenergy/data/monthly/#environment. Sources: Tables 12.2–12.6. ^b Emissions from energy consumption in the electric power sector are allocated to the end-use sectors in proportion to each sector's share of Table 12.2 Carbon Dioxide Emissions From Energy Consumption: Residential Sector | | | | | Petrole | eum | | | | |--|----------|-----------------------------|-------------------------------------|------------|-------------------------|-----------|------------------------------------|-----------------------| | | Coal | Natural
Gas ^b | Distillate
Fuel Oil ^c | Kerosene | LPG ^d | Total | Retail
Electricity ^e | Total ^f | | 1973 Total | 9 | 264 | 147 | 16 | 36 | 199 | 435 | 907 | | 1975 Total | 6 | 266 | 132 | 12 | 32 | 176 | 419 | 867 | | 1980 Total | 3 | 256 | 96 | 8 | 20 |
124 | 529 | 911 | | 1985 Total | 4 | 241 | 80 | 11 | 20 | 111 | 553 | 909 | | 1990 Total | 3 | 238 | 72 | 5 | 22 | 98 | 624 | 963 | | 1995 Total | 2 | 263 | 66 | 5 | 25 | 96 | 678 | 1,039 | | 1996 Total | 2 | 284 | 68 | 6
7 | 30 | 104 | 710 | 1,099 | | 1997 Total | 2 | 270 | 64
56 | 8 | 29
27 | 99
91 | 719 | 1,090 | | 1998 Total
1999 Total | 1 | 247
257 | 60 | 8 | 21 | 102 | 759
762 | 1,097
1.122 | | 2000 Total | 1 | 271 | 66 | 7 | 33
35 | 102 | 805 | 1,122 | | 2001 Total | i | 259 | 66 | 7 | 33 | 106 | 805 | 1,171 | | 2002 Total | i | 265 | 63 | 4 | 33
34 | 101 | 835 | 1,203 | | 2003 Total | 1 | 276 | 68 | 5 | 34 | 108 | 847 | 1,232 | | 2004 Total | 1 | 264 | 67 | 6 | 32 | 106 | 856 | 1,227 | | 2005 Total | 1 | 262 | 62 | 6 | 32 | 101 | 897 | 1,261 | | 2006 Total | 1 | 237 | 52 | 5 | 28 | 85 | 869 | 1,191 | | 2007 Total | . 1 | 257 | 53 | 3 | 31 | 86 | 897 | 1,241 | | 2008 Total | NA | 266 | 55 | 2 | 35 | 91 | 877 | 1,234 | | 2009 Total | NA | 259 | 43 | 2 | 35 | <u>79</u> | 819 | 1,157 | | 2010 Total | NA | 259 | 41 | 2 | 33 | 77 | 874 | 1,210 | | 2011 Total | NA
NA | 255
225 | 38
35 | 1 | 31 | 70
61 | 823 | 1,148
1,043 | | 2012 Total
2013 Total | NA
NA | 225
267 | 36 | 1 | 25
30 | 66 | 757
768 | 1,100 | | 2014 January | NA | 57 | 4 | (s) | 3 | 8 | 84 | 149 | | February | NA | 47 | 5 | (s) | 2 | 7 | 72 | 126 | | March | NA | 38 | 4 | (s) | 2 | 7 | 63 | 108 | | April | NA | 19 | 2 | (s) | 2
2 | 4 | 47 | 70 | | May | NA | 11 | 3 | (s) | 2 | 5 | 51 | 67 | | June | NA | 7 | 2 | (s) | 2
2
2 | 5 | 65 | 77 | | July | NA | 6 | 2 2 | (s) | 2 | 4 | 77 | 88 | | August | NA | 6 | 2 | (s) | 2 | 5 | 77 | 88 | | September | NA | 7 | 3 | (s) | 2 | 5 | 63 | 76 | | October | NA | 12
30 | 3 4 | (s)
(s) | 2 3 | 6 | 51
54 | 68
90 | | November | NA
NA | 30
39 | 4 4 | | 3 | 6
7 | 63 | 90
110 | | December
Total | NA
NA | 278 | 39 | (s)
1 | 2 9 | 69 | 766 | 1,113 | | 2015 January | NA | 51 | 5 | (s) | 3 | 8 | R 71 | ^R 131 | | February | NA | 50 | 4 | (s) | 3
3 | 7 | R 66 | 123 | | March | NA | 35 | 4 | (s) | 2 2 | 6 | 57 | 98 | | April | NA | 18 | 2 | (s) | 2 | 4 | 42 | 64 | | May | NA | 10 | 2 | (s) | 2 | 5 | 49 | 63 | | June | NA | 7 | 1 | (s) | 2 | 4 | R 65 | 76
^R 90 | | July | NA
NA | 6
6 | 1 2 | (s) | 2
2
2
2
2 | 4
4 | 81
R 77 | N 90
R 87 | | August
September | NA
NA | 6 | 2 | (s)
(s) | 2 | 4 | R 64 | R 74 | | October | NA
NA | 11 | 4 | (s) | 2 | 7 | R 48 | R 66 | | November | NA | 22 | 5 | (s) | 3 | 7 | R 44 | R 74 | | December | NA | 32 | 5 | (s) | 3 | 8 | R 51 | 92 | | Total | NA | 253 | 38 | 1 | 30 | 68 | R 714 | R 1,036 | | 2016 January | NA | 49 | 6 | (s) | 3
3
2
2
2 | 9 | 65 | 123 | | February | NA | 38 | 6 | (s) | 3 | 8 | 52 | 99 | | March | NA | 25 | 4 4 | (s) | 3 | 7 | 41 | 73 | | April | NA
NA | 18 | 3 | (s) | 2 | 6
6 | 38
43 | 62
60 | | May | NA
NA | 11
7 | 2 | (s) | 2 | 6
4 | 43
66 | 60
77 | | June | NA
NA | 6 | 2 | (s) | 2 | 5 | R 84 | 77
95 | | July | NA
NA | 6 | 2 | (s)
(s) | 2 | 5
4 | R 83 | 95
93 | | August
September | NA
NA | 6 | 2 | (S)
(S) | 2 | 5 | 65 | 93
76 | | 9-Month Total | NA
NA | 165 | 31 | (s) | 22 | 53 | 538 | 757 | | 2015 9-Month Total
2014 9-Month Total | NA
NA | 187
198 | 24
28 | (s)
1 | 22
21 | 46
50 | 572
601 | 806
848 | Notes: • Data are estimates for carbon dioxide emissions from energy consumption. See "Section 12 Methodology and Sources" at end of section. • See "Carbon Dioxide" in Glossary. • See Note 1, "Emissions of Carbon Dioxide and Other Greenhouse Gases," at end of section. • Data exclude emissions from biomass energy consumption. See Table 12.7 and Note 2, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. • Totals may not equal sum of components due to independent rounding. • Geographic coverage is the 50 states and the District of Columbia. Web Page: See http://www.eia.gov/totalenergy/data/monthly/#environment (Excel and CSV files) for all available annual and monthly data beginning in 1973. Sources: See end of section. ^{a Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. b Natural gas, excluding supplemental gaseous fuels. c Distillate fuel oil, excluding biodiesel. d Liquefied petroleum gases. E missions from energy consumption (for electricity and a small amount of useful thermal output) in the electric power sector are allocated to the end-use sectors in proportion to each sector's share of total electricity retail sales. See Tables 7.6 and 12.6. Excludes emissions from biomass energy consumption. See Table 12.7. R=Revised. NA=Not available. (s)=Less than 0.5 million metric tons.} Carbon Dioxide Emissions From Energy Consumption: Commercial Sector **Table 12.3** | | Coal | Natural
Gas ^b | Distillate
Fuel Oil ^c | Kerosene | LPG ^d | Motor
Gasoline ^e | Petroleum
Coke | Residual
Fuel Oil | Total | Retail
