

Notice: Archived Document

The content in this document is provided on the FDA's website for reference purposes only. This content has not been altered or updated since it was archived.

Retail Meat Report

National Antimicrobial Resistance Monitoring System

ABBREVIATIONS USED IN THE REPORT, 2003

AR	Antimicrobial Resistance
BAP	Blood Agar Plate
CCA	Campy-Cefex Agar Plate
CDC	Center for Disease Control and Prevention
CVM	Center for Veterinary Medicine
EAP	Enterococcosel Agar Plate
EIP	Emerging Infections Program
EMB	Eosin Methylene Blue
FDA	Food and Drug Administration
FDA-CVM	Food and Drug Administration-Center for Veterinary Medicine
FoodNet	Foodborne Disease Active Surveillance Network
MIC	Minimum Inhibitory Concentration
NARMS	National Antimicrobial Resistance Monitoring System
CLSI/NCCLS	Clinical and Laboratory Standards Institute/National Committee for
	Clinical Laboratory Standards
PCR	Polymerase Chain Reaction
PFGE	Pulsed Field Gel Electrophoresis
PulseNet	The National Molecular Subtyping Network for Foodborne Disease Surveillance
QC	Quality Control
RVR10	Rappaport-Vassiliadis
USDA	United States Department of Agriculture
XLD	Xylose Lysine Deoxycholate

Antimicrobial Abbreviations:

AMC	Amoxicillin/Clavulanic Acid	LIN	Lincomycin
AMI	Amikacin	LZD	Linezolid
AMP	Ampicillin	MER	Meropenem
AXO	Ceftriaxone	NAL	Nalidixic Acid
CEP	Bacitracin	NIT	Nitrofurantoin
	Cephalothin	PEN	Penicillin
CHL	Chloramphenicol	QDA	Quinupristin/Dalfopristin
CIP	Ciprofloxacin	SAL	Salinomycin
COT	Trimethoprim/Sulfamethoxazole	STR	Streptomycin
DOX	Doxycycline	SMX	Sulfamethoxazole
ERY	Erythromycin	TET	Tetracycline
FLA	Flavomycin	TYL	Tylosin
FOX		TIO	Ceftiofur
GEN		VAN	Vancomycin
KAN	Kanamycin		·
Meat '	Types		
CB	Chicken Breast	GT	Ground Turkey
GB	Ground Beef	PC	Pork Chop

State Abbreviations:

CA	California	MN	Minnesota
CT	Connecticut	NY	New York
GA	Georgia	OR	Oregon
MD	Maryland	TN	Tennessee

TABLE OF CONTENTS

Abbreviations used in the Report Table of Contents Introduction

Tables & Figures Table 1 Antimicrobial Susceptibility Test Methods and Interpretive Criteria PREVALENCE Table 2 Number of Retail Meat Samples tested by Site and Meat Type Percent Positive Samples by Bacterium and Meat Type Table 3 Table 4 Number of Isolates by Site, Bacterium, and Meat Type Figure 1a Percent Positive Samples for Campylobacter & Salmonella by Meat Type and Site Percent Positive Samples for Enterococcus & E. coli by Meat Type and Site Figure 1b Figure 2a Percent Positive Samples for Campylobacter & Salmonella by Meat Type for All Sites Figure 2b Percent Positive Samples for Enterococcus & E. coli by Meat Type for All Sites Figure 3a Percent Positive Samples for Campylobacter & Salmonella and Enterococcus & E. coli by Month and Meat Type for All Sites Figure 3b Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in California Figure 3c Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Connecticut Figure 3d Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Georgia Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Georgia Figure 3e Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Maryland Figure 3f Figure 3g Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Maryland Figure 3h Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Minnesota Figure 3i Percent Positive Samples for *Campylobacter & Salmonella* by Month and Meat Type in New York Figure 3j Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Oregon Figure 3k Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Oregon Figure 31 Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Tennessee

Figure 3m Percent Positive Samples for *Enterococcus & E. coli* by Month and Meat Type in Tennessee

SALMONELLA

- Table 5
 Overall Salmonella Serotypes Identified
- Table 6Salmonella by Serotype and Meat Type
- Table 7Salmonella Serotype by Site and Meat Type
- Table 8Salmonella Isolates by Month for All Sites
- Table 9
 Antimicrobial Resistance among Salmonella Isolates
- Figure 4 Antimicrobial Resistance among *Salmonella* Isolates

MIC DISTRIBUTIONS AMONG SALMONELLA

MIC Distribution among all Antimicrobial Agents Figure 5 Figure 5a Amikacin Figure 5b Amoxicillin/Clavulanic Acid Figure 5c Ampicillin Figure 5d Cefoxitin Figure 5e Ceftiofur Figure 5f Ceftriaxone Figure 5g Cephalothin Figure 5h Chloramphenicol Figure 5i Ciprofloxacin Figure 5j Gentamicin Figure 5k Kanamycin Figure 51 Nalidixic Acid

Figure 5m	Streptomycin
Figure 5n	Sulfamethoxazole
Figure 50	Tetracycline
Figure 5p	Trimethoprim/Sulfamethoxazole
Table 10	Antimicrobial Resistance among Salmonella Isolates by Meat Type

MIC DISTRIBUTIONS AMONG SALMONELLA BY MEAT TYPE

Figure 6a	MIC Distribution among Salmonella from Chicken Breast
Figure 6b	MIC Distribution among Salmonella from Ground Turkey
Figure 6c	MIC Distribution among Salmonella from Ground Beef
Figure 6d	MIC Distribution among Salmonella from Pork Chops
Figure 7a	Amikacin
Figure 7b	Amoxicillin/Clavulanic Acid
Figure 7c	Ampicillin
Figure 7d	Cefoxitin
Figure 7e	Ceftiofur
Figure 7f	Ceftriaxone
Figure 7g	Cephalothin
Figure 7h	Chloramphenicol
Figure 7i	Ciprofloxacin
Figure 7j	Gentamicin
Figure 7k	Kanamycin
Figure 71	Nalidixic Acid
Figure 7m	Streptomycin
Figure 7n	Sulfamethoxazole
Figure 70	Tetracycline
Figure 7p	Trimethoprim/Sulfamethoxazole
Table 11	Antimicrobial Resistance among Salmonella Isolates by Serotype
Table 12	Antimicrobial Resistance among Salmonella by Meat Type in Overall Top 6 Serotypes
Table 13	Antimicrobial Resistance among Salmonella by Top 6 Serotypes within Meat Type
Table 14	Antimicrobial Resistance among Salmonella by Site, Meat Type, and Antimicrobial Agent
Table 15	Number of Salmonella Resistant to Multiple Antimicrobial Agents

CAMPYLOBACTER

- Table 16
 Overall Campylobacter Species Identified
- Table 17Campylobacter Species by Meat Type
- Table 18
 Campylobacter Species by Site and Meat Type
- Table 19
 Campylobacter Isolates by Month for All Sites
- Table 20
 Antimicrobial Resistance among Campylobacter Isolates
- Figure 8 Antimicrobial Resistance among *Campylobacter* Isolates

MIC DISTRIBUTIONS AMONG CAMPYLOBACTER

Figure 9	MIC Distribution Among All Antimicrobial Agents
Figure 9a	Ciprofloxacin
Figure 9b	Doxycycline
Figure 9c	Erythromycin
Figure 9d	Gentamicin
Figure 9e	Meropenem
Table 21	Antimicrobial Resistance among Campylobacter by Meat Type

MIC DISTRIBUTIONS AMONG CAMPYLOBACTER BY MEAT TYPE

- Figure 10a MIC Distribution among *Campylobacter* from Chicken Breast
- Figure 10b MIC Distribution among Campylobacter from Ground Turkey

- Figure 10c MIC Distribution among Campylobacter from Ground Beef Figure 10d MIC Distribution among Campylobacter from Pork Chop Ciprofloxacin Figure 11a Figure 11b Doxycycline Figure 11c Erythromycin Figure 11d Gentamicin Figure 11e Meropenem Table 22 Antimicrobial Resistance among Campylobacter by Species Table 23 Antimicrobial Resistance among Campylobacter species by Meat Type Table 24 Antimicrobial Resistance among Campylobacter by Site, Meat Type, and Antimicrobial Agent
- Table 25
 Number of Campylobacter Resistant to Multiple Antimicrobial Agents

ENTEROCOCCUS

- Table 26
 Overall Enterococcus Species Identified
- Table 27
 Enterococcus Species by Meat Type
- Table 28
 Enterococcus Species by Site and Meat Type
- Table 29
 Enterococcus Isolates by Month for All Sites
- Table 30
 Antimicrobial Resistance among Enterococcus Isolates
- Figure 12 Antimicrobial Resistance among *Enterococcus* Isolates

MIC DISTRIBUTIONS AMONG ENTEROCOCCUS

Figure 13	MIC Distributions Among All Antimicrobial Agents
Figure 13a	Bacitracin
Figure 13b	Chloramphenicol
Figure 13c	Ciprofloxacin
Figure 13d	Erythromycin
Figure 13e	Flavomycin
Figure 13f	Gentamicin
Figure 13g	Kanamycin
Figure 13h	Lincomycin
Figure 13i	Linezolid
Figure 13j	Nitrofurantoin
Figure 13k	Penicillin
Figure 131	Quinupristin/Dalfopristin
Figure 13m	Salinomycin
Figure 13n	Streptomycin
Figure 130	Tetracycline
Figure 13p	Tylosin
Figure 13q	Vancomycin
Table 31	Antimicrobial Resistance among Enterococcus by Meat Type for All Sites

MIC DISTRIBUTIONS AMONG ENTEROCOCCUS BY MEAT TYPE

- Figure 14a MIC Distribution among *Enterococcus* from Chicken Breast
- Figure 14b MIC Distribution among *Enterococcus* from Ground Turkey
- Figure 14c MIC Distribution among *Enterococcus* from Ground Beef
- Figure 14d MIC Distribution among *Enterococcus* from Pork Chops
- Figure 15a Bacitracin
- Figure 15b Chloramphenicol
- Figure 15c Ciprofloxacin
- Figure 15dErythromycinFigure 15eFlavomycin
- Figure 15f Gentamicin
- Figure 15g Kanamycin
- Figure 15h Lincomycin

Figure 15i	Linezolid
Figure 15j	Nitrofurantoin
Figure 15k	Penicillin
Figure 151	Quinupristin/Dalfopristin
Figure 15m	Salinomycin
Figure 15n	Streptomycin
Figure 150	Tetracycline
Figure 15p	Tylosin
Figure 15q	Vancomycin
Table 32	Antimicrobial Resistance among Enterococcus by Species
Table 33	Antimicrobial Resistance among Enterococcus faecalis & E. faecium by Meat Type
Table 34	Antimicrobial Resistance among Enterococcus by Site, Meat Type, and Antimicrobial Agent
Table 35	Number of Enterococcus faecalis Resistant to Multiple Antimicrobial Agents
Table 36	Number of Enterococcus faecium Resistant to Multiple Antimicrobial Agents

ESCHERICHIA COLI

- Table 37E. coli by Meat TypeTable 38E. coli by Site and Meat Type
- Table 39E. coli Isolates by Month for All Sites
- Table 40Antimicrobial Resistance among E. coli Isolates
- Figure 16 Antimicrobial Resistance among E. coli Isolates

MIC DISTRIBUTIONS AMONG E. COLI

Figure 17	MIC Distribution Among All Antimicrobial Agents
Figure 17a	Amikacin
Figure 17b	Amoxicillin/Clavulanic Acid
Figure 17c	Ampicillin
Figure 17d	Cefoxitin
Figure 17e	Ceftiofur
Figure 17f	Ceftriaxone
Figure 17g	Cephalothin
Figure 17h	Chloramphenicol
Figure 17i	Ciprofloxacin
Figure 17j	Gentamicin
Figure 17k	Kanamycin
Figure 171	Nalidixic Acid
Figure 17m	Streptomycin
Figure 17n	Sulfamethoxazole
Figure 17o	Tetracycline
Figure 17p	Trimethoprim/Sulfamethoxazole

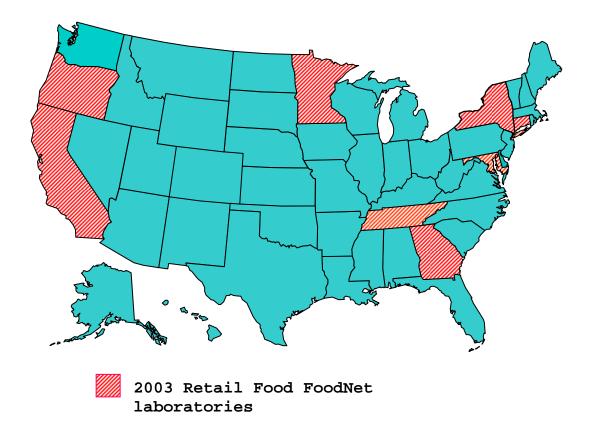
MIC DISTRIBUTIONS AMONG E. COLI BY MEAT TYPE

- Figure 18aMIC Distribution among E. coli from Chicken Breast
- Figure 18b MIC Distribution among *E. coli* from Ground Turkey
- Figure 18c MIC Distribution among *E. coli* from Ground Beef
- Figure 18d MIC Distribution among *E. coli* from Pork Chops
- Figure 19a Amikacin
- Figure 19b Amoxicillin/Clavulanic Acid
- Figure 19c Ampicillin
- Figure 19d Cefoxitin
- Figure 19eCeftiofurFigure 19fCeftriaxo
- Figure 19fCeftriaxoneFigure 19gCephalothin

Figure 19h	Chloramphenicol
Figure 19i	Ciprofloxacin
Figure 19j	Gentamicin
Figure 19k	Kanamycin
Figure 191	Nalidixic Acid
Figure 19m	Streptomycin
Figure 19n	Sulfamethoxazole
Figure 190	Tetracycline
Figure 19p	Trimethoprim/Sulfamethoxazole
Table 41	Antimicrobial Resistance among E. coli by Meat Type
Table 42	Antimicrobial Resistance among E. coli by Site, Meat Type, and Antimicrobial Agent
Table 43	Number of E. coli resistant to Multiple Antimicrobial Agents

APPENDICES

- A-1 Number of Samples Tested by Site, Meat Type, and Month
- A-2 Percent Positive Samples by Month, Meat Type, and Bacterium
- A-3 Percent Positive Samples by Meat Type, Bacterium, and Site
- A-3a Percent Positive Samples by Meat Type, Bacterium in California
- A-3b Percent Positive Samples by Meat Type, Bacterium in Connecticut
- A-3c Percent Positive Samples by Meat Type, Bacterium in Georgia
- A-3d Percent Positive Samples by Meat Type, Bacterium in Maryland
- A-3e Percent Positive Samples by Meat Type, Bacterium in Minnesota
- A-3f Percent Positive Samples by Meat Type, Bacterium in New York
- A-3g Percent Positive Samples by Meat Type, Bacterium in Oregon
- A-3h Percent Positive Samples by Meat Type, Bacterium in Tennessee
- A-4a PFGE Profiles for Salmonella Agona
- A-4b PFGE Profiles for *Salmonella* Brandenburg
- A-4c PFGE Profiles for *Salmonella* Dublin
- A-4d PFGE Profiles for Salmonella Enteritidis
- A-4e PFGE Profiles for Salmonella Haardt
- A-4f PFGE Profiles for Salmonella Hadar
- A-4g PFGE Profiles for Salmonella Heidelberg
- A-4h PFGE Profiles for *Salmonella* Kentucky
- A-4i PFGE Profiles for Salmonella Mbandaka
- A-4j PFGE Profiles for Salmonella Montevideo
- A-4k PFGE Profiles for *Salmonella* Newport
- A-41 PFGE Profiles for *Salmonella* Reading
- A-4m PFGE Profiles for *Salmonella* Saintpaul
- A-4n PFGE Profiles for *Salmonella* Schwarzengrund
- A-40 PFGE Profiles for *Salmonella* Senftenberg
- A-4p PFGE Profiles for Salmonella Typhimurium
- A-4q PFGE Profiles for *Campylobacter coli*
- A-4r PFGE Profiles for *Campylobacter jejuni*
- A-5a Antimicrobial Resistance among *Salmonella* from Chicken Breast A-5b Antimicrobial Resistance among *Salmonella* from Ground Turkey
- A-5c Antimicrobial Resistance among *Salmonella* from Ground Beef
- A-5d Antimicrobial Resistance among *Salmonella* from Pork Chops
- A-6a
 Antimicrobial Resistance among *Campylobacter* from Chicken Breast
 A-6b
 Antimicrobial Resistance among *Campylobacter* from Ground Turkey
 A-6c
 Antimicrobial Resistance among *Campylobacter* from Pork Chops


- A-7a Antimicrobial Resistance among *Enterococcus* from Chicken Breast
- A-7b Antimicrobial Resistance among *Enterococcus* from Ground Turkey
- A-7c Antimicrobial Resistance among *Enterococcus* from Ground Beef
- A-7d Antimicrobial Resistance among *Enterococcus* from Pork Chops
- A-8a Antimicrobial Resistance among *E. coli* from Chicken Breast
- A-8b Antimicrobial Resistance among *E. coli* from Ground Turkey
- A-8c Antimicrobial Resistance among *E. coli* from Ground Beef
- A-8d Antimicrobial Resistance among *E. coli* from Pork Chops
- A-9 Log Sheet Example
- A-10 Material and Methods

NARMS retail meat Annual Report 2003

Background:

Food destined for human consumption, including meat and poultry, are known to harbor enteric bacteria. Antimicrobial resistance (AR) among these foodborne bacteria has been documented and may be associated with the use of antimicrobial agents in food animals. These bacteria may include organisms such as *Salmonella*, *Campylobacter*, *E. coli*, and *Enterococcus*. Retail meats represent a point of exposure close to the consumer and, when combined with data from slaughter plants and on-farm studies, provides insight into the prevalence of AR in foodborne pathogens originating from food producing animals. To gain a better understanding of AR among enteric bacteria in the food supply, FoodNet and the NARMS monitor antimicrobial susceptibility/resistance phenotypes in bacteria isolated from retail meats.

The primary purpose of the NARMS retail meat surveillance program is to determine the prevalence of antimicrobial resistance among foodborne pathogens and commensal organisms, in particular, *Salmonella, Campylobacter, Enterococcus* and *E. coli*, recovered from retail foods of animal origin. The results generated by the NARMS retail meat program will establish a reference point for analyzing trends of antimicrobial resistance among these foodborne bacteria. NARMS retail meat surveillance is an ongoing collaboration between the U.S. Food and Drug Administration (Center for Veterinary Medicine), the Centers for Disease Control and Prevention, and in 2003, eight of the 11 current FoodNet laboratories: California, Connecticut, Georgia, Maryland, Minnesota, New York, Oregon, and Tennessee.

FoodNet is the principal foodborne disease component of CDC's (EIP;

http://www.cdc.gov/foodnet/). It is a collaborative project of the CDC, eleven EIP sites (California, Colorado, Connecticut, Georgia, New York, Maryland, Minnesota, Oregon, Tennessee, Texas and New Mexico), the <u>U.S. Department of Agriculture (USDA)</u>, and the <u>Food</u> and <u>Drug Administration (FDA)</u>. The project consists of active surveillance for foodborne diseases and related epidemiologic studies designed to help public health officials better understand the epidemiology of foodborne diseases in the United States. The NARMS/FoodNet Retail Food Study was developed to monitor the presence of AR among *E. coli, Salmonella, Campylobacter*, and *Enterococcus* from convenience samples of fresh meat and poultry purchased monthly from grocery stores in the participating States. These isolates were then subjected to standardized antimicrobial susceptibility testing methods in order to determine the prevalence of resistance.

Retail meat sampling:

For calendar year 2003, retail meat sampling started in January among 8 participating FoodNet laboratories. Each of the FoodNet sites purchased samples monthly, attempting to go to as many different stores as possible each month. The object was to purchase as many different brands of fresh (not frozen) meat and poultry as possible. A total of 40 food samples were purchased per month including 10 samples each of chicken breast, ground turkey, ground beef, and pork chops (the exception being CT, which only collected 5 samples each for 2003). For each meat and poultry sample, the FoodNet sites recorded the store name, brand name, lot number (if available) sell-by date, purchase date and lab processing date on log sheets (A-9). Additional information with regard to whether or not the meat or poultry was ground or cut instore was also collected, if possible. Samples were kept cold during transport from the grocery store(s) to the laboratory.

Microbiological analysis:

In the laboratory, samples were refrigerated at 4°C and were processed no later than 96 hours after purchase. After microbiological examination, the sites recorded on the log sheets whether or not the meat and poultry samples were presumptively positive for *Salmonella*, *Campylobacter*, *E. coli*, and *Enterococcus*. Each laboratory used essentially the same procedure for sample collection. Retail meat and poultry packages were kept intact until they were aseptically opened in the laboratory at the start of examination. For chicken and pork samples, one piece of meat was examined, whereas, 25 g of ground product was examined for ground beef and ground turkey samples. The analytical portions from each sample were placed in separate sterile plastic bags, 250 mL of buffered peptone water was added to each bag, and the bags were vigorously shaken. Fifty mL of the rinsate from each sample was transferred to separate sterile flasks (or other suitable sterile containers) for isolation and identification of *Salmonella*, *Campylobacter*, *E. coli*, or *Enterococcus* using standard microbiological procedures. Once

isolated and identified, bacterial isolates were sent to FDA's CVM Office of Research for further characterization including species confirmation, antimicrobial susceptibility testing and PFGE analysis (*Salmonella* and *Campylobacter* only).

All eight FoodNet sites cultured the meats and poultry rinsates for the presence of *Salmonella* and *Campylobacter*. Additionally, four of the eight FoodNet laboratories culture meat and poultry rinsates for the presence of *E. coli* and *Enterococcus*: Georgia, Maryland, Oregon, and Tennessee.

NARMS retail meat working group, 2003

U.S. Food and Drug Administration

Jason Abbott Sherry Ayers Dr. Mary Bartholomew Sonya Bodeis-Jones Peggy Carter Patti Cullen Linda English Sharon Friedman Althea Glenn Dr. Elvira Hall-Robinson Dr. Joshua Hayes Dr. Marcia Headrick Susannah Hubert Stuart Gaines Shawn McDermott Dr. Patrick McDermott David Melka Dr. Terry Proescholdt Sadaf Qaiyumi Dr. Ruby Singh Dr. Linda Tollefson Dr. David Wagner Dr. Antoinette Walker Dr. Robert Walker Dr. David White Dr. Shaohua Zhao

Centers for Disease Control and Prevention

Dr. Fred Angulo Dr. Tom Chiller Felicita Medalla Lauren Stancik

NARMS FoodNet Retail Sites

California

Richard Alexander Melody Hung-Fan Maribel Rickard

Connecticut

Robert Howard Aristea Kinney Mona Mandour Ruthanne Marcus Michael A. Pascucilla Charlie Welles

Georgia

James Benson Paul Blake Susan Lance-Parker Bob Manning Mahin Park

Karen Cuenco

Jonigene Ruark

Mary Warren

Craig Braymen

Ana Placencia

Narina Stepanova

Stephanie Wedel

Kirk Smith

Yang Xiong

Billie Juni

Fe Leano

Maryland

Minnesota

New York Gina Conenello Lavin Joseph

Tim Root

Oregon Debbie Bergquist Emilio DeBess Eric Espinosa Trisha Hannan Helen Packett Larry Stauffer Ivor Thomas Robert Vega Veronica Williams

Tennessee

Allen Craig Samir Hanna Henrietta Hardin Tim Jones RuthAnn Spence

Acknowledgements

Much thanks to Deborah Brooks and Michelle Talley for providing outstanding web support to the NARMS program.

Table 1. Antimicrobial Susceptibility Test Methods and Interpretive Criteria: NARMS Retail Meat, 2003

Genus: Campylobacter

Susceptibility Testing Method: Agar dilution

QC Organism: Campylobacter jejuni ATCC 33560

Drug	Susceptible (µg/ml)	Intermediate (µg/ml)	Resistant (µg/ml)	
Ciprofloxacin*	≤1	2	\geq 4	
Doxycycline*	≤ 4	8	≥16	
Erythromycin*	\leq 0.5	1,2,4	≥ 8	
Gentamicin*	≤ 4	8	≥16	
Meropenem*	\leq 4	8	≥ 16	

Genus: Enterococcus

Susceptibility Testing Method: Broth microdilution

Sensititre Plate: CMV5ACDC

QC Organisms: Enterococcus faecalis ATCC 29212 and Enterococcus faecalis ATCC 51299

Drug	Susceptible (µg/ml)	Intermediate (µg/ml)	Resistant (µg/ml)
Bacitracin*	≤ 32	64	≥ 128
Chloramphenicol	≤ 8	16	≥ 32
Ciprofloxacin	≤ 1	2	≥ 4
Erythromycin	 ≤0.5	1,2,4	≥ 8
Flavomycin*	≤ 8	16	\geq 32
Gentamicin	_ < 500		\geq 500
Kanamycin*	≤ 128	256	\geq 512
Lincomycin*	≤ 8	16	\geq 32
Linezolid	≤ 2	4	≥ 8
Nitrofurantoin	≤ 32	64	≥ 128
Penicillin	≤ 8		≥ 16
Salinomycin*	≤ 8	16	\geq 32
Streptomycin*	< 1000		≥1000
Quinupristin/Dalfopristin	≤ 1	2	≥ 4
Tetracycline	\leq 4	8	≥ 16
Tylosin*	≤ 8	16	\geq 32
Vancomycin	≤ 4	8,16	\geq 32

* No CLSI/NCCLS interpretative criteria for this bacterium / antimicrobial combination currently available.

Genus: Escherichia coli and Salmonella

Susceptibility Testing Method: Broth microdilution

Sensititre Plate: CMV7CNCD

QC Organisms: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213,

Pseudomonas aeruginosa ATCC 27853, and Enterococcus faecalis ATCC 29212

	Susceptible	Intermediate	Resistant
Drug	(µg/ml)	(µg/ml)	(µg/ml)
Amikacin	≤16	32	≥ 64
Amoxicillin/Clavulanic acid	$\leq 8/4$	16/8	\geq 32/16
Ampicillin	≤ 8	16	\geq 32
Cefoxitin	≤ 8	16	\geq 32
Ceftiofur	≤ 2	4	≥ 8
Ceftriaxone	≤ 8	16,32	≥ 64
Cephalothin	≤ 8	16	\geq 32
Chloramphenicol	≤ 8	16	\geq 32
Ciprofloxacin	≤ 1	2	\geq 4
Gentamicin	≤ 4	8	≥ 16
Kanamycin	≤ 16	32	≥ 64
Nalidixic acid	≤ 16		\geq 32
Streptomycin*	\leq 32		≥ 64
Sulfamethoxazole	≤ 256		≥ 512
Tetracycline	≤ 4	8	≥16
Trimethoprim/sulfamethoxazole	$\leq 2/38$		$\geq 4/76$

* No CLSI/NCCLS interpretative criteria for this bacterium / antimicrobial combination currently available.

Site	Chicken Breast	Ground Turkey	Ground Beef	Pork Chop	Total
CA	120	120	120	120	480
\mathbf{CT}^*	60	60	60	60	240
GA	120	120	120	120	480
MD	120	120	120	120	480
MN	120	110	110	120	460
NY	120	120	120	120	480
OR	120	120	120	120	480
TN	117	87	110	119	433
Total	897	857	880	899	3533

 Table 2.
 Number of Retail Meat Samples Tested by Site and Meat Type, 2003

^{*} CT only collected 5 samples for each meat type in 2003.

Table 3. Percent Positive Samples by Bacterium and Meat Type, 2003

	Chick	en Breast	Grou	nd Turkey	Grou	nd Beef	Pork	Chop
Bacterium	Ν	(%)	Ν	(%)	Ν	(%)	Ν	(%)
Campylobacter	469	(52.3)	5	(0.6)	1	(0.1)	4	(0.4)
Salmonella	83	(9.3)	114	(13.3)	10	(1.1)	5	(0.6)
Enterococcus	466	(97.7)	418	(93.5)	432	(91.9)	426	(88.9)
Escherichia coli	396	(83.0)	333	(74.5)	311	(66.2)	218	(45.5)

3533 = Total number of retail meats tested for Salmonella and Campylobacter

897 = Total Chicken Breast tested

857 =Total Ground Turkey tested

880 = Total Ground Beef tested

899 = Total Pork Chop tested

1873 = Total number of retail meats tested for Enterococcus and Escherichia coli

477 = Total Chicken Breast tested

447 =Total Ground Turkey tested

470 = Total Ground Beef tested

479 = Total Pork Chop tested

Table 4. Number of Isolates by Site, Bacterium, and Meat Type, 2003

	Chicken Breast	Ground Turkey	Ground Beef	Pork Chops
Site: CA				
Campylobacter	64	0	0	2
Salmonella	4	6	1	1
Site: CT				
Campylobacter	50	0	0	0
Salmonella	9	8	0	0
Site: GA				
Campylobacter	76	2	0	0
Salmonella	8	27	2	0
Enterococcus	119	120	119	116
Escherichia coli	120	117	90	68
Site: MD				
Campylobacter	38	0	1	0
Salmonella	18	25	3	1
Enterococcus	113	103	92	90
Escherichia coli	113	103	87	71
Site: MN				
Campylobacter	62	3	0	1
Salmonella	13	11	1	0
Site: NY				
Campylobacter	75	0	0	0
Salmonella	11	20	0	2
Site: OR				
Campylobacter	45	0	0	1
Salmonella	17	5	2	1
Enterococcus	119	108	112	103
Escherichia coli	78	49	57	28
Site: TN				
Campylobacter	59	0	0	0
Salmonella	3	12	1	0
Enterococcus	115	87	109	117
Escherichia coli	85	64	77	51

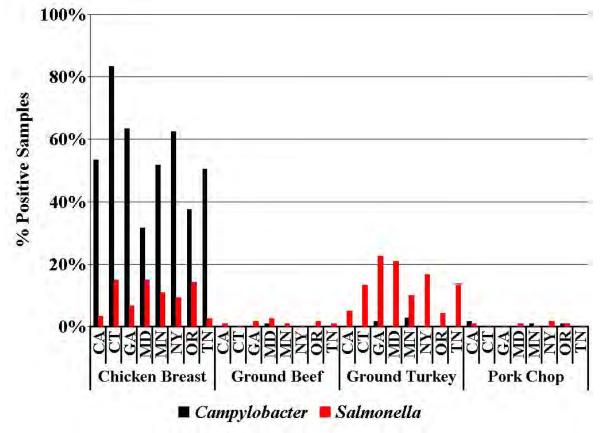
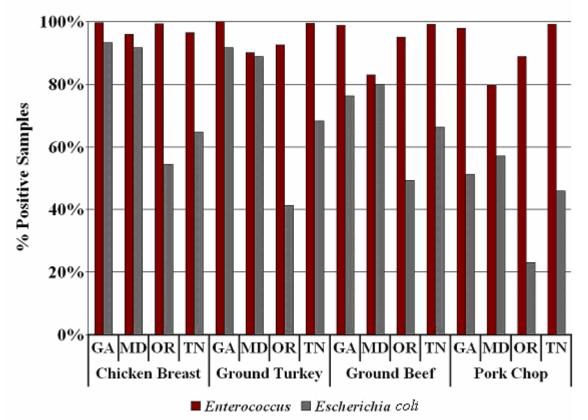



Figure 1a. Percent Positive Samples for Campylobacter & Salmonella by Meat Type and Site, 2003

Figure 1b. Percent Positive Samples for Enterococcus & E. coli by Meat Type and Site, 2003

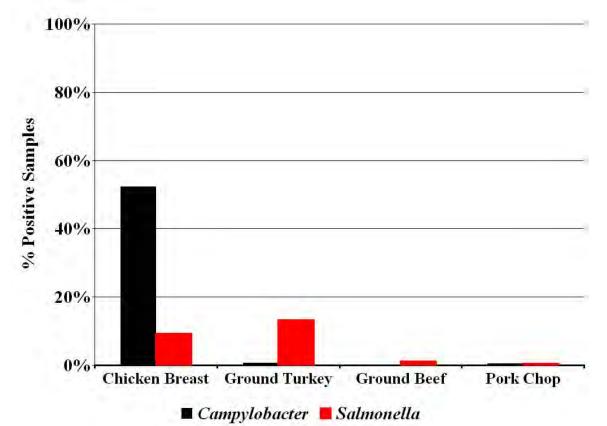
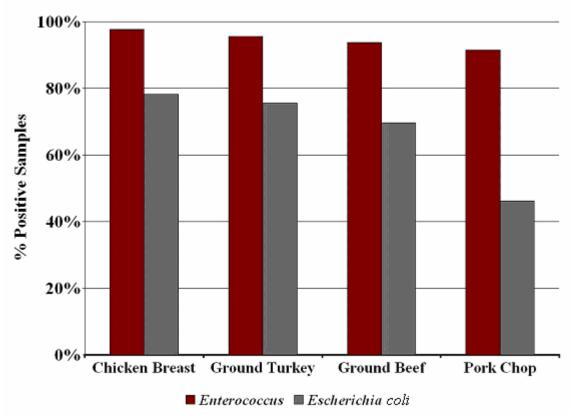
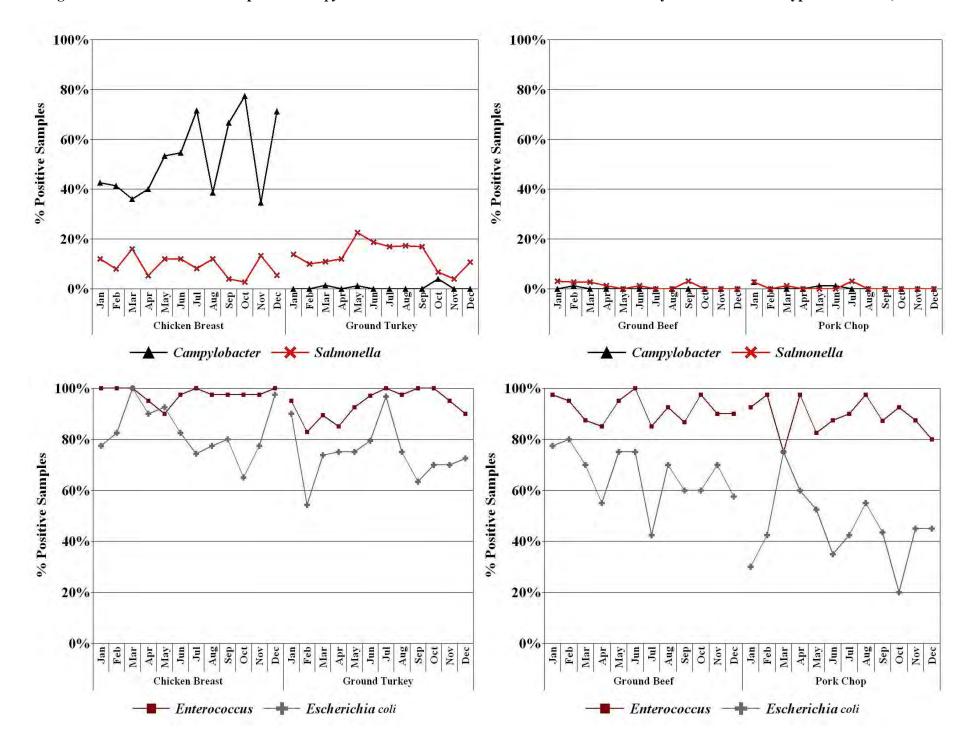




Figure 2a. Percent Positive Samples for Campylobacter & Salmonella by Meat Type for All Sites, 2003

Figure 2b. Percent Positive Samples for Enterococcus & E. coli by Meat Type for All Sites, 2003

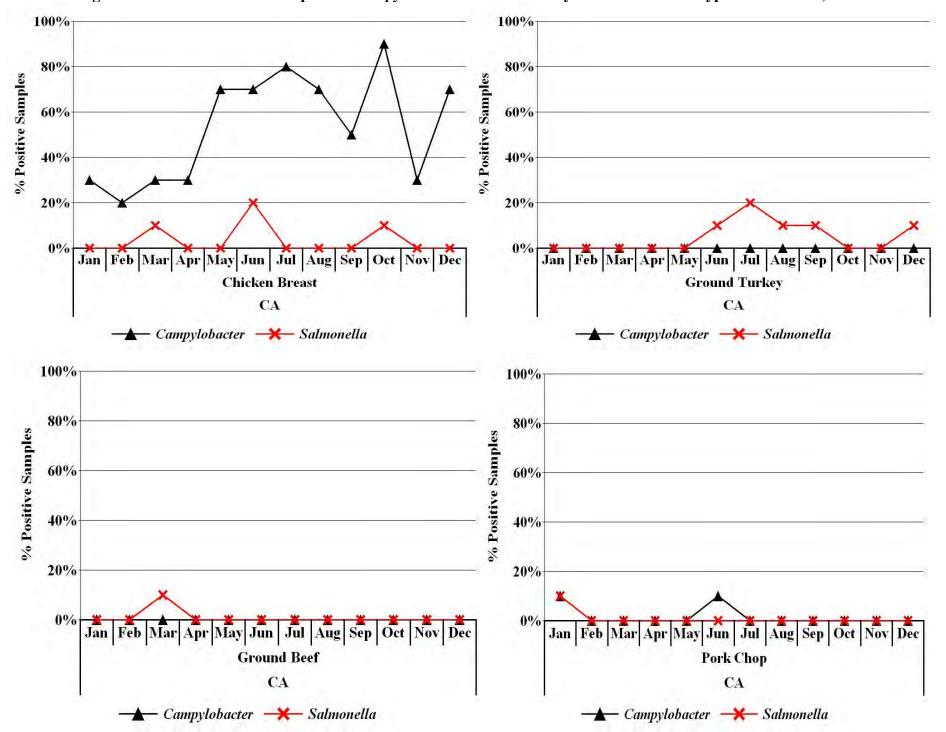


Figure 3b. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in California, 2003