Electricity ^f | Total ^g | |--------------------------|-----------------|-----------------------------|-------------------------------------|------------|------------------|--------------------------------|-------------------|----------------------|------------|------------------------------------|------------------------------------| | 1973 Total | 15 | 141 | 47 | 5 | 9 | 6 | NA | 52 | 120 | 334 | 609 | | 1975 Total | 14 | 136 | 43 | 4 | 8 | 6 | NA | 39 | 100 | 333 | 583 | | 1980 Total | 11 | 141 | 38 | 3 | 6 | 8 | NA | 44 | 98 | 412 | 662 | | 1985 Total | 13 | 132 | 46 | 2 | 6 | 7 | NA | 18 | 79 | 480 | 704 | | 1990 Total | 12
11 | 142
164 | 39
35 | 1
2 | 6
7 | 8
1 | 0 | 18
11 | 73
56 | 566
620 | 793
851 | | 1995 Total
1996 Total | 12 | 171 | 35 | 2 | 8 | 2 | (s)
(s) | 11 | 56
57 | 643 | 883 | | 1997 Total | 12 | 174 | 32 | 2 | 8 | 3 | (s) | 9 | 54 | 686 | 926 | | 1998 Total | 9 | 164 | 31 | 2 | 7 | 3 | (s) | 7 | 50 | 724 | 947 | | 1999 Total | 10 | 165 | 32 | 2 | 9 | 2 | (s) | 6 | 51 | 735 | 960 | | 2000 Total | 9 | 173 | 36 | 2 | 9 | 3 | (s) | 7 | 58 | 783 | 1,022 | | 2001 Total | 9 | 164 | 37 | 2 | 9 | 3 | (s) | 6 | 57 | 797 | 1,027 | | 2002 Total | 9 | 170 | 32 | 1 | 9 | 3 | (s) | 6 | 52 | 795 | 1,026 | | 2003 Total | 8
10 | 173
170 | 36
34 | 1
1 | 10
10 | 4
3 | (s)
(s) | 9
10 | 60
58 | 796
815 | 1,037 | | 2004 Total
2005 Total | 9 | 163 | 33 | 2 | 8 | 3 | (S)
(S) | 9 | 55 | 841 | 1,053
1,069 | | 2006 Total | 6 | 154 | 29 | 1 | 8 | 3 | (s) | 6 | 47 | 835 | 1,043 | | 2007 Total | 7 | 164 | 28 | i | 8 | 4 | (s) | ő | 46 | 861 | 1.078 | | 2008 Total | 8 | 171 | 28 | (s) | 10 | 3 | (s) | 6 | 47 | 849 | 1,075 | | 2009 Total | 7 | 169 | 29 | (s) | 9 | 4 | (s) | 6 | 47 | 784 | 1,007 | | 2010 Total | 7 | 168 | 29 | (s) | 9 | 3 | (s) | 5 | 46 | 804 | 1,025 | | 2011 Total | 6 | 171 | 29 | (s) | 9 | 3 | (s) | 4 | 45 | 768 | 990 | | 2012 Total | 4 | 157 | 26 | (s) | 9 | 3 | (s) | 2 | 40 | 731 | 932 | | 2013 Total | 4 | 179 | 25 | (s) | 10 | 3 | (s) | 2 | 40 | 736 | 959 | | 2014 January | 1 | 31 | 3 | (s) | 1 | (s) | (s) | (s) | 4 | 66 | 102 | | February | , 1 | 27 | 3 | (s) | 1 | (s) | (s) | (s) | 4 | 59 | 90 | | March | (s) | 23 | 3 | (s) | 1 | (s) | (s) | (s) | 4 | 59 | 87 | | April | (s) | 14
10 | 1 2 | (s) | 1 | (s) | (s) | (s) | 2 | 52
59 | 68
71 | | May
June | (s)
(s) | 8 | 2 | (s)
(s) | 1 | (s)
(s) | (s)
0 | (s)
(s) | 3 | 66 | 76 | | July | (s) | 8 | 1 | (s) | i | (s) | (s) | (s) | 2 | 71 | 81 | | August | (s) | 7 | l i | (s) | i | (s) | (s) | (s) | 3 | 72 | 82 | | September | (s) | 8 | 2 | (s) | 1 | (s) | (s) | (s) | 3 | 63 | 75 | | October | (s) | 11 | 2 | (s) | 1 | (s) | (s) | (s) | 3 | 58 | 73 | | November | (s) | 20 | 3 | (s) | 1 | (s) | (s) | (s) | 4 | 56 | 80 | | December | (s) | 23 | 3 | (s) | .1 | (s) | (s) | (s) | 4 | _57 | 84 | | Total | 4 | 190 | 26 | (s) | 10 | 4 | (s) | 1 | 40 | 736 | 970 | | 2015 January | (s) | 29 | 3 | (s) | 1 | (s) | (s) | (s) | 5 | R 60 | R 94 | | February | (s) | 28 | 3 2 | (s) | 1 | (s) | (s) | (s) | 4 | ^R 56
^R 52 | R 89 | | March | (s)
(s) | 21
13 | 1 | (s)
(s) | 1 | (s) | (s)
(s) | (s)
(s) | 4 | R 48 | ^R 77
64 | | April
May | (s) | 9 | | (S) | 1 | (s)
(s) | (S) | (s) | 3 | 56 | R 67 | | June | (s) | 7 | l i | (s) | i | (s) | (3) | (s) | 2 | 65 | R 74 | | July | (s) | 7 | 1 | (s) | 1 | (s) | Ö | (s) | 2 | R 71 | R 80 | | August | (s) | 7 | 1 | (s) | 1 | (s) | (s) | (s) | 2 | R 69 | R 79 | | September | (s) | 8 | 1 | (s) | 1 | (s) | (s) | (s) | 2 | R 62 | R 72 | | October | (s) | 11 | 3 | (s) | 1 | (s) | (s) | (s) | 4 | R 55 | R 70 | | November | (s) | 16 | 3 3 | (s) | 1 | (s) | (s) | (s) | 4
5 | ^R 50
49 | ^R 70
^R 73 | | December | (s)
3 | 19
176 | 25 | (s)
(s) | 1
10 | (s)
4 | (s) | (s)
1 | 4 0 | R 692 | R 911 | | Total | 3 | | | (5) | 10 | 4 | (s) | ' | | | | | 2016 January | 1 | 28 | 4 | (s) | 1 | (s) | (s) | (s) | 5 | 55 | 89 | | February | 1 | 23 | 4 | (s) | 1 | (s) | (s) | (s) | 5 | 47 | 75 | | March | (s) | 16
13 | 3 | (s) | 1 | (s) | (s) | (s) | 4
4 | 43
R 43 | 64
60 | | April
May | (s)
(s) | 13 | 2 2 | (s)
(s) | 1 | (s)
(s) | (s)
0 | (s)
(s) | 3 | 50 | 63 | | June | (s) | 8 | 1 | (s) | 1 | (s) | (s) | (s) | 3 | R 63 | R 73 | | July | (s) | 7 | 2 | (s) | 1 | (s) | (s) | (s) | 3 | 71 | 81 | | August | (s) | 8 | 1 1 | (s) | i | (s) | Ő | (s) | 3
2 | 72 | 82 | | September | (s) | 8 | 2 | (s) | 1 | (s) | Ö | (s) | 3 | 62 | 73 | | 9-Month Total | `3 | 120 | 21 | (s) | 7 | `3 | (s) | (s) | 32 | 505 | 660 | | 2015 9-Month Total | 2 | 130 | 16 | (s) | 7 | 3 | (s) | (s) | 27 | 538 | 697 | | 2014 9-Month Total | 3 | 135 | 19 | (s) | 7 | 3 | (s)
(s) | (s) | 29 | 564 | 732 | a Metric tons of carbon dioxide
can be converted to metric tons of carbon equivalent by multiplying by 12/44. b Natural gas, excluding supplemental gaseous fuels. c Distillate fuel oil, excluding biodiesel. d Liquefied petroleum gases. Notes: • Data are estimates for carbon dioxide emissions from energy consumption. See "Section 12 Methodology and Sources" at end of section. • See "Carbon Dioxide" in Glossary. • See Note 1, "Emissions of Carbon Dioxide and Other Greenhouse Gases," at end of section. • Data exclude emissions from biomass energy consumption. See Table 12.7 and Note 2, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. • Totals may not equal sum of components due to independent rounding. • Geographic coverage is the 50 states and the District of Columbia. Web Page: See http://www.eia.gov/totalenergy/data/monthly/#environment (Excel and CSV files) for all available annual and monthly data beginning in 1973. Sources: See end of section. Sources: See end of section. Liquefied petroleum gases. Finished motor gasoline, excluding fuel ethanol. Emissions from energy consumption (for electricity and a small amount of useful thermal output) in the electric power sector are allocated to the end-use sectors in proportion to each sector's share of total electricity retail sales. See Tables 7.6 and 12.6. Excludes emissions from biomass energy consumption. See Table 12.7. R=Revised. NA=Not available. (s)=Less than 0.5 million metric tons. Table 12.4 Carbon Dioxide Emissions From Energy Consumption: Industrial Sector | | | Coal | | | | | | Petroleun | 1 | | | | | | |---|---|--|---|---|--|--|--|--|--|--|---|---|--|---| | | Coal | Coke
Net
Imports | Natural
Gas ^b | Distillate
Fuel Oil ^c | Kero-
sene | LPG ^d | Lubri-
cants | Motor
Gasoline ^e | Petroleum
Coke | Residual
Fuel Oil | Other ^f | Total | Retail
Elec-
tricity ^g | Total ^h | | 1973 Total 1975 Total 1985 Total 1985 Total 1995 Total 1995 Total 1995 Total 1996 Total 1997 Total 1997 Total 1998 Total 1998 Total 2000 Total 2001 Total 2002 Total 2003 Total 2004 Total 2005 Total 2005 Total 2007 Total 2007 Total 2008 Total 2007 Total 2007 Total 2008 Total 2010 Total 2011 Total 2011 Total 2011 Total 2012 Total 2012 Total 2013 Total | 371
336
289
258
258
233
227
224
219
208
211
204
188
190
191
183
179
175
168
131
141 | -1 2 -4 -2 1 7 3 5 5 8 7 7 3 7 6 6 5 7 3 5 -3 -1 1 (s) -2 | 536
440
429
360
432
489
505
505
495
475
483
440
448
437
405
405
404
414
412
386
421
437
463 | 106
97
96
81
84
82
86
88
88
86
87
95
88
85
92
91
91
91
98
84
90
93 | 11
9
13
3
1
1
1
1
1
2
2
3
2
1
(s)
(s)
(s)
(s) | 44
39
61
59
37
48
50
47
47
52
47
41
44
42
43
32
33
35
36
46 | 7677677776666666655555 | 18
16
11
15
13
14
15
14
15
14
11
21
22
23
25
26
21
17
17
17 | 52
51
48
67
67
70
80
85
76
79
79
78
82
85
82
85
83
78
86
65
70
65 | 144
117
105
57
31
25
24
21
16
14
17
13
16
18
20
16
13
13
13
8
6
6 | 100
97
142
93
127
121
139
145
128
133
118
135
130
144
143
150
122
112
122
117
113 | 483
431
483
369
366
391
396
382
383
369
396
3413
413
423
422
408
376
325
338
337
325
338
346
347 | 515
490
601
583
638
659
678
694
704
719
667
654
672
650
662
642
550
587
573
543 | 1,904
1,697
1,798
1,596
1,695
1,751
1,803
1,824
1,778
1,788
1,788
1,711
1,683
1,692
1,661
1,602
1,498
1,498
1,495 | | Petron July | 12
12
11
12
12
12
12
12
12
12
12
13
143 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 44
40
42
39
38
37
38
39
37
41
43
478 | 12
8
9
8
7
7
6
7
10
100 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 5
4
3
2
3
3
3
3
4
4
4
4 | (s)
(s)
1
(s)
(s)
(s)
(s)
(s)
(s)
1
(s)
(s)
(s)
5
(s)
5 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 7
4
2
5
6
5
7
5
6
6
6
6
4
64 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 8
9
10
9
9
11
10
9
110 | 34
27
25
29
27
25
27
26
29
31
29
29 | 46
42
44
41
46
47
50
51
45
44
44
42
543 | 135
121
124
120
122
121
127
127
123
126
126
126
1,499 | | Page 15 January February March March May June July September October November December Total | 12
11
11
10
11
11
11
11
10
R 11
10
10 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 45
41
42
39
39
37
38
39
37
39
40
42
478 | 11
11
10
9
7
8
8
7
9
7
5
6 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 5
4
4
3
3
3
3
3
3
3
3
4
42 | 1 (s) 1 (s) 1 (s) (s) (s) (s) (s) 6 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 6
2
6
6
6
6
6
6
7
4
5
5
4
6
6
6 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 8
9
9
12
11
11
10
9
7
9
10 | 32
28
31
29
29
29
27
25
24
27
342 | 41
R 41
R 39
37
42
R 47
48
47
43
40
R 38
R 36
R 502 | R 130
R 121
R 123
115
R 121
124
R 128
R 125
R 118
R 115
R 116
R 1,449 | | Page 19 2016 January | 11
R 11
10
9
9
10
10
R 11
10
90 | (S)
(S)
(S)
(S)
(S)
(S)
(S)
(S) | 45
42
42
39
39
38
8
39
40
39
363 | 7
7
8
6
6
6
4
7
7
58 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 5
4
4
3
3
2
3
3
3
3
3
3
3
3 | (s)
(s)
1
(s)
(s)
(s)
(s)
(s)
(s) | 1
1
1
1
1
1
1
1 | 6
5
6
4
4
3
5
7
4
4 | (S)
(S)
(S)
(S)
(S)
(S)
(S)
(S)
(S) | 10
11
9
9
9
9
11
10
86 | 29
30
28
24
23
23
22
29
27
235 | 38
R 33
31
32
36
42
46
46
40
345 | R 122
115
111
105
107
113
117
125
115
1,032 | | 2015 9-Month Total
2014 9-Month Total | 98
106 | -2
-2 | 356
355 | 80
72 | (s)
(s) | 31
30 | 4
4 | 11
11 | 50
48 | 1
1 | 88
82 | 266
248 | 387
413 | 1,105
1,120 | R=Revised. (s)=Less than 0.5 million metric tons and greater than -0.5 million metric tons. metric tons. Notes: • Data are estimates for carbon dioxide emissions from energy consumption, including the nonfuel use of fossil fuels. See "Section 12 Methodology and Sources" at end of section. • See "Carbon Dioxide" in Glossary. See Note 1, "Emissions of Carbon Dioxide and Other Greenhouse Gases," at end of section. • Data exclude emissions from biomass energy consumption. See Table 12.7 and Note 2, "Accounting for Carbon Dioxide Emissions From Biomass Energy
Combustion," at end of section. • Totals may not equal sum of components due to independent rounding. • Geographic coverage is the 50 states and the District of Columbia and the District of Columbia. Web Page: See http://www.eia.gov/totalenergy/data/monthly/#environment (Excel and CSV files) for all available annual and monthly data beginning in 1973. Sources: See end of section. ^{a Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. b Natural gas, excluding supplemental gaseous fuels. c Distillate fuel oil, excluding biodiesel. d Liquefied petroleum gases. e Finished motor gasoline, excluding fuel ethanol. f Aviation gasoline blending components, crude oil, motor gasoline blending components, pentanes plus, pertochemical feedstocks, special naphthas, still gas, unfinished oils, waxes, and miscellaneous petroleum products. g Emissions from energy consumption (for electricity and a small amount of useful thermal output) in the electric power sector are allocated to the end-use sectors in proportion to each sector's share of total electricity retail sales. See Tables 7.6 and 12.6. h Excludes emissions from biomass energy consumption. See Table 12.7.} Table 12.5 Carbon Dioxide Emissions From Energy Consumption: Transportation Sector | | | | | | | Petro | oleum | | | | Retail | | |--|---|--|--|---|--|--|---|---|---|--|--|---| | | Coal | Natural
Gas ^b | Aviation