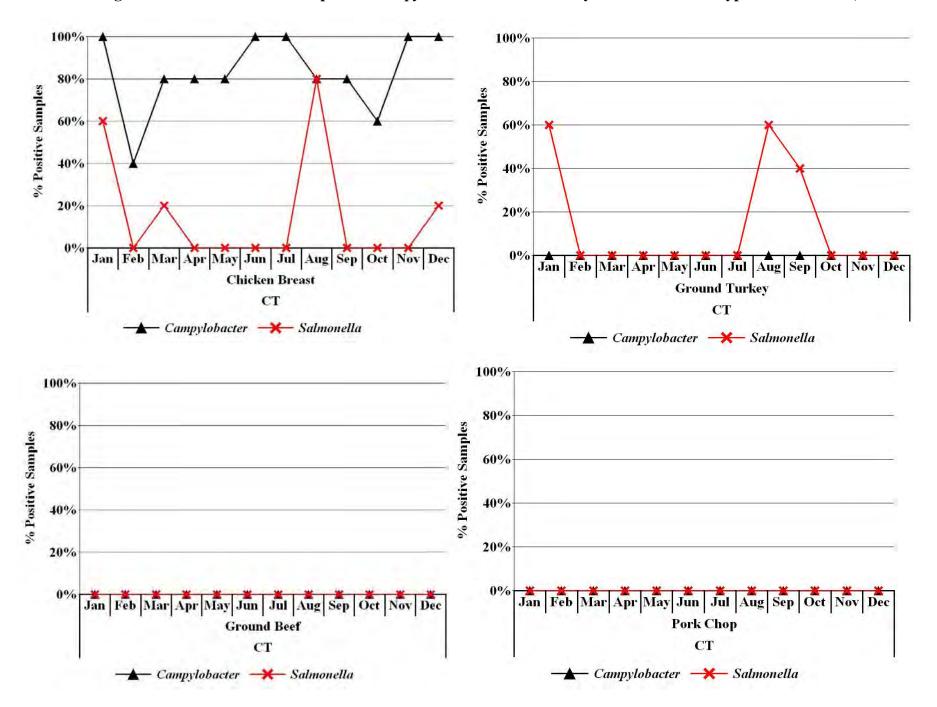


Figure 3c. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Connecticut, 2003

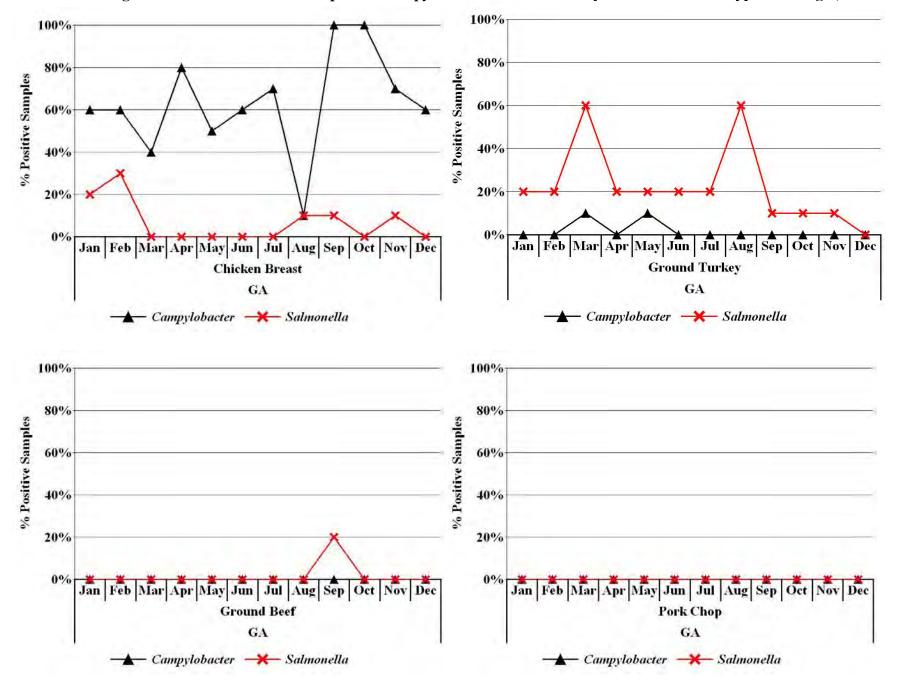


Figure 3d. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Georgia, 2003

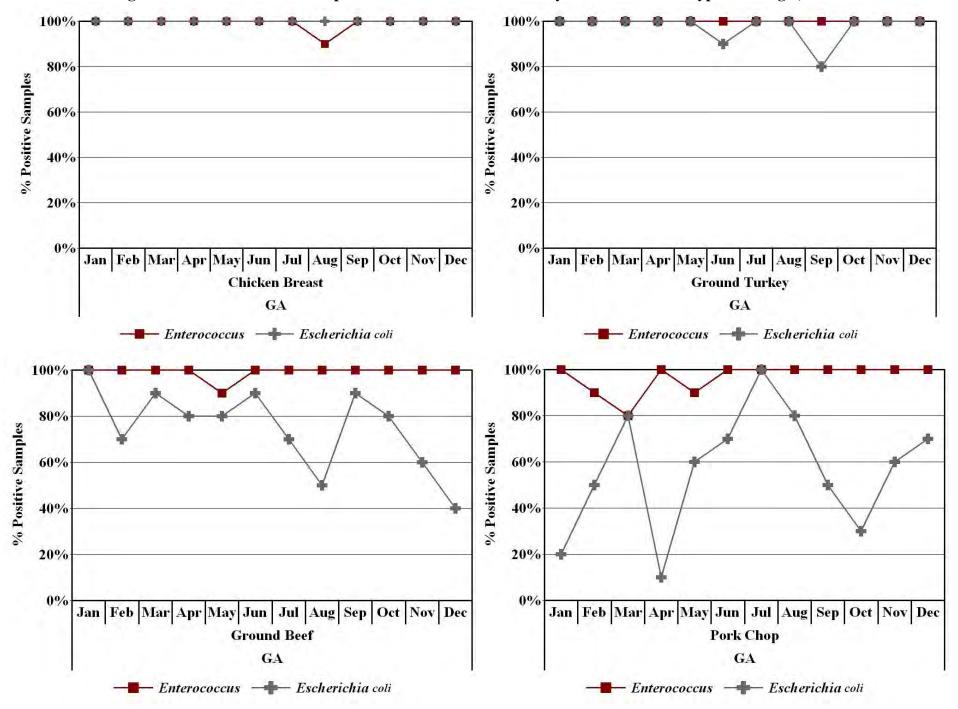


Figure 3e. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Georgia, 2003

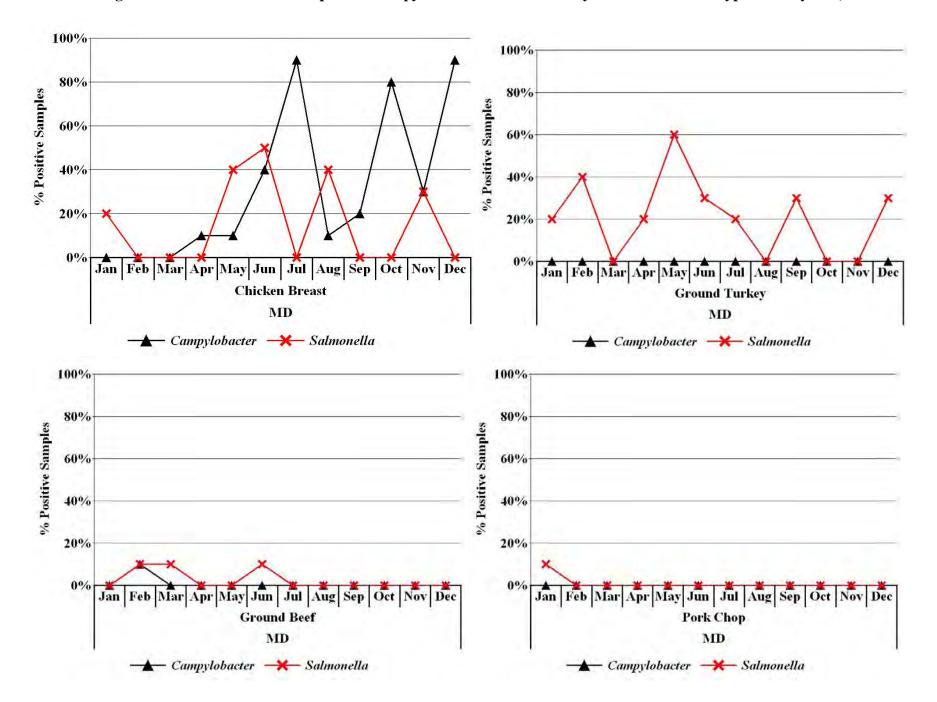


Figure 3f. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Maryland, 2003

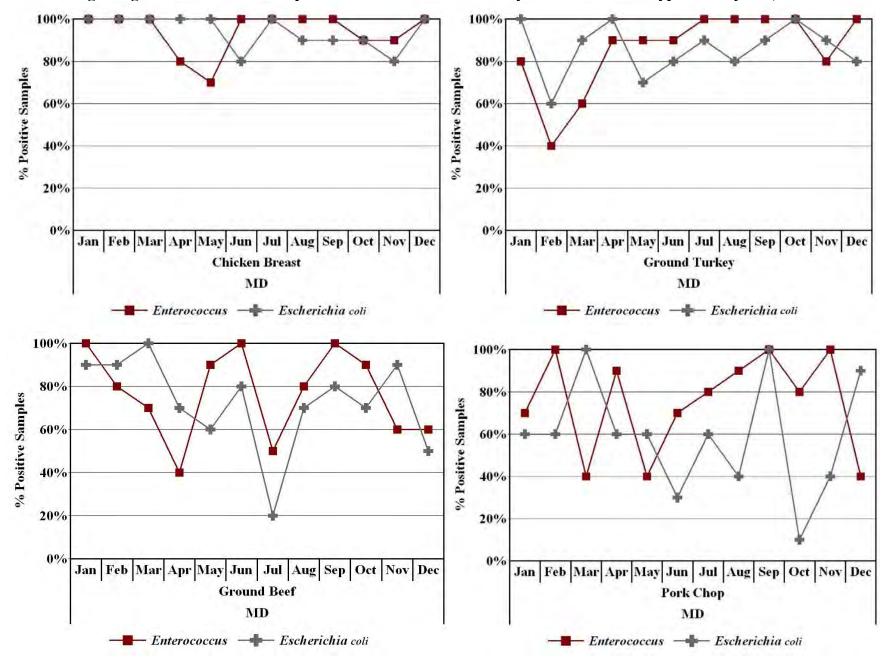


Figure 3g. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Maryland, 2003

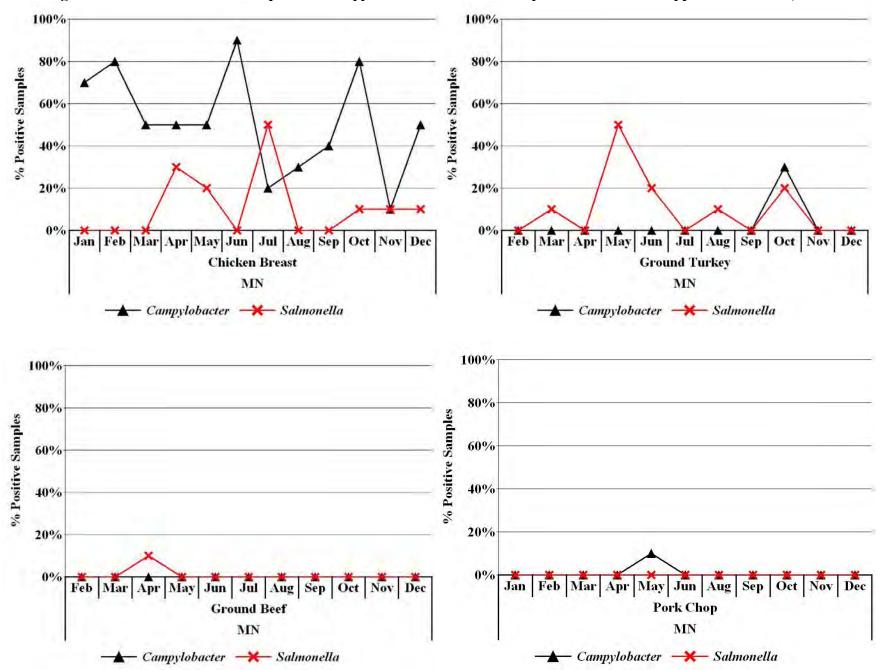


Figure 3h. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Minnesota, 2003

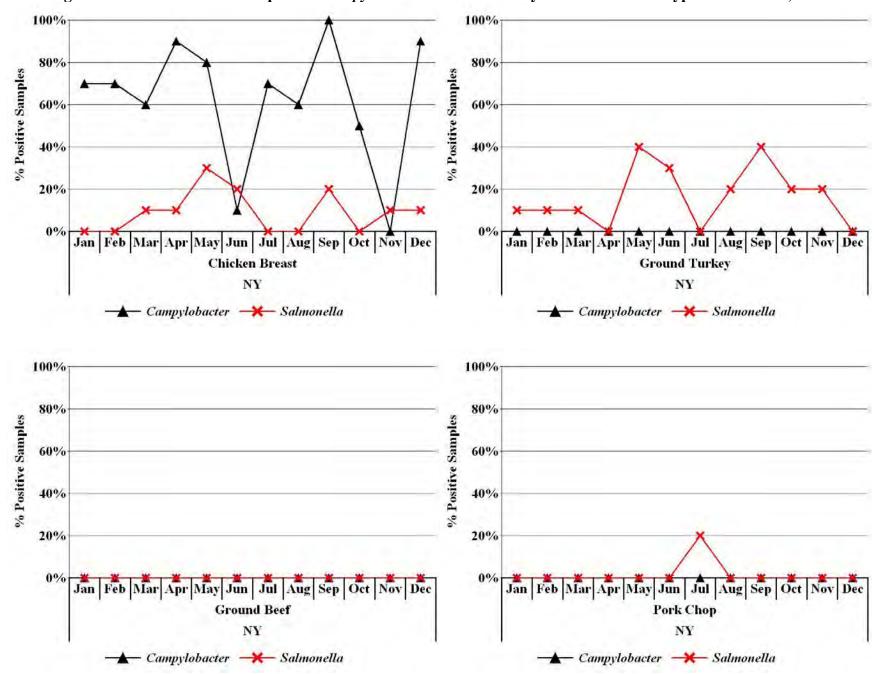


Figure 3i. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in New York, 2003

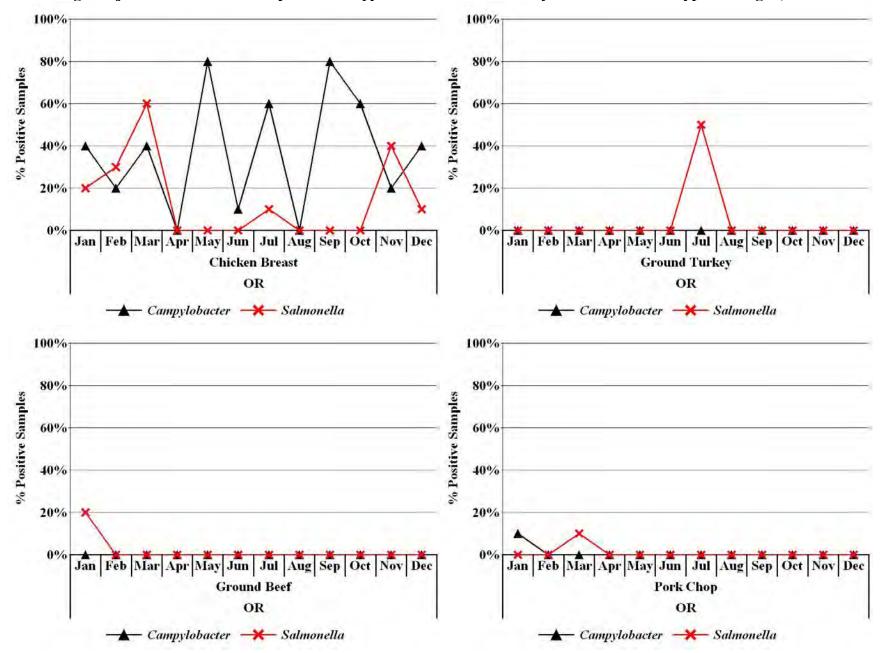


Figure 3j. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Oregon, 2003

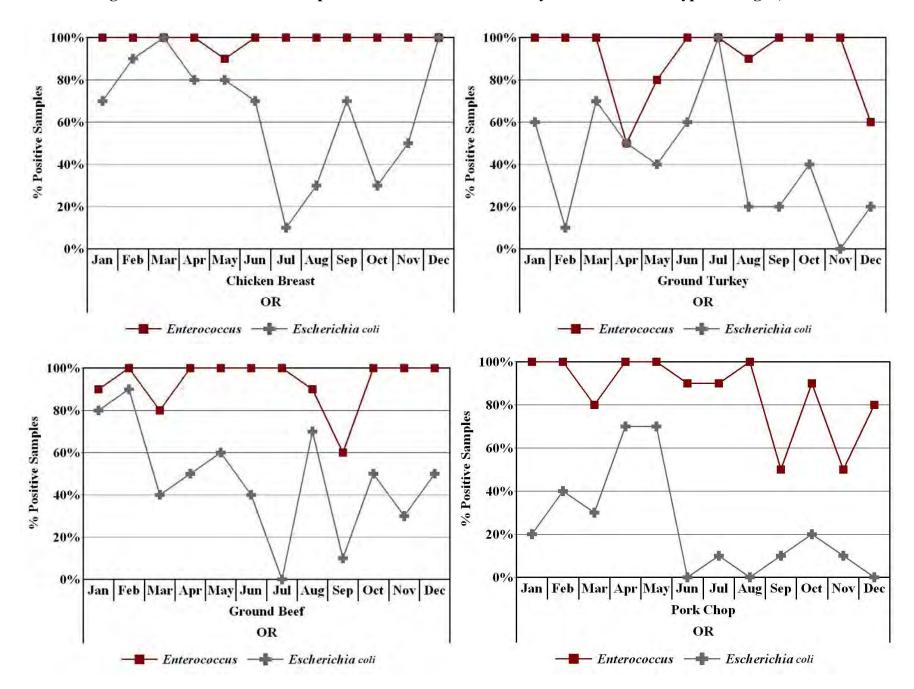


Figure 3k. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Oregon, 2003

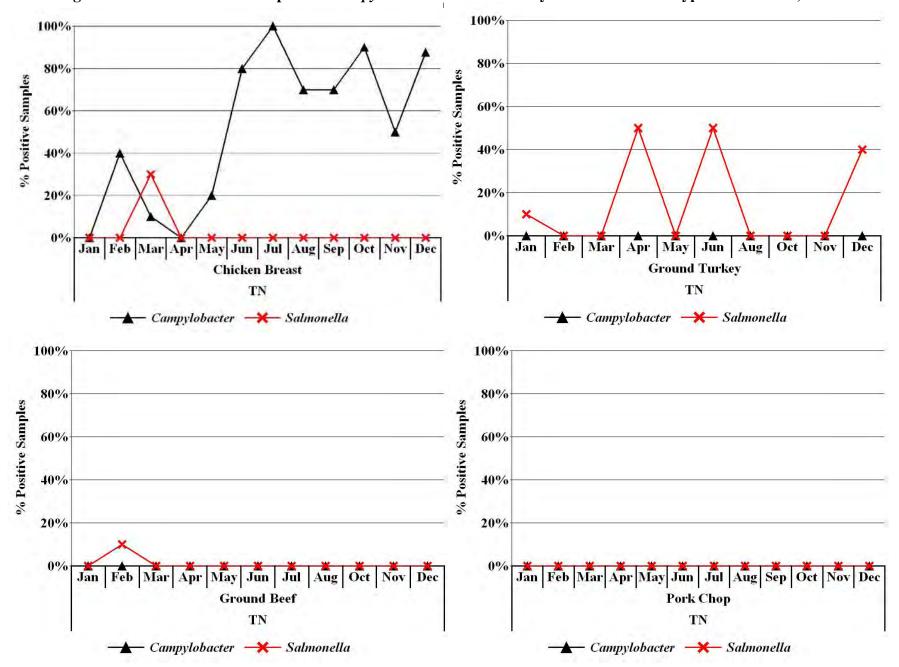


Figure 31. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Tennessee, 2003

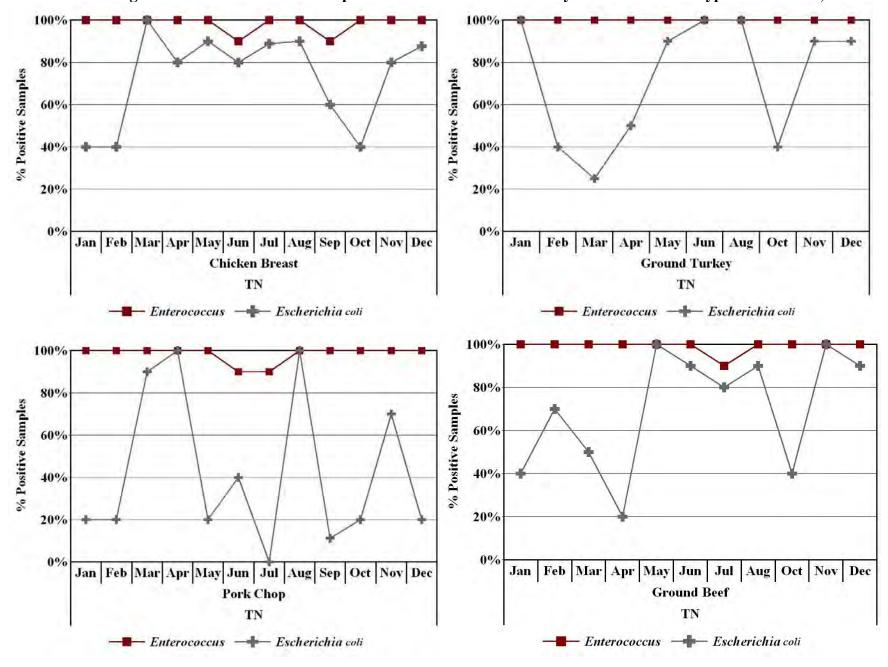


Figure 3m. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Tennessee, 2003

 Table 5. Overall Salmonella Serotypes Identified, 2003

	Serotype	n
1.	Heidelberg	48
2.	Saintpaul	26
3.	Typhimurium [*]	26
4.	Kentucky	24
5.	Hadar	13
6.	Reading	13
7.	Mbandaka	7
8.	Agona	6
9.	Enteritidis	6
10.	Montevideo	5
11.	Senftenberg	5
12.	Haardt	4
13.	Newport	4
14.	Brandenburg	3
15.	Dublin	3
16.	Schwarzengrund	3
17.	Bredeney	2
18.	I 4, 5, 12, : i : -	2
19.	IIIa:18:z4, z32:	2
20.	IIIa:18:z4, z23 :-	2
21.	Johannesburg	2
22.	Anatum	1
23.	Chester	1
24.	I 4,12 : r : -	1
25.	Infantis	1
26.	Muenchen	1
27.	Sandiego	1
	Total	212

^{*} Includes Typhimurium var. Copenhagen.

	Chicken Breast n % [*]		G	round	6	Fround		Pork
Serotype	l	Breast	T	urkey		Beef		Chop
	n	% [*]	n	%	n	%	n	%
Heidelberg (n=48)	16	33.3%	32	66.7%	0	_†	0	-
Saintpaul (n=26)	2	7.7%	24	92.3%	0	-	0	-
Typhimurium [‡] (n=26)	22	84.6%	2	7.7%	1	3.8%	1	3.8%
Kentucky (n=24)	20	83.3%	4	16.7%	0	-	0	-
Hadar (n=13)	2	15.4%	11	84.6%	0	-	0	-
Reading (n=13)	0	-	13	100.0%	0	-	0	-
Mbandaka (n=7)	7	100.0%	0	-	0	-	0	-
Agona (n=6)	0	-	6	100.0%	0	-	0	-
Enteritidis (n=6)	4	66.7%	1	16.7%	1	16.7%	0	-
Montevideo (n=5)	1	20.0%	2	40.0%	2	40.0%	0	-
Senftenberg (n=5)	0	-	5	100.0%	0	-	0	-
Haardt (n=4)	4	100.0%	0	-	0	-	0	-
Newport (n=4)	0	-	2	50.0%	1	25.0%	1	25.0%
Brandenburg (n=3)	2	66.7%	0	-	0	-	1	33.3%
Dublin (n=3)	0	-	0	-	3	100.0%	0	-
Schwarzengrund (n=3)	1	33.3%	2	66.7%	0	-	0	-
Bredeney (n=2)	0	-	2	100.0%	0	-	0	-
I 4, 5, 12, : i : - (n=2)	2	100.0%	0	-	0	-	0	-
IIIa:18:z4, z32: (n=2)	0	-	2	100.0%	0	-	0	-
IIIa:18:z4, z23 :- (n=2)	0	-	2	100.0%	0	-	0	-
Johannesburg (n=2)	0	-	0	-	0	-	2	100.0%
Anatum (n=1)	0	-	1	100.0%	0	-	0	-
Chester $(n=1)$	0	-	1	100.0%	0	-	0	-
I $4,12:r:-(n=1)$	0	-	1	100.0%	0	-	0	-
Infantis (n=1)	0	-	0	-	1	100.0%	0	-
Muenchen (n=1)	0	-	0	-	1	100.0%	0	-
Sandiego (n=1)	0	-	1	100.0%	0	-	0	-
Total (N=212)	83	39.2%	114	53.8%	10	4.7%	5	2.4%

Salmonella by Serotype and Meat Type, 2003

^{*} Where % = (# isolates per serotype per meat) / (total # isolates per serotype). * Dashes indicate no isolates from that serotype were isolated from that meat type.

[‡] Includes Typhimurium var. Copenhagen.

Site	Serotype		'hicken Breast		Fround Furkey	(Ground Beef		Pork Chop
Sue	Serviype	n	%*	n	wikey %	n	beej %	n	Chop %
	Hadar (n=2)	0	/0 _†	1 2	100.0%	0	-	0	/0
	Heidelberg (n=2)	2	100.0%	0	-	0	_	0	_
	Kentucky (n=2)	$\frac{2}{2}$	100.0%	0	_	0	_	0	
	Newport (n=2)	0	-	1	50.0%	1	50.0%	0	
CA	Reading (n=2)	0	_	2	100.0%	0	-	0	_
	Brandenburg (n=1)	0	_	0	100.070	0	_	1	100.0%
	Typhimurium ^{\ddagger} (n=1)	0	_	1	100.0%	0	_	0	100.070
	Total $(n=12)$	4	33.3%	1 6	50.0%	1	8.3%	1	8.3%
	Typhimurium (n=6)	6	100.0%	0		0	0.570	0	0.570
	Heidelberg (n=4)	0	-	4	100.0%	0	_	0	_
	Kentucky (n=3)	3	100.0%	0	-	0	_	0	_
СТ	Saintpaul (n=3)	0	-	3	100.0%	0	_	0	-
	Agona (n=1)	0	-	1	100.0%	0	_	0	-
	Total (n=17)	9	52.9%	8	47.1%	Ő	0.0%	Ő	0.0%
	Heidelberg (n=14)	1	7.1%	13	92.9%	0	-	0	-
	Saintpaul (n=5)	0	-	5	100.0%	0	-	0	-
	Brandenburg (n=2)	2	100.0%	0	-	0	-	0	-
	Bredeney (n=2)	0	-	2	100.0%	0	-	0	-
	Kentucky (n=2)	1	50.0%	1	50.0%	0	-	0	-
	Mbandaka (n=2)	2	100.0%	0	-	0	-	0	-
	Montevideo (n=2)	0	-	0	-	2	100.0%	0	-
GA	Schwarzengrund (n=2)	1	50.0%	1	50.0%	0	-	0	-
	Chester (n=1)	0	-	1	100.0%	0	-	0	-
	I 4,12 : r : - (n=1)	0	-	1	100.0%	0	-	0	-
	IIIa:18:z4, z32: (n=1)	0	-	1	100.0%	0	-	0	-
	Reading (n=1)	0	-	1	100.0%	0	-	0	-
	Senftenberg (n=1)	0	-	1	100.0%	0	-	0	-
	Typhimurium (n=1)	1	100.0%	0	-	0	-	0	-
	Total (n=37)	8	21.6%	27	73.0%	2	5.4%	0	0.0%
	Typhimurium (n=15)	13	86.7%	0	-	1	6.7%	1	6.7%
	Saintpaul (n=12)	2	16.7%	10	83.3%	0	-	0	-
	Enteritidis (n=5)	3	60.0%	1	20.0%	1	20.0%	0	-
	Hadar (n=3)	0	-	3	100.0%	0	-	0	-
	Heidelberg (n=3)	0	-	3	100.0%	0	-	0	-
	Agona (n=2)	0	-	2	100.0%	0	-	0	-
MD	Senftenberg (n=2)	0	-	2	100.0%	0	-	0	-
	Anatum (n=1)	0	-	1	100.0%	0	-	0	-
	Infantis (n=1)	0	-	0	-	1	100.0%	0	-
	Newport (n=1)	0	-	1	100.0%	0	-	0	-
	Sandiego (n=1)	0	-	1	100.0%	0	-	0	-
	Schwarzengrund (n=1)	0	-	1	100.0%	0	-	0	-
_	Total (n=47)	18	38.3%	25	53.2%	3	6.4%	1	2.1%

 Table 7. Salmonella Serotype by Site and Meat Type, 2003.

^{*} Where % = (# isolates per serotype per meat type per site)/(total # isolates per serotype per site).
* Dashes indicate no isolates from that serotype were isolated from that meat type.
* Includes Typhimurium var. Copenhagen.

		C	hicken	-	round	-	Fround		Pork
Site	Serotype	1	Breast	T	urkey		Beef		Chop
		n	%	n	%	n	%	n	%
	Kentucky (n=8)	6	75.0%	2	25.0%	0	-	0	-
	Reading (n=7)	0	-	7	100.0%	0	-	0	-
	Mbandaka (n=5)	5	100.0%	0	-	0	-	0	-
MN	Heidelberg (n=3)	1	33.3%	2	66.7%	0	-	0	-
	Dublin (n=1)	0	-	0	-	1	100.0%	0	-
	Enteritidis (n=1)	1	100.0%	0	-	0	-	0	-
	Total (n=25)	13	52.0%	11	44.0%	1	4.0%	0	0.0%
	Kentucky (n=6)	6	100.0%	0	-	0	-	0	-
	Saintpaul (n=5)	0	-	5	100.0%	0	-	0	-
	Heidelberg (n=4)	1	25.0%	3	75.0%	0	-	0	-
	Agona (n=3)	0	-	3	100.0%	0	-	0	-
	Typhimurium (n=3)	2	66.7%	1	33.3%	0	-	0	-
	I 4, 5, 12, : i : - (n=2)	2	100.0%	0	-	0	-	0	-
NY	IIIa:18:z4, z23 :- (n=2)	0	-	2	100.0%	0	-	0	-
	Johannesburg (n=2)	0	-	0	-	0	-	2	100.0%
	Montevideo (n=2)	0	-	2	100.0%	0	-	0	-
	Senftenberg (n=2)	0	-	2	100.0%	0	-	0	-
	IIIa:18:z4, z32: (n=1)	0	-	1	100.0%	0	-	0	-
	Reading (n=1)	0	-	1	100.0%	0	-	0	-
	Total (n=33)	11	33.3%	20	60.6%	0	0.0%	2	6.1%
	Heidelberg (n=11)	9	81.8%	2	18.2%	0	-	0	-
	Hadar (n=5)	2	40.0%	3	60.0%	0	-	0	-
	Haardt (n=4)	4	100.0%	0	-	0	-	0	-
OR	Dublin (n=2)	0	-	0	-	2	100.0%	0	-
UK	Kentucky (n=1)	1	100.0%	0	-	0	-	0	-
	Montevideo (n=1)	1	100.0%	0	-	0	-	0	-
	Newport (n=1)	0	-	0	-	0	-	1	100.0%
	Total (n=25)	17	68.0%	5	20.0%	2	8.0%	1	4.0%
	Heidelberg (n=7)	2	28.6%	5	71.4%	0	-	0	-
	Hadar (n=3)	0	-	3	100.0%	0	-	0	-
	Kentucky (n=2)	1	50.0%	1	50.0%	0	-	0	-
TN	Reading (n=2)	0	-	2	100.0%	0	-	0	-
	Muenchen (n=1)	0	-	0	-	1	100.0%	0	-
	Saintpaul (n=1)	0	-	1	100.0%	0	-	0	-
	Total (n=16)	3	18.8%	12	75.0%	1	6.3%	0	0.0%
Gran	nd Total (N=212)	83	39.2%	114	53.8%	10	4.7%	5	2.4%

Table 7_(cont'd). *Salmonella* Serotype by Site and Meat Type, 2003.

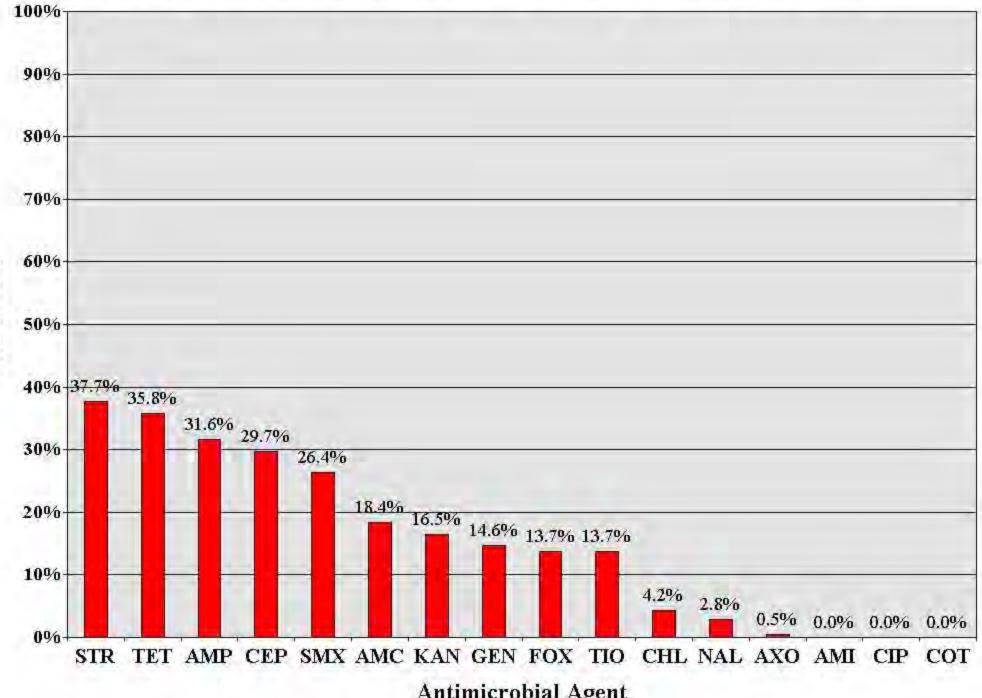

Month	n	%
January	22	10.4%
February	15	7.1%
March	23	10.8%
April	14	6.6%
May	26	12.3%
June	23	10.8%
July	19	9.0%
August	22	10.4%
September	16	7.5%
October	7	3.3%
November	13	6.1%
December	12	5.7%
Total (N)	212	100.0%

 Table 8. Salmonella Isolates by Month for All Sites, 2003

^{*} Where % = (n / N).

Antimicrobial Agent	n	% R *
Streptomycin	80	37.7%
Tetracycline	76	35.8%
Ampicillin	67	31.6%
Cephalothin	63	29.7%
Sulfamethoxazole	56	26.4%
Amoxicillin/Clavulanic Acid	39	18.4%
Kanamycin	35	16.5%
Gentamicin	31	14.6%
Cefoxitin	29	13.7%
Ceftiofur	29	13.7%
Chloramphenicol	9	4.2%
Nalidixic Acid	6	2.8%
Ceftriaxone	1	0.5%
Amikacin	0	0.0%
Ciprofloxacin	0	0.0%
Trimethoprim/Sulfamethoxazole	0	0.0%

^{*} Where % R = (n / N).

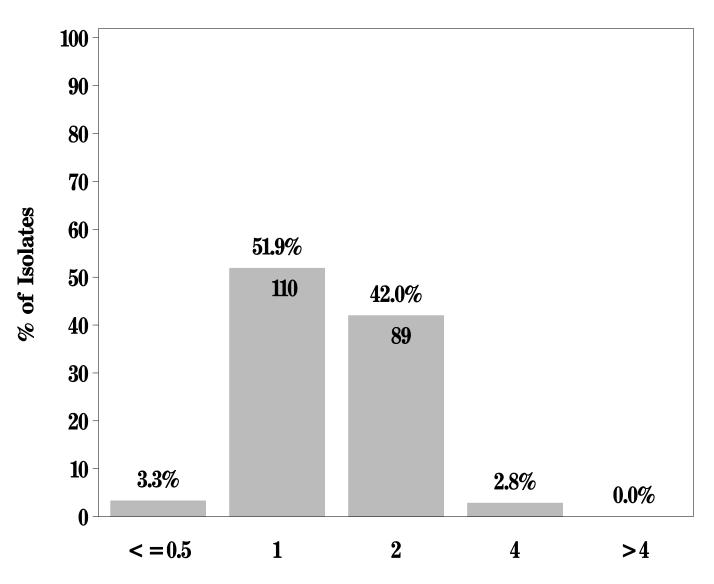
% Resistance

Figure 4. Antimicrobial Resistance among Salmonella Isolates (N=212), 2003

Antimicrobial Agent

Salmonella from All Meats (N	(=212)					Di	istribu	tion (%	6) of M	IICs (ii	n µg/m	l)						
Antimicrobial Agent	%R'	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	31.6%							38.2	28.8	0.9	0.5			31.6				
Amoxicillin/Clavulanic Acid	18.4%							60.4	7.5	0.5	1.9	11.3	4.7	13.7				
Cefoxitin	13.7%							0.9	55.7	23.6	5.2	0.9	13.7					
Ceftiofur	13.7%						45.3	39.2	1.9			13.7						
Ceftriaxone	0.5%					85.8				0.5	0.9	8.0	4.2	0.5				
Cephalothin	29.7%								11.3	46.7	10.4	1.9	2.4	27.4				
Nalidixic Acid	2.8%							0.5	1.4	82.5	11.8	0.9		2.8				
Ciprofloxacin	0.0%	83.5	12.3	1.4		2.4	0.5											
Sulfamethoxazole	26.4%											24.1	33.5	13.7	2.4		0.5	25.9
Trimethoprim/Sulfamethoxazole	0.0%				88.7	10.8	0.5											
Amikacin	0.0%						3.3	51.9	42.0	2.8		_						
Gentamicin	14.6%					29.2	44.3	6.1	1.9		3.8	9.0	5.7					
Kanamycin	16.5%										81.1		2.4	7.5	9.0			
Streptomycin*	37.7%												62.3	17.0	20.8			
Chloramphenicol	4.2%									20.3	74.1	1.4		4.2				
Tetracycline	35.8%									62.7	1.4		0.5	35.4				

Figure 5. MIC Distribution among all Antimicrobial Agents


Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

 $^{\dagger}\textsc{Discrepancies}$ between %R and sums of distribution %s are due to rounding.