Gasoline | Distillate
Fuel Oil ^C | Jet
Fuel | LPG ^d | Lubri-
cants | Motor
Gasoline ^e | Residual
Fuel Oil | Total | Elec-
tricity ^f | Total ^g | | 1973 Total 1975 Total 1975 Total 1980 Total 1985 Total 1990 Total 1995 Total 1996 Total 1997 Total 1997 Total 1998 Total 1998 Total 2000 Total 2001 Total 2002 Total 2003 Total 2004 Total 2005 Total 2006 Total 2007 Total 2007 Total 2008 Total 2009 Total 2009 Total 2019 | (S)
(S)
(C)
(C)
(C)
(C)
(C)
(C)
(C)
(C)
(C)
(C | 39
32
28
36
38
39
41
35
36
36
36
33
33
33
33
35
37
33
33
34
41
47 | 6543333322222222222222222222222222222222 | 163
155
204
232
268
307
327
341
352
365
377
394
408
433
444
467
469
424
405
426
437
416
424 | 152
145
155
178
223
223
234
235
245
254
240
246
240
238
226
240
204
210
206
210 | 3
3
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
3 | 6666766677766666656555555555 | 886
889
881
908
967
1,029
1,047
1,057
1,115
1,122
1,128
1,158
1,161
1,181
1,182
1,188
1,186
1,124
1,109
1,091
1,095
1,095
1,095 | 57
56
110
62
80
72
67
56
53
52
70
46
53
45
58
66
71
78
73
62
70
61
53
46 | 1,273 1,258 1,363 1,391 1,548 1,640 1,683 1,700 1,743 1,789 1,813 1,852 1,854 1,922 1,948 1,976 1,980 1,789 1,806 1,7789 1,735 1,756 | 2 2 2 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5 5 5 5 5 | 1,315 1,292 1,400 1,421 1,588 1,681 1,725 1,744 1,782 1,873 1,852 1,892 1,892 1,959 1,986 2,014 2,021 1,898 1,832 1,849 1,849 1,848 1,780 1,807 | | Potal January February March April May June July August September October November December Total | (h h) (h) (h | 5
4
4
3
3
3
3
3
3
4
4
4
40 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 35
32
36
37
38
38
40
40
37
39
35
37 | 17
16
18
18
17
19
19
19
18
18
18
19
216 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 85
80
89
89
93
90
95
96
88
94
88
92
1,077 | 2
2
2
3
3
3
3
3
3
4
3
3
5 | 140
130
146
148
152
150
158
158
146
155
146
152
1,780 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) |
145
134
150
151
155
153
161
161
150
159
150
156
1,824 | | Petron September Cotober November December Total | (h h) (h h h) (h h h) (h h h) (h h h h | 4
4
4
3
3
3
3
3
3
3
3
3
3
3
4
39 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 34
33
37
37
38
38
40
40
38
38
34
35 | 17
16
19
18
19
20
21
20
18
20
18
20 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 1
(s)
1
(s)
1
(s)
1
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 89
82
93
91
95
93
97
97
92
95
90
94 | 3
(s)
3
2
3
2
4
4
3
3
3
4
4
4
4
3
6 | 144
132
153
150
155
155
R 163
161
152
156
147
153
1,821 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 149
137
157
153
158
158
166
165
R 156
159
150
157 | | 2016 January | (h)
(h)
(h)
(h)
(h)
(h)
(h)
(h)
(h) | 4
3
3
3
3
3
3
3
3
29 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 32
31
36
35
37
37
38
40
37 | 18
18
19
19
19
21
21
21
20
176 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | (S)
(S)
(S)
(S)
(S)
(S)
(S)
(S) | 89
88
96
91
97
96
98
98
94 | 4
2
5
6
4
5
6
4
4
4 | 144
140
157
153
158
160
164
164
155
1,395 | (s)
(s)
(s)
(s)
(s)
(s)
(s)
(s)
(s) | 149
144
161
156
161
163
167
168
158 | | 2015 9-Month Total
2014 9-Month Total | {h} | 29
30 | 1 1 | 335
331 | 169
160 | 2
2 | 4
4 | 828
803 | 25
25 | 1,365
1,326 | 3
3 | 1,397
1,359 | R=Revised. (s)=Less than 0.5 million metric tons. Notes: • Data are estimates for carbon dioxide emissions from energy consumption, including the nonfuel use of fossil fuels. See "Section 12 Methodology and Sources" at end of section. • See "Carbon Dioxide" in Glossary. • See Note 1, "Emissions of Carbon Dioxide and Other Greenhouse Gases," at end of section. • Data exclude emissions from biomass energy consumption. See Table 12.7 and Note 2, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. • Totals may not equal sum of components due to independent rounding. • Geographic coverage is the 50 states and the District of Columbia. and the District of Columbia. Web Page: See http://www.eia.gov/totalenergy/data/monthly/#environment (Excel and CSV files) for all available annual and monthly data beginning in 1973. a Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. b Natural gas, excluding supplemental gaseous fuels. c Distillate fuel oil, excluding biodiesel. d Liquefied petroleum gases. e Finished motor gasoline, excluding fuel ethanol. f Emissions from energy consumption (for electricity and a small amount of useful thermal output) in the electric power sector are allocated to the end-use sectors in proportion to each sector's share of total electricity retail sales. See Tables 7.6 and 12.6. Tables 7.6 and 12.6. Second Section 12:0: Second Section 12:0: Second Section 12:0: Beginning in 1978, the small amounts of coal consumed for transportation are reported as industrial sector consumption. Table 12.6 Carbon Dioxide Emissions From Energy Consumption: Electric Power Sector (Million Metric Tons of Carbon Dioxidea) | | | | | Petrol | eum | | | Mari | | |--------------------------|-------------------------|-----------------------------|---------------------------------------|-------------------|----------------------|-------------|-----------------|---------------------------------------|--------------------------------------| | | Coal | Natural
Gas ^b | Distillate
Fuel Oil ^c | Petroleum
Coke | Residual
Fuel Oil | Total | Geo-
thermal | Non-
Biomass
Waste ^d | Total ^e | | 1973 Total | 812 | 199 | 20 | 2 | 254 | 276 | NA | NA | 1,286 | | 1975 Total | 824 | 172 | 17 | (s) | 231 | 248 | NA | NA | 1,244 | | 1980 Total | 1,137 | 200 | 12 | `í | 194 | 207 | NA | NA | 1,544 | | 1985 Total | 1,367 | 166 | 6 | 1 | 79 | 86 | NA | NA | 1,619 | | 1990 Total | 1,548 | 176 | 7 | 3 | 92 | 102 | (s) | 6 | 1,831 | | 1995 Total | 1,661 | 228 | 8 | 8 | 45 | 61 | (s) | 10 | 1,960 | | 1996 Total | 1,752 | 205 | 8 | . 8 | 50 | 66 | (s) | 10 | 2,033 | | 1997 Total | 1,797 | 219 | 8 | 10 | 56