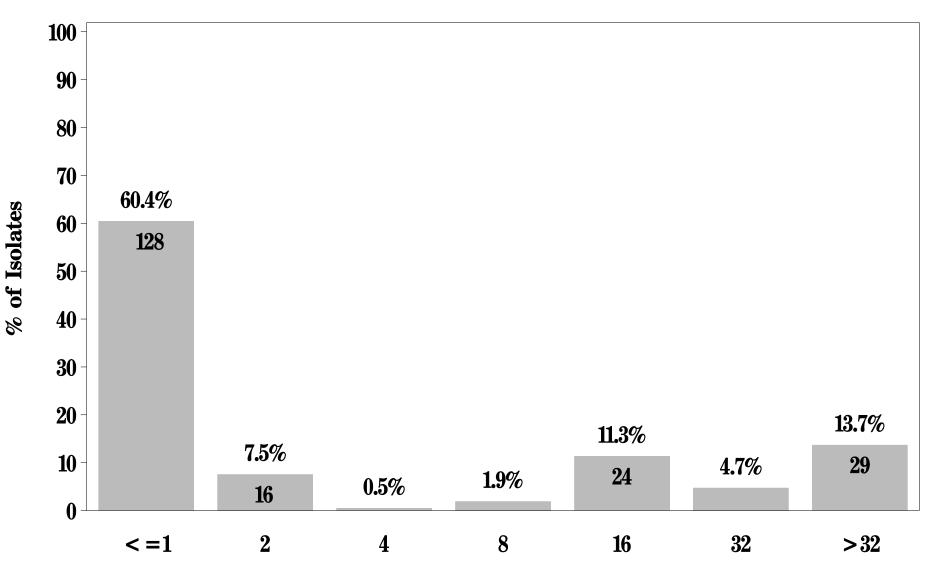

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

Figure 5a: Minimum Inhibitory Concentration of Amikacin for Salmonella (N=212 Isolates)
Breakpoints: Susceptible < =16 μg/mL Resistant > =64 μg/mL

Figure 5b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Salmonella* (N=212 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

Minimum Inhibitory Concentration

Figure 5c: Minimum Inhibitory Concentration of Ampicillin

for Salmonella (N=212 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

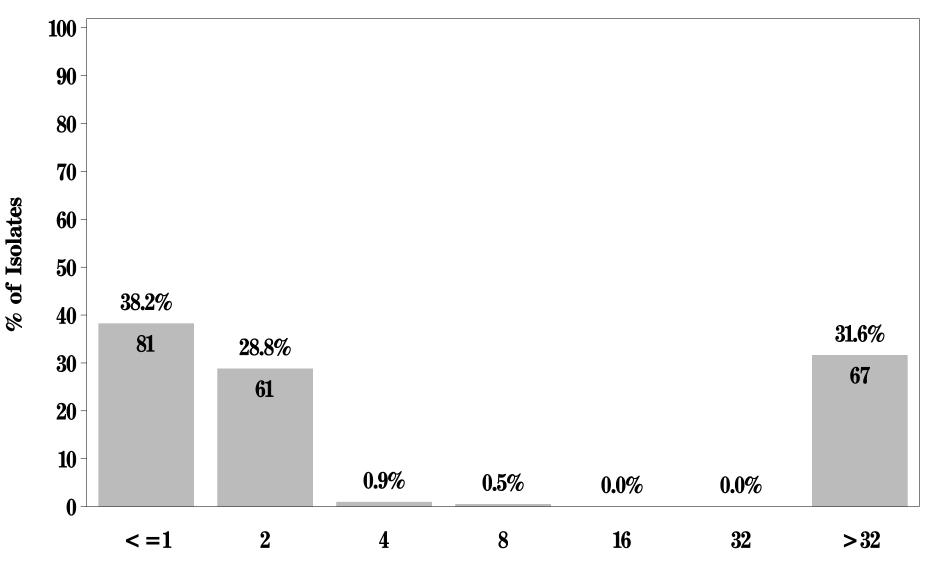


Figure 5d: Minimum Inhibitory Concentration of Cefoxitin

for Salmonella (N=212 Isolates)

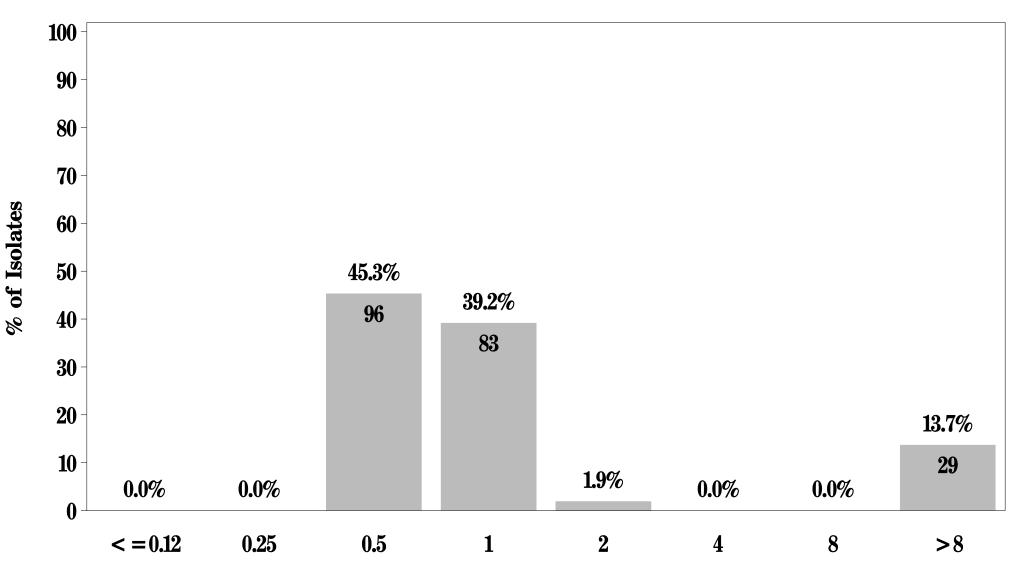

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

Figure 5e: Minimum Inhibitory Concentration of Ceftiofur

for Salmonella (N=212 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

Minimum Inhibitory Concentration

Figure 5f: Minimum Inhibitory Concentration of Ceftriaxone

for Salmonella (N=212 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 64 μ g/mL

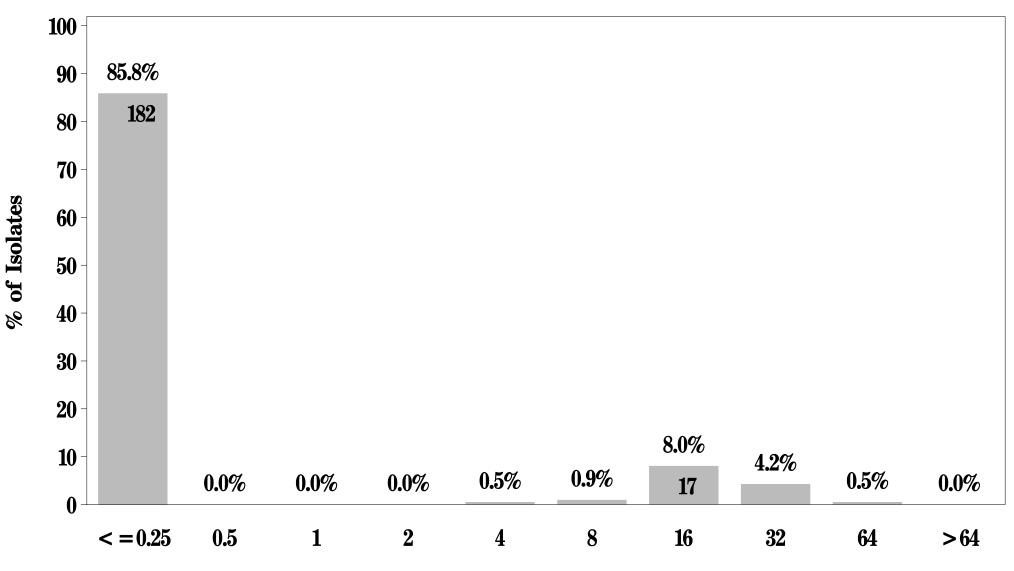
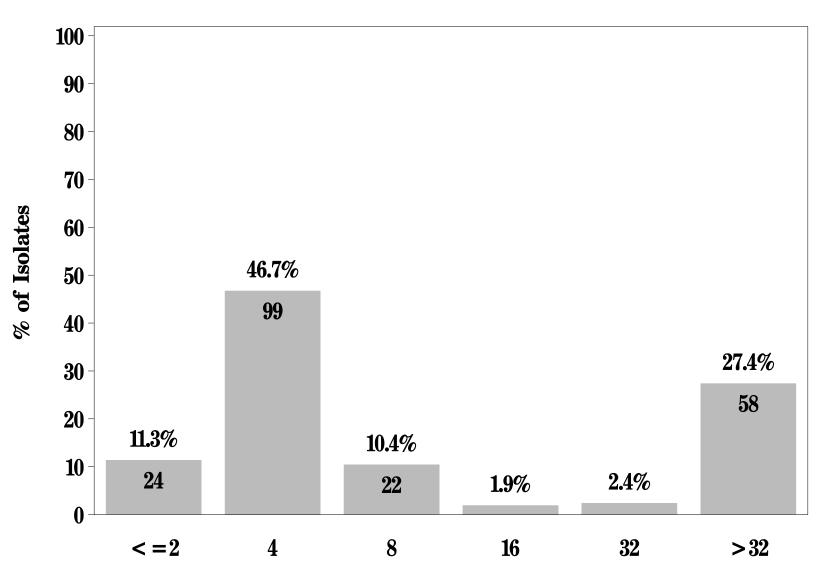
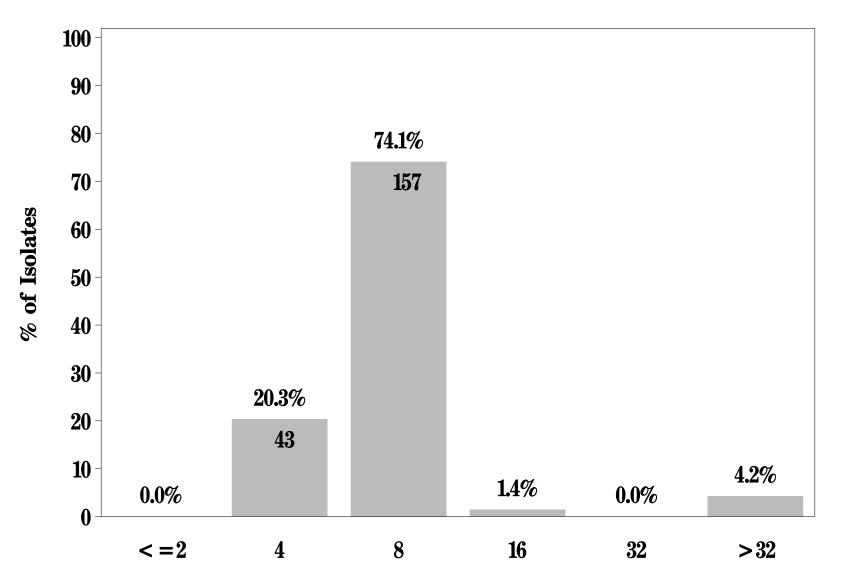



Figure 5g: Minimum Inhibitory Concentration of Cephalothin for *Salmonella* (N=212 Isolates)


Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

Minimum Inhibitory Concentration

Figure 5h: Minimum Inhibitory Concentration of Chloramphenicol for *Salmonella* (N=212 Isolates)

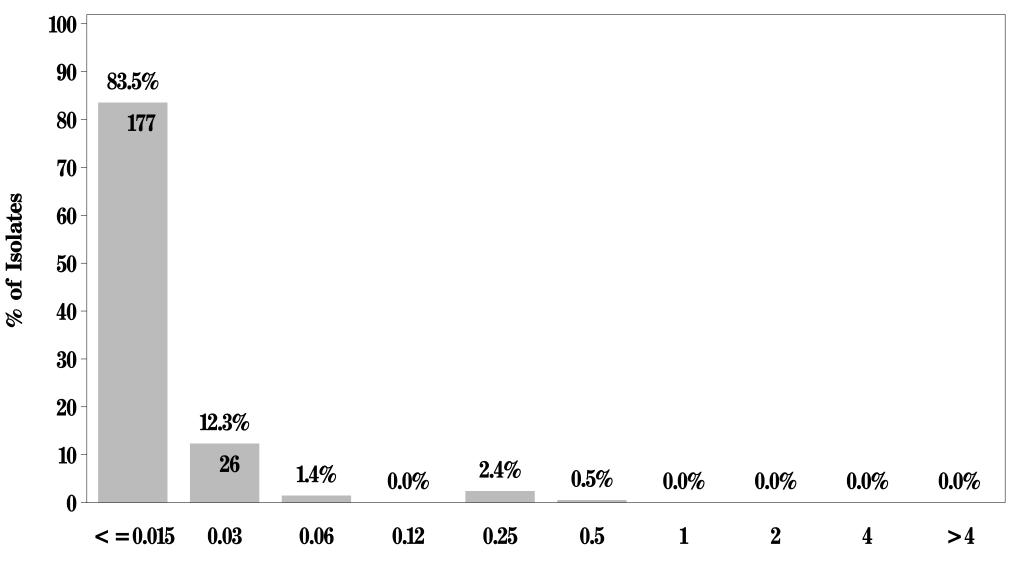
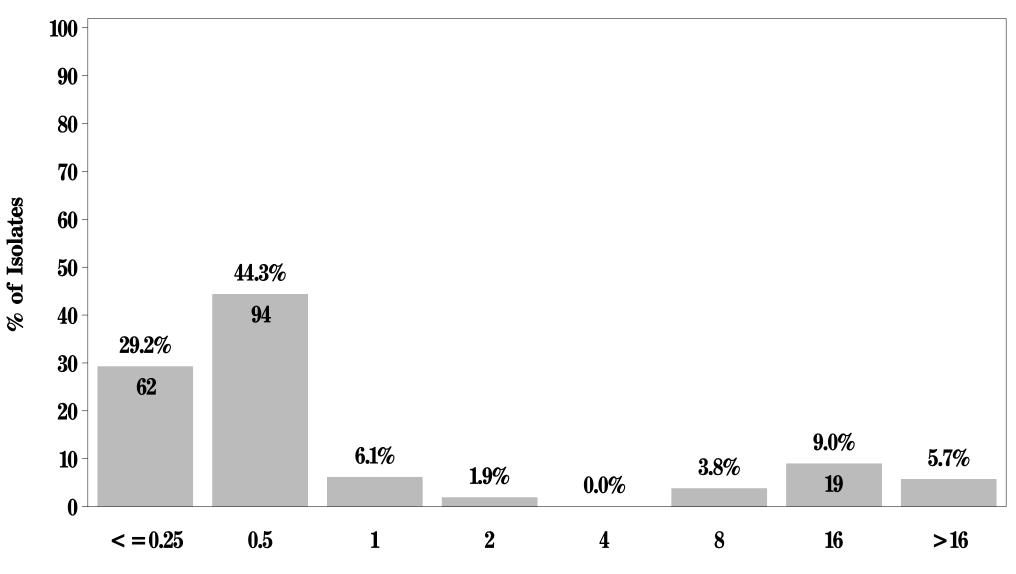

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Figure 5i: Minimum Inhibitory Concentration of Ciprofloxacin

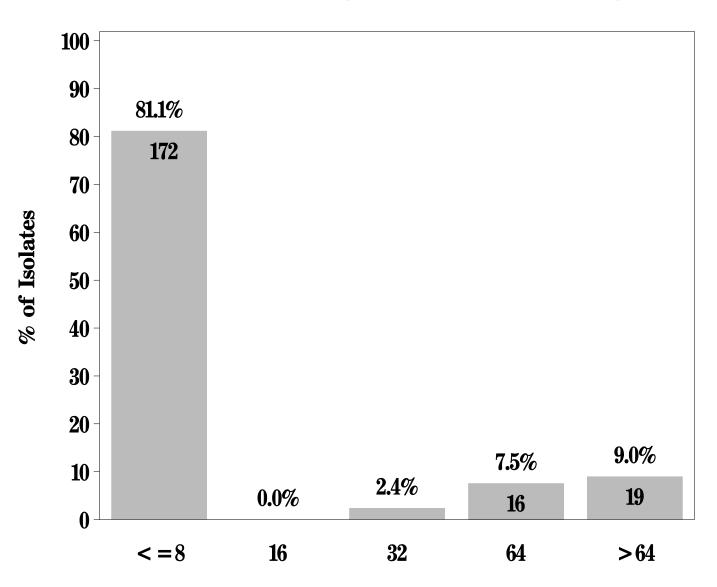
for Salmonella (N=212 Isolates)

Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL



Minimum Inhibitory Concentration

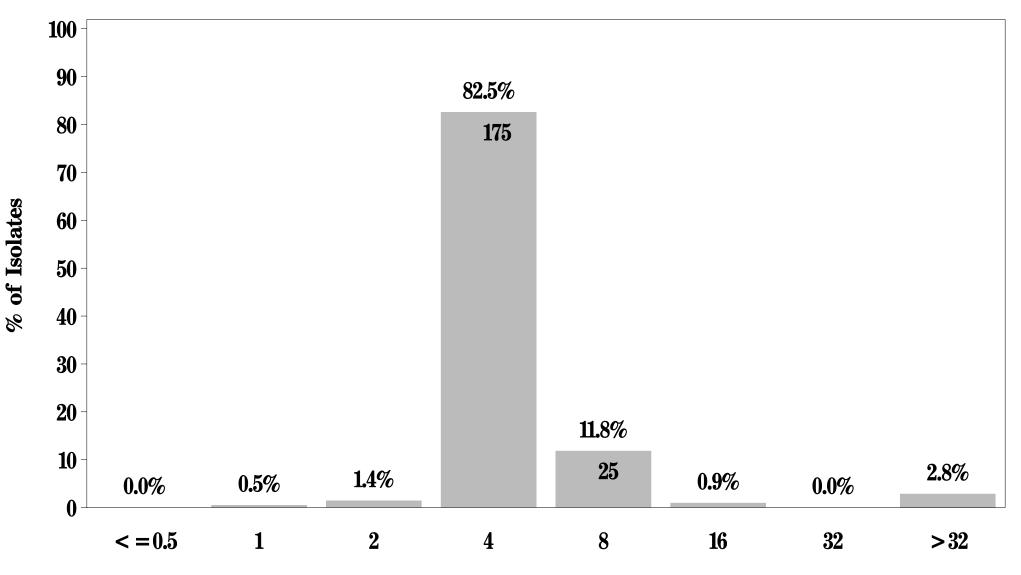
Figure 5j: Minimum Inhibitory Concentration of Gentamicin


for Salmonella (N=212 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Figure 5k: Minimum Inhibitory Concentration of Kanamycin for Salmonella (N=212 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

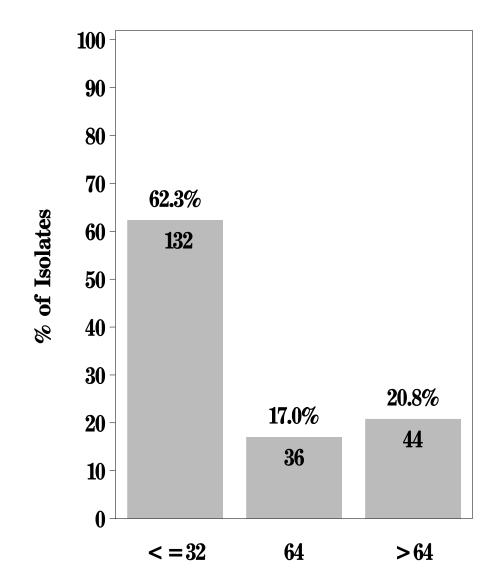


Minimum Inhibitory Concentration

Figure 51: Minimum Inhibitory Concentration of Nalidixic acid

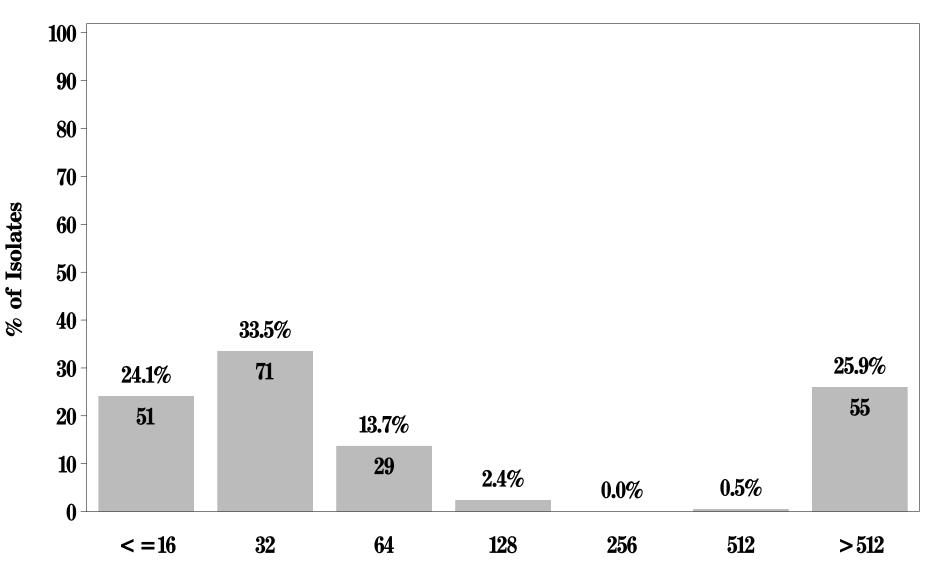
for Salmonella (N=212 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 32 μ g/mL

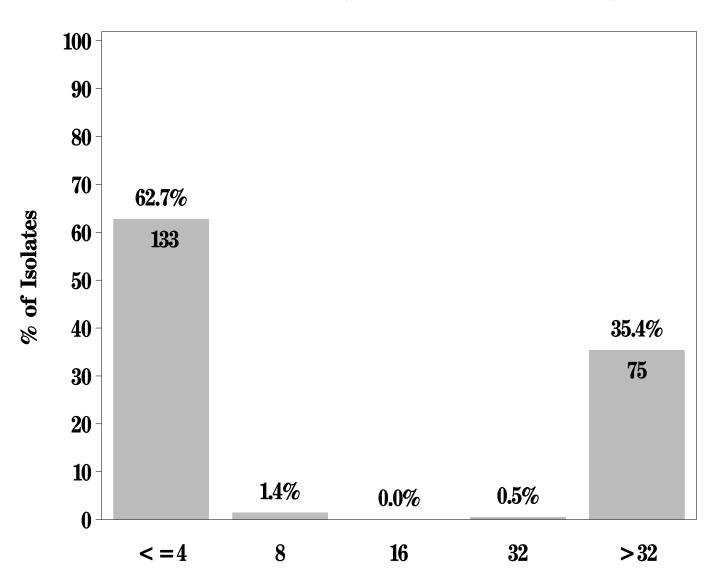


Minimum Inhibitory Concentration

Figure 5m: Minimum Inhibitory Concentration of Streptomycin


for Salmonella (N=212 Isolates)

Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 64 μ g/mL


Figure 5n: Minimum Inhibitory Concentration of Sulfamethoxazole for *Salmonella* (N=212 Isolates)

Breakpoints: Susceptible < = 256 μ g/mL Resistant > = 512 μ g/mL

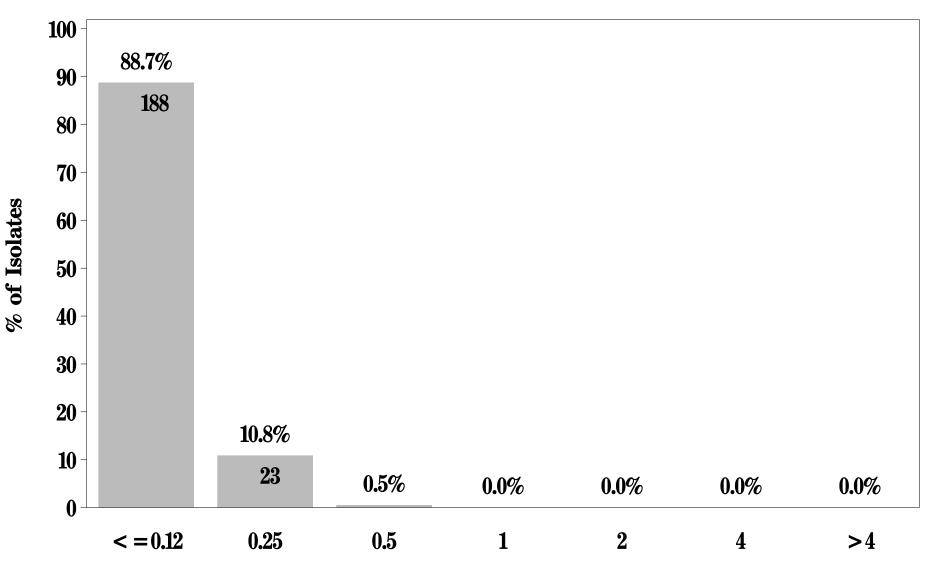

Minimum Inhibitory Concentration

Figure 50: Minimum Inhibitory Concentration of Tetracycline for Salmonella (N=212 Isolates) Breakpoints: Susceptible <= 4 μg/mL Resistant >= 16 μg/mL

Figure 5p: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Salmonella* (N=212 Isolates)

Breakpoints: Susceptible < = 2 μ g/mL Resistant > = 4 μ g/mL

Minimum Inhibitory Concentration

	Chicken	Ground	Ground	Pork
Antimicrobial Agent	Breast	Turkey	Beef	Chop
	(n=83)	(<i>n=114</i>)	(<i>n=10</i>)	(<i>n</i> =5)
Streptomycin	26.5%	45.6%	40.0%	40.0%
Tetracycline	27.7%	39.5%	40.0%	80.0%
Ampicillin	33.7%	28.9%	40.0%	40.0%
Cephalothin	28.9%	28.9%	40.0%	40.0%
Sulfamethoxazole	14.5%	33.3%	40.0%	40.0%
Amoxicillin/Clavulanic Acid	25.3%	11.4%	40.0%	20.0%
Kanamycin	4.8%	27.2%	_†	-
Gentamicin	6.0%	22.8%	-	-
Cefoxitin	25.3%	2.6%	40.0%	20.0%
Ceftiofur	25.3%	2.6%	40.0%	20.0%
Chloramphenicol	2.4%	0.9%	40.0%	40.0%
Nalidixic Acid	1.2%	4.4%	-	-
Ceftriaxone	-	-	10.0%	-
Amikacin	-	-	-	-
Ciprofloxacin	-	-	-	-
Trimethoprim/Sulfamethoxazole	-	-	-	-

Table 10. Antimicrobial Resistance^{*} among Salmonella Isolates by Meat Type, 2003

^{*} Where % Resistance = (# isolates per meat type resistant to antimicrobial) / (total # isolates per meat type).

[†] Dashes indicate 0.0% resistance to antimicrobial.

Salmonella from Chicken Breas	t (N=83)					D	istribu	tion (%	6) of N	IICs (i	n µg/n	nl)						
Antimicrobial Agent	%R'	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	33.7%							43.4	22.9					33.7				
Amoxicillin/Clavulanic Acid	25.3%							65.1	1.2		2.4	6.0		25.3				
Cefoxitin	25.3%								60.2	13.3	1.2		25.3					
Ceftiofur	25.3%						51.8	21.7	1.2			25.3						
Ceftriaxone	0.0%					73.5				1.2	1.2	16.9	7.2					
Cephalothin	28.9%								21.7	42.2	4.8	2.4	1.2	27.7				
Nalidixic Acid	1.2%							1.2	1.2	84.3	12.0			1.2				
Ciprofloxacin	0.0%	83.1	14.5	1.2		1.2												
Sulfamethoxazole	14.5%											32.5	33.7	15.7	3.6			14.5
Trimethoprim/Sulfamethoxazole	0.0%				97.6	2.4												
Amikacin	0.0%						8.4	47.0	41.0	3.6		_						
Gentamicin	6.0%					33.7	54.2	4.8			1.2	2.4	3.6					
Kanamycin	4.8%										94.0		1.2		4.8			
Streptomycin*	26.5%												73.5	14.5	12.0			
Chloramphenicol	2.4%									32.5	65.1			2.4				
Tetracycline	27.7%									72.3			1.2	26.5				

Figure 6a. MIC Distribution among Salmonella from Chicken Breast

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

Salmonella from Ground Turkey	(N=114)					Di	istribu	tion (%	6) of M	IICs (ii	n µg/m	l)						
Antimicrobial Agent	%R'	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	28.9%							36.8	31.6	1.8	0.9			28.9				
Amoxicillin/Clavulanic Acid	11.4%							58.8	11.4	0.9	1.8	15.8	8.8	2.6				
Cefoxitin	2.6%							1.8	55.3	31.6	7.0	1.8	2.6					
Ceftiofur	2.6%						41.2	54.4	1.8			2.6						
Ceftriaxone	0.0%					97.4					0.9		1.8					
Cephalothin	28.9%								5.3	49.1	14.9	1.8	2.6	26.3				
Nalidixic Acid	4.4%								0.9	82.5	11.4	0.9		4.4				
Ciprofloxacin	0.0%	86.0	8.8	0.9		3.5	0.9											
Sulfamethoxazole	33.3%											18.4	33.3	13.2	1.8		0.9	32.5
Trimethoprim/Sulfamethoxazole	0.0%				86.0	13.2	0.9											
Amikacin	0.0%							52.6	44.7	2.6		_						
Gentamicin	22.8%					25.4	37.7	5.3	3.5		5.3	14.9	7.9					
Kanamycin	27.2%										70.2		2.6	14.0	13.2			
Streptomycin*	45.6%												54.4	20.2	25.4			
Chloramphenicol	0.9%									13.2	83.3	2.6		0.9				
Tetracycline	39.5%									57.9	2.6			39.5				

Figure 6b. MIC Distribution among Salmonella from Ground Turkey

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

Salmonella from Ground Beef	(N=10)					D	istribu	tion (%	%) of N	/ICs (i	n μg/ml	l)						
Antimicrobial Agent	%R'	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	40.0%							10.0	50.0					40.0 ¢				
Amoxicillin/Clavulanic Acid	40.0%							50.0	10.0					40.0 ¢				
Cefoxitin	40.0%								40.0	20.0			40.0					
Ceftiofur	40.0%						30.0	30.0				40.0						
Ceftriaxone	10.0%					60.0						30.0		10.0				
Cephalothin	40.0%									50.0	10.0			40.0				
Nalidixic Acid	0.0%								10.0	70.0	20.0							
Ciprofloxacin	0.0%	70.0	30.0															
Sulfamethoxazole	40.0%											20.0	30.0	10.0				40.0
Trimethoprim/Sulfamethoxazole	0.0%				60.0	40.0												
Amikacin	0.0%							60.0	40.0		_							
Gentamicin	0.0%					30.0	40.0	30.0										
Kanamycin	0.0%										100.0							
Streptomycin*	40.0%												60.0		40.0 ‡			
Chloramphenicol	40.0%									10.0	50.0			40.0 ‡				
Tetracycline	40.0%									60.0				40.0				

Figure 6c. MIC Distribution among Salmonella from Ground Beef

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

1 MIC's for these isolates are greater than the highest dilution tested

Salmonella from Pork Chops	(N=5)					D	istribu	tion (%) of M	ICs (in	µg/ml)						
Antimicrobial Agent	%R'	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	40.0%							40.0	20.0					40.0				
Amoxicillin/Clavulanic Acid	20.0%							40.0	20.0			20.0		20.0				
Cefoxitin	20.0%								20.0	20.0	40.0		20.0					
Ceftiofur	20.0%						60.0		20.0			20.0						
Ceftriaxone	0.0%					80.0							20.0					
Cephalothin	40.0%									60.0			20.0	20.0				
Nalidixic Acid	0.0%									80.0		20.0						
Ciprofloxacin	0.0%	60.0	20.0	20.0														
Sulfamethoxazole	40.0%											20.0	40.0					40.0
Trimethoprim/Sulfamethoxazole	0.0%				60.0	40.0												
Amikacin	0.0%							100.0				_						
Gentamicin	0.0%					40.0	40.0				20.0							
Kanamycin	0.0%										80.0		20.0					
Streptomycin*	40.0%												60.0	20.0	20.0			
Chloramphenicol	40.0%										60.0			40.0				
Tetracycline	80.0%									20.0				80.0				

Figure 6d. MIC Distribution among Salmonella from Pork Chops

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

Figure 7a: Minimum Inhibitory Concentration of Amikacin

for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

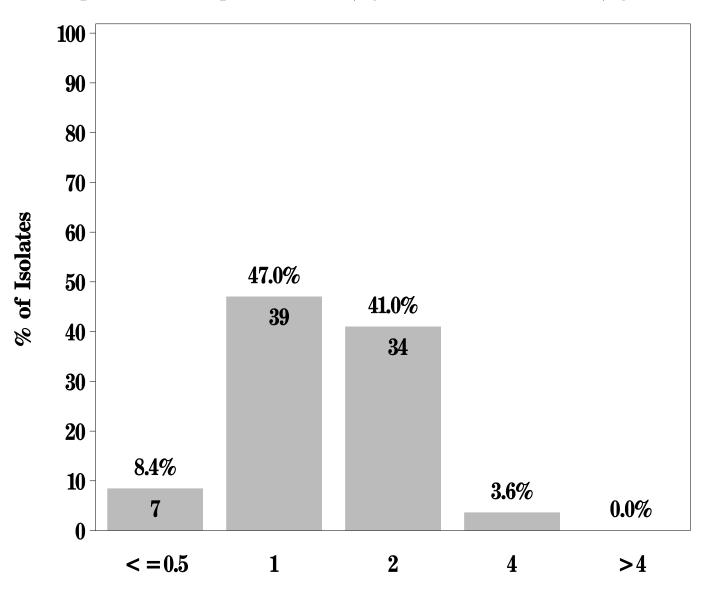


Figure 7a: Minimum Inhibitory Concentration of Amikacin

for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

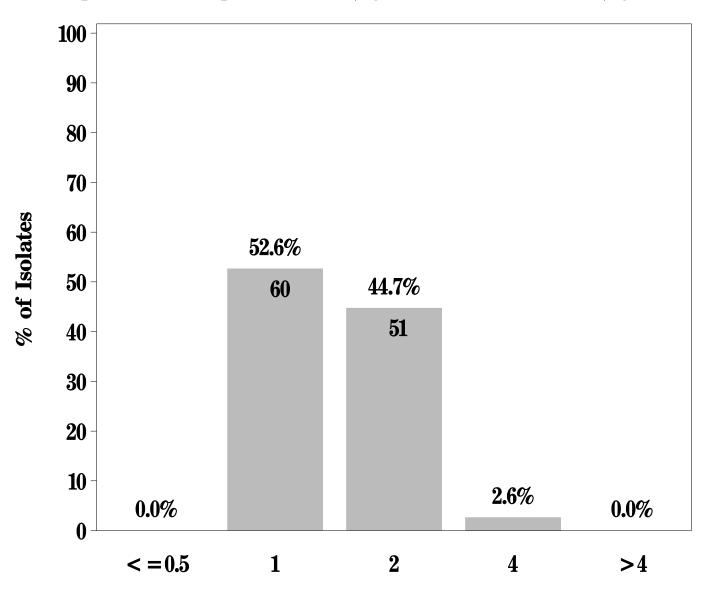
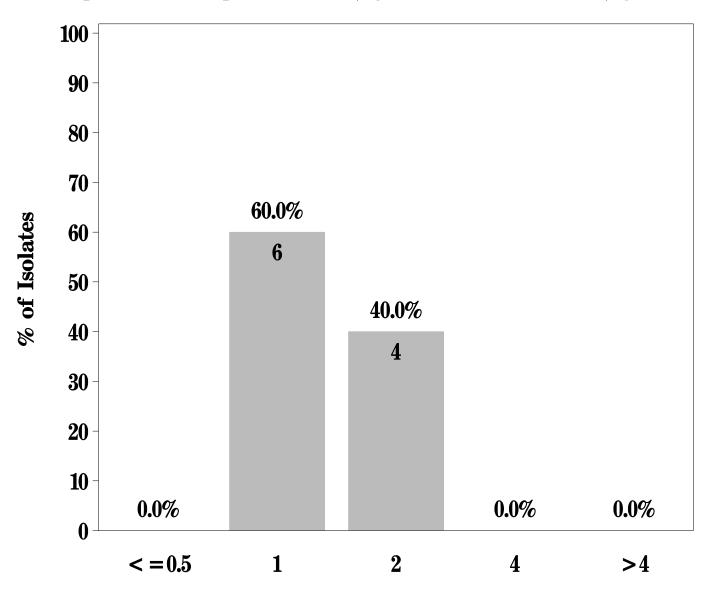



Figure 7a: Minimum Inhibitory Concentration of Amikacin

for Salmonella in Ground Beef (N=10 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration

Figure 7a: Minimum Inhibitory Concentration of Amikacin

for Salmonella in Pork Chop (N=5 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

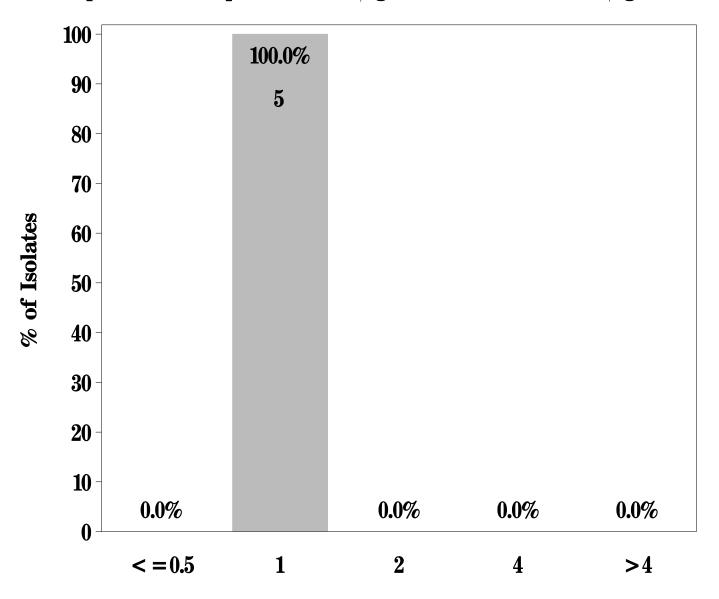


Figure 7b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid

for Salmonella in Chicken Breast (N=83 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