82 | 75
405 | (s) | 10 | 2,101 | | 1998 Total
1999 Total | 1,828
1.836 | 248
260 | 10
10 | 13
11 | 82
76 | 105
97 | (s) | 10
10 | 2,192
2.204 | | 2000 Total | 1,030 | 281 | 13 | 10 | 69 | 91 | (s)
(s) | 10 | 2,204 | | 2001 Total | 1,870 | 290 | 12 | 11 | 79 | 102 | (s) | 11 | 2,273 | | 2002 Total | 1.890 | 306 | 9 | 18 | 52 | 79 | S | 13 | 2,288 | | 2003 Total | 1,931 | 278 | 12 | 18 | 69 | 98 |)
(s) | 11 | 2,319 | | 2004 Total | 1,943 | 297 | 8 | 22 | 69 | 99 | (s) | 11 | 2,350 | | 2005 Total | 1,984 | 319 | 8 | 24 | 69 | 101 | (s) | 11 | 2,416 | | 2006 Total | 1,954 | 338 | 5 | 21 | 28 | 55 | (s) | 12 | 2,358 | | 2007 Total | 1,987 | 372 | 6 | 17 | 31 | 54 | (s) | 11 | 2,425 | | 2008 Total | 1,959 | 362 | 5 | 15 | 19 | 39 | (s) | 12 | 2,373 | | 2009 Total | 1,741 | 373 | 5 | 13 | 14 | 33 | (s) | 11 | 2,158 | | 2010 Total | 1,828 | 399 | 6 | 14 | 1 <u>2</u> | 32 | (s) | 11 | 2,270 | | 2011 Total | 1,723 | 409 | 5 | 14 | 7 | 26 | (s) | 11 | 2,170 | | 2012 Total | 1,511 | 493
444 | 4 4 | 9
13 | 6
6 | 19
23 | (s)
(s) | 11
11 | 2,034
2,050 | | 2013 Total | 1,571 | 444 | 4 | 13 | 0 | 23 | (8) | 11 | 2,050 | | 2014 January | 154 | 36 | 2 | 1 | 2 | 5 | (s) | 1 | 196 | | February | 140 | 30 | 1 1 | 1 | 1 | 2 | (s) | 1 | 173 | | March | 133 | 31 | 1 (2) | 1 | 1 | 3 | (s) | 1 | 167
139 | | April | 107
118 | 30
35 | (s) | 1 | (s) | 1
2 | (s) | 1 | 156 | | May
June | 137 | 39 | (s)
(s) | 1 | (s)
(s) | 2 | (s)
(s) | 1 | 179 | | July | 150 | 46 | (s) | 1 | (s) | 2 | (s) | 1 | 198 | | August | 149 | 49 | (s) | i | (s) | 2 | (s) | 1 | 201 | | September | 127 | 42 | (s) | i | (s) | 2
2
2 | (s) | i | 172 | | October | 112 | 38 | (s) | i | (s) | ī | (s) | i | 153 | | November | 119 | 33 | (s) | i | (s) | 2 | (s) | i | 154 | | December | 125 | 35 | (s) | 1 | (s) | 2 | (s) | 1 | 162 | | Total | 1,569 | 444 | 6 | 12 | ` 7 | 26 | (s) | 11 | 2,050 | | 2015 January | 130 | 39 | 1 | 1 | 1 | 3 | (s) | 1 | 173 | | February | R 123 | 36 | 2 | 1 | 2 | 5 | (s) | 1 | 164 | | March | R 107 | 39 | (s) | 1 | (s) | 2 | (s) | 1 | 148 | | April | 89 | R 36 | (s) | 1 | (s) | R 1 | (s) | 1 | R 127 | | May | 104 | 40 | (s) | 1 | (s) | 2 | (s) | 1 | R 147 | | June | 126 | 49 | (s) | 1 | (s) | 2 | (s) | 1 | R 177 | | July | 140 | R 57 | (s) | 1 | 1 | 2 | (s) | 1 | R 200 | | August | 135
^R 118 | R 56 | (s) | 1 | 7 | 2 | (s) | 1 | ^R 194
^R 170 | | September | ^ 118
98 | 49
R 43 | (s) | 1 | (s) | 2 2 | (s) | 1 | R 170 | | October
November | 98
R 89 | 40 | (s)
(s) | 1 | (s)
(s) | 2 | (s)
(s) | 1 | R 132 | | December | 92 | 42 | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 1 | (s) | R 1 | (s) | 1 | 136 | | Total | R 1,350 | R 527 | 5 | 11 | 7 | 24 | (s) | 11 | R 1,913 | | 2016 January | 113 | R 42 | R (s) | 1 | 1 | 2 | (e) | 1 | 159 | | 2016 January | 92 | 38 | (s) | 1 | 1 | 2 | (s)
(s) | 1 | 133 | | February
March | 73 | 36
41 | (S) | 1 | (s) | 2 | (S)
(S) | 1 | 116 | | April | 73
71 | 40 | (s) | 1 | (s) | 2 | (s) | 1 | R 113 | | May | R 82 | 44 | (s) | i | (s) | 2 | (s) | i | 129 | | June | 116 | R 53 | (s) | i | (s) | 2 | (s) | i | 172 | | July | 136 | 63 | (s) | 1 | `1 | 2 | (s) | 1 | R 201 | | August | 135 | R 63 | (s) | i | i | 2 | (s) | 1 | R 201 | | September | 114 | 50 | (s) | 1 | (s) | 2 | (s) | 1 | 167 | | 9-Month Total | 932 | 434 | 3 | 10 | `4 | 17 | (s) | 8 | 1,391 | | 2015 9-Month Total | 1,071 | 401 | 4 | 9 | 6 | 19 | (s) | 8 | 1,500 | | 2014 9-Month Total | 1,213 | 338 | 5 | ğ | ő | 21 | (s) | 8 | 1,581 | consumption. See "Section 12 Methodology and Sources" at end of section. • See "Carbon Dioxide" in Glossary. • See Note 1, "Emissions of Carbon Dioxide and Other Greenhouse Gases," at end of section. • Data exclude emissions from biomass energy consumption. See Table 12.7 and Note 2, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. • Totals may not equal sum of components due to independent rounding. • Geographic coverage is the 50 states and the District of Columbia. Web Page: See http://www.eia.gov/totalenergy/data/monthly/#environment (Excel and CSV files) for all available annual and monthly data beginning in 1973. Sources: See end of section. ^a Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. ^b Natural gas, excluding supplemental gaseous fuels. ^c Distillate fuel oil, excluding biodiesel. ^d Municipal solid waste from non-biogenic sources, and tire-derived fuels. Through 1994, also includes blast furnace gas, and other manufactured and waste gases derived from fossil fuels. gases derived from fossil fuels. ^e Excludes emissions from biomass energy consumption. See Table 12.7. R=Revised. NA=Not available. (s)=Less than 0.5 million metric tons. Notes: • Data are estimates for carbon dioxide emissions from energy Table 12.7 Carbon Dioxide Emissions From Biomass Energy Consumption | | | | By Source | | | | | By S | ector | | | |--|-----------------------|-------------------------------|------------------------------|----------------|-----------------------|------------------|------------------------------|------------------------------
---------------------|--------------------------------|------------------| | | Woodb | Biomass
Waste ^C | Fuel
Ethanol ^d | Bio-
diesel | Total | Resi-
dential | Com-
mercial ^e | Indus-
trial ^f | Trans-
portation | Electric
Power ^g | Total | | 1973 Total | 143 | (s) | NA | NA | 143 | 33 | 1 | 109 | NA | (s) | 143 | | 1975 Total | 140 | (s) | NA | NA | 141 | 40 | 1 | 100 | NA | (s) | 141 | | 1980 Total | 232 | (s) | NA | NA | 232 | 80 | 2 | 150 | NA | (s) | 232 | | 1985 Total | 252 | 14 | 3 | NA | 270 | 95 | 2 | 168 | 3 | 1 | 270 | | 1990 Total | 208 | 24 | 4 | NA | 237 | 54 | 8 | 147 | 4 | 23 | 237 | | 1995 Total | 222 | 30 | 8 | NA | 260 | 49 | 9 | 166 | 8 | 28 | 260 | | 1996 Total | 229
222 | 32
30 | 6
7 | NA
NA | 266
259 | 51
40 | 10
10 | 170
172 | 6
7 | 30
30 | 266
259 | | 1997 Total
1998 Total | 205 | 30
30 | 8 | NA
NA | 242 | 36 | 9 | 160 | 8 | 30
30 | 259 | | 1999 Total | 203 | 29 | 8 | NA
NA | 242 | 37 | 9 | 161 | 8 | 30 | 242 | | 2000 Total | 212 | 27 | 9 | NA | 248 | 39 | 9 | 161 | 9 | 29 | 248 | | 2001 Total | 188 | 33 | 10 | (s) | 231 | 35 | 9 | 147 | 10 | 31 | 231 | | 2002 Total | 187 | 36 | 12 | (s) | 235 | 36 | 9 | 144 | 12 | 35 | 235 | | 2003 Total | 188 | 36 | 16 | (s) | 240 | 38 | 9 | 141 | 16 | 37 | 240 | | 2004 Total | 199 | 35 | 20 | (s) | 255 | 38 | 10 | 151 | 20 | 36 | 255 | | 2005 Total | 200 | 37 | 23 | 1 | 261 | 40 | 10 | 150 | 23 | 37 | 261 | | 2006 Total | 197 | 36 | 31 | 2 | 266 | 36 | 9 | 151 | 33 | 38 | 266 | | 2007 Total | 196
193 | 37
39 | 39
55 | 3
3 | 276
290 | 39
44 | 9
10 | 146
139 | 41
57 | 39
40 | 276
290 | | 2008 Total
2009 Total | 181 | 41 | 62 | 3 | 287 | 47 | 10 | 125 | 64 | 41 | 287 | | 2010 Total | 186 | 42 | 73 | 2 | 303 | 41 | 10 | 136 | 74 | 42 | 303 | | 2011 Total | 189 | 42 | 73 | 8 | 312 | 42 | 11 | 139 | 80 | 40 | 312 | | 2012 Total | 189 | 42 | 73 | 8 | 312 | 39 | 10 | 141 | 80 | 42 | 312 | | 2013 Total | 204 | 45 | 75 | 13 | R 337 | 54 | 11 | 141 | R 87 | 43 | R 337 | | 2014 January | 18 | 4 | 6 | 1 | 29 | 5 | 1 | 12 | 7 | 4 | 29 | | February | 16 | 4 | 6 | i | 26 | 4 | i | 11 | 6 | 4 | 26 | | March | 18 | 4 | 6 | 1 | 29 | 5 | 1 | 12 | 7 | 4 | 29 | | April | 17 | 4 | 6 | 1 | 28 | 4 | 1 | 12 | 7 | 4 | 28 | | May | 17 | 4 | 7 | 1 | 29 | 5 | 1 | 12 | 7 | 4 | 29 | | June | 17 | 4 | 6 | 1 | 29 | 4 | 1 | 12 | 7 | 4 | 29 | | July | 18 | 4 | 7 | 1 | 30 | 5 | 1 | 12 | 8 | 4 | 30 | | August | 18 | 4
4 | 7 | 1 | 30 | 5
4 | 1 | 12 | 8
7 | 4 | 30 | | September
October | 17
17 | 4 | 6
7 | 1
1 | 28
29 | 5 | 1 | 11
12 | 8 | 4 | 28
29 | | November | 17 | 4 | 6 | 1 | 29 | 4 | 1 | 12 | 7 | 4 | 29 | | December | 18 | 4 | 7 | i | 30 | 5 | i | 12 | 8 | 4 | 30 | | Total | 209 | 47 | 76 | 13 | 345 | 54 | 11 | 143 | 88 | 49 | 345 | | 2015 January | 17 | 4 | 6 | (s) | R 27 | 3 | 1 | 12 | 7 | 4 | R 27 | | February | 15 | 4 | 6 | `1 | 25 | 3 | 1 | 11 | 7 | 4 | 25 | | March | 16 | 4 | 7 | 1 | 27 | 3 | 1 | 12 | 7 | 4 | 27 | | April | R 16 | 4 | 6 | 1 | 27 | 3 | 1 | 12 | 7 | 4 | 27 | | May | 16 | 4 | 7 | 1 | 28 | 3 | 1 | 12 | 8 | 4 | 28 | | June | 16 | 4 | 7 | 2 | 28 | 3 | 1 | R 11 | 8 | 4 | 28 | | July | 17
^R 17 | 4 | 7
7 | 1 | 29 | 3 | 1 | 12 | 8 | 4 | 29
29 | | August
September | 16 | 4
4 | 7 | 1
1 | 29
^R 28 | 3 3 | 1 | 12
11 | 8
8 | 4
4 | R 28 | | October | R 15 | 4 | 7 | 1 | 28 | 3 | 1 | R 11 | 8 | 4 | 28 | | November | 16 | 4 | 7 | i | 27 | 3 | i | R 12 | 7 | 4 | 27 | | December | 16 | 4 | 7 | 1 | R 29 | 3 | 1 | 12 | 8 | 4 | R 29 | | Total | R 192 | 47 | 79 | 14 | R 332 | 40 | 11 | 140 | 92 | 48 | R 332 | | 2016 January | 16 | 4 | 6 | 1 | 27 | 3 | 1 | 12 | 7 | 4 | 27 | | February | 15 | 4 | 6 | i | 26 | 3 | i | 11 | 7 | 4 | 26 | | March | 15 | 4 | 7 | 1 | 27 | 3 | 1 | 11 | 8 | 4 | 27 | | April | 14 | 4 | 6 | 1 | 26 | 3 | 1 | 11 | 8 | 4 | 26 | | May | 15 | 4 | 7 | 2 | 27 | 3 | 1 | 11 | 8 | 4 | 27 | | June | 15 | 4 | 7 | 2 | R 28 | 3 | 1 | 11 | 8 | 4 | R 28 | | July | 16 | 4 | 7 | 2 2 | 29 | 3 | 1 | 12 | 9 | 4 | 29 | | August | 16 | 4 | 7
7 | 2 | 29
27 | 3 3 | 1 | 12 | 9
8 | 4 | 29 | | September
9-Month Total | 15
137 | 4
36 | 61 | 14 | 27
247 | 27 | 1
9 | 11
103 | 7 4 | 4
35 | 27
247 | | | | | | | | | - | | | | | | 2015 9-Month Total
2014 9-Month Total | 144
156 | 35
35 | 59
56 | 11
10 | 249
257 | 30
41 | 9
9 | 105
106 | 69
65 | 36
37 | 249
257 | Metric tons of carbon dioxide can be converted to metric tons of carbon equivalent by multiplying by 12/44. Wood and wood-derived fuels. R=Revised. NA=Not available. (s)=Less than 0.5 million metric tons. R=Revised. NA=Not available. (s)=Less than 0.5 million metric tons. Notes: • Carbon dioxide emissions from biomass energy consumption are excluded from the energy-related carbon dioxide emissions reported in Tables 12.1–12.6. See Note 2, "Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion," at end of section. • Data are estimates. See "Section 12 Methodology and Sources" at end of section. • See "Carbon Dioxide" in Glossary. • See Note 1, "Emissions of Carbon Dioxide and Other Greenhouse Gases," at end of section. • Totals may not equal sum of components due to independent rounding. • Geographic coverage is the 50 states and the District of Columbia. Web Page: See http://www.eia.gov/totalenergy/data/monthly/#environment (Excel and CSV files) for all available annual and monthly data beginning in 1973. Sources: See end of section. Sources: See end of section. Wood and wood-derived fuels. Municipal solid waste from biogenic sources, landfill gas, sludge waste, agricultural byproducts, and other biomass. Fuel ethanol minus denaturant. Commercial sector, including commercial combined-heat-and-power (CHP) and commercial electricity-only plants. Industrial sector, including industrial combined-heat-and-power (CHP) and industrial electricity-only plants. industrial electricity-only plants. § The electric power sector comprises electricity-only and combined-heat-and-power (CHP) plants within the NAICS 22 category whose primary business is to sell electricity, or electricity and heat, to the public. ### **Environment** Note 1. Emissions of Carbon Dioxide and Other Greenhouse Gases. Greenhouse gases are those gases—such as water vapor, carbon dioxide (CO₂), methane, nitrous oxide, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride—that are transparent to solar (shortwave) radiation but opaque to long-wave (infrared) radiation, thus preventing long-wave radiant energy from leaving Earth's atmosphere. The net effect is a trapping of