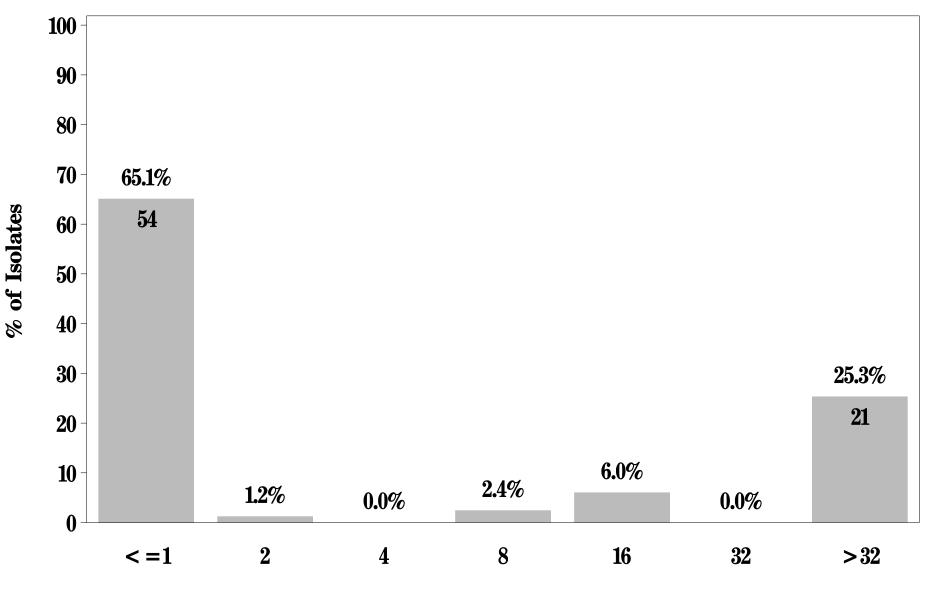
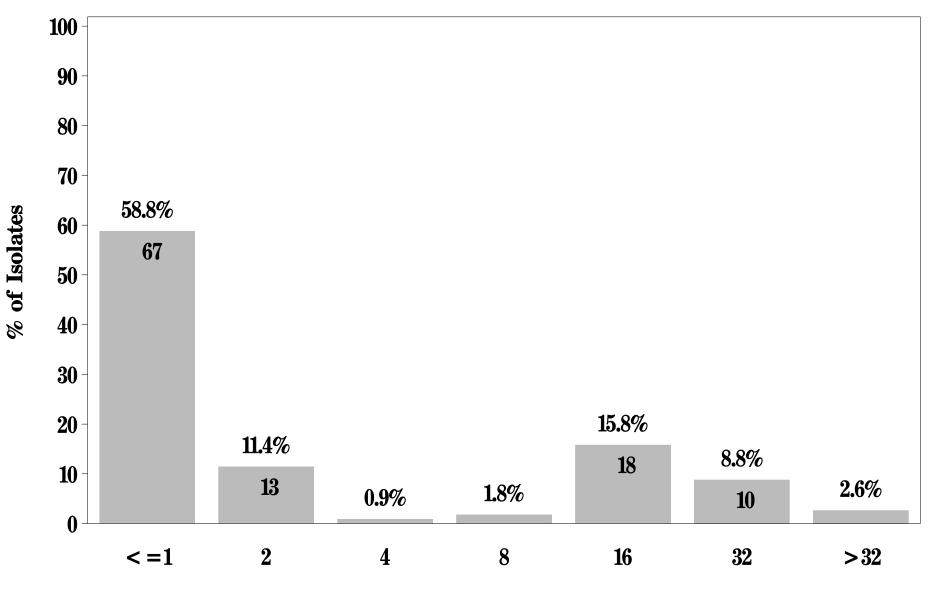



Figure 7b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid

for Salmonella in Ground Turkey (N=114 Isolates)

Breakpoints: Susceptible $< = 8 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

Minimum Inhibitory Concentration

Figure 7b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid

for Salmonella in Ground Beef (N=10 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

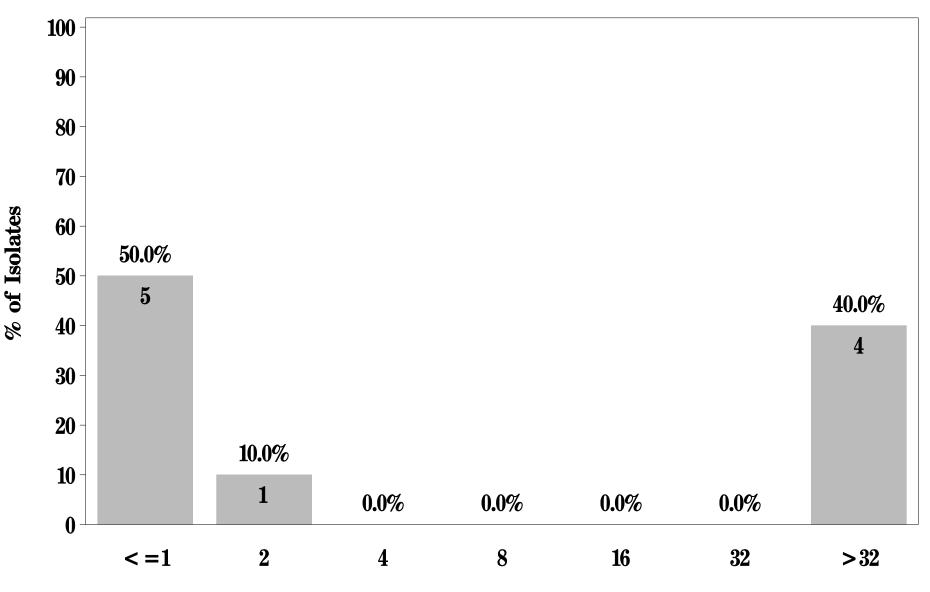
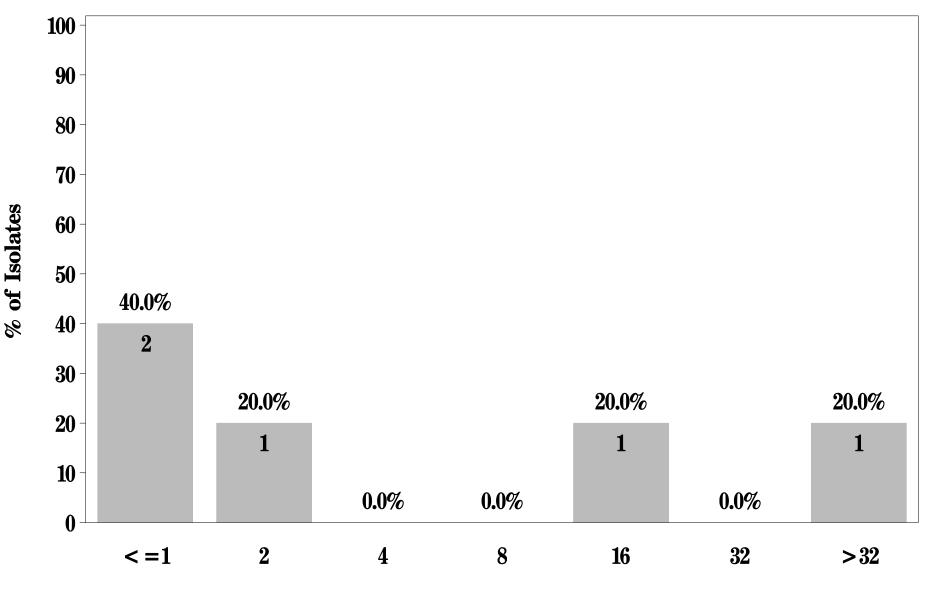
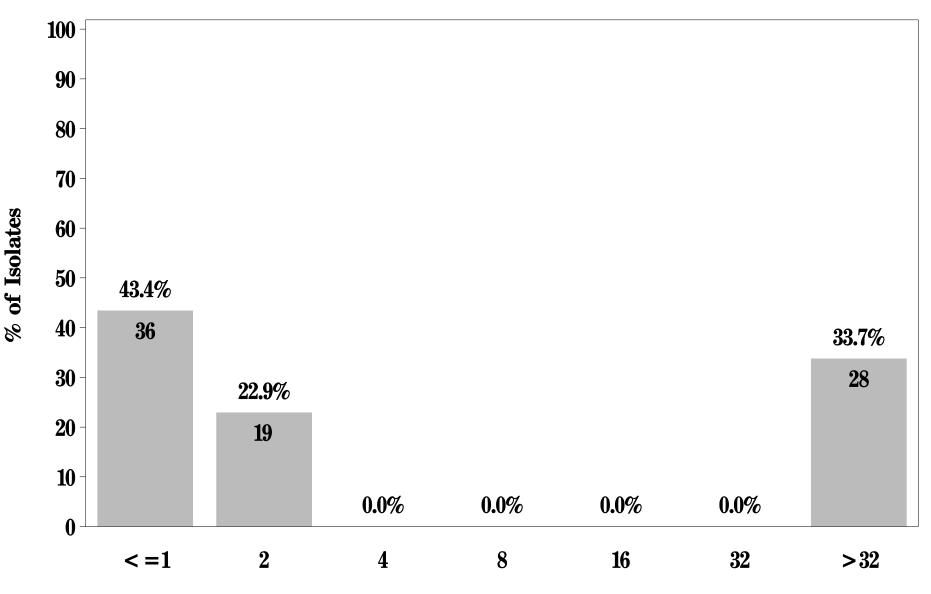



Figure 7b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid


for Salmonella in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

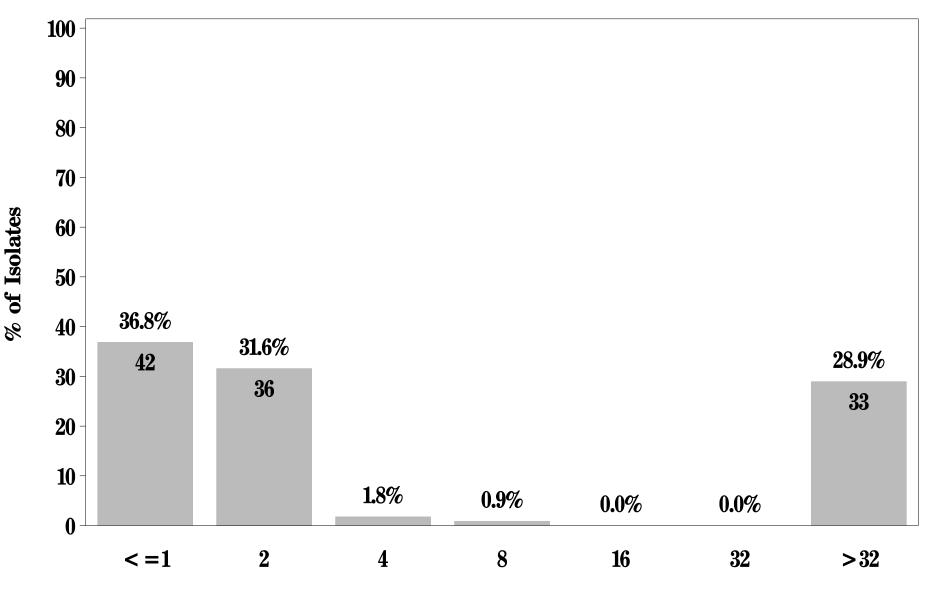

Minimum Inhibitory Concentration

Figure 7c: Minimum Inhibitory Concentration of Ampicillin for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible <=8 μg/mL Resistant >=32 μg/mL

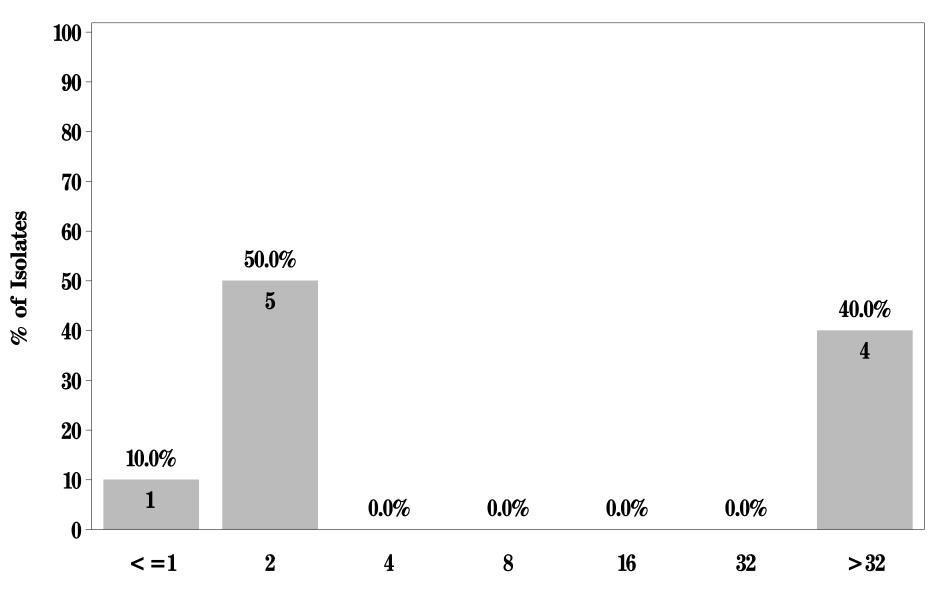

Minimum Inhibitory Concentration

Figure 7c: Minimum Inhibitory Concentration of Ampicillin for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible <=8 μg/mL Resistant >=32 μg/mL

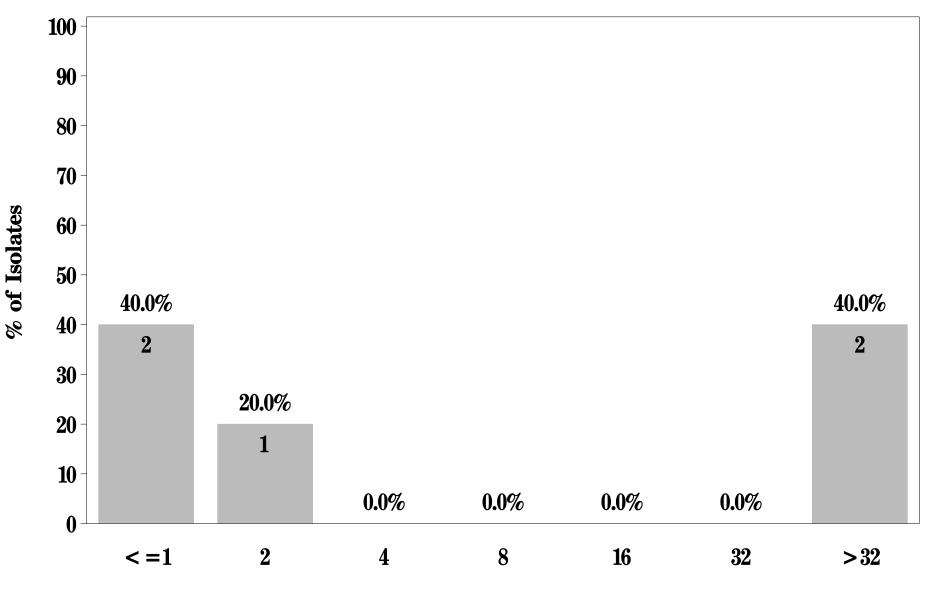

Minimum Inhibitory Concentration

Figure 7c: Minimum Inhibitory Concentration of Ampicillin for Salmonella in Ground Beef (N=10 Isolates) Breakpoints: Susceptible < =8 μg/mL Resistant > =32 μg/mL

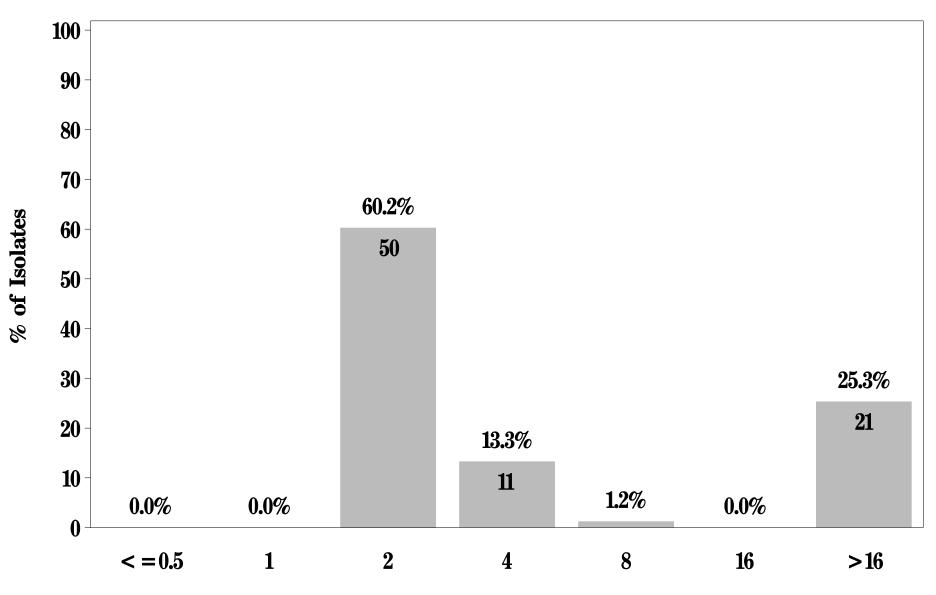

Minimum Inhibitory Concentration

Figure 7c: Minimum Inhibitory Concentration of Ampicillin for Salmonella in Pork Chop (N=5 Isolates)
Breakpoints: Susceptible < =8 μg/mL Resistant > =32 μg/mL

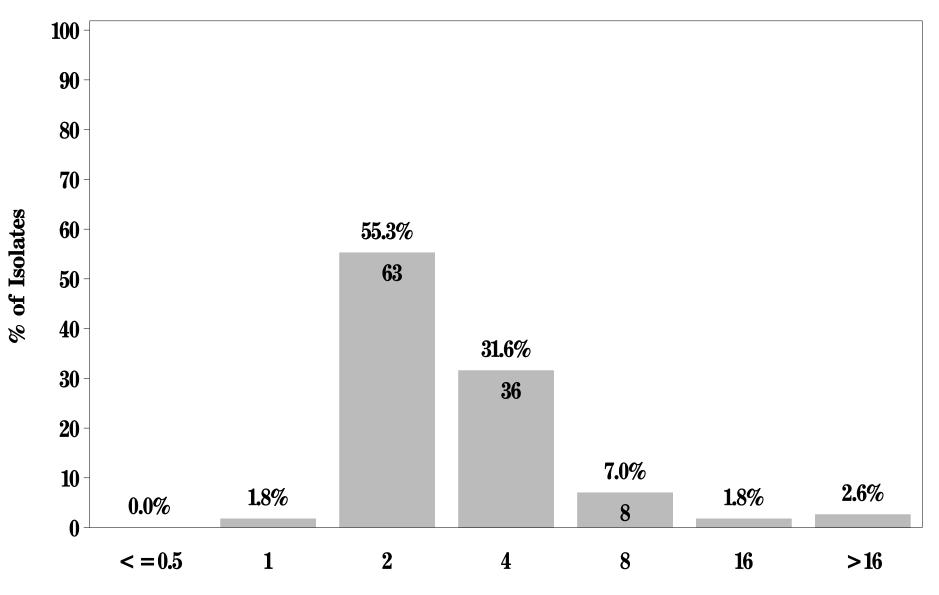
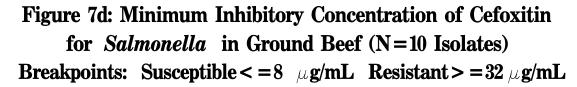

Minimum Inhibitory Concentration

Figure 7d: Minimum Inhibitory Concentration of Cefoxitin for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible < =8 μg/mL Resistant > =32 μg/mL



Minimum Inhibitory Concentration

Figure 7d: Minimum Inhibitory Concentration of Cefoxitin for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible < =8 μg/mL Resistant > =32 μg/mL

Minimum Inhibitory Concentration

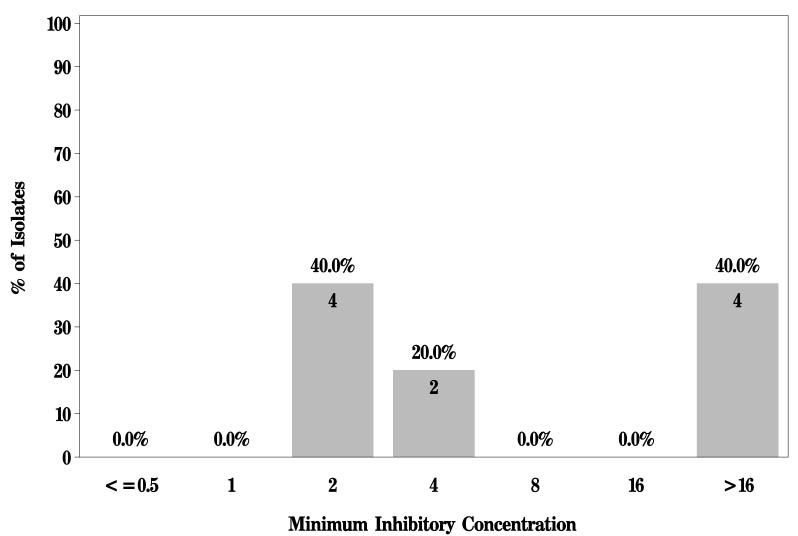
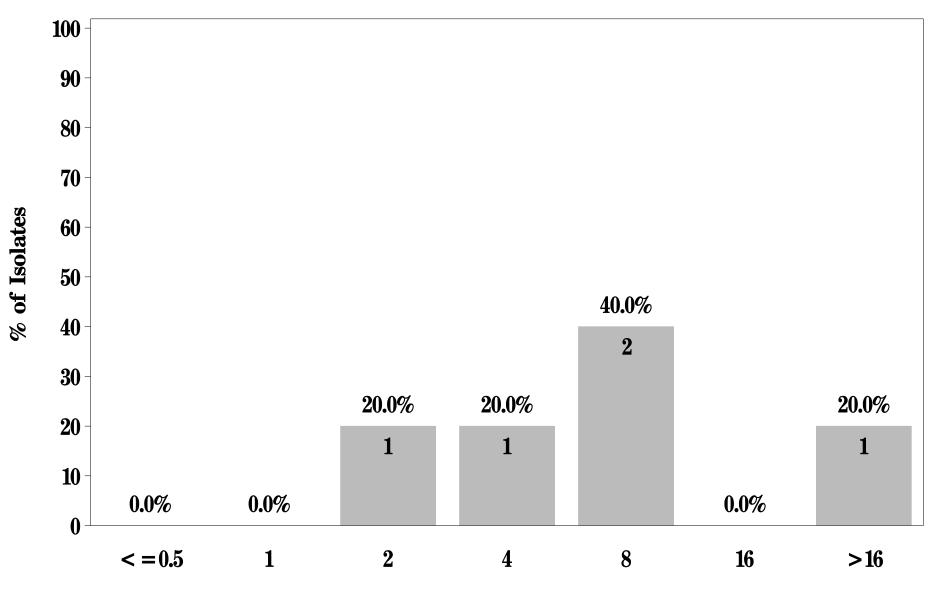
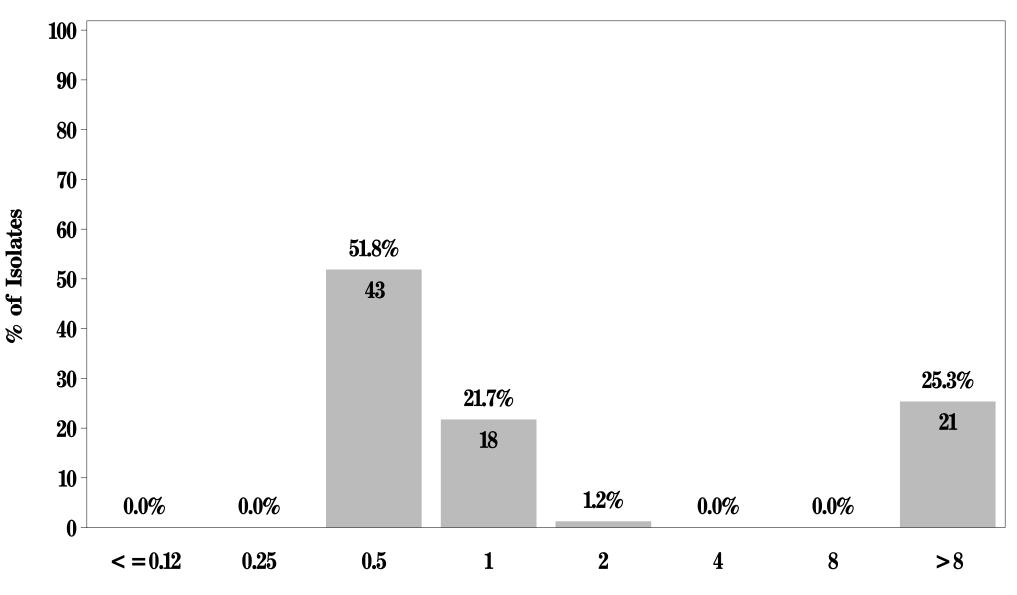




Figure 7d: Minimum Inhibitory Concentration of Cefoxitin
for Salmonella in Pork Chop (N=5 Isolates)Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

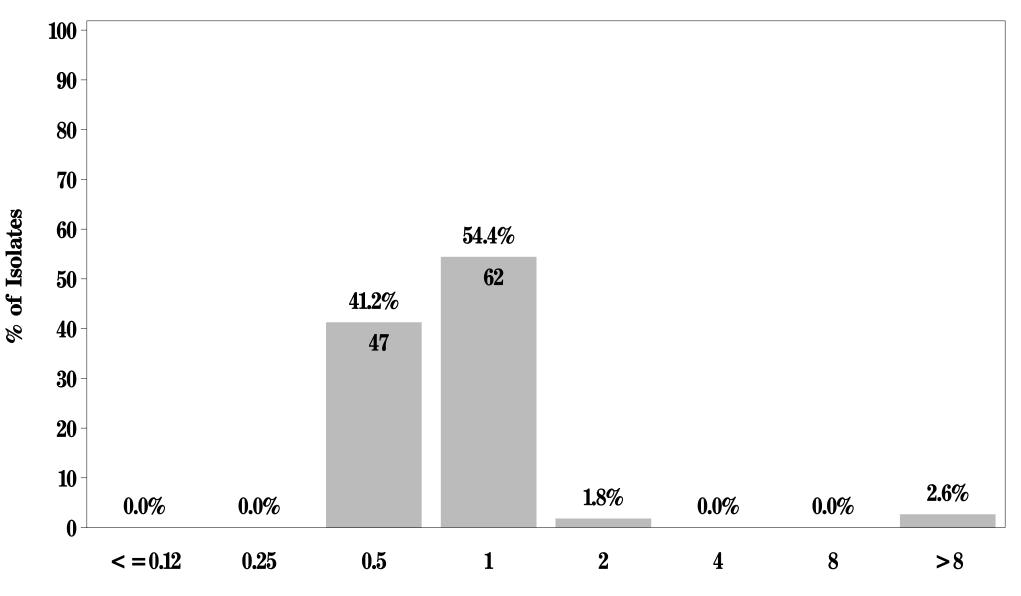

Minimum Inhibitory Concentration

Figure 7e: Minimum Inhibitory Concentration of Ceftiofur for Salmonella in Chicken Breast (N=83 Isolates)
Breakpoints: Susceptible < =2 μg/mL Resistant > =8 μg/mL

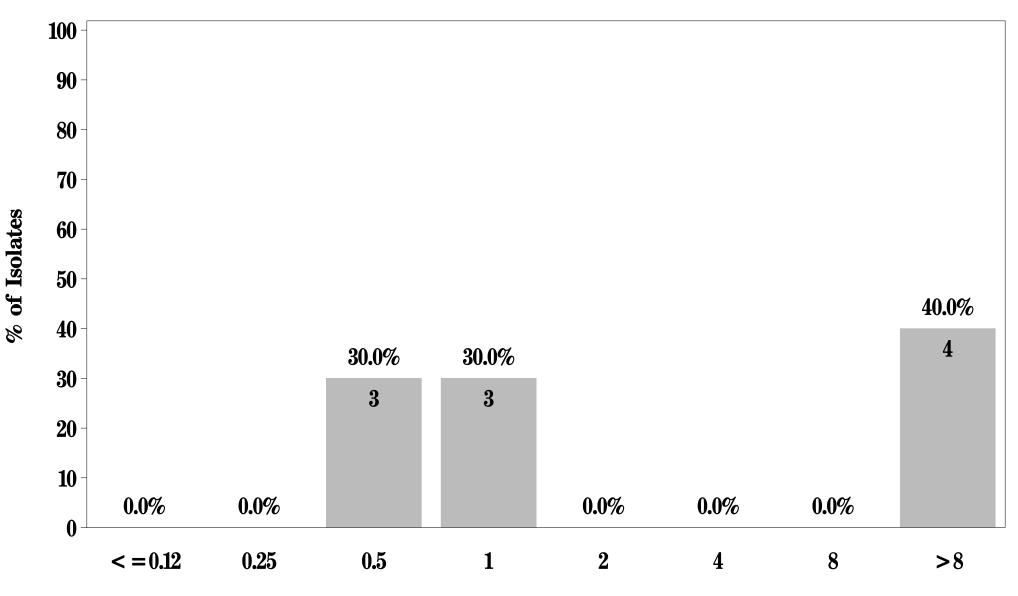

Minimum Inhibitory Concentration

Figure 7e: Minimum Inhibitory Concentration of Ceftiofur for Salmonella in Ground Turkey (N=114 Isolates)
Breakpoints: Susceptible <= 2 μg/mL Resistant >= 8 μg/mL

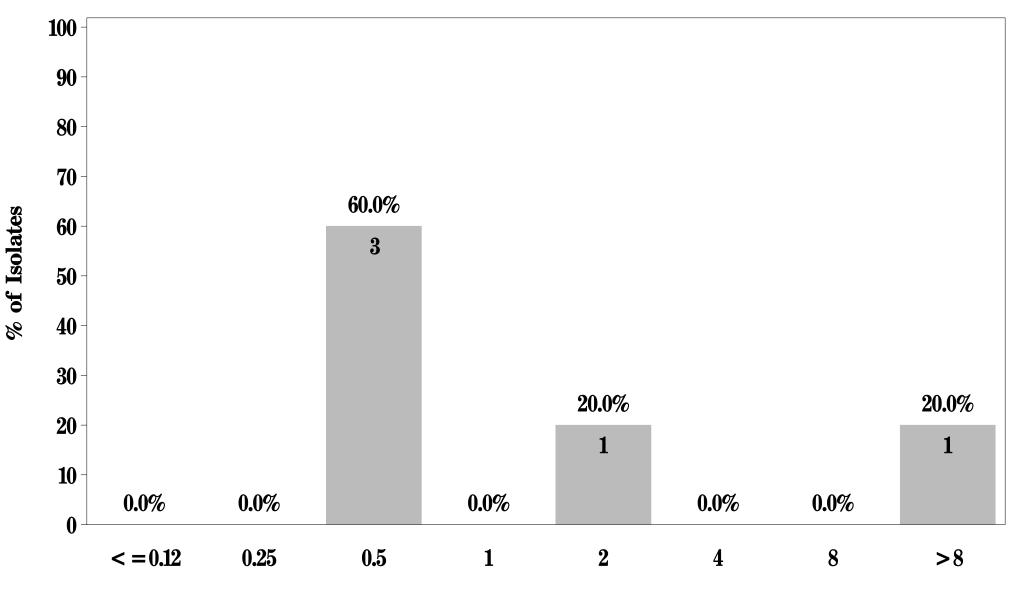

Minimum Inhibitory Concentration

Figure 7e: Minimum Inhibitory Concentration of Ceftiofur for Salmonella in Ground Beef (N=10 Isolates)
Breakpoints: Susceptible <= 2 μg/mL Resistant >=8μg/mL

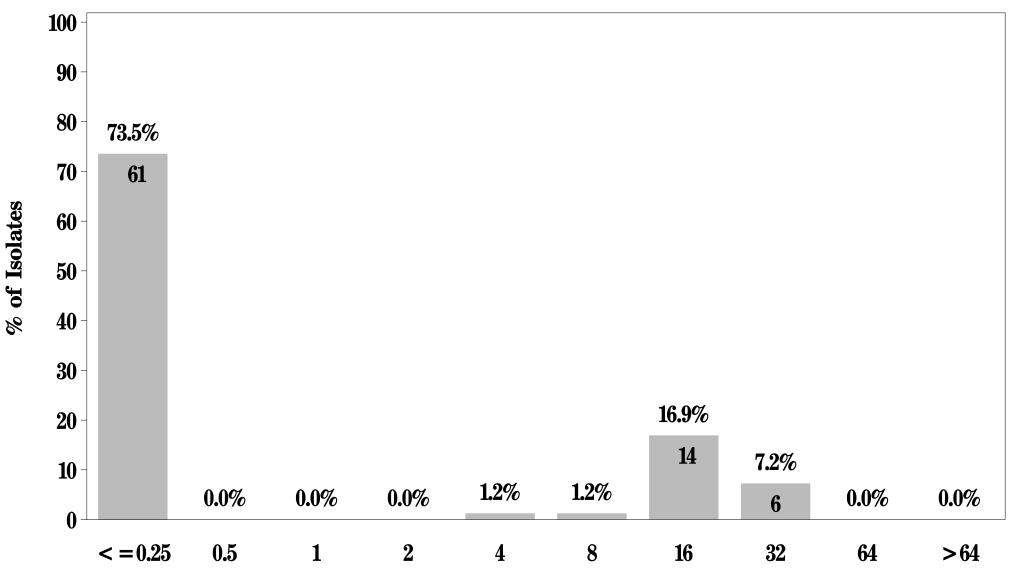

Minimum Inhibitory Concentration

Figure 7e: Minimum Inhibitory Concentration of Ceftiofur for Salmonella in Pork Chop (N=5 Isolates)
Breakpoints: Susceptible < =2 μg/mL Resistant > =8 μg/mL

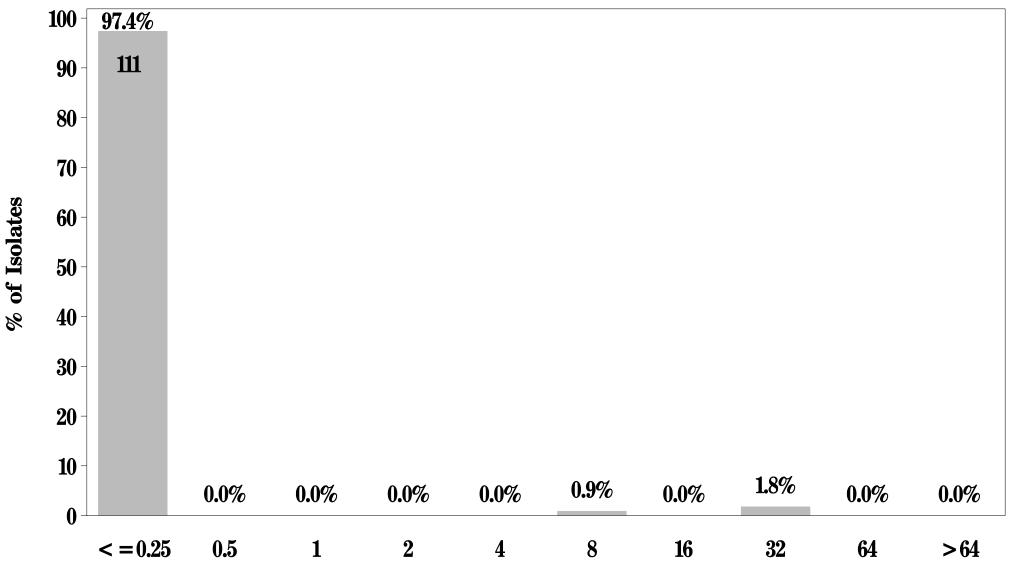

Minimum Inhibitory Concentration

Figure 7f: Minimum Inhibitory Concentration of Ceftriaxone for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 64 μg/mL

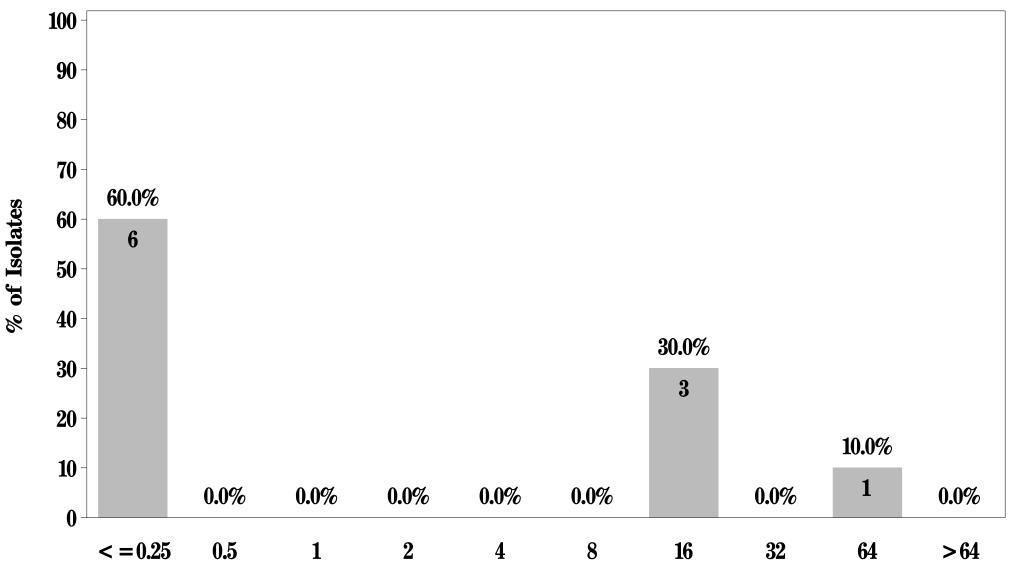

Minimum Inhibitory Concentration

Figure 7f: Minimum Inhibitory Concentration of Ceftriaxone for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 64 μg/mL

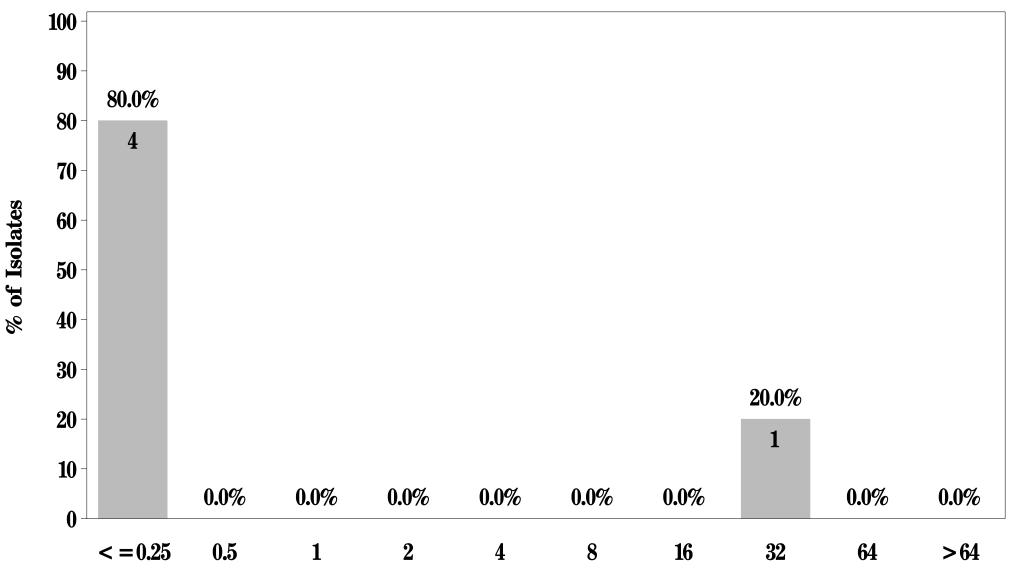

Minimum Inhibitory Concentration

Figure 7f: Minimum Inhibitory Concentration of Ceftriaxone for Salmonella in Ground Beef (N=10 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 64 μg/mL

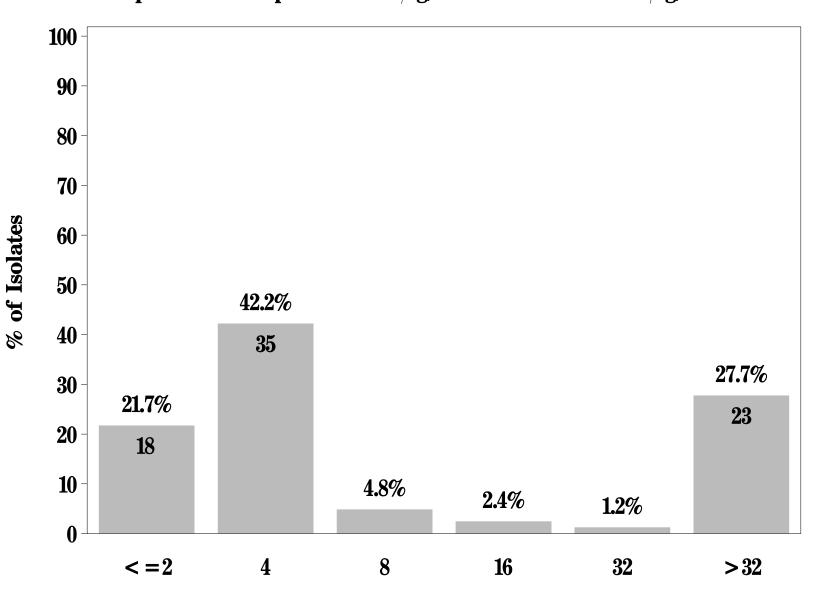
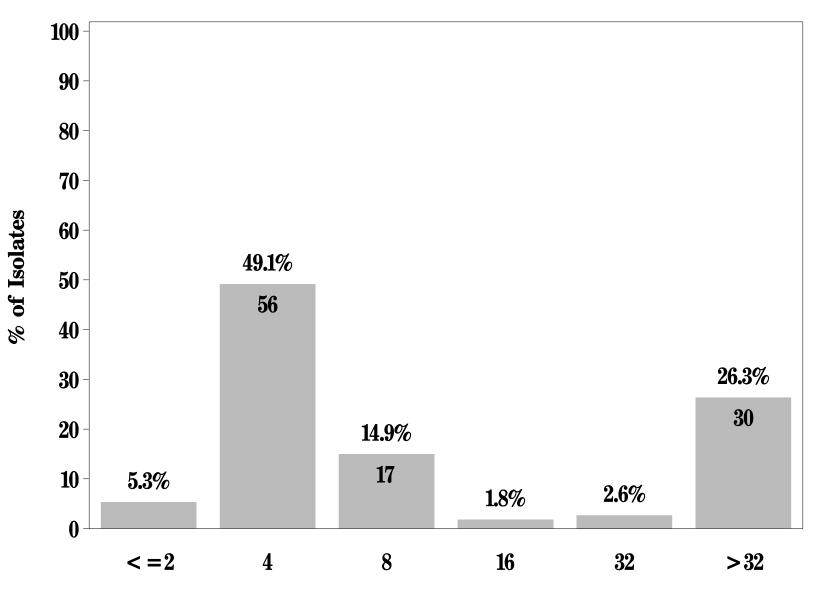

Minimum Inhibitory Concentration

Figure 7f: Minimum Inhibitory Concentration of Ceftriaxone for Salmonella in Pork Chop (N=5 Isolates)
Breakpoints: Susceptible < =8 μg/mL Resistant > =64 μg/mL

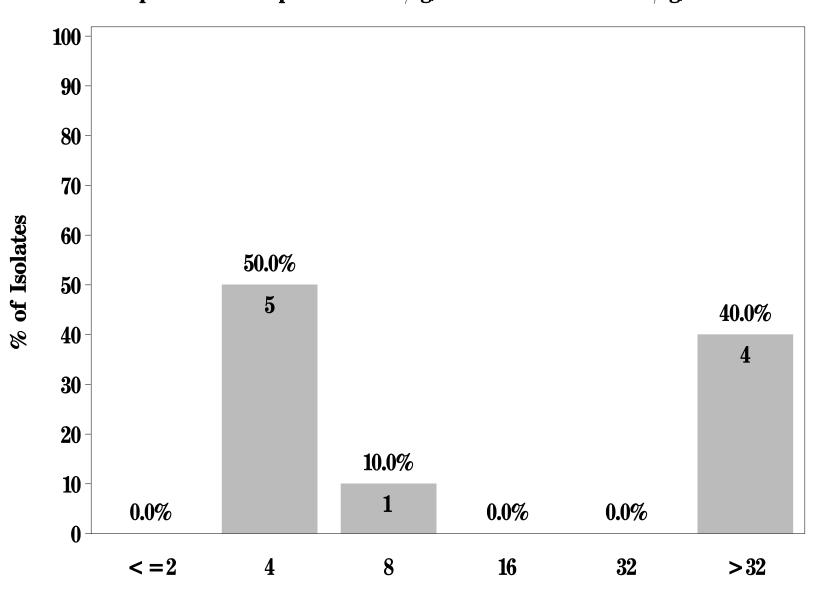
Minimum Inhibitory Concentration

Figure 7g: Minimum Inhibitory Concentration of Cephalothin for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible <=8 μg/mL Resistant >=32 μg/mL



Minimum Inhibitory Concentration

Figure 7g: Minimum Inhibitory Concentration of Cephalothin


for Salmonella in Ground Turkey (N=114 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

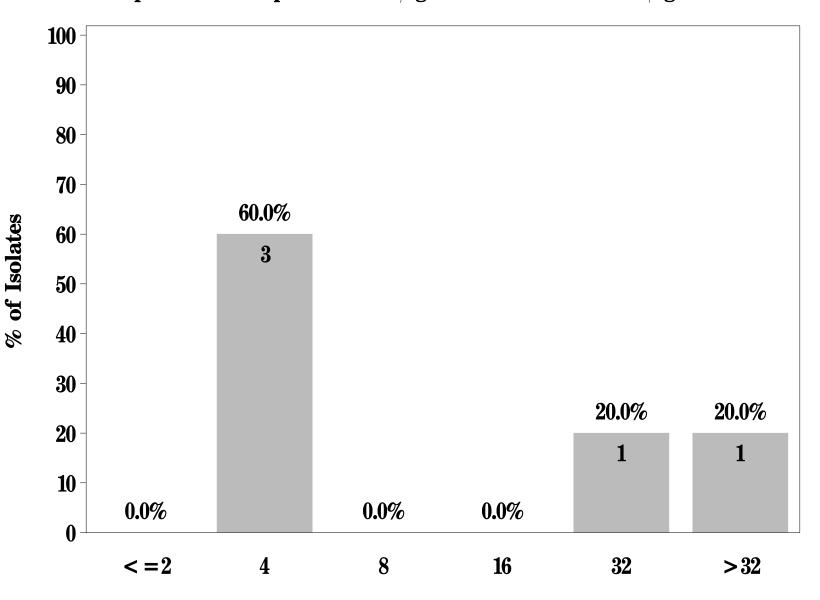
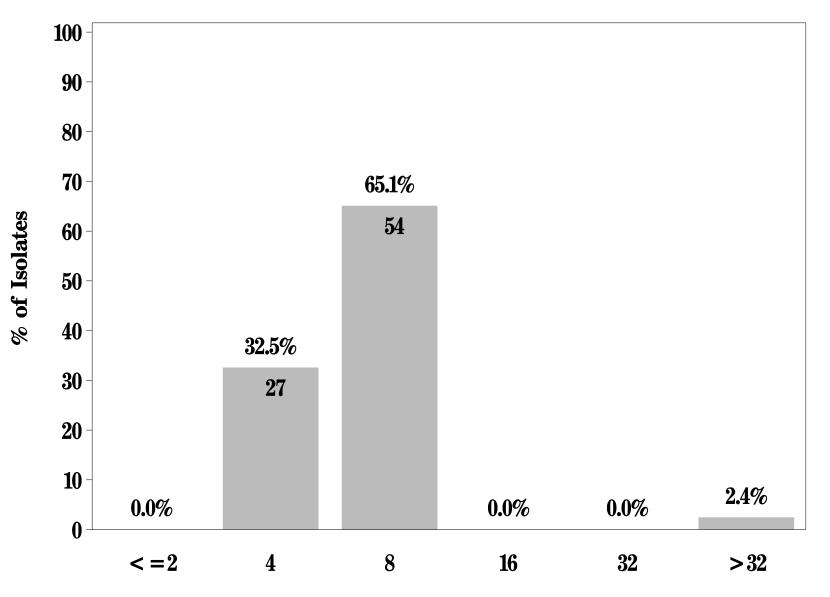

Minimum Inhibitory Concentration

Figure 7g: Minimum Inhibitory Concentration of Cephalothin for Salmonella in Ground Beef (N=10 Isolates) Breakpoints: Susceptible <= 8 µg/mL Resistant >= 32 µg/mL

Minimum Inhibitory Concentration

Figure 7g: Minimum Inhibitory Concentration of Cephalothin for Salmonella in Pork Chop (N=5 Isolates) Breakpoints: Susceptible <=8 μg/mL Resistant >=32 μg/mL

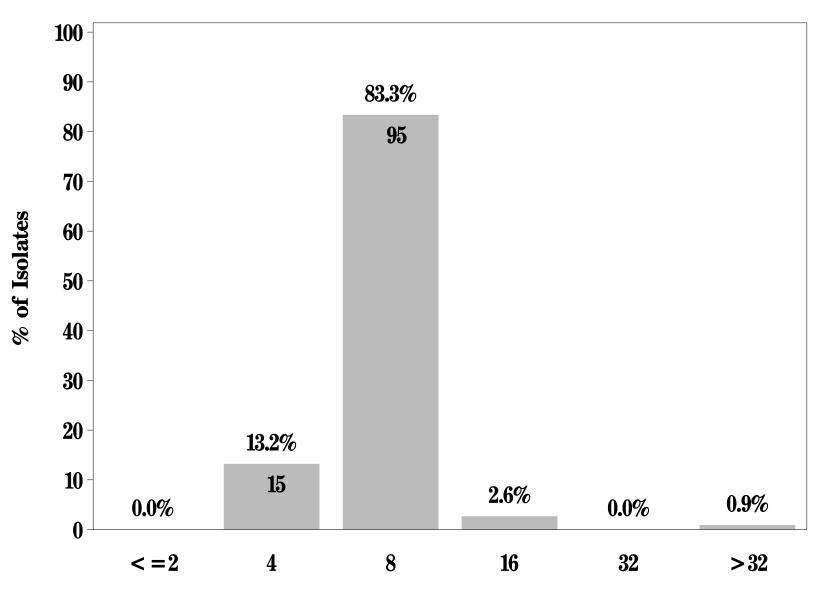


Minimum Inhibitory Concentration

Figure 7h: Minimum Inhibitory Concentration of Chloramphenicol

for Salmonella in Chicken Breast (N=83 Isolates)

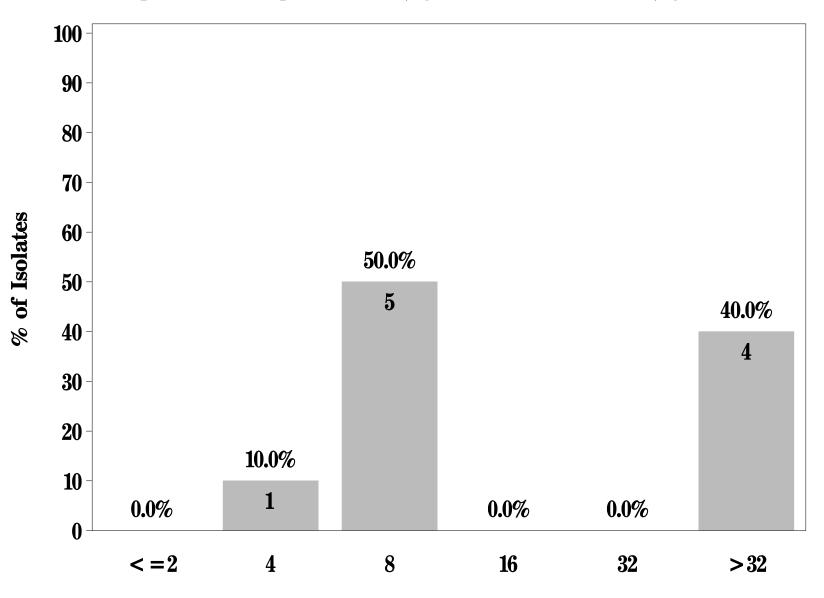
Breakpoints: Susceptible $< = 8 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$



Minimum Inhibitory Concentration

Figure 7h: Minimum Inhibitory Concentration of Chloramphenicol

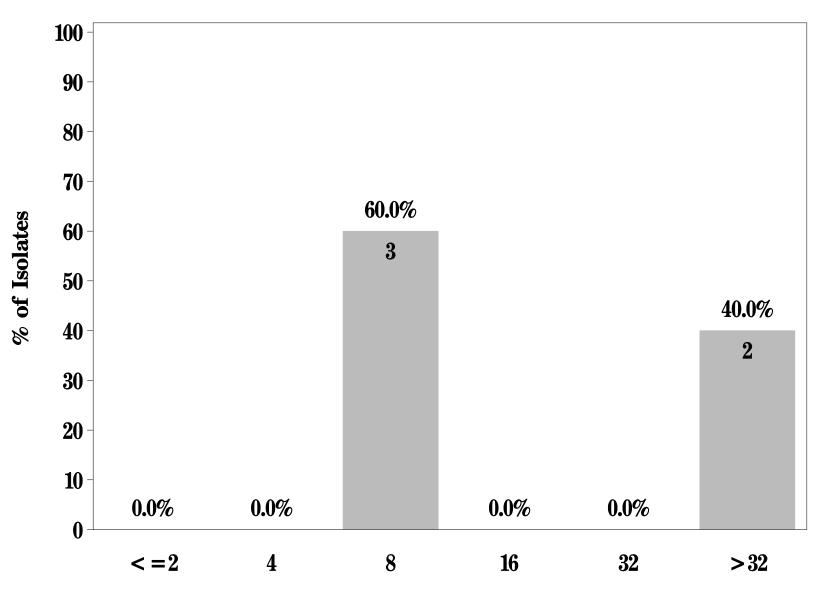
for Salmonella in Ground Turkey (N=114 Isolates)


Breakpoints: Susceptible $< = 8 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

Minimum Inhibitory Concentration

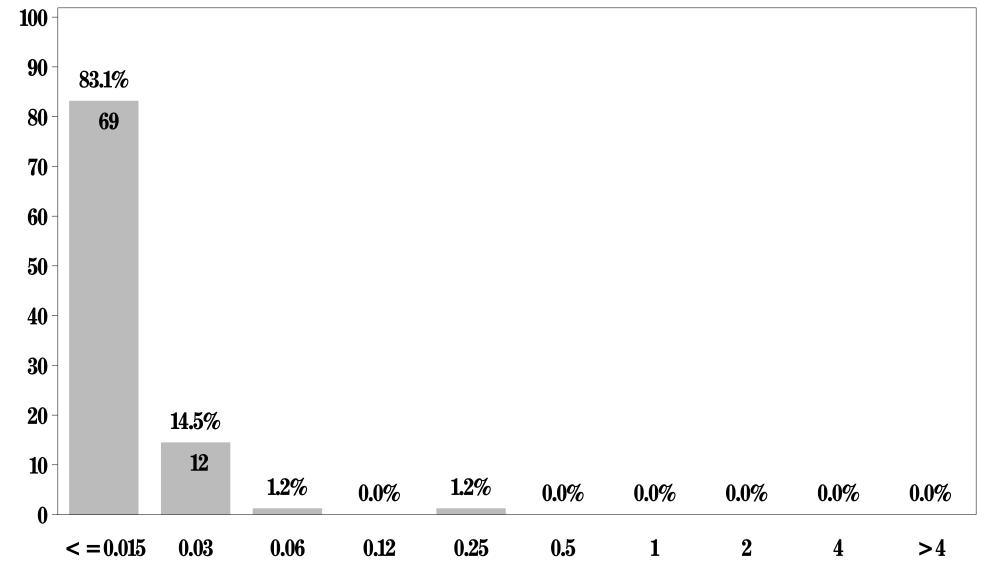
Figure 7h: Minimum Inhibitory Concentration of Chloramphenicol for *Salmonella* in Ground Beef (N=10 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$



Minimum Inhibitory Concentration

Figure 7h: Minimum Inhibitory Concentration of Chloramphenicol


for Salmonella in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible $< = 8 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

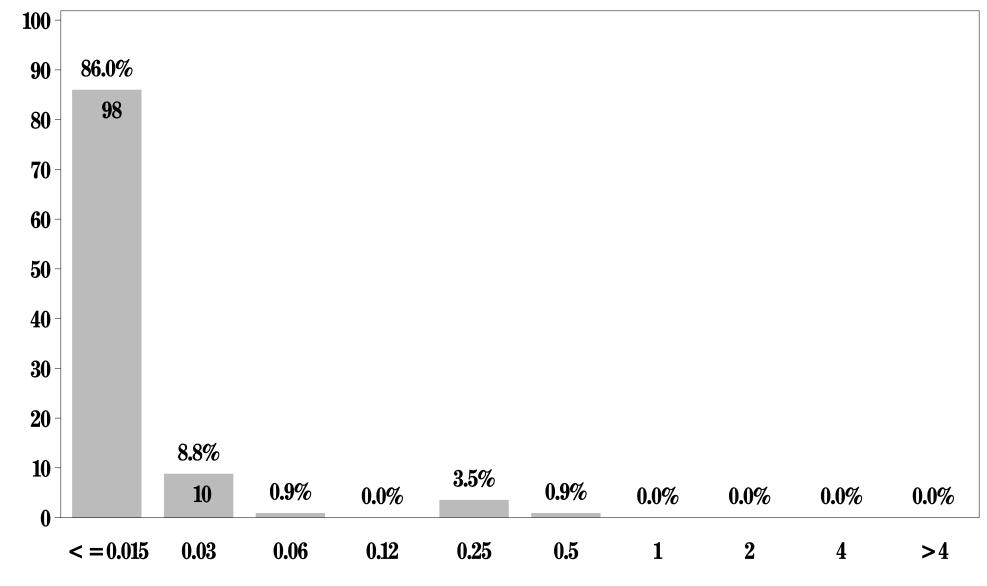

Minimum Inhibitory Concentration

Figure 7i: Minimum Inhibitory Concentration of Ciprofloxacin for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible <=1 μg/mL Resistant >=4 μg/mL

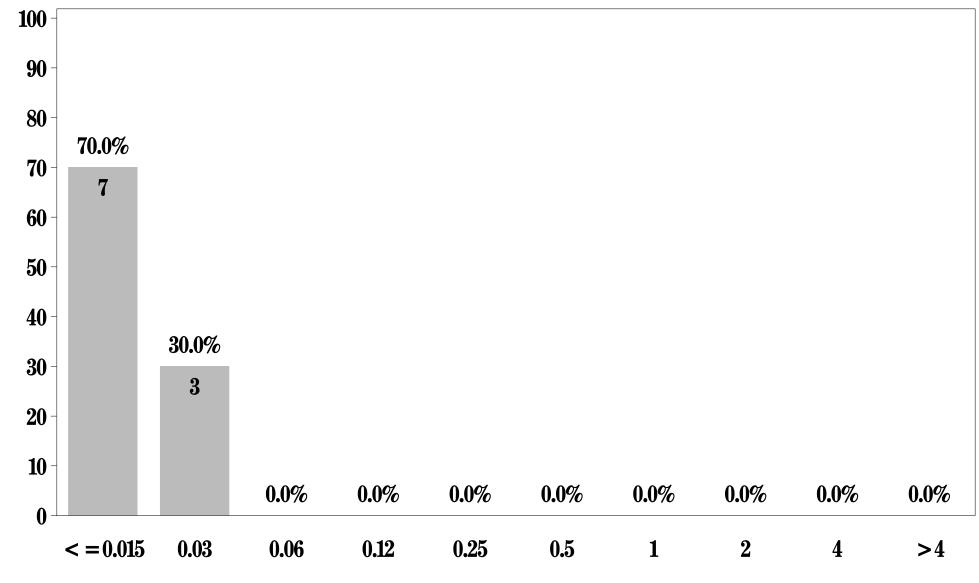

Minimum Inhibitory Concentration

Figure 7i: Minimum Inhibitory Concentration of Ciprofloxacin for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible <=1 μg/mL Resistant >=4 μg/mL

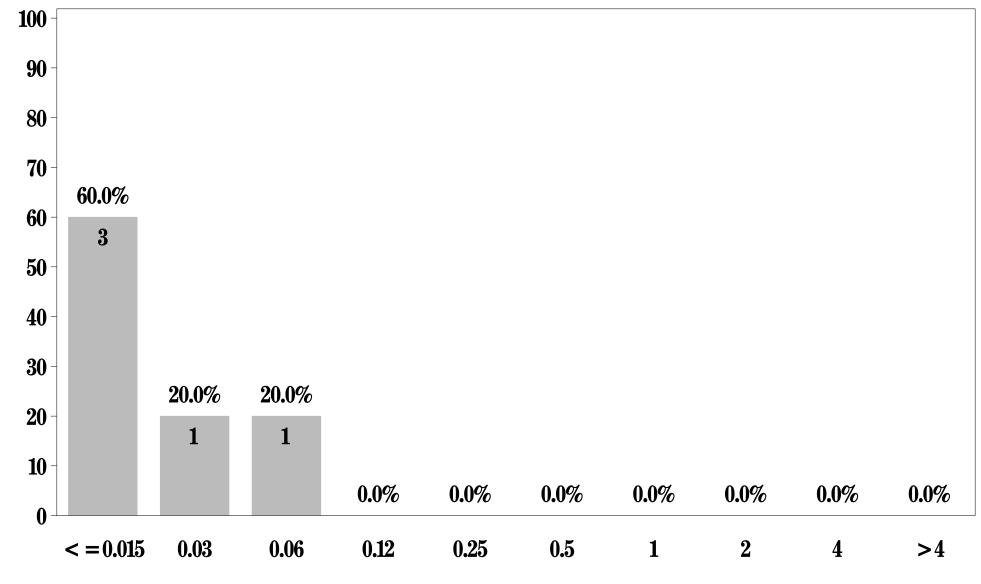

Minimum Inhibitory Concentration

Figure 7i: Minimum Inhibitory Concentration of Ciprofloxacin for Salmonella in Ground Beef (N=10 Isolates) Breakpoints: Susceptible <=1 μg/mL Resistant >=4 μg/mL

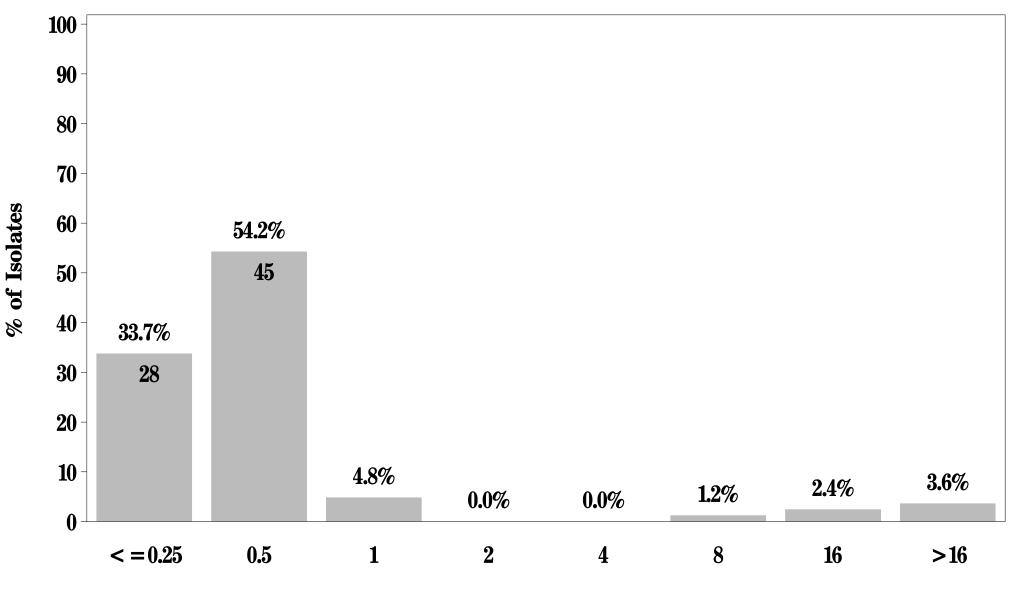

Minimum Inhibitory Concentration

Figure 7i: Minimum Inhibitory Concentration of Ciprofloxacin for Salmonella in Pork Chop (N=5 Isolates) Breakpoints: Susceptible < =1 μg/mL Resistant > =4 μg/mL

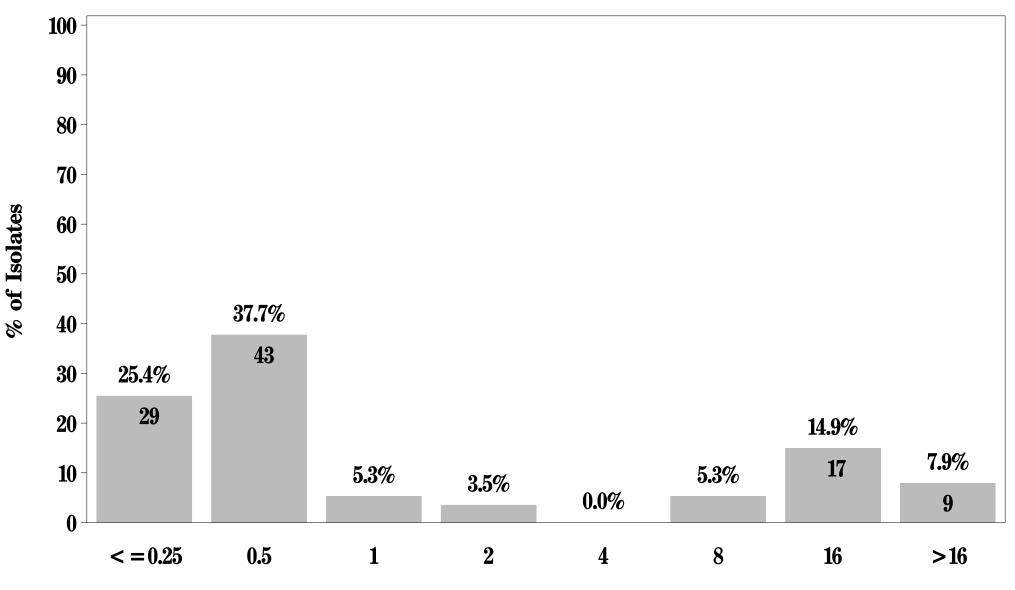

Minimum Inhibitory Concentration

Figure 7j: Minimum Inhibitory Concentration of Gentamicin for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible <=4 μg/mL Resistant >=16 μg/mL

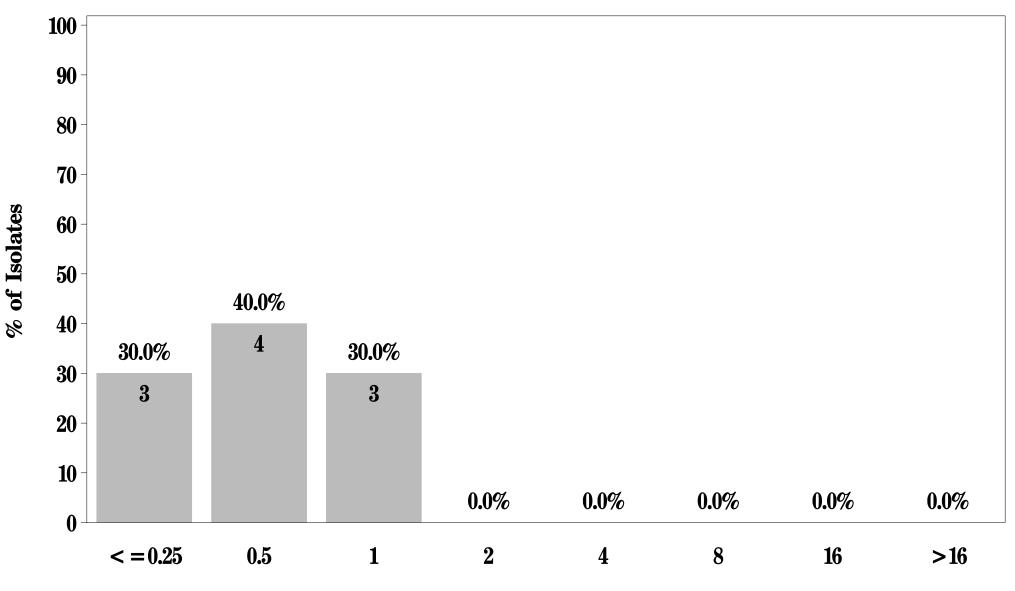

Minimum Inhibitory Concentration

Figure 7j: Minimum Inhibitory Concentration of Gentamicin for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible <= 4 μg/mL Resistant >= 16 μg/mL

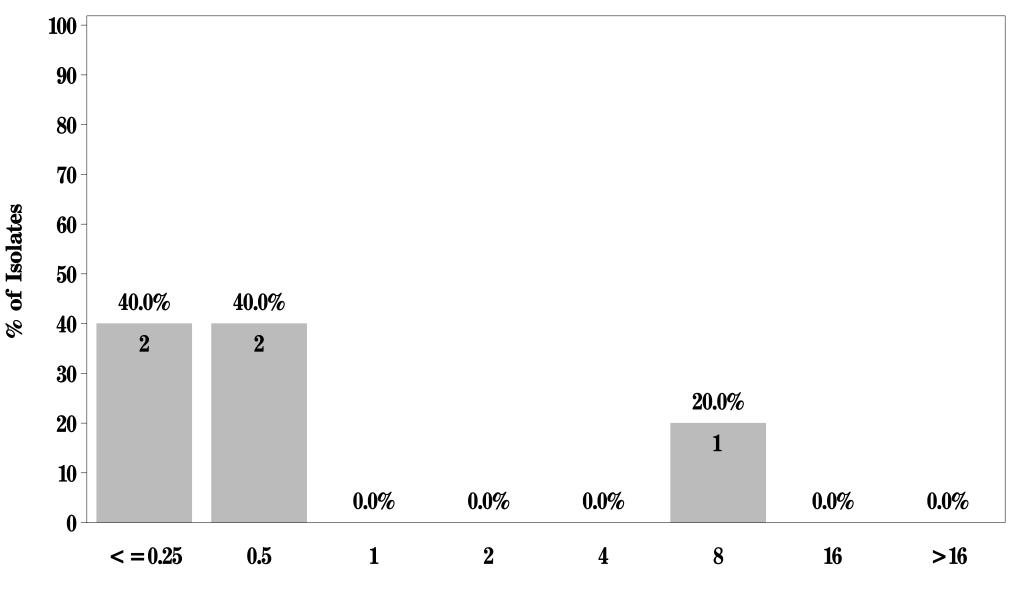
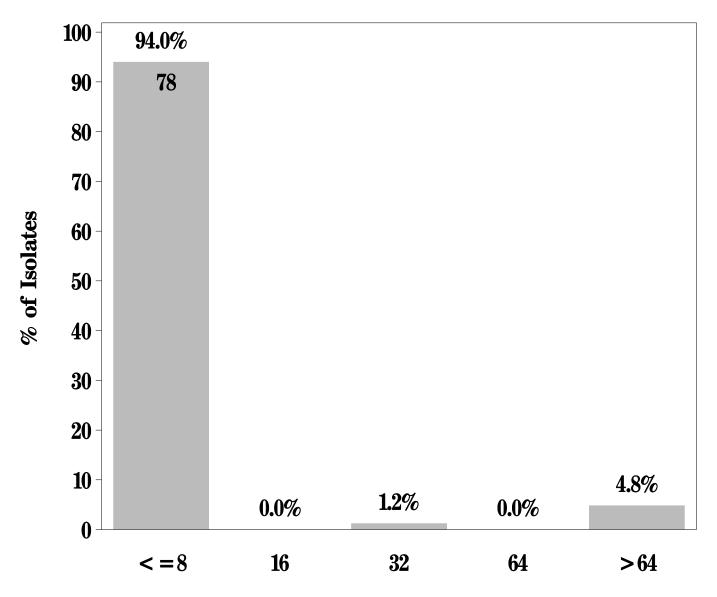

Minimum Inhibitory Concentration

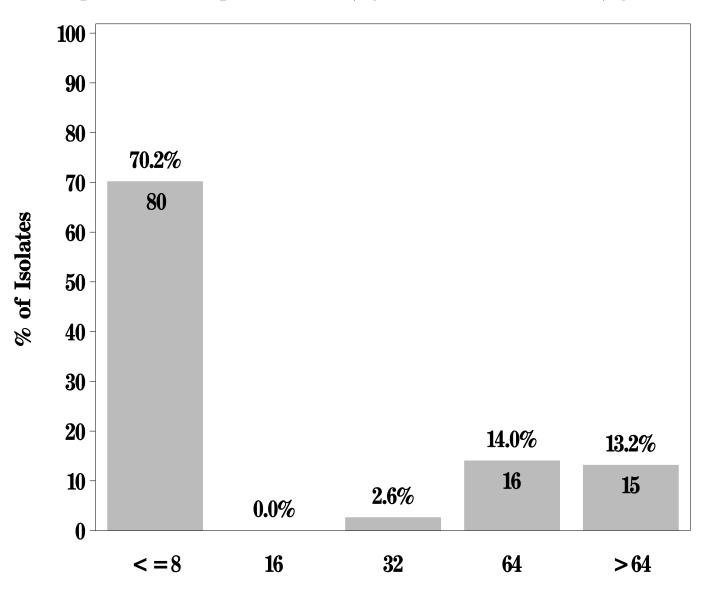
Figure 7j: Minimum Inhibitory Concentration of Gentamicin for Salmonella in Ground Beef (N=10 Isolates)
Breakpoints: Susceptible < =4 μg/mL Resistant > =16 μg/mL

Minimum Inhibitory Concentration


Figure 7j: Minimum Inhibitory Concentration of Gentamicin for Salmonella in Pork Chop (N=5 Isolates)
Breakpoints: Susceptible < =4 μg/mL Resistant > =16 μg/mL

Minimum Inhibitory Concentration

Figure 7k: Minimum Inhibitory Concentration of Kanamycin


for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

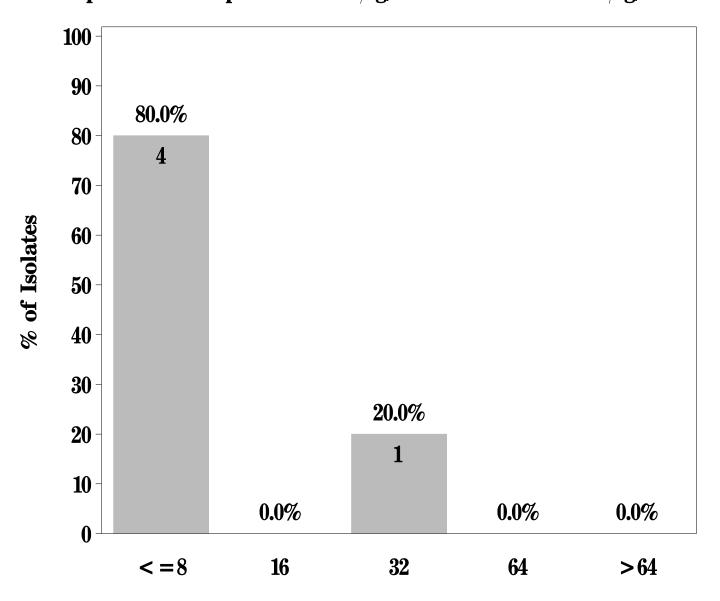
Minimum Inhibitory Concentration

Figure 7k: Minimum Inhibitory Concentration of Kanamycin

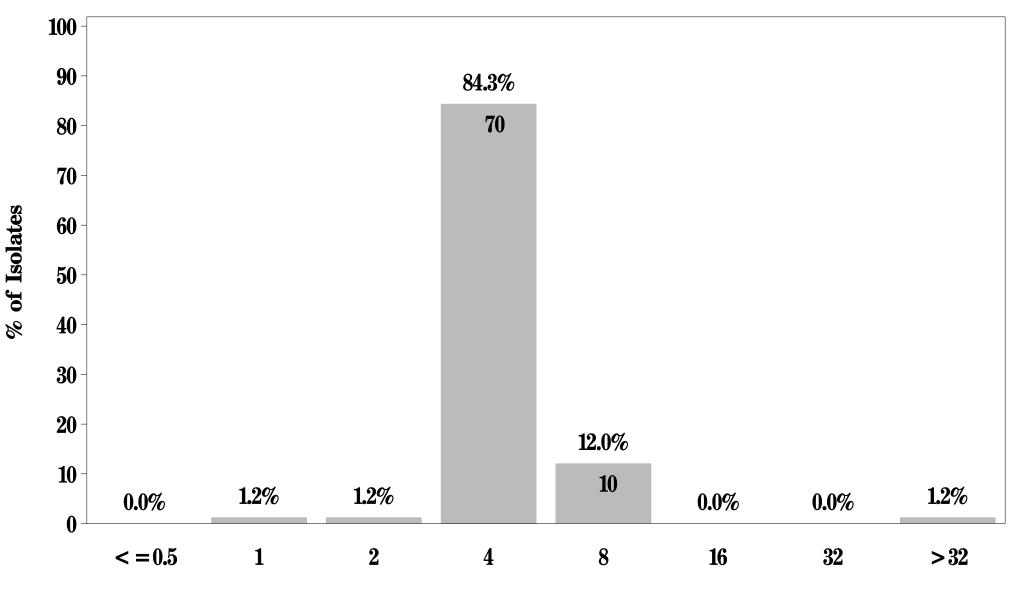
for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration

Figure 7k: Minimum Inhibitory Concentration of Kanamycin


for Salmonella in Ground Beef (N=10 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration


Figure 7k: Minimum Inhibitory Concentration of Kanamycin

for *Salmonella* in Pork Chop (N=5 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