absorbed radiation and a tendency to warm the planet's surface. Energy-related carbon dioxide emissions account for about 98% of U.S. CO₂ emissions. The vast majority of CO₂ emissions come from fossil fuel combustion, with smaller amounts from the nonfuel use of fossil fuels, as well as from electricity generation using geothermal energy and non-biomass waste. Other sources of CO₂ emissions include industrial processes, such as cement and limestone production. Data in the U.S. Energy Information Administration's (EIA) *Monthly Energy Review (MER)* Tables 12.1–12.6 are estimates for U.S. CO₂ emissions from energy consumption, including the nonfuel use of fossil fuels (excluded are estimates for CO₂ emissions from biomass energy consumption, which appear in MER Table 12.7). For annual U.S. estimates for emissions of CO₂ from all sources, as well as for emissions of other greenhouse gases, see EIA's *Emissions of Greenhouse Gases Report* at http://www.eia.gov/environment/emissions/ghg report/. Note 2. Accounting for Carbon Dioxide Emissions From Biomass Energy Combustion. Carbon dioxide (CO₂) emissions from the combustion of biomass to produce energy are excluded from the energy-related CO₂ emissions reported in MER Tables 12.1–12.6, but appear in MER Table 12.7. According to current international convention (see the Intergovernmental Panel on Climate Change's "2006 IPCC Guidelines for National Greenhouse Gas Inventories"), carbon released through biomass combustion is excluded from reported energy-related emissions. The release of carbon from biomass combustion is assumed to be balanced by the uptake of carbon when the feedstock is grown, resulting in zero net emissions over some period of time. (This is not to say that biomass energy is carbon-neutral. Energy inputs are required in order to grow, fertilize, and harvest the feedstock and to produce and process the biomass into fuels.) However, analysts have debated whether increased use of biomass energy may result in a decline in terrestrial carbon stocks, leading to a net positive release of carbon rather than the zero net release assumed by its exclusion from reported energy-related emissions. For example, the clearing of forests for biofuel crops could result in an initial release of carbon that is not fully recaptured in subsequent use of the land for agriculture. To reflect the potential net emissions, the international convention for greenhouse gas inventories is to report biomass emissions in the category "agriculture, forestry, and other land use," usually based on estimates of net changes in carbon stocks over time. This indirect accounting of CO₂ emissions from biomass can potentially lead to confusion in accounting for and understanding the flow of CO₂ emissions within energy and nonenergy systems. In recognition of this issue, reporting of CO₂ emissions from biomass combustion alongside other energy-related CO₂ emissions offers an alternative accounting treatment. It is important, however, to avoid misinterpreting emissions from fossil energy and biomass energy sources as necessarily additive. Instead, the combined total of direct CO₂ emissions from biomass and energy-related CO₂ emissions implicitly assumes that none of the carbon
emitted was previously or subsequently reabsorbed in terrestrial sinks or that other emissions sources offset any such sequestration. ### **Section 12 Methodology and Sources** To estimate carbon dioxide emissions from energy consumption for the *Monthly Energy Review (MER)*, Tables 12.1–12.7, the U.S. Energy Information Administration (EIA) uses the following methodology and sources: #### **Step 1. Determine Fuel Consumption** Coal—Coal sectoral (residential, commercial, coke plants, other industrial, transportation, electric power) consumption data in thousand short tons are from MER Table 6.2. Coal sectoral consumption data are converted to trillion Btu by multiplying by the coal heat content factors in MER Table A5 Coal Coke Net Imports—Coal coke net imports data in trillion Btu are derived from coal coke imports and exports data in MER Tables 1.4a and 1.4b. Natural Gas (excluding supplemental gaseous fuels)—Natural gas sectoral consumption data in trillion Btu are from MER Tables 2.2–2.6. Petroleum—Total and sectoral consumption (product supplied) data in thousand barrels per day for asphalt and road oil, aviation gasoline, distillate fuel oil, jet fuel, kerosene, liquefied petroleum gases (LPG), lubricants, motor gasoline, petroleum coke, and residual fuel oil are from MER Tables 3.5 and 3.7a-3.7c. For the component products of LPG (ethane/ethylene, propane/propylene, normal butane/butylene, and isobutane/isobutylene) and "other petroleum" (aviation gasoline blending components, crude oil, motor gasoline blending components, naphthas for petrochemical feedstock use, other oils for petrochemical feedstock use, pentanes plus, special naphthas, still gas, unfinished oils, waxes, and miscellaneous petroleum products), consumption (product supplied) data in thousand barrels per day are from EIA's Petroleum Supply Annual (PSA), Petroleum Supply Monthly (PSM), and earlier publications (see sources for MER Table 3.5). Petroleum consumption data by product are converted to trillion Btu by multiplying by the petroleum heat content factors in MER Tables A1 and A3. Biomass—Sectoral consumption data in trillion Btu for wood, biomass waste, fuel ethanol (minus denaturant), and biodiesel are from MER Tables 10.2a–10.2c. #### Step 2. Remove Biofuels From Petroleum Distillate Fuel Oil—Beginning in 2009, the distillate fuel oil data (for total and transportation sector) in Step 1 include biodiesel, a non-fossil renewable fuel. To remove the biodiesel portion from distillate