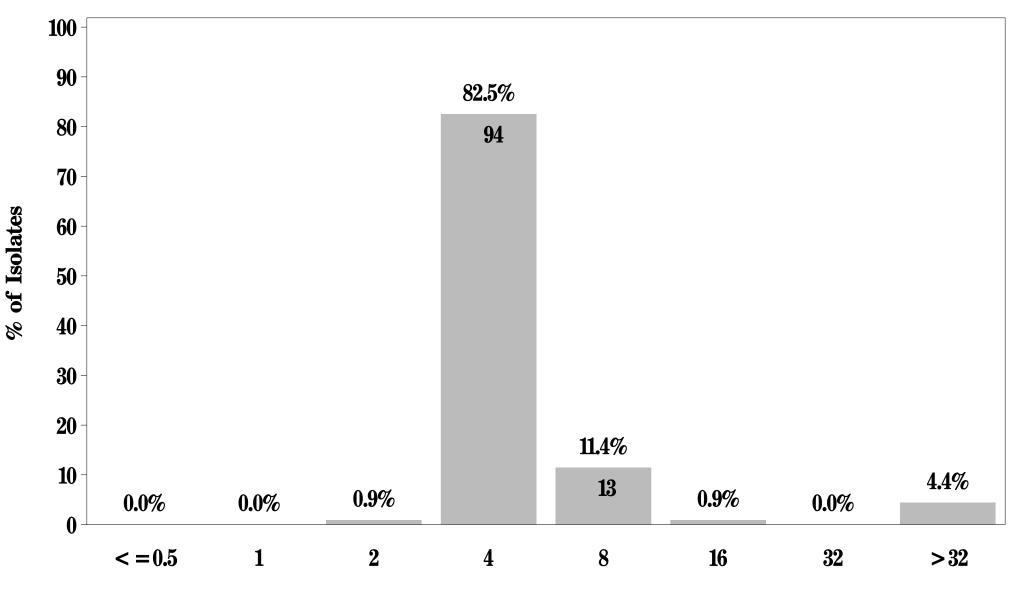

Minimum Inhibitory Concentration

Figure 7I: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible <=16 μg/mL Resistant >=32 μg/mL


Minimum Inhibitory Concentration

Figure 7I: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible <= 16 µg/mL Resistant >= 32 µg/mL

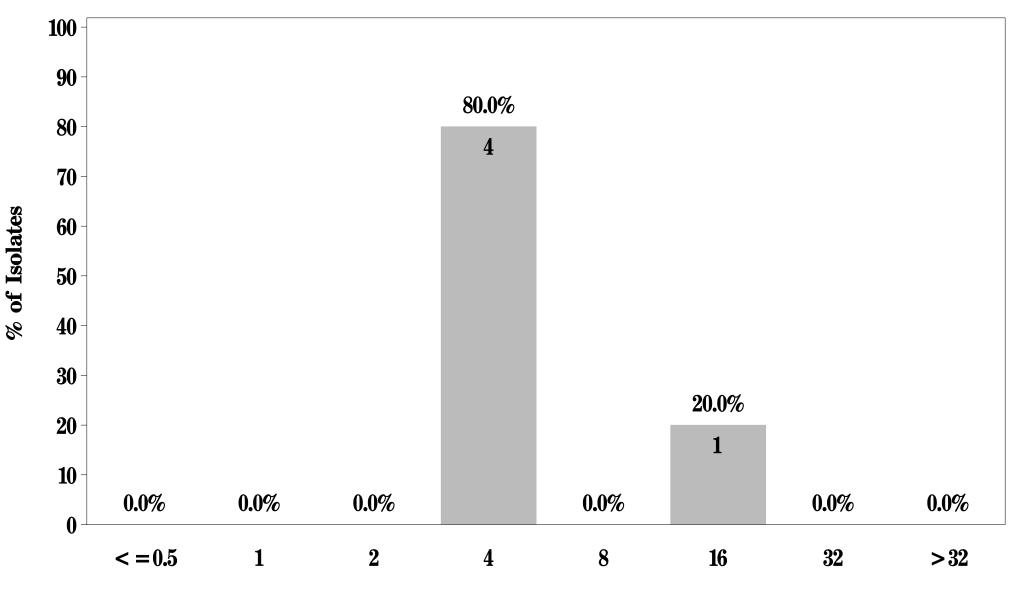
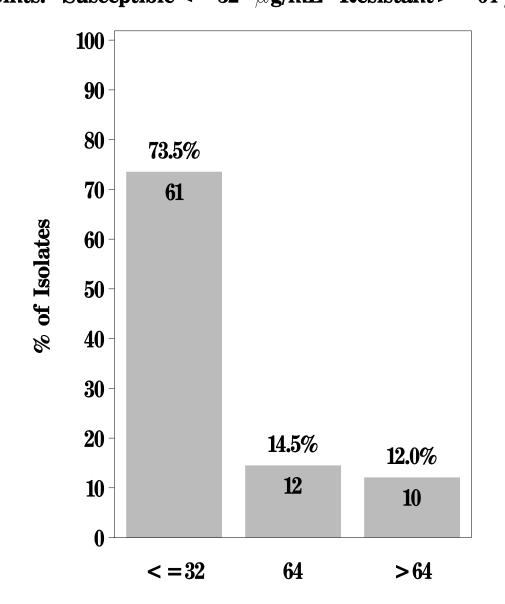

Minimum Inhibitory Concentration

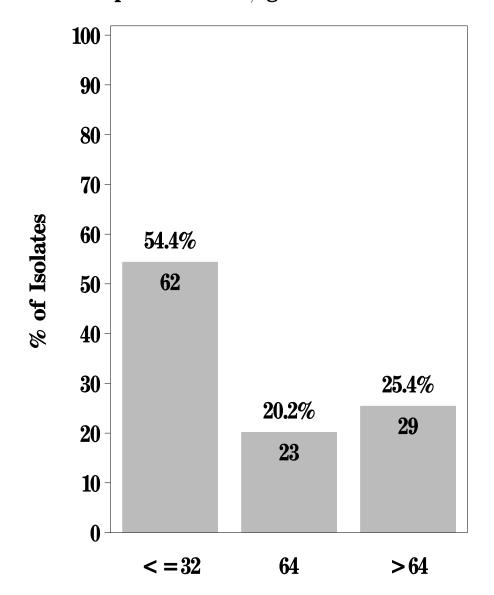
Figure 7I: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella in Ground Beef (N=10 Isolates) Breakpoints: Susceptible <= 16 μg/mL Resistant >= 32 μg/mL

Minimum Inhibitory Concentration

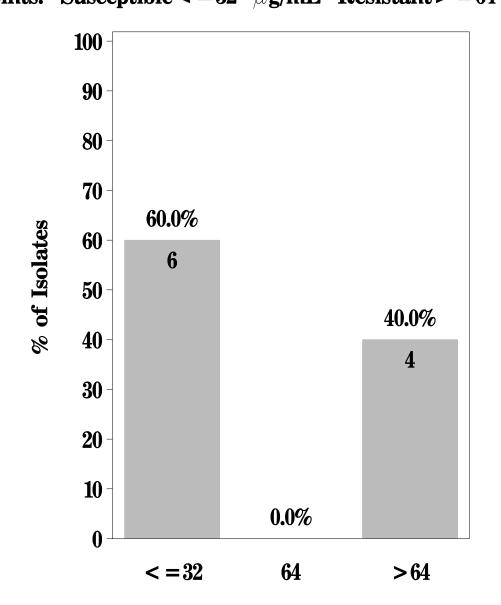

Figure 7I: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella in Pork Chop (N=5 Isolates) Breakpoints: Susceptible < =16 μg/mL Resistant > =32 μg/mL

Minimum Inhibitory Concentration

Figure 7m: Minimum Inhibitory Concentration of Streptomycin

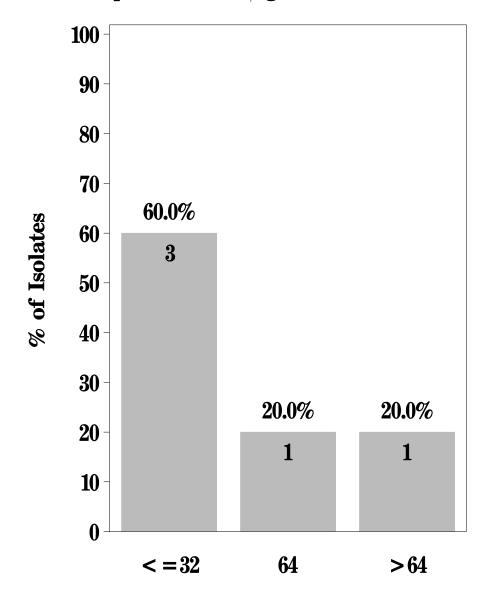

for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration

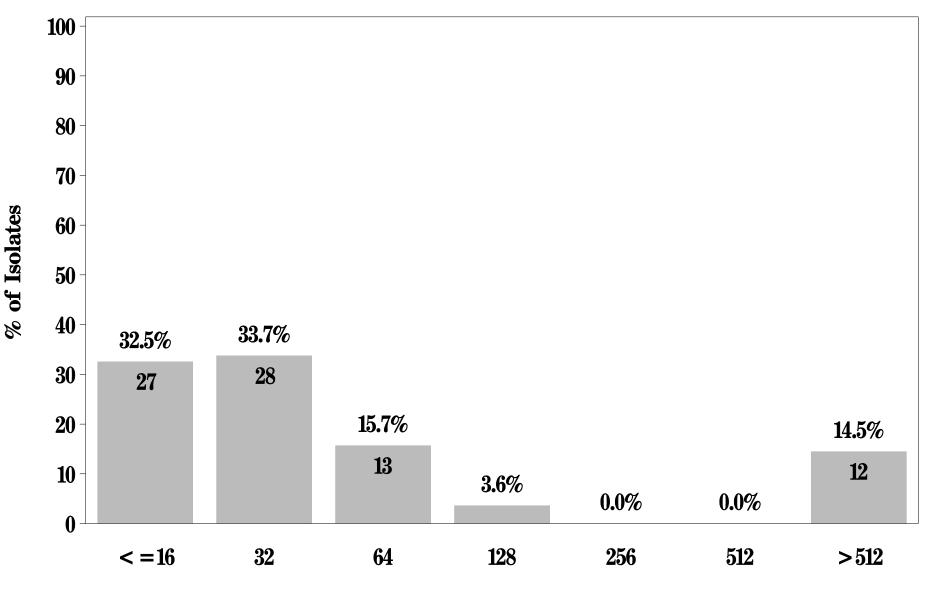

Figure 7m: Minimum Inhibitory Concentration of Streptomycin

for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration


Figure 7m: Minimum Inhibitory Concentration of Streptomycin for Salmonella in Ground Beef (N=10 Isolates) Breakpoints: Susceptible < = 32 μg/mL Resistant > = 64 μg/mL

Minimum Inhibitory Concentration


Figure 7m: Minimum Inhibitory Concentration of Streptomycin for *Salmonella* in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible $< = 32 \ \mu$ g/mL Resistant $> = 64 \ \mu$ g/mL

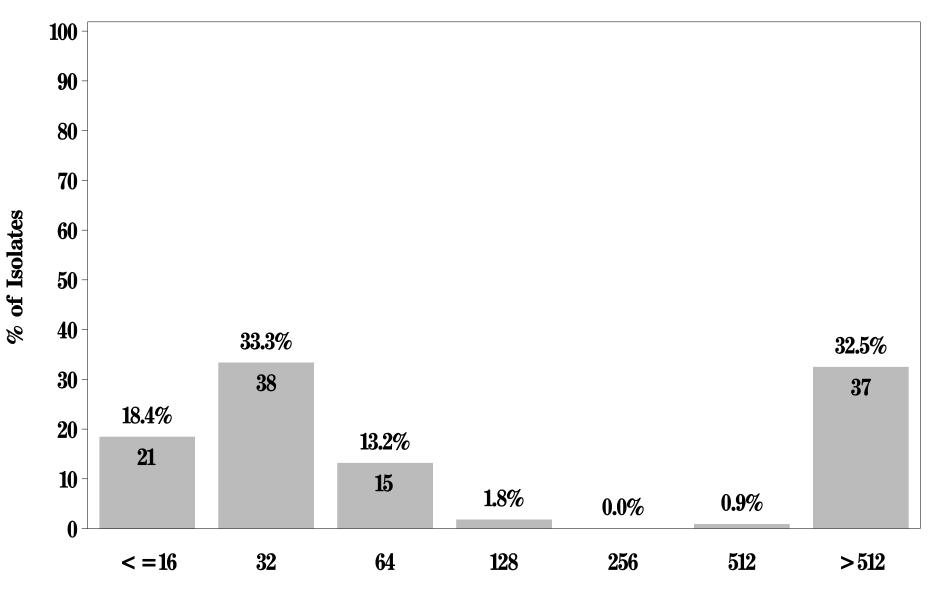

Minimum Inhibitory Concentration

Figure 7n: Minimum Inhibitory Concentration of Sulfamethoxazole for Salmonella in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible <= 256 µg/mL Resistant >= 512 µg/mL

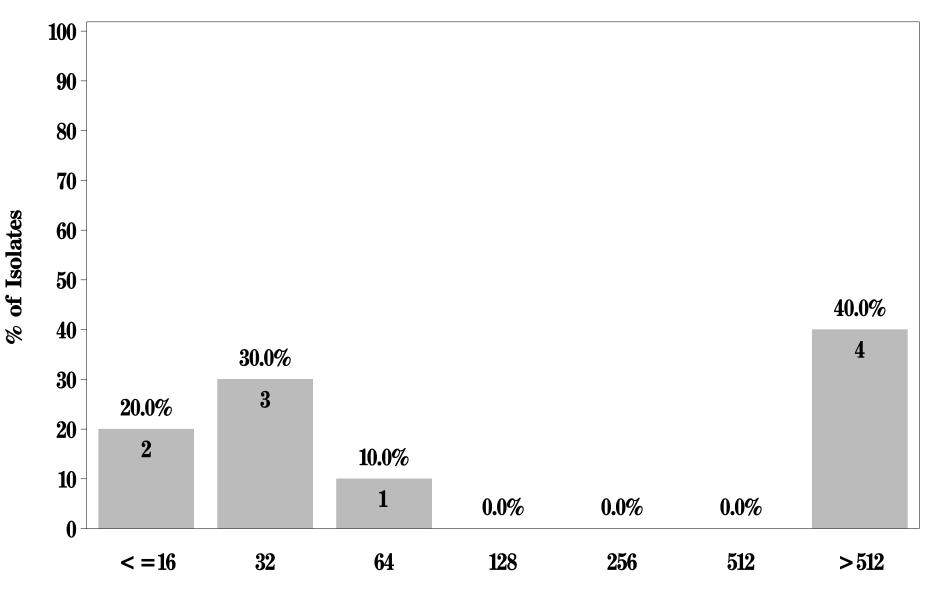
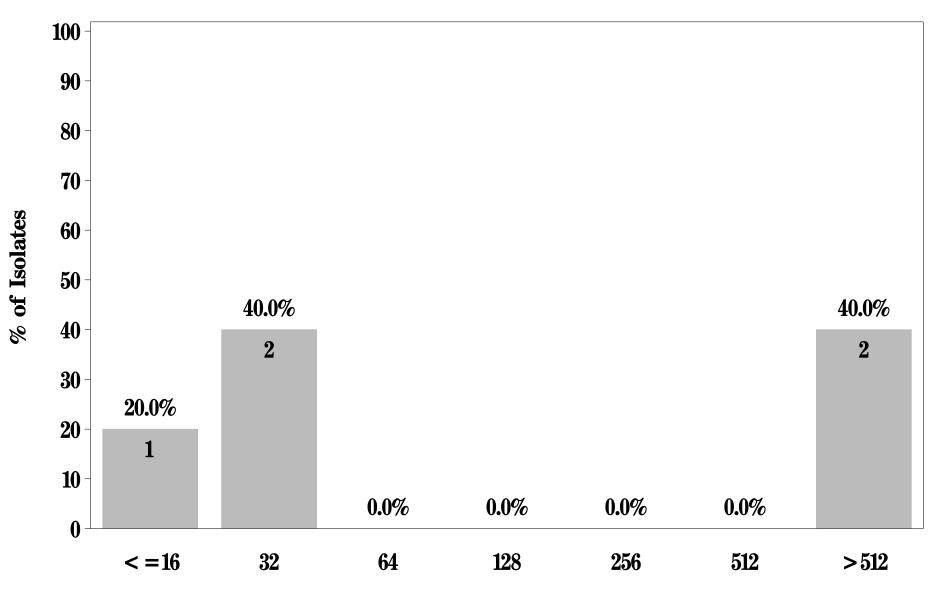

Minimum Inhibitory Concentration

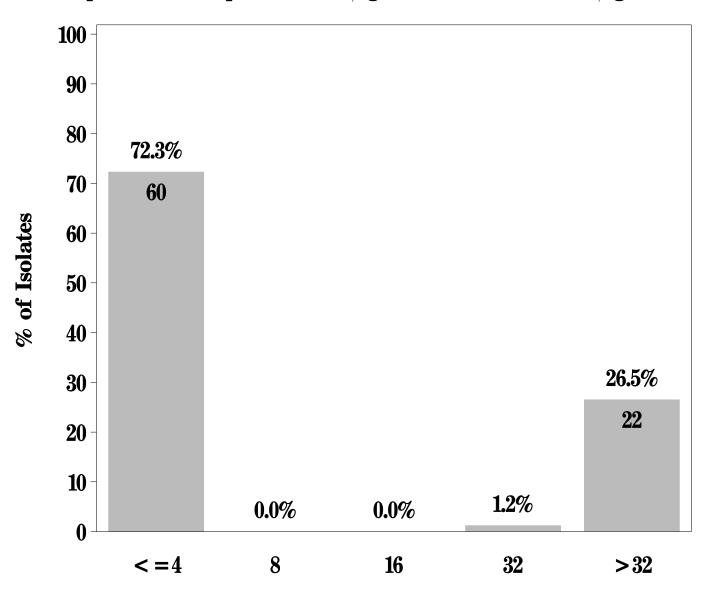
Figure 7n: Minimum Inhibitory Concentration of Sulfamethoxazole for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible <= 256 µg/mL Resistant >= 512 µg/mL

Minimum Inhibitory Concentration


Figure 7n: Minimum Inhibitory Concentration of Sulfamethoxazole for Salmonella in Ground Beef (N=10 Isolates) Breakpoints: Susceptible <=256 μg/mL Resistant >=512 μg/mL

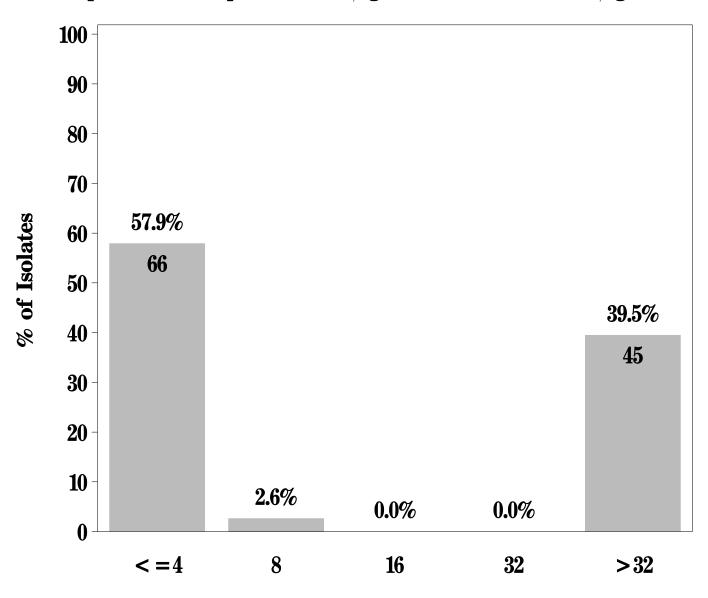
Minimum Inhibitory Concentration

Figure 7n: Minimum Inhibitory Concentration of Sulfamethoxazole for *Salmonella* in Pork Chop (N=5 Isolates)


Breakpoints: Susceptible $< = 256 \ \mu g/mL$ Resistant $> = 512 \ \mu g/mL$

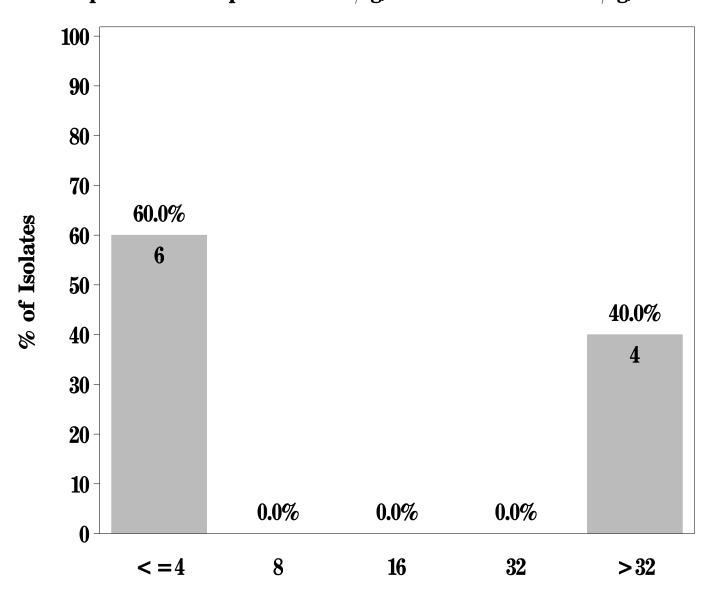
Minimum Inhibitory Concentration

Figure 70: Minimum Inhibitory Concentration of Tetracycline


for *Salmonella* in Chicken Breast (N=83 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

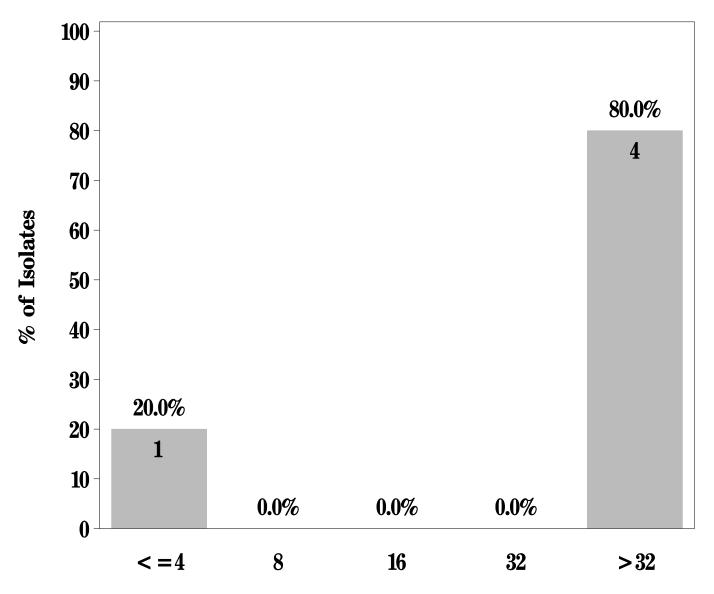
Figure 70: Minimum Inhibitory Concentration of Tetracycline


for Salmonella in Ground Turkey (N=114 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Figure 70: Minimum Inhibitory Concentration of Tetracycline

for *Salmonella* in Ground Beef (N=10 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

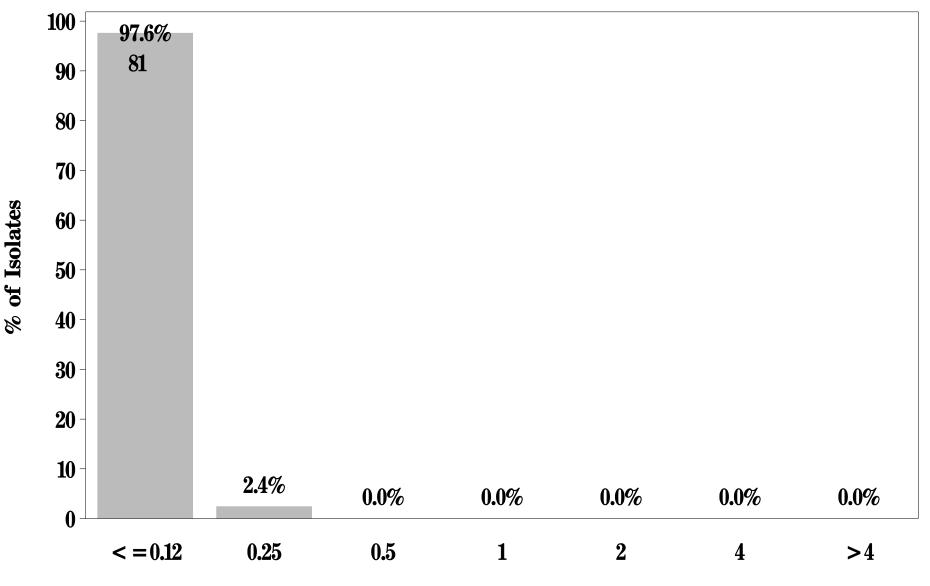


Minimum Inhibitory Concentration

Figure 70: Minimum Inhibitory Concentration of Tetracycline

for Salmonella in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

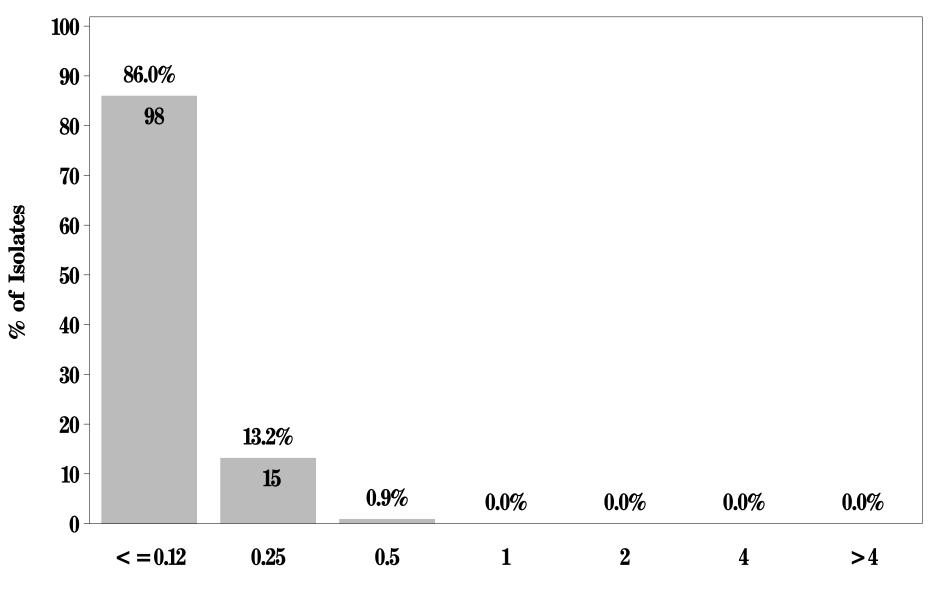


Minimum Inhibitory Concentration

Figure 7p: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole

for Salmonella in Chicken Breast (N=83 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 4 \mu g/mL$

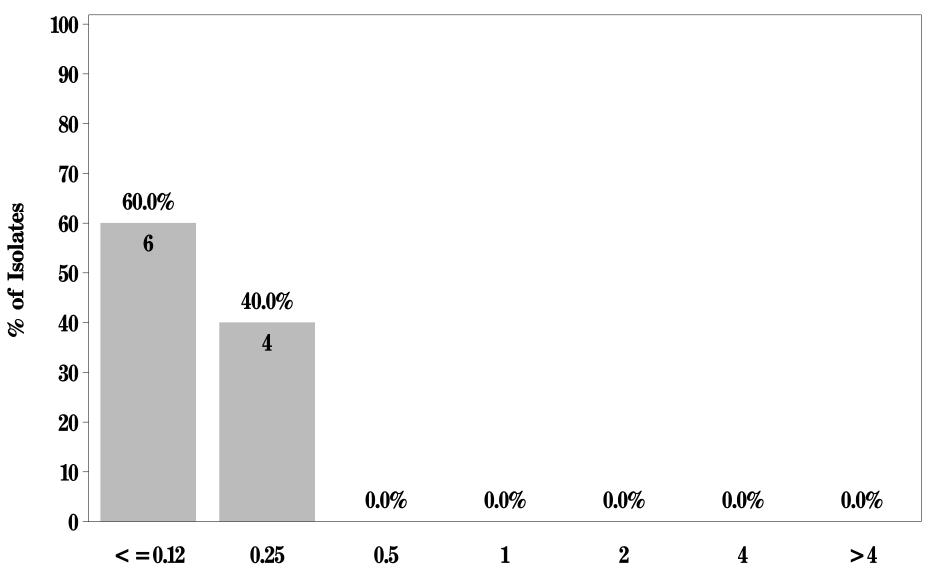


Minimum Inhibitory Concentration

Figure 7p: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole

for Salmonella in Ground Turkey (N=114 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 4 \mu g/mL$

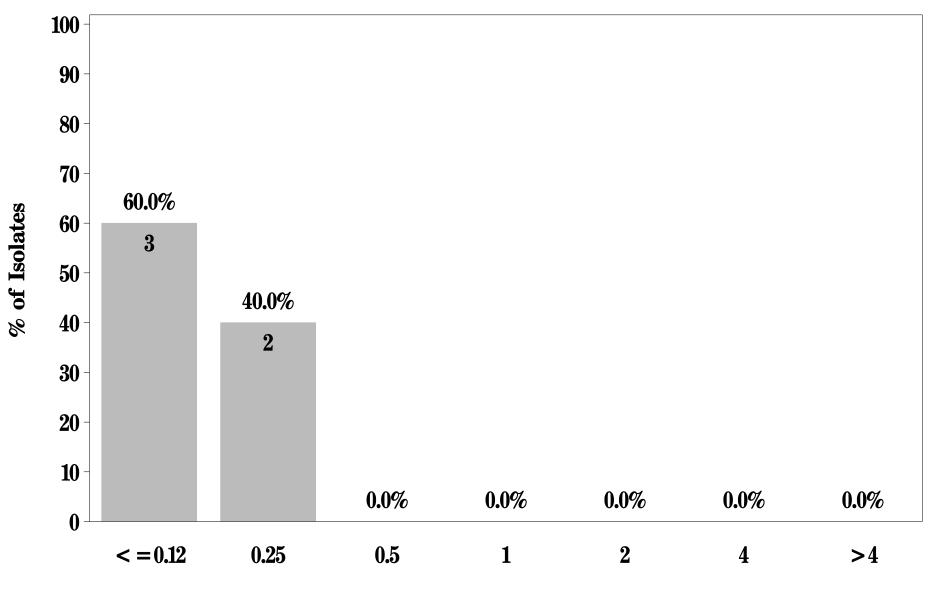


Minimum Inhibitory Concentration

Figure 7p: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole

for Salmonella in Ground Beef (N=10 Isolates)

Breakpoints: Susceptible $< = 2 \ \mu g/mL$ Resistant $> = 4 \ \mu g/mL$



Minimum Inhibitory Concentration

Figure 7p: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole

for Salmonella in Pork Chop (N=5 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 4 \mu g/mL$

Minimum Inhibitory Concentration

Sanatura	Antimicrobial Agent															
Serotype	STR	TET	AMP	СЕР	SMX	AMC	KAN	GEN	FOX	TIO	CHL	NAL	AXO	AMI	CIP	СОТ
Heidelberg (n=48)	29.2%	29.2%	12.5%	12.5%	14.6%	8.3%	22.9%	14.6%	2.1%	2.1%	_†	-	-	-	-	-
Saintpaul (n=26)	61.5%	19.2%	65.4%	65.4%	69.2%	26.9%	53.8%	42.3%	-	-	-	19.2%	-	-	-	-
Typhimurium [‡] (n=26)	23.1%	34.6%	73.1%	65.4%	34.6%	61.5%	19.2%	-	61.5%	61.5%	15.4%	3.8%	-	-	-	-
Kentucky (n=24)	62.5%	58.3%	20.8%	20.8%	8.3%	20.8%	-	8.3%	20.8%	20.8%	-	-	-	-	-	-
Hadar (n=13)	84.6%	100.0%	30.8%	23.1%	7.7%	-	7.7%	7.7%	-	-	-	-	-	-	-	-
Reading (n=13)	7.7%	23.1%	7.7%	7.7%	15.4%	-	-	15.4%	-	-	-	-	-	-	-	-
Mbandaka (n=7)	-	28.6%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Agona (n=6)	33.3%	100.0%	33.3%	33.3%	100.0%	16.7%	-	33.3%	16.7%	16.7%	-	-	-	-	-	-
Enteritidis (n=6)	-	-	33.3%	33.3%	-	16.7%	-	-	16.7%	16.7%	-	-	-	-	-	-
Montevideo (n=5)	60.0%	-	-	-	20.0%	-	40.0%	20.0%	-	-	-	-	-	-	-	-
Senftenberg (n=5)	40.0%	-	60.0%	60.0%	-	-	40.0%	20.0%	-	-	-	-	-	-	-	-
Haardt (n=4)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Newport (n=4)	75.0%	50.0%	50.0%	50.0%	75.0%	50.0%	-	25.0%	50.0%	50.0%	50.0%	-	-	-	-	-
Brandenburg (n=3)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dublin (n=3)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	100.0%	100.0%	100.0%	-	33.3%	-	-	-
Schwarzengrund (n=3)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Bredeney (n=2)	100.0%	-	100.0%	100.0%	100.0%	-	-	100.0%	-	-	-	-	-	-	-	-
I 4, 5, 12, : i : - (n=2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IIIa:18:z4, z32: (n=2)	-	50.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IIIa:18:z4, z23 :- (n=2)	100.0%	50.0%	50.0%	-	100.0%	-	-	50.0%	-	-	-	-	-	-	-	-
Johannesburg (n=1)	-	100.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Anatum (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chester (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
I 4, 12 : r :- (n=1)	-	100.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Infantis (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Muenchen (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sandiego (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total % R (N=212)	37.7%	35.8%	31.6%	29.7%	26.4%	18.4%	16.5%	14.6%	13.7%	13.7%	4.2%	2.8%	0.5%	0.0%	0.0%	0.0%

Table 11. Antimicrobial Resistance^{*} among Salmonella Isolates by Serotype, 2003

^{*} Where % Resistance = (# isolates per serotype resistant to antimicrobial) / (total # isolates per serotype). * Dashes indicates 0.0% resistance to antimicrobial.

[‡] Includes Typhimurium var. Copenhagen.

Meat	Nerotyne S																
Туре	Serviype	STR	TET	AMP	CEP	SMX	AMC	KAN	GEN	FOX	TIO	CHL	NAL	AXO	AMI	CIP	СОТ
	Heidelberg (n=16)	12.5%	_†	18.8%	12.5%	12.5%	6.3%	-	18.8%	6.3%	6.3%	-	-	-	-	-	-
	Saintpaul (n=2)	50.0%	-	50.0%	50.0%	50.0%	-	-	-	-	-	-	50.0%	-	-	-	-
Chicken	Typhimurium [‡] (n=22)	18.2%	31.8%	72.7%	63.6%	63.6%	18.2%	-	63.6%	63.6%	-	9.1%	-	-	-	-	-
Breast	Kentucky (n=20)	65.0%	60.0%	25.0%	25.0%	5.0%	25.0%	-	5.0%	25.0%	25.0%	-	-	-	-	-	-
	Hadar (n=2)	50.0%	100.0%	50.0%	-	-	-	-	-	-	-	-	-	-	-	-	-
	Reading (n=0)	ş															
	Heidelberg (n=32)	37.5%	43.8%	9.4%	12.5%	15.6%	9.4%	34.4%	12.5%	-	-	-	-	-	-	-	-
	Saintpaul (n=24)	62.5%	20.8%	66.7%	66.7%	70.8%	29.2%	58.3%	45.8%	-	-	-	16.7%	-	-	-	-
Ground	Typhimurium (n=2)	50.0%	50.0%	100.0%	100.0%	100.0%	50.0%	-	100.0%	100.0%	50.0%	50.0%	-	-	-	-	50.0%
Turkey	Kentucky (n=4)	50.0%	50.0%	-	-	25.0%	-	-	25.0%	-	-	-	-	-	-	-	-
	Hadar (n=11)	90.9%	100.0%	27.3%	27.3%	9.1%	-	9.1%	9.1%	-	-	-	-	-	-	-	-
	Reading (n=13)	7.7%	23.1%	7.7%	7.7%	15.4%	-	-	15.4%	-	-	-	-	-	-	-	-
	Heidelberg (n=0)																
	Saintpaul (n=0)																
Ground	Kentucky (n=0)																
Beef	Typhimurium (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Hadar (n=0)																
	Reading (n=0)																
	Heidelberg (n=0)																
	Saintpaul (n=0)																
Pork	Kentucky (n=0)																
Chop	Typhimurium (n=1)	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	-	-	-	100.0%	-	-	-	-	-
	Hadar (n=0)																
	Reading (n=0)													1			

 Table 12. Antimicrobial Resistance^{*} among Salmonella by Meat Type in Overall Top 6 Serotypes, 2003

* Where % Resistance = (# isolates per serotype resistant to antimicrobial) / (total # isolates per serotype).
* Dashes indicate 0.0% resistance to antimicrobial.
* Includes Typhimurium var. Copenhagen.
* Copenhagen.

[§] Grey areas indicate serotype not isolated from that meat type.

Meat Type Serotype								Antii	microbia	l Agent							
Туре	Serotype	STR	TET	AMP	CEP	SMX	AMC	KAN	GEN	FOX	TIO	CHL	NAL	AXO	AMI	CIP	СОТ
	Typhimurium [†] (n=22)	18.2%	31.8%	72.7%	63.6%	31.8%	63.6%	18.2%	_‡	63.6%	63.6%	9.1%	-	-	-	-	-
	Kentucky (n=20)	65.0%	60.0%	25.0%	25.0%	5.0%	25.0%	-	5.0%	25.0%	25.0%	-	-	-	-	-	-
Chicken	Heidelberg (n=16)	12.5%	-	18.8%	12.5%	12.5%	6.3%	-	18.8%	6.3%	6.3%	-	-	-	-	-	-
Breast	Mbandaka (n=7)	-	28.6%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Enteritidis (n=4)	-	-	50.0%	50.0%	-	25.0%	-	-	25.0%	25.0%	-	-	-	-	-	-
	Haardt (n=4)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Heidelberg (n=32)	37.5%	43.8%	9.4%	12.5%	15.6%	9.4%	34.4%	12.5%	-	-	-	-	-	-	-	-
	Saintpaul (n=24)	62.5%	20.8%	66.7%	66.7%	70.8%	29.2%	58.3%	45.8%	-	-	-	16.7%	-	-	-	-
Ground	Reading (n=13)	7.7%	23.1%	7.7%	7.7%	15.4%	-	-	15.4%	-	-	-	-	-	-	-	-
Turkey	Hadar (n=11)	90.9%	100.0%	27.3%	27.3%	9.1%	-	9.1%	9.1%	-	-	-	-	-	-	-	-
	Agona (n=6)	33.3%	100.0%	33.3%	33.3%	100.0%	16.7%	-	33.3%	16.7%	16.7%	-	-	-	-	-	-
	Senftenberg (n=5)	40.0%	-	60.0%	60.0%	-	-	40.0%	20.0%	-	-	-	-	-	-	-	-
	Dublin (n=3)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	100.0%	100.0%	100.0%	-	33.3%	-	-	-
	Montevideo (n=2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ground	Enteritidis (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beef	Infantis (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Newport (n=1)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	100.0%	100.0%	100.0%	-	-	-	-	-
	Typhimurium (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Johannesburg (n=2)	-	100.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Brandenburg (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pork	Newport (n=1)	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	-	-	-	100.0%	-	-	-	-	-
Chop [§]	Typhimurium (n=1)	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	-	-	-	100.0%	-	-	-	-	-

Table 13. Antimicrobial Resistance^{*} among Salmonella by Top 6 Serotypes within Meat Type, 2003

* Where % Resistance = (# isolates per serotype resistant to antimicrobial) / (total # isolates per serotype).
† Includes Typhimurium var. Copenhagen.
* Dashes indicate 0.0% resistance to antimicrobial.

[§] Only four serotypes isolated from pork chops.

Site	Most Ture							Ant	imicrobi	al Agent							
Sue	Meat Type	STR	ТЕТ	AMP	СЕР	SMX	AMC	KAN	GEN	FOX	TIO	CHL	NAL	AXO	AMI	CIP	СОТ
	CB (n=4)	25.0%	25.0%	25.0%	25.0%	_†	-	-	25.0%	-	-	-	-	-	-	-	-
	GT (n=6)	66.7%	66.7%	16.7%	16.7%	50.0%	16.7%	33.3%	33.3%	16.7%	16.7%	16.7%	-	-	-	-	-
CA	GB (n=1)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	100.0%	100.0%	100.0%	-	-	-	-	-
	PC (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total (n=12)	50.0%	50.0%	25.0%	25.0%	33.3%	16.7%	16.7%	25.0%	16.7%	16.7%	16.7%	8.3%	0.0%	0.0%	0.0%	0.0%
	CB (n=9)	33.3%	66.7%	77.8%	77.8%	44.4%	77.8%	33.3%	-	77.8%	77.8%	-	-	-	-	-	-
	GT (n=8)	-	25.0%	-	-	25.0%	-	-	-	-	-	-	37.5%	-	-	-	-
СТ	GB (n=0)	**															
	PC (n=0)																
	Total (n=17)	17.6%	47.1%	41.2%	41.2%	35.3%	41.2%	17.6%	0.0%	41.2%	41.2%	0.0%	17.6%	0.0%	0.0%	0.0%	0.0%
	CB (n=8)	12.5%	37.5%	25.0%	25.0%	-	25.0%	-	-	25.0%	25.0%	-	-	-	-	-	-
	GT (n=27)	40.7%	44.4%	29.6%	29.6%	29.6%	7.4%	33.3%	22.2%	-	-	-	-	-	-	-	-
GA	GB (n=2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC (n=0)																
	Total (n=37)	32.4%	40.5%	27.0%	27.0%	21.6%	10.8%	24.3%	16.2%	5.4%	5.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=18)	27.8%	11.1%	66.7%	55.6%	16.7%	44.4%	-	-	44.4%	44.4%	11.1%	5.6%	-	-	-	-
	GT (n=25)	44.0%	28.0%	40.0%	40.0%	36.0%	16.0%	24.0%	28.0%	4.0%	4.0%	-	-	-	-	-	-
MD	GB (n=3)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC (n=1)	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	-	-	-	100.0%	-	-	-	-	-
	Total (n=47)	36.2%	21.3%	48.9%	44.7%	27.7%	25.5%	12.8%	14.9%	19.1%	19.1%	6.4%	2.1%	0.0%	0.0%	0.0%	0.0%
	CB (n=13)	-	-	7.7%	-	-	-	-	-	-	-	-	-	-	-	-	-
	GT (n=11)	18.2%	27.3%	18.2%	18.2%	27.3%	9.1%	18.2%	27.3%	-	-	-	-	-	-	-	-
MN	GB (n=1)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	100.0%	100.0%	100.0%	-	100.0%	-	-	-
	PC (n=0)																
	Total (n=25)	12.0%	16.0%	16.0%	12.0%	16.0%	8.0%	8.0%	12.0%	4.0%	4.0%	4.0%	0.0%	4.0%	0.0%	0.0%	0.0%

Table 14. Antimicrobial Resistance^{*} among Salmonella by Site, Meat Type, and Antimicrobial Agent, 2003

* Where % Resistance = (# isolates resistant to antimicrobial per meat type per site) / (total # isolates per meat type per site). † Dashes indicate 0.0% resistance to antimicrobial.

[‡] Grey areas indicate no isolates from meat type for that site.

C :4 -	Mant True							Antin	nicrobial	Agent							
Site	Meat Type	STR	ТЕТ	AMP	CEP	SMX	AMC	KAN	GEN	FOX	TIO	CHL	NAL	AXO	AMI	CIP	СОТ
	CB (n=11)	54.5%	63.6%	36.4%	36.4%	18.2%	36.4%	9.1%	9.1%	36.4%	36.4%	-	-	-	-	-	-
	GT (n=20)	60.0%	25.0%	45.0%	45.0%	55.0%	25.0%	40.0%	35.0%	5.0%	5.0%	-	5.0%	-	-	-	-
NY	GB (n=0)																
	PC (n=2)	-	100.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total (n=33)	54.5%	42.4%	39.4%	39.4%	39.4%	27.3%	27.3%	24.2%	15.2%	15.2%	0.0%	3.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=17)	-	100.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	GT (n=5)	60.0%	60.0%	60.0%	60.0%	-	-	-	-	-	-	-	-	-	-	-	-
OR	GB (n=2)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	100.0%	100.0%	100.0%	-	-	-	-	-
	PC (n=1)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	100.0%	100.0%	100.0%	-	-	-	-	-
	Total (n=25)	44.0%	36.0%	28.0%	24.0%	24.0%	12.0%	0.0%	12.0%	12.0%	12.0%	12.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=3)	33.3%	33.3%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	GT (n=12)	75.0%	75.0%	-	-	16.7%	-	33.3%	8.3%	-	-	-	-	-	-	-	-
TN	GB (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC (n=0)																
	Total (n=16)	62.5%	62.5%	0.0%	0.0%	12.5%	0.0%	25.0%	6.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Total %R (N=212)	37.7%	35.8%	31.6%	29.7%	26.4%	18.4%	16.5%	14.6%	13.7%	13.7%	4.2%	2.8%	0.5%	0.0%	0.0%	0.0%

Table 14(cont'd).Percent Resistance among Salmonella Isolates by Site, Meat Type,
and Antimicrobial Agent, 2003

 Table 15. Number of Salmonella (N=212) Resistant to Multiple Antimicrobial Agents, 2003

Meat Type	Num	Number of Antimicrobials										
mear Type	0	1	2-4	5-7	<u>></u> 8							
СВ	39	4	16	20	4							
GT	39	12	37	22	4							
GB	6	0	0	0	4							
РС	1	2	0	1	1							
Total	85	18	53	43	13							

Table 16. Overall	<i>Campylobacter</i>	Species	Identified,	2003
	1./	1	,	

Species	N
C. coli	147
C. jejuni	330
C. lari	2
Total	479

Species	Chicken Breast		Ground Turkey		Ground Beef			Pork Chop
	n	% [*]	n	%	n	%	n	%
<i>C. coli</i> (n=147)	142	96.6%	1	0.7%	0	0.0%	4	2.7%
<i>C. jejuni</i> (n=330)	325	98.5%	4	1.2%	1	0.3%	0	_†
<i>C. lari</i> (n=2)	2	100.0%	0	-	0	-	0	-
Total (N=479)	469	97.9%	5	1.0%	1	0.2%	4	0.8%

Table 17. Campylobacter Species by Meat Type, 2003

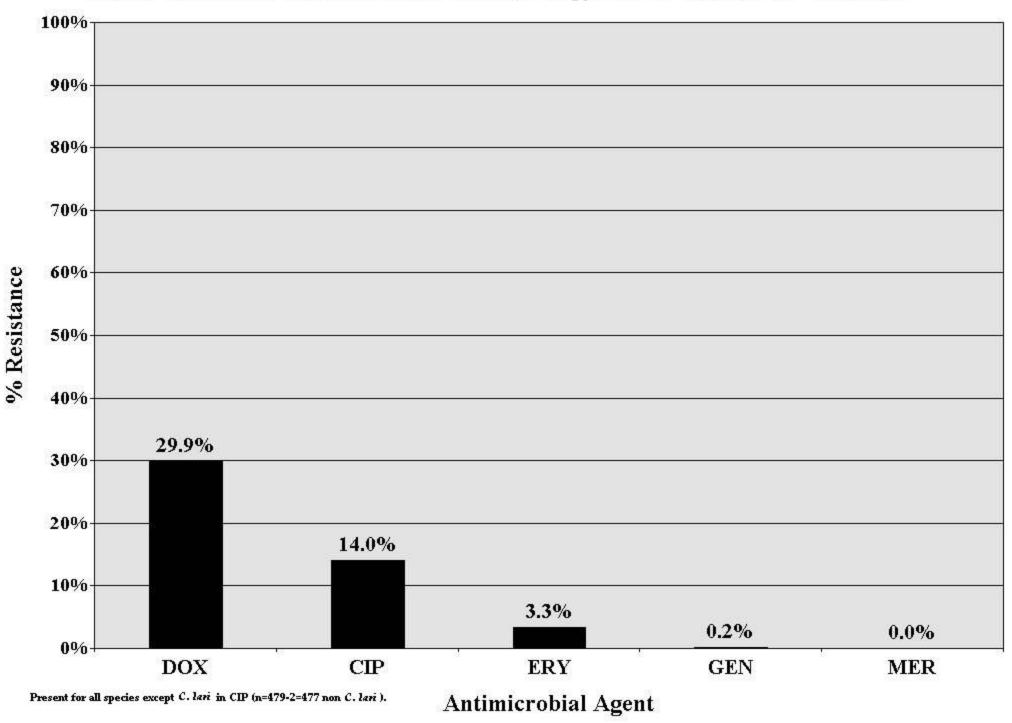
^{*} Where % = (# of isolates per species per meat type) / (total # of isolates per species).† Dashes indicate no isolates from that species per meat type.

Site	Species		hicken Breast		round urkey		round Beef		Pork Chop
Sue	Species	n	<u>%</u> *	n	<u>urkey</u> %	n	<u>beej</u> %	n	%
	<i>C. coli</i> (n=12)	10	83.3%	0	_†	0	-	2	16.7%
CA	<i>C. jejuni</i> (n=54)	54	100.0%	0	-	0	-	0	-
	Total (n=66)	64	97.0%	0	-	0	-	2	3.0%
	<i>C. coli</i> (n=4)	4	100.0%	0	-	0	-	0	-
СТ	<i>C. jejuni</i> (n=46)	46	100.0%	0	-	0	-	0	-
	Total (n=50)	50	100.0%	0	-	0	-	0	-
	<i>C. coli</i> (n=19)	18	94.7%	1	5.3%	0	-	0	-
GA	<i>C. jejuni</i> (n=59)	58	98.3%	1	1.7%	0	-	0	-
	Total (n=78)	76	97.4%	2	2.6%	0	-	0	-
	<i>C. coli</i> (n=21)	21	100.0%	0	-	0	-	0	-
MD	<i>C. jejuni</i> (n=18)	17	94.4%	0	-	1	5.6%	0	-
	Total (n=39)	38	97.4%	0	-	1	2.6%	0	-
	<i>C. coli</i> (n=20)	19	95.0%	0	-	0	-	1	5.0%
MN	<i>C. jejuni</i> (n=46)	43	93.5%	3	6.5%	0	-	0	-
	Total (n=66)	62	93.9%	3	4.5%	0	-	1	1.5%
	<i>C. coli</i> (n=36)	36	100.0%	0	-	0	-	0	-
NY	<i>C. jejuni</i> (n=39)	39	100.0%	0	-	0	-	0	-
	Total (n=75)	75	100.0%	0	-	0	-	0	-
	<i>C. coli</i> (n=3)	2	66.7%	0	-	0	-	1	33.3%
OR	<i>C. jejuni</i> (n=41)	41	100.0%	0	-	0	-	0	-
OR	<i>C. lari</i> (n=2)	2	100.0%	0	-	0	-	0	-
	Total (n=46)	45	97.8%	0	-	0	-	1	2.2%
	<i>C. coli</i> (n=32)	32	100.0%	0	-	0	-	0	-
TN	<i>C. jejuni</i> (n=27)	27	100.0%	0	-	0	-	0	-
	Total (n=59)	59	100.0%	0	_	0	_	0	-

 Table 18. Campylobacter Species by Site and Meat Type, 2003

^{*} Where % = (# isolates per species per meat type per site) / (total # isolates per species per site). † Dashes indicate no isolates of that species were isolated from that meat type for that site.

Month	п	% *
January	34	7.1%
February	32	6.7%
March	28	5.8%
April	30	6.3%
May	42	8.8%
June	42	8.8%
July	53	11.1%
August	29	6.1%
September	50	10.4%
October	61	12.7%
November	26	5.4%
December	52	10.9%
Total (N)	479	100.0%


 Table 19. Campylobacter Isolates by Month for All Sites, 2003

^{*} Where % = (n / N).

Table 20. Antimicrobial Resistance (%R) among Campylobacter Isolates (N=479), 2003

Antimicrobial Agent	n	% R *
Doxycycline	143	29.9%
Ciprofloxacin [†]	67	14.0%
Erythromycin	16	3.3%
Gentamicin	1	0.2%
Meropenem	0	0.0%

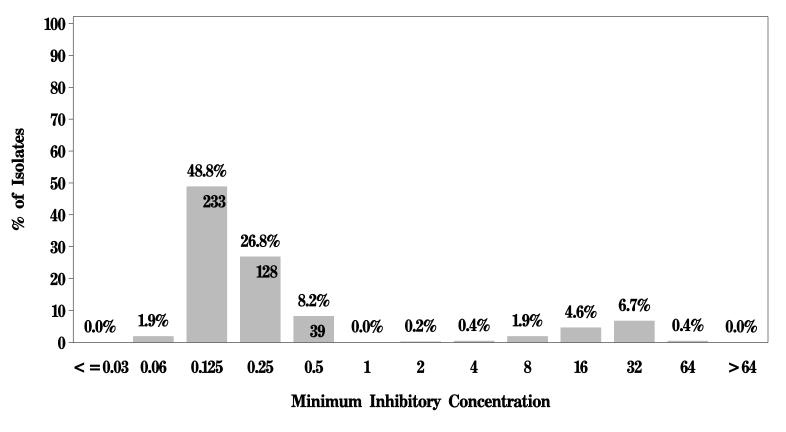
^{*} Where % R = (n / N). † % R calculated based on N = 477; two *C. lari* isolates were excluded from analysis due to intrinsic resistance to quinolones.

Figure 8. Antimicrobial Resistance among Campylobacter Isolates (n=479), 2003

Campylobacter from All Meats (N=479)					Distribution (%) of MICs (in µg/ml)												
Antimicrobial Agent	% R [†]	0.008	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	>64	
Doxycycline	29.9%				17.1	23.4	5.4	1.7	1.5	2.5	4.4	14.2	16.5	11.5	1.9		
Ciprofloxacin	14.0%				1.9	48.6	26.7	8.1		0.2	0.4	1.9	5.0*	6.7	0.4		
Erythromycin	3.3%						2.3	16.1	43.6	23.0	11.7	0.4	0.2			2.7	
Gentamicin	0.2%					1.0	21.5	62.4	14.2	0.6				0.2			
Meropenem [‡]	0.0%		21.9	50.1	15.9	10.0	0.6	1.0	0.2	0.2							

Figure 9. MIC Distribution Among All Antimicrobial Agents

Vertical bars show the NARMS Susceptible/Resistant breakpoints for each drug.

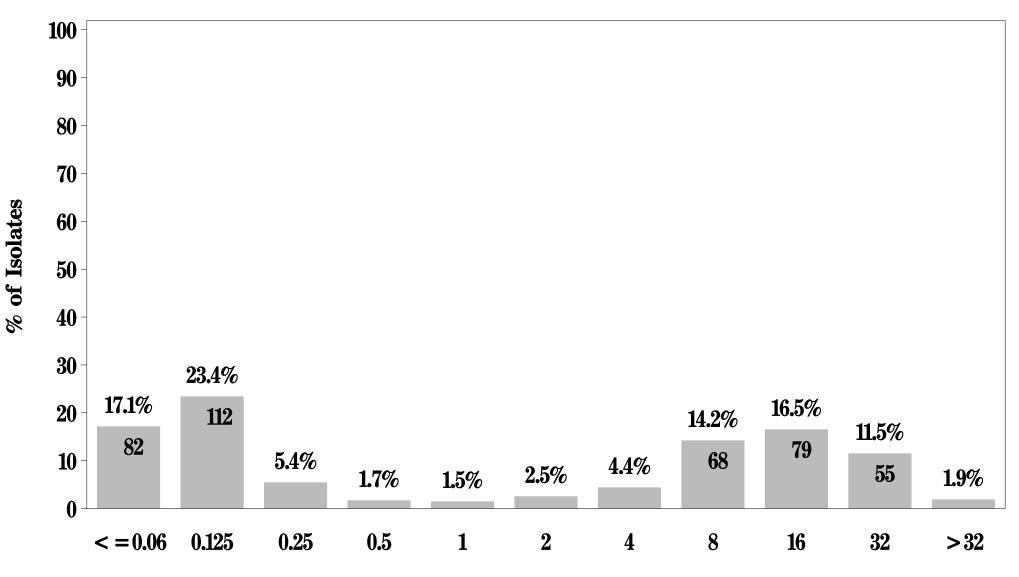

*Includes 2 C.lari that are intrinsically resistant to Ciprofloxacin.

 $^{\dagger}\textsc{Discrepancies}$ between %R and sums of distribution %s are due to rounding.

[‡]Lowest Meropenem dilution tested was 0.001 µg/ml.

Unshaded areas indicate the dilution ranges used to test the 2003 isolates.

Figure 9a: Minimum Inhibitory Concentration of Ciprofloxacin* for *Campylobacter* (N=477 Isolates) Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

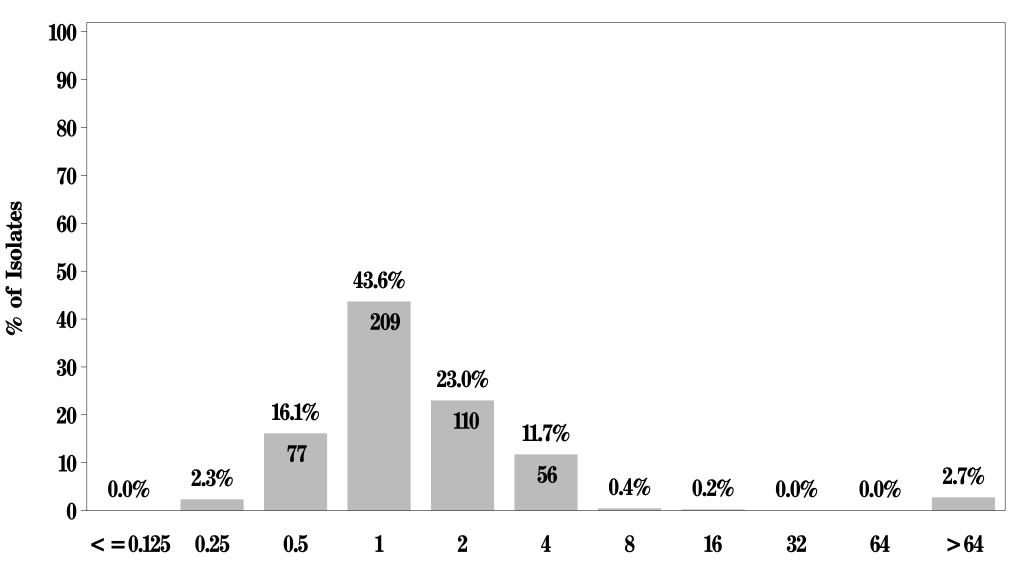


*Presented for all species except C. lari (N=479-2=477)

Figure 9b: Minimum Inhibitory Concentration of Doxycycline

for *Campylobacter* (N=479 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

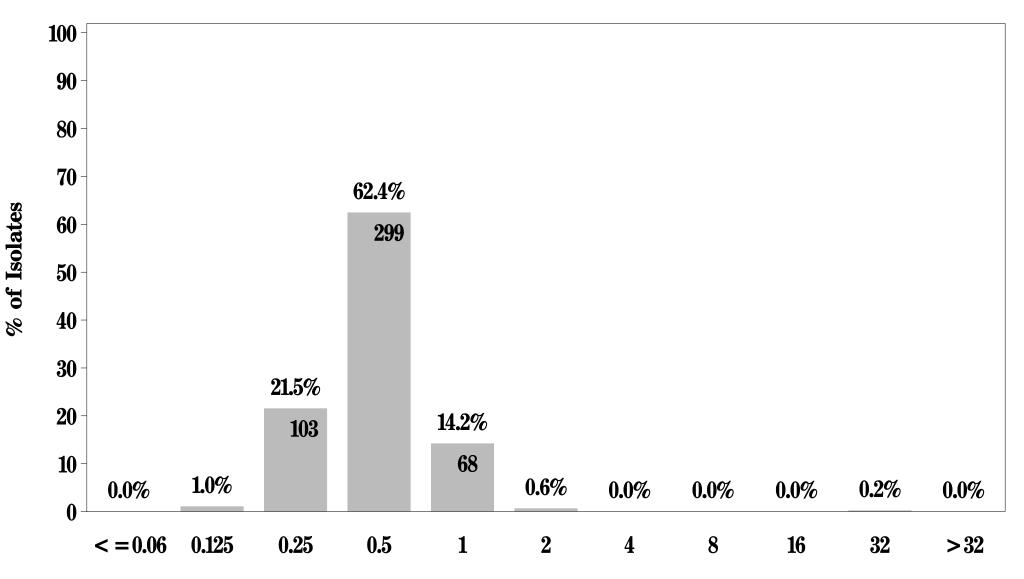


Minimum Inhibitory Concentration

Figure 9c: Minimum Inhibitory Concentration of Erythromycin

for Campylobacter (N=479 Isolates)

Breakpoints: Susceptible < = 0.5 μ g/mL Resistant > = 8 μ g/mL

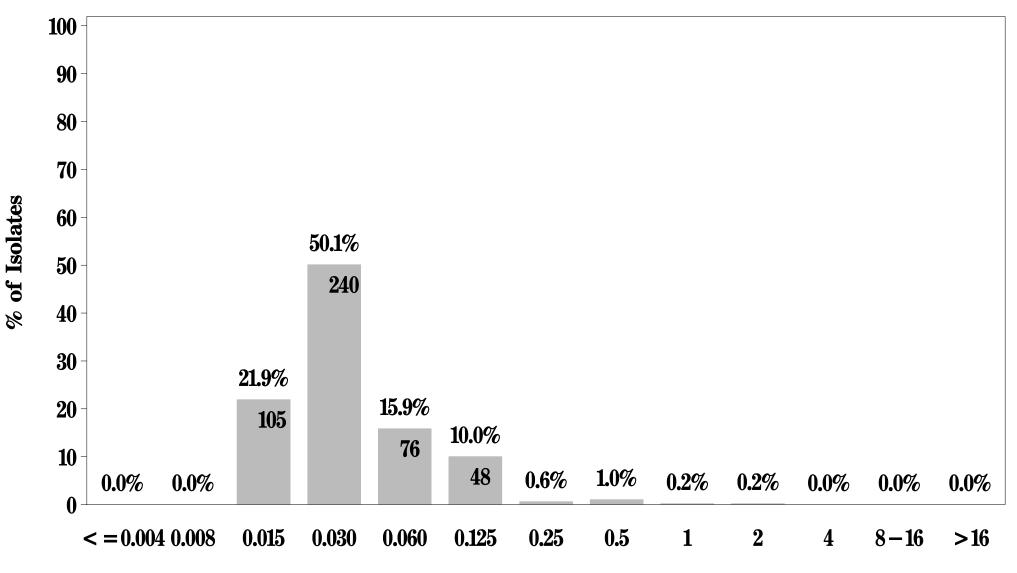


Minimum Inhibitory Concentration

Figure 9d: Minimum Inhibitory Concentration of Gentamicin

for Campylobacter (N=479 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL



Minimum Inhibitory Concentration

Figure 9e: Minimum Inhibitory Concentration of Meropenem

for *Campylobacter* (N=479 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Table 21. Antimicrobial Resistance^{*} among Campylobacter by Meat Type, 2003

Antimicrobial Agent	Chicken Breast (n=469)	Ground Turkey (n=5)	Ground Beef (n=1)	Pork Chop (n=4)
Doxycycline	29.4%	60.0%	_†	50.0%
Ciprofloxacin	$14.1\%^{\ddagger}$	20.0%	-	-
Erythromycin	2.8%	-	-	75.0%
Gentamicin	0.2%	-	-	-
Meropenem	-	-	-	-

^{*} Where % Resistance = (# isolates per meat type resistant to antimicrobial) / (total # isolates per meat type).

[†] Dashes indicate 0.0% resistance to antimicrobial.

[‡] % resistance calculated based on N = 467. Two *C. lari* isolates from chicken breast were excluded from analysis due to intrinsic resistance to quinolones.

Campylobacter from Chicken Breas	st (N=469))				I	Distribu	ution (%	%) of N	AICs (i	in µg/n	nl)				
Antimicrobial Agent	% R [†]	0.008	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	>64
Doxycycline	29.4%				17.3	23.7	5.5	1.7	1.3	2.6	4.5	14.1	16.0	11.5	1.9	
Ciprofloxacin	14.1%				1.9	48.8	26.2	8.3		0.2	0.4	1.9	4.9*	6.8	0.4	
Erythromycin	2.8%						2.3	16.2	43.7	23.0	11.9	0.4	0.2			2.1
Gentamicin	0.2%					1.1	21.7	62.9	13.6	0.4				0.2		
Meropenem [‡]	0.0%		22.4	50.1	15.6	10.0	0.6	1.1	0.2							

Figure 10a. MIC Distribution among Campylobacter from Chicken Breast

*Includes 2 C.lari that are intrinsically resistant to Ciprofloxacin.

 $^{\dagger}\textsc{Discrepancies}$ between %R and sums of distribution %s are due to rounding.

[‡]Lowest Meropenem dilution tested was 0.001 µg/ml.

Campylobacter from Ground Turke	ey (N=5)					I	Distribu	tion (%) of N	AICs (i	in µg/r	nl)				
Antimicrobial Agent	%R [†]	0.008	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	>64
Doxycycline	60.0%					20.0						20.0	40.0	20.0		
Ciprofloxacin	20.0%					40.0	40.0						20.0			
Erythromycin	0.0%							20.0	60.0	20.0						
Gentamicin	0.0%						20.0	40.0	40.0							
Meropenem [‡]	0.0%			80.0						20.0						

Figure 10b. MIC Distribution among Campylobacter from Ground Turkey

*Includes 2 C.lari that are intrinsically resistant to Ciprofloxacin.

 $^{\dagger}\textsc{Discrepancies}$ between %R and sums of distribution %s are due to rounding.

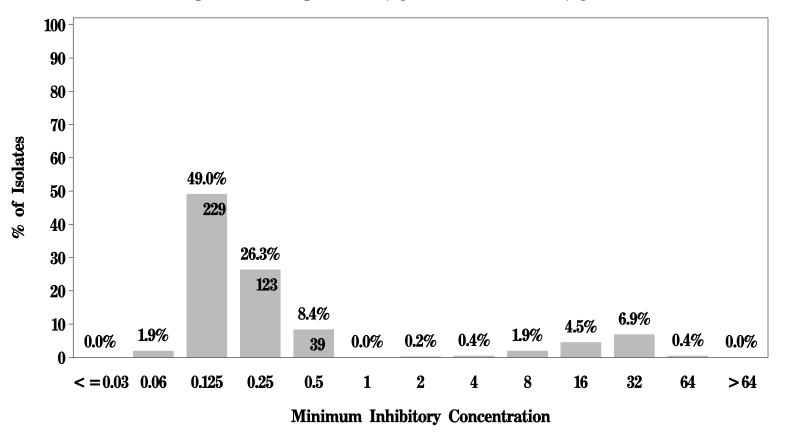
[‡]Lowest Meropenem dilution tested was 0.001 µg/ml.

Figure 10c.	MIC Distribution among	<i>Campylobacter</i>	from Ground Beef
8		- · · · · · · · · · · · · · · · · · · ·	

Campylobacter from Ground Beet	f (N=1)						Distribu	tion (%	5) of MI	Cs (in	µg/ml))				
Antimicrobial Agent	%R [†]	0.008	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	>64
Doxycycline	0.0%				100.0											
Ciprofloxacin	0.0%						100.0									
Erythromycin	0.0%								100.0							
Gentamicin	0.0%							100.0								
Meropenem [‡]	0.0%			100.0												

*Includes 2 C.lari that are intrinsically resistant to Ciprofloxacin.

[†]Discrepancies between %R and sums of distribution %s are due to rounding. [‡]Lowest Meropenem dilution tested was 0.001 μ g/ml.


Figure 10d.	MIC Distribution amo	ng Campylobacter	from Pork Chop
0		8 12	1

Campylobacter from Pork Chop	(N=4)					I	Distribu	tion (%	%) of N	AICs (i	in µg/ı	nl)				
Antimicrobial Agent	% R [†]	0.008	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	>64
Doxycycline	50.0%								25.0			25.0	50.0			
Ciprofloxacin	0.0%					50.0	50.0									
Erythromycin	75.0%									25.0						75.0
Gentamicin	0.0%							25.0	50.0	25.0						
Meropenem [‡]	0.0%				75.0	25.0										

*Includes 2 *C.lari* that are intrinsically resistant to Ciprofloxacin.

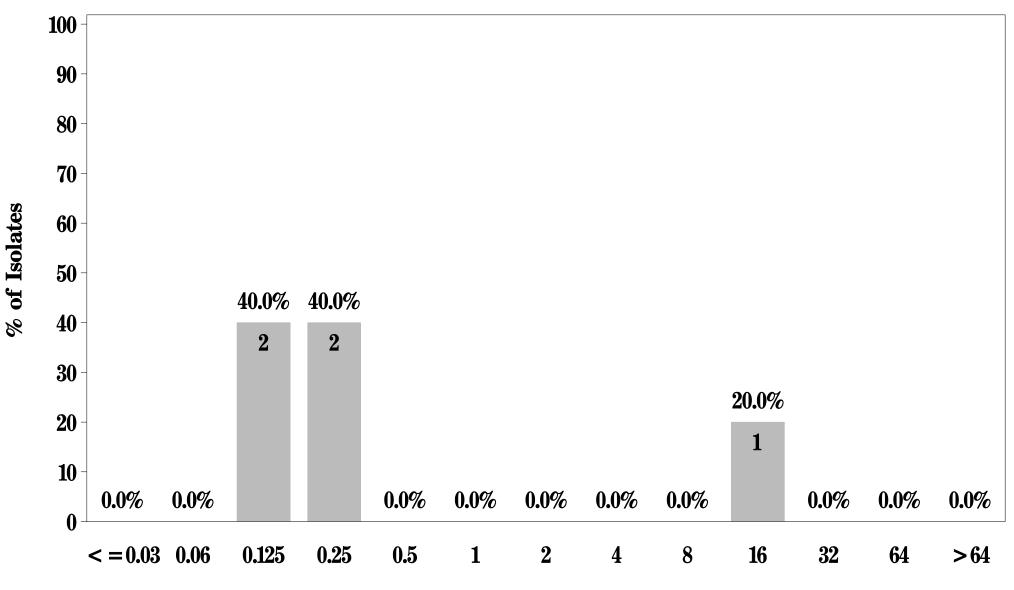

[†]Discrepancies between %R and sums of distribution %s are due to rounding. [‡]Lowest Meropenem dilution tested was 0.001 μ g/ml.

Figure 11a: Minimum Inhibitory Concentration of Ciprofloxacin* for *Campylobacter* in Chicken Breast (N=467 Isolates) Breakpoints: Susceptible < = 1μ g/mL Resistant > = 4μ g/mL

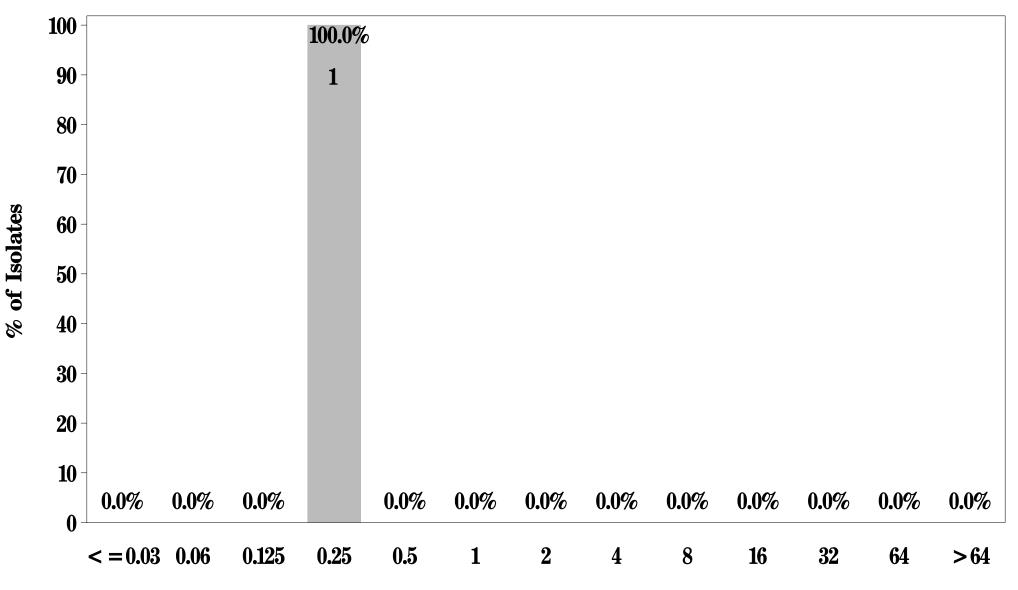

*Presented for all species except C. lari (N=469-2=467)

Figure 11a: Minimum Inhibitory Concentration of Ciprofloxacin for *Campylobacter* in Ground Turkey (N=5 Isolates) Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

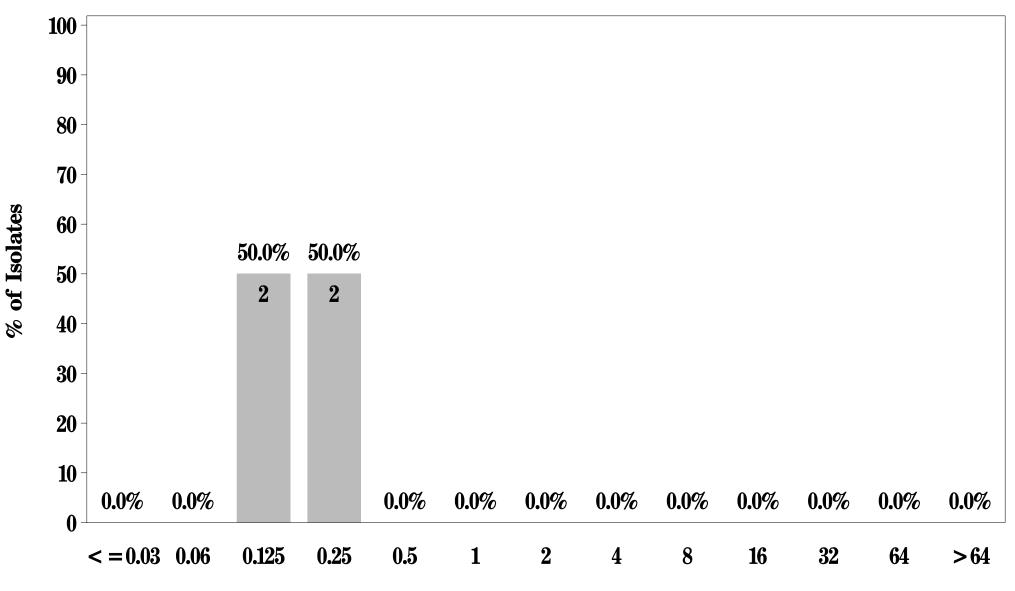

Minimum Inhibitory Concentration

Figure 11a: Minimum Inhibitory Concentration of Ciprofloxacin for *Campylobacter* in Ground Beef (N=1 Isolates) Breakpoints: Susceptible < =1 μg/mL Resistant > =4 μg/mL