fuel oil, data in thousand barrels per day for refinery and blender net inputs of renewable diesel fuel (from the PSA/PSM) are converted to trillion Btu by multiplying by the biodiesel heat content factor in MER Table A1, and then subtracted from the distillate fuel oil consumption values. Motor Gasoline—Beginning in 1993, the motor gasoline data (for total, commercial sector, industrial sector, and transportation sector) in Step 1 include fuel ethanol, a nonfossil renewable fuel. To remove the fuel ethanol portion from motor gasoline, data in trillion Btu for fuel ethanol consumption (from MER Tables 10.2a, 10.2b, and 10.3) are subtracted from the motor gasoline consumption values. (Note that about 2% of fuel ethanol is fossil-based petroleum denaturant, to make the fuel ethanol undrinkable. For 1993–2008, petroleum denaturant is double counted in the PSA product supplied statistics, in both the original product category—e.g., pentanes plus—and also in the finished motor gasoline category; for this time period for MER Section 12, petroleum denaturant is removed along with the fuel ethanol from motor gasoline, but left in the original product. Beginning in 2009, petroleum denaturant is counted only in the PSA/PSM product supplied statistics for motor gasoline; for this time period for MER Section 12, petroleum denaturant is left in motor gasoline.) #### Step 3. Remove Carbon Sequestered by Nonfuel Use The following fuels have industrial nonfuel uses as chemical feedstocks and other products: coal, natural gas, asphalt and road oil, distillate fuel oil, liquefied petroleum gases (ethane/ethylene, propane/propylene, normal butane/butylene, and isobutane/isobutylene), lubricants (which have industrial and transportation nonfuel uses), naphthas for petrochemical feedstock use, other oils for petrochemical feedstock use, pentanes plus, petroleum coke, residual fuel oil, special naphthas, still gas, waxes, and miscellaneous petroleum products. In the nonfuel use of these fuels, some of the carbon is sequestered, and is thus subtracted from the fuel consumption values in Steps 1 and 2. Estimates of annual nonfuel use and associated carbon sequestration are developed by EIA using the methodology detailed in "Documentation for *Emissions of Greenhouse Gases in the United States 2008*" at http://www.eia.gov/oiaf/1605/ggrpt/documentation/pdf/0638(2008).pdf. To obtain monthly estimates of nonfuel use and associated carbon sequestration, monthly patterns for industrial consumption and product supplied data series are used. For coal nonfuel use, the monthly pattern for coke plants coal consumption from MER Table 6.2 is used. For natural gas, the monthly pattern for other industrial non-CHP natural gas consumption from MER Table 4.3 is used. For distillate fuel oil, petroleum coke, and residual fuel oil, the monthly patterns for industrial consumption from MER Table 3.7b are used. For the other petroleum products, the monthly patterns for product supplied from the PSA and PSM are used. ## **Step 4. Determine Carbon Dioxide Emissions From Energy Consumption** Carbon dioxide (CO₂) emissions data in million metric tons are calculated by multiplying consumption values in trillion Btu from Steps 1 and 2 (minus the carbon sequestered in nonfuel use in Step 3) by the CO₂ emissions factors at http://www.eia.gov/oiaf/1605/ggrpt/excel/CO2_coeffs_09_v2.xls. Beginning in 2010, the 2009 factors are used. Coal—CO₂ emissions for coal are calculated for each sector (residential, commercial, coke plants, other industrial, transportation, electric power). Total coal emissions are the sum of the sectoral coal emissions. Coal Coke Net Imports—CO₂ emissions for coal coke net imports are calculated. Natural Gas—CO₂ emissions for natural gas are calculated for each sector (residential, commercial, industrial, transportation, electric power). Total natural gas emissions are the sum of the sectoral natural gas emissions. Petroleum—CO₂ emissions are calculated for each petroleum product. Total petroleum emissions are the sum of the product emissions. Total LPG emissions are the sum of the emissions for the component products (ethane/ethylene, propane/propylene, normal butane/butylene, and isobutane/isobutylene); residential, commercial, and transportation sector LPG emissions are estimated by multiplying consumption values in trillion Btu from MER Tables 3.8a and 3.8c by the propane emissions factor; industrial sector LPG emissions are estimated as total LPG emissions minus emissions by the other sectors. Geothermal and Non-Biomass Waste—Annual CO₂ emissions data for geothermal and non-biomass waste are EIA estimates based on Form EIA-923, "Power Plant Operations Report" (and predecessor forms). Monthly estimates are created by dividing the annual data by the number of days in the year and then multiplying by the number of days in the month. (Annual estimates for the current year are set equal to those of the previous year.) Biomass—CO₂ emissions for wood, biomass waste, fuel ethanol (minus denaturant), and biodiesel are calculated for each sector. Total emissions for each biomass fuel are the sum of the sectoral emissions. The following factors, in million metric tons CO₂ per quadrillion Btu, are used: wood—93.80; biomass waste—90.70; fuel ethanol—68.44; and biodiesel—73.84. For 1973–1988, the biomass portion of waste in MER Tables 10.2a–10.2c is estimated as 67%; for 1989–2000, the biomass portion of waste is estimated as 67% in 1989 to 58% in 2000, based on the biogenic shares of total municipal solid waste shown in EIA's "Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy," Table 1 at http://www.eia.gov/totalenergy/data/monthly/pdf/historical/msw.pdf. THIS PAGE INTENTIONALLY LEFT BLANK