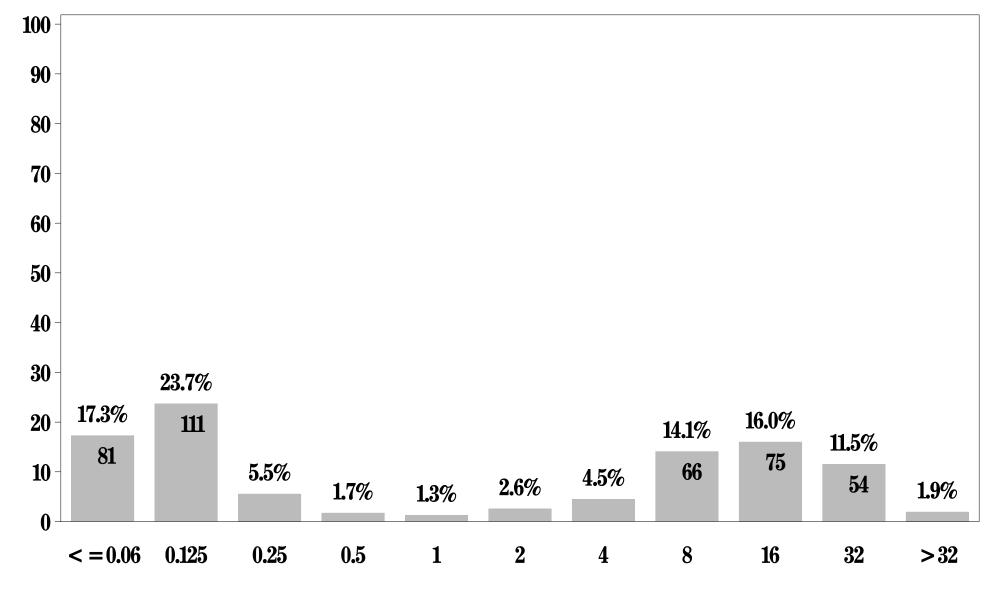
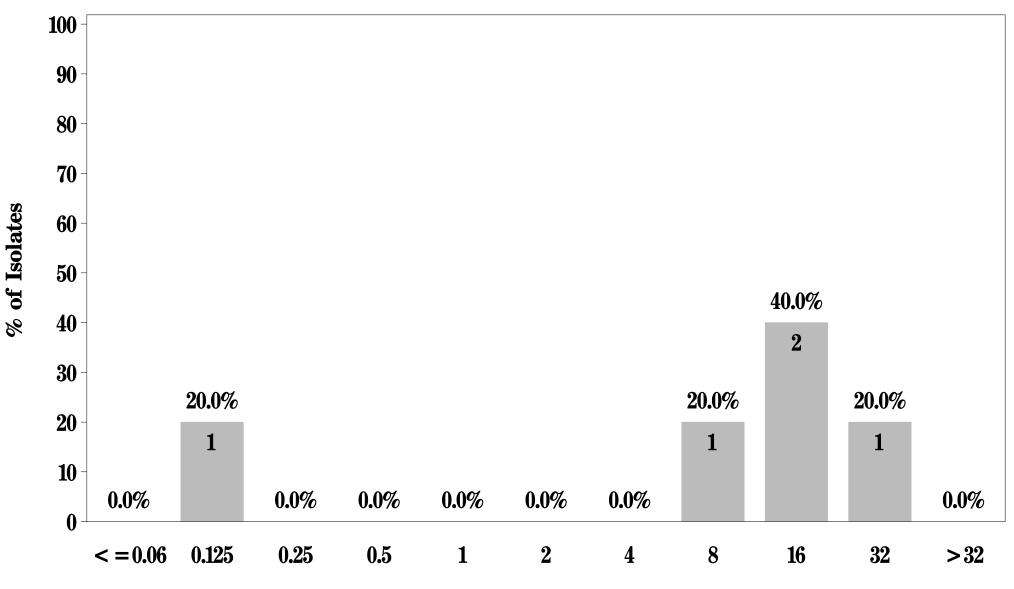

Minimum Inhibitory Concentration

Figure 11a: Minimum Inhibitory Concentration of Ciprofloxacin for Campylobacter in Pork Chop (N=4 Isolates) Breakpoints: Susceptible < =1 μg/mL Resistant > =4 μg/mL

Minimum Inhibitory Concentration


Figure 11b: Minimum Inhibitory Concentration of Doxycycline for *Campylobacter* in Chicken Breast (N=469 Isolates) Breakpoints: Susceptible <=4 μg/mL Resistant >=16 μg/mL

% of Isolates

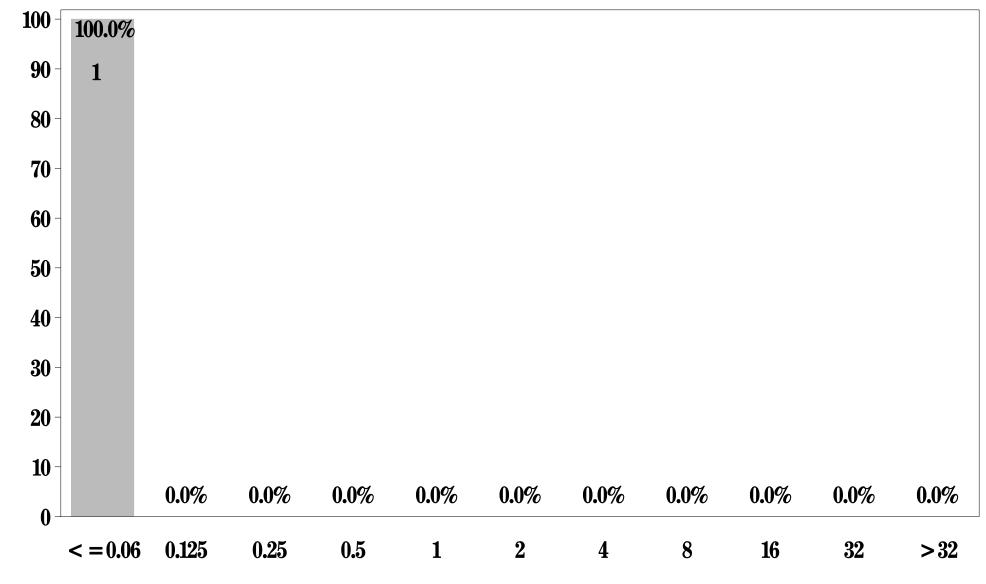
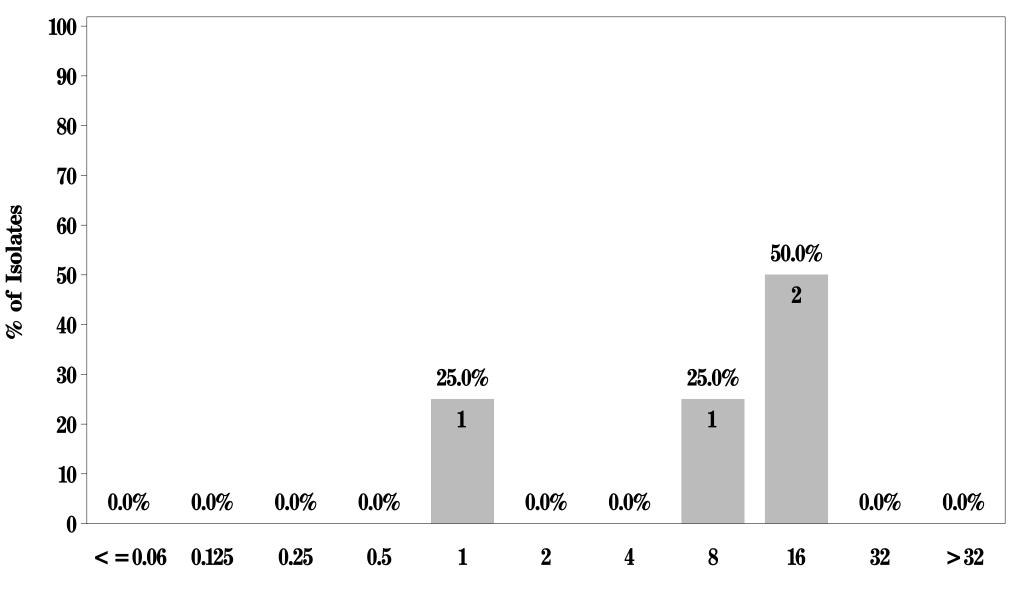

Minimum Inhibitory Concentration

Figure 11b: Minimum Inhibitory Concentration of Doxycycline for *Campylobacter* in Ground Turkey (N=5 Isolates) Breakpoints: Susceptible <= 4 μg/mL Resistant >= 16 μg/mL

Minimum Inhibitory Concentration


Figure 11b: Minimum Inhibitory Concentration of Doxycycline for *Campylobacter* in Ground Beef (N=1 Isolates) Breakpoints: Susceptible < =4 μg/mL Resistant > =16 μg/mL

% of Isolates

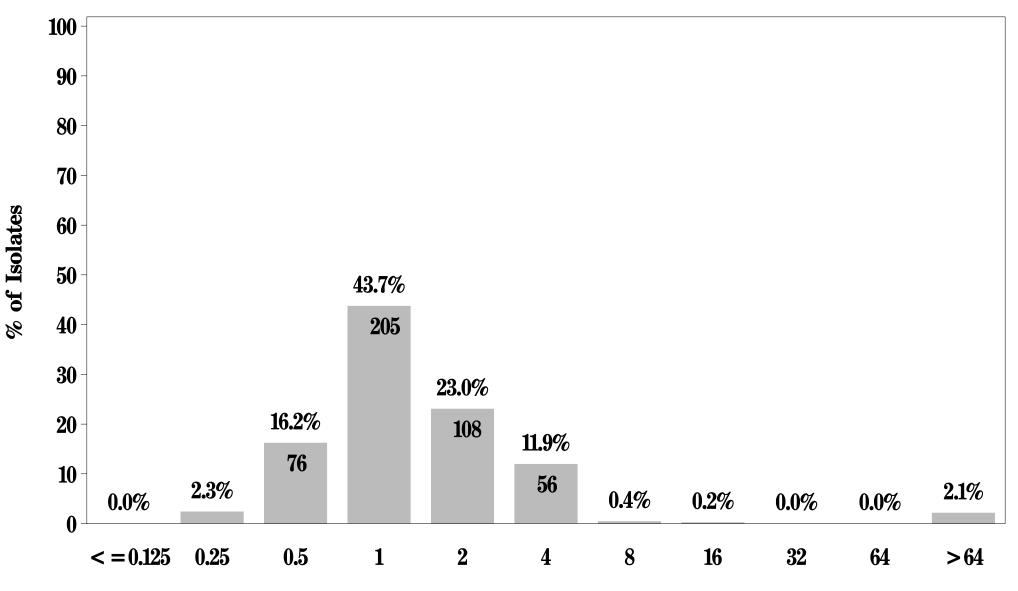

Minimum Inhibitory Concentration

Figure 11b: Minimum Inhibitory Concentration of Doxycycline
for Campylobacter in Pork Chop (N=4 Isolates)Breakpoints: Susceptible<=4 μg/mL Resistant>=16 μg/mL

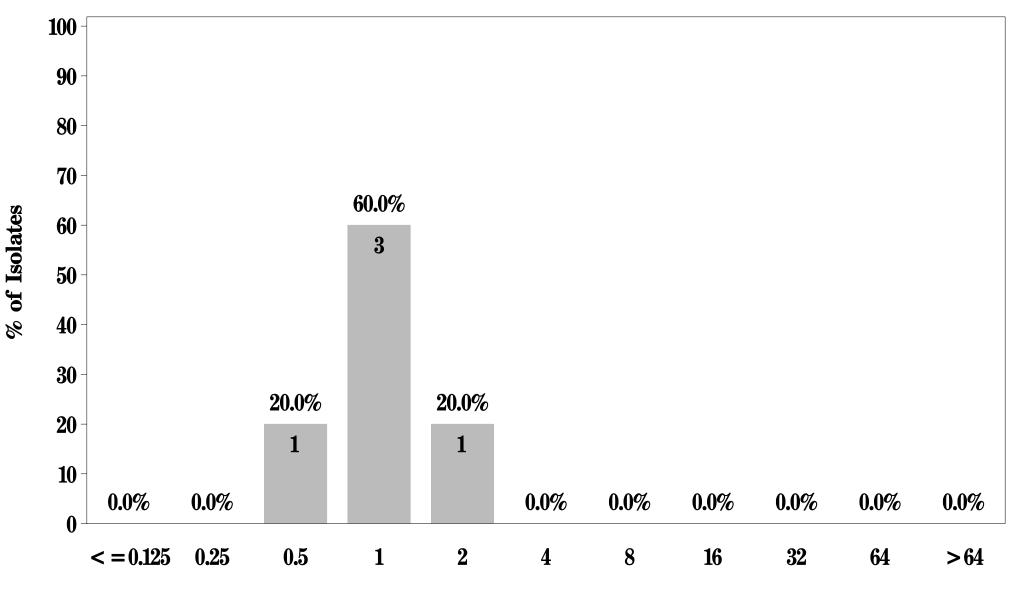

Minimum Inhibitory Concentration

Figure 11c: Minimum Inhibitory Concentration of Erythromycin for Campylobacter in Chicken Breast (N=469 Isolates) Breakpoints: Susceptible <= 0.5 μg/mL Resistant >= 8 μg/mL

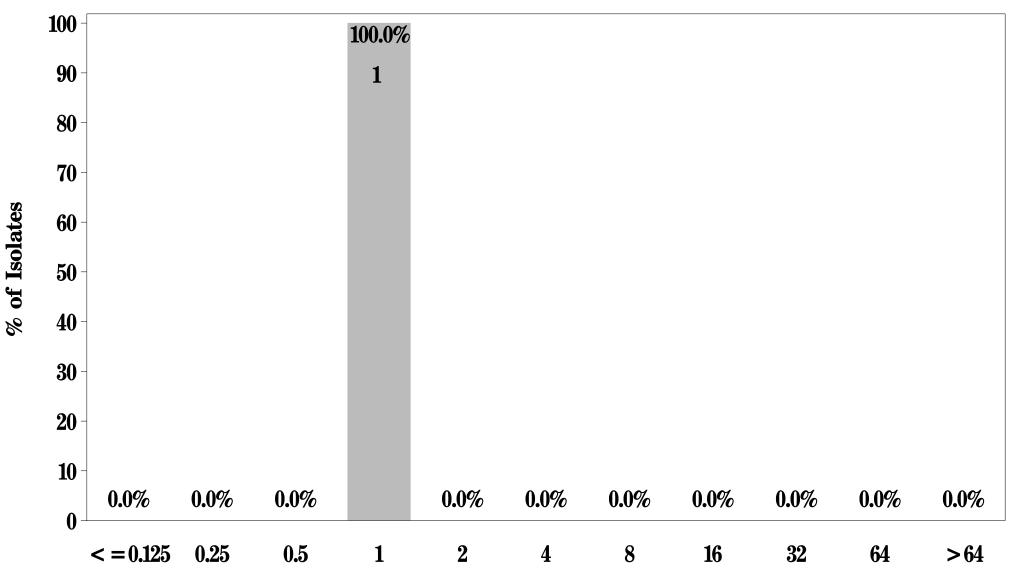

Minimum Inhibitory Concentration

Figure 11c: Minimum Inhibitory Concentration of Erythromycin for Campylobacter in Ground Turkey (N=5 Isolates) Breakpoints: Susceptible <= 0.5 μg/mL Resistant >= 8 μg/mL

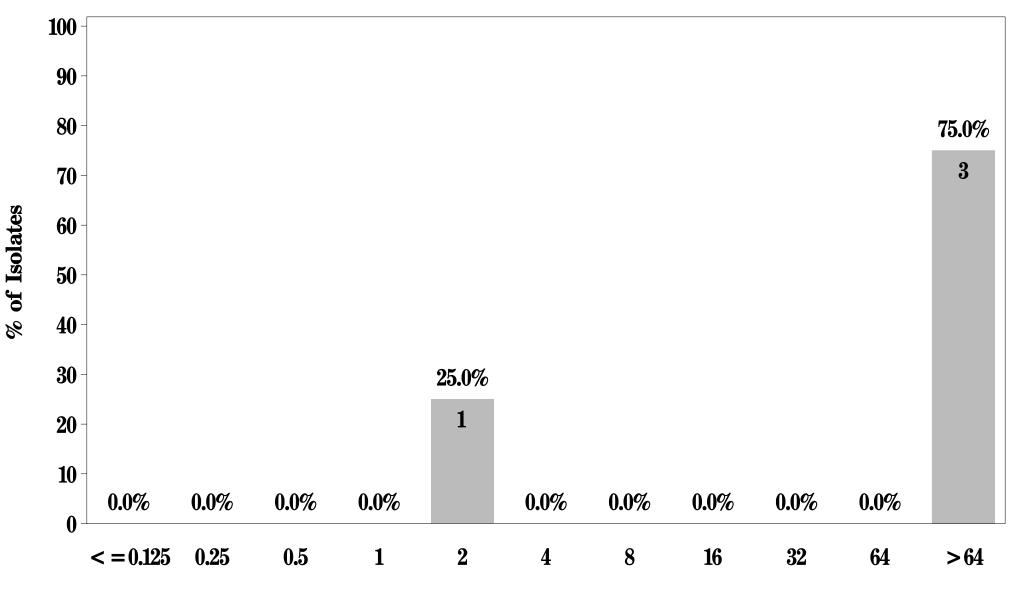

Minimum Inhibitory Concentration

Figure 11c: Minimum Inhibitory Concentration of Erythromycin for Campylobacter in Ground Beef (N=1 Isolates) Breakpoints: Susceptible <= 0.5 μg/mL Resistant >= 8 μg/mL

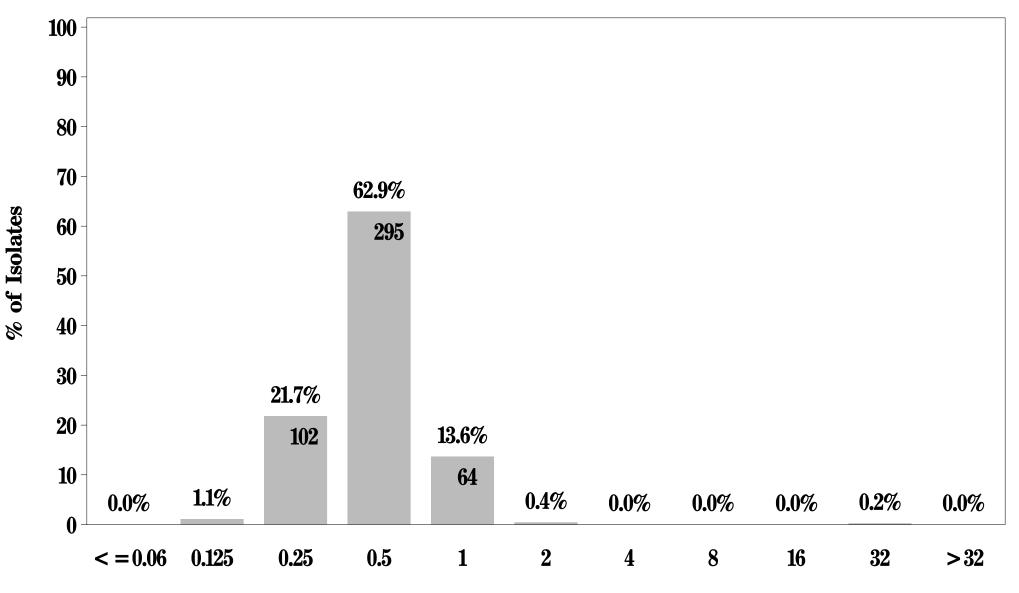

Minimum Inhibitory Concentration

Figure 11c: Minimum Inhibitory Concentration of Erythromycin for Campylobacter in Pork Chop (N=4 Isolates) Breakpoints: Susceptible <= 0.5 µg/mL Resistant >= 8µg/mL

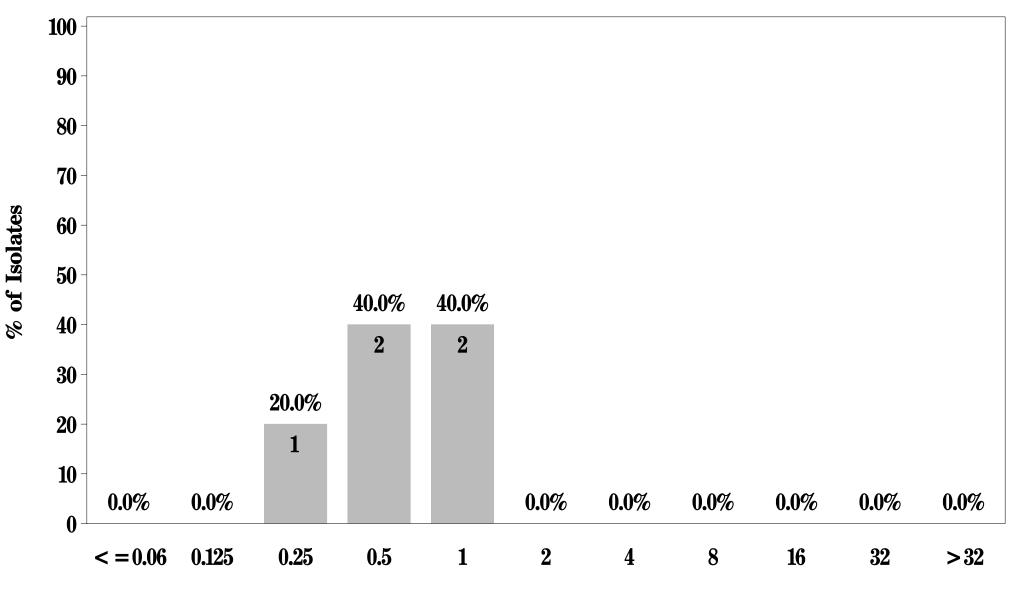

Minimum Inhibitory Concentration

Figure 11d: Minimum Inhibitory Concentration of Gentamicin for *Campylobacter* in Chicken Breast (N=469 Isolates) Breakpoints: Susceptible <= 4 μg/mL Resistant >= 16 μg/mL

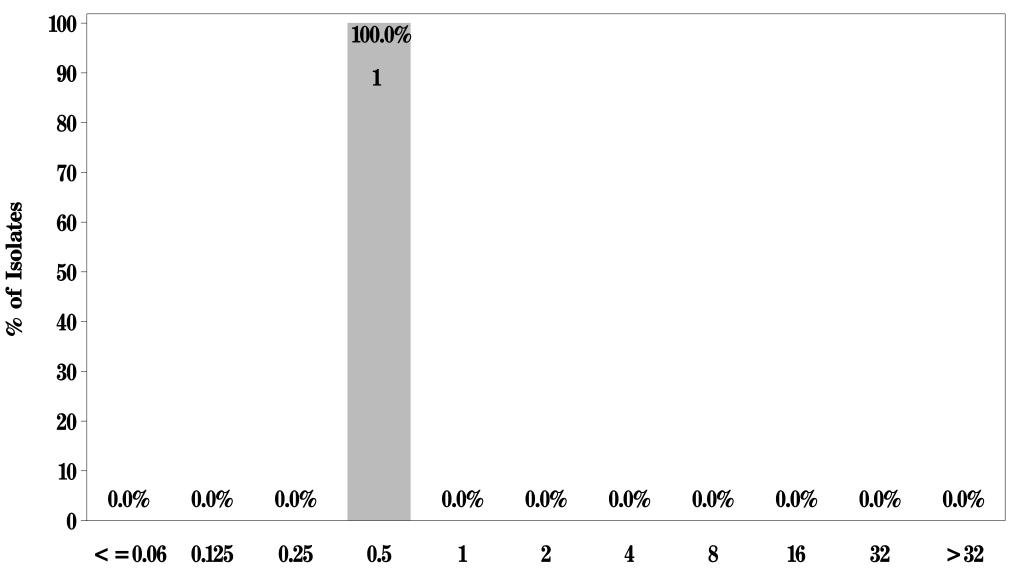

Minimum Inhibitory Concentration

Figure 11d: Minimum Inhibitory Concentration of Gentamicin for *Campylobacter* in Ground Turkey (N=5 Isolates) Breakpoints: Susceptible < =4 μg/mL Resistant > =16 μg/mL

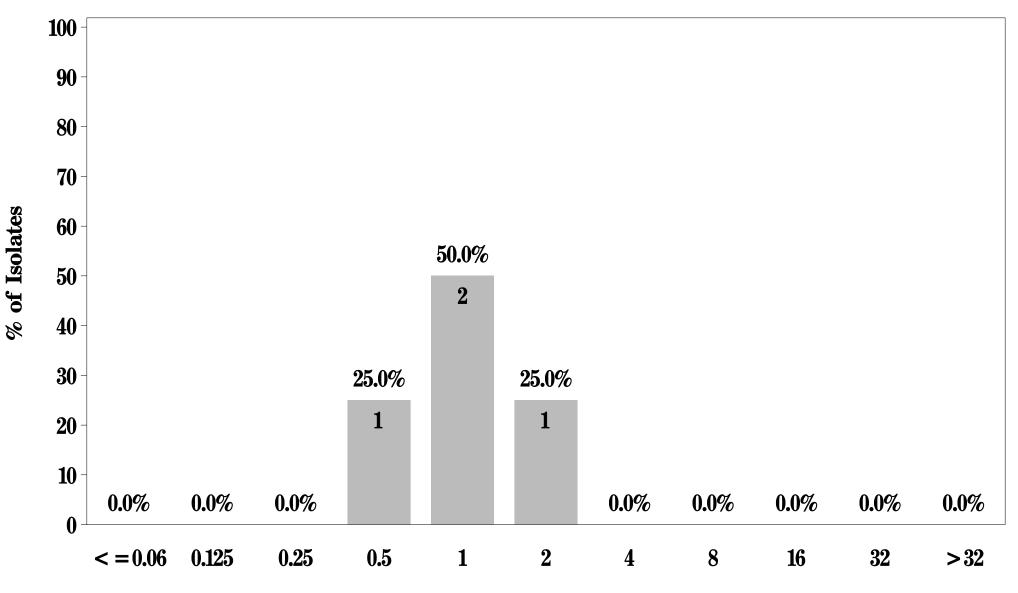

Minimum Inhibitory Concentration

Figure 11d: Minimum Inhibitory Concentration of Gentamicin for *Campylobacter* in Ground Beef (N=1 Isolates) Breakpoints: Susceptible < =4 μg/mL Resistant > =16 μg/mL

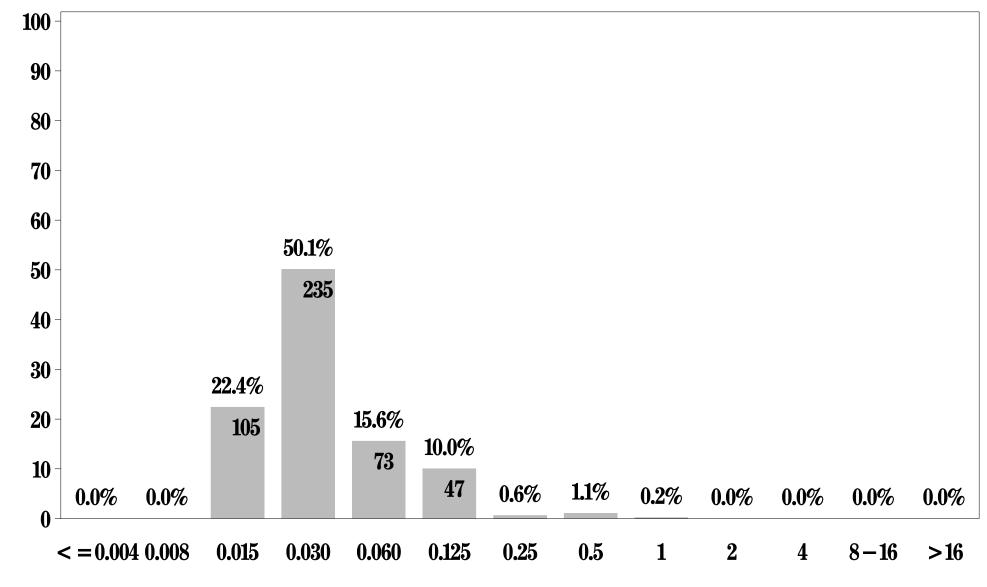
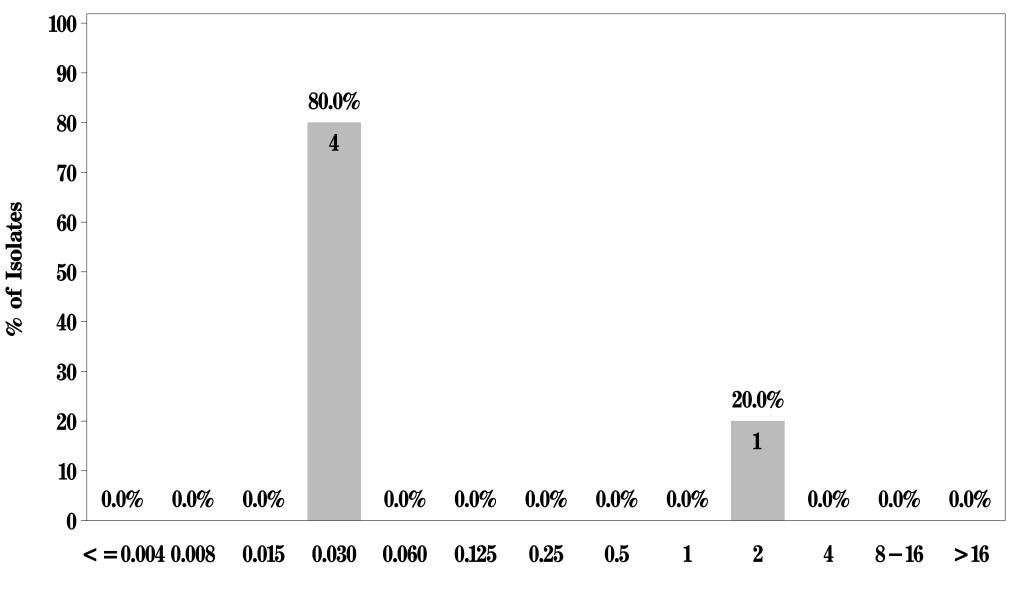

Minimum Inhibitory Concentration

Figure 11d: Minimum Inhibitory Concentration of Gentamicin for Campylobacter in Pork Chop (N=4 Isolates) Breakpoints: Susceptible < =4 μg/mL Resistant > =16 μg/mL

Minimum Inhibitory Concentration


Figure 11e: Minimum Inhibitory Concentration of Meropenem for Campylobacter in Chicken Breast (N=469 Isolates) Breakpoints: Susceptible <= 4 μg/mL Resistant >= 16 μg/mL

% of Isolates

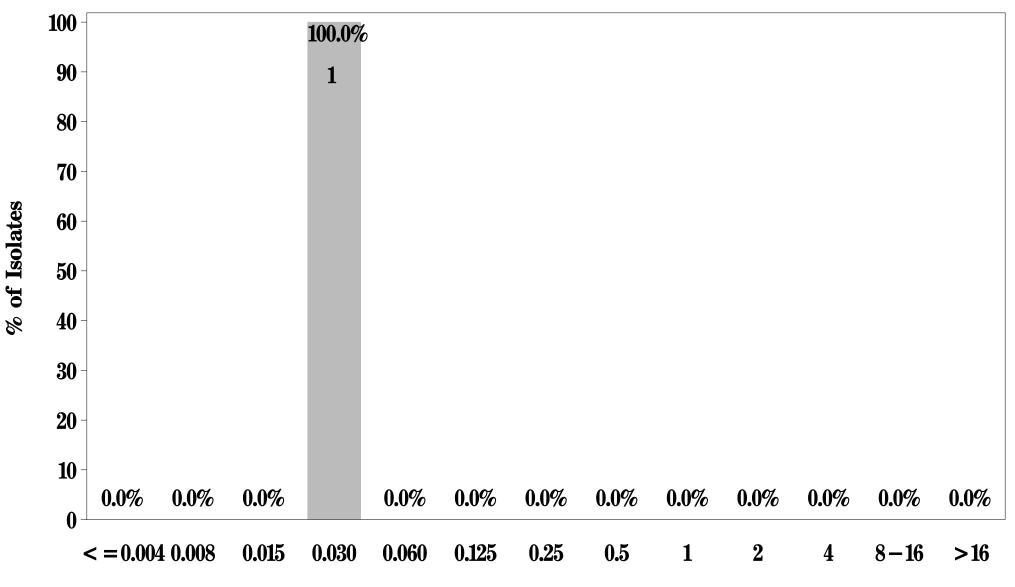

Minimum Inhibitory Concentration

Figure 11e: Minimum Inhibitory Concentration of Meropenem for Campylobacter in Ground Turkey (N=5 Isolates) Breakpoints: Susceptible <= 4 μg/mL Resistant >= 16 μg/mL

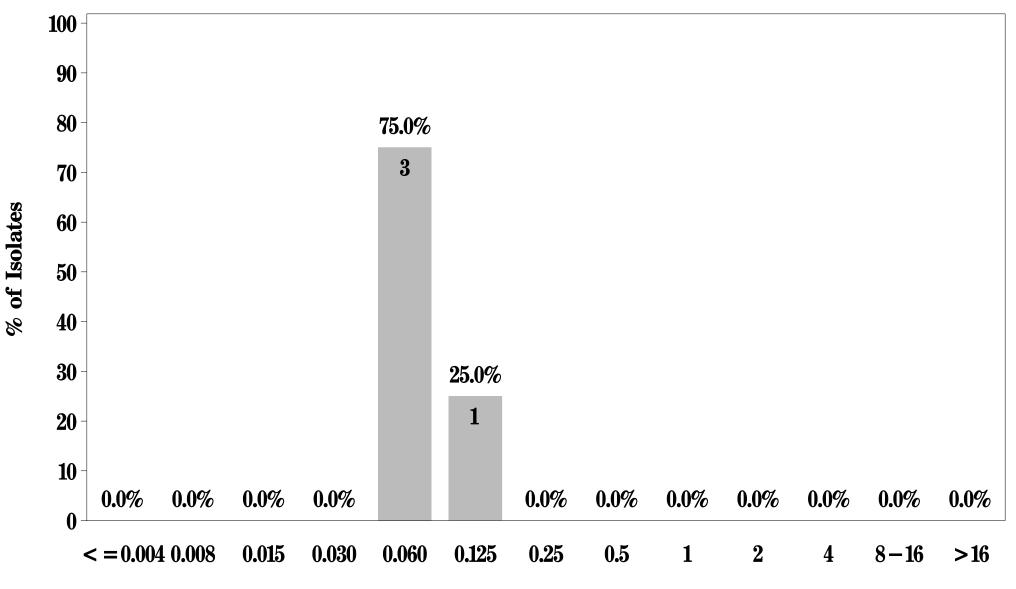

Minimum Inhibitory Concentration

Figure 11e: Minimum Inhibitory Concentration of Meropenemfor Campylobacter in Ground Beef (N=1 Isolates)Breakpoints: Susceptible <= 4 μg/mL Resistant >= 16 μg/mL

Minimum Inhibitory Concentration

Figure 11e: Minimum Inhibitory Concentration of Meropenemfor Campylobacterin Pork Chop (N=4 Isolates)Breakpoints: Susceptible <=4 μg/mL Resistant >=16 μg/mL

Minimum Inhibitory Concentration

Species	Antimicrobial Agent								
Species	DOX	CIP	ERY	GEN	MER				
<i>C. coli</i> (n=147)	44.9%	13.6%	10.9%	_†	-				
<i>C. jejuni</i> (n=330)	23.3%	14.2%	-	0.3%	-				
<i>C. lari</i> (n=2)	-	N/A	-	-	-				
Total %R (N=479)	29.9%	14.0% [‡]	3.3%	0.2%	0.0%				

 Table 22. Antimicrobial Resistance^{*} among Campylobacter by Species, 2003

^{*} Where % Resistance = (# isolates per species resistant to antimicrobial) / (total # isolates per species). † Dashes indicate 0.0% resistance to antimicrobial.

^{*} % R calculated based on N = 477; two C. *lari* isolates excluded from analysis due to intrinsic resistance to quinolones.

Meat	Species		Antimio	crobial A	gent	
Туре	Species	DOX	CIP	ERY	GEN	MER
	<i>C. coli</i> (n=142)	45.1%	13.4%	9.2%	-	-
Chicken Breast	<i>C. jejuni</i> (n=325)	22.8%	14.5%	-	0.3%	-
Dicust	<i>C. lari</i> (n=2)	_†	N/A^{\ddagger}	-	-	-
Ground	<i>C. coli</i> (n=1)	-	100.0%	-	-	-
Turkey	<i>C. jejuni</i> (n=4)	75.0%	-	-	-	-
Ground	<i>C. coli</i> (n=0)	§				
Beef	<i>C. jejuni</i> (n=1)	-	-	-	-	-
Pork	<i>C. coli</i> (n=4)	50.0%	-	75.0%	_	-
Chop	<i>C. jejuni</i> (n=0)					

 Table 23. Antimicrobial Resistance^{*} among Campylobacter Species by Meat Type, 2003

Where % Resistance = (# isolates per species resistant to antimicrobial within meat type) / (total # isolates per species within meat type).

[†] Dashes indicate 0.0% resistance to antimicrobial.

[‡] No % resistance was calculated for *C. lari* because they are intrinsically resistant to quinolones.

[§] Grey areas indicate species not isolated from that meat type.

G */			Antim	icrobial A	gent	
Site	Meat Type	DOX	CIP	ERY	GEN	MER
	CB (n=64)	28.1%	10.9%	_†	1.6%	-
	GT (n=0)	‡				
CA	GB (n=0)					
	PC (n=2)	50.0%	-	100.0%	-	-
	Total (n=66)	28.8%	10.6%	3.0%	1.5%	0.0%
	CB (n=50)	26.0%	12.0%	-	-	-
	GT (n=0)					
СТ	GB (n=0)					
	PC (n=0)					
	Total (n=50)	26.0%	12.0%	0.0%	0.0%	0.0%
	CB (n=76)	23.7%	11.8%	3.9%	-	-
	GT (n=2)	50.0%	50.0%	-	-	-
GA	GB (n=0)					
	PC (n=0)					
	Total (n=78)	24.4%	12.8%	3.8%	0.0%	0.0%
	CB (n=38)	21.1%	21.1%	-	-	-
	GT (n=0)					
MD	GB (n=1)	-	-	-	-	-
	PC (n=0)					
	Total (n=39)	20.5%	20.5%	0.0%	0.0%	0.0%
	CB (n=62)	29.0%	3.2%	-	-	-
	GT (n=3)	66.7%	-	-	-	-
MN	GB (n=0)					
	PC (n=1)	100.0%	-	100.0%	-	-
	Total (n=66)	31.8%	3.0%	1.5%	0.0%	0.0%
	CB (n=75)	52.0%	28.0%	1.3%	-	-
	GT (n=0)					
NY	GB (n=0)					
	PC (n=0)					
	Total (n=75)	52.0%	28.0%	1.3%	0.0%	0.0%
	CB (n=45)	4.4%	2.3% [§]	-	-	-
	GT (n=0)					
OR	GB (n=0)					
	PC (n=1)	-	-	-	-	-
	Total (n=46)	4.3%	2.2%	0.0%	0.0%	0.0%
	CB (n=59)	37.3%	20.3%	15.3%	-	-
	GT (n=0)					
TN	GB (n=0)					
	PC (n=0)					
	Total (n=59)	37.3%	20.3%	15.3%	0.0%	0.0%
	Total %R (N=479)	29.9%	14.0%	3.3%	0.2%	0.0%

Table 24. Antimicrobial Resistance^{*} among *Campylobacter* by Site, Meat Type, and Antimicrobial Agent, 2003

^{*} Where % Resistance = (# isolates resistant to antimicrobial per meat type per site) / (total # isolates per meat type per site). † Dashes indicate 0.0% resistance to antimicrobial.

[‡] Grey areas indicate no isolates were recovered from that meat type for that site.

[§] Two *C. lari* isolates from chicken breast in Oregon were excluded from analysis due to intrinsic resistance to quinolones. Ciprofloxacin % R calculated based on n = 43.

Meat Type	Antimicrobial Agents					
wieu i ype	0	1	2	3		
СВ	283	159	22	5		
GT	1	4	0	0		
GB	1	0	0	0		
РС	1	1	2	0		
Total	286	164	24	5		

 Table 25. Number of Campylobacter (N=479) Resistant to Multiple Antimicrobial Agents, 2003

 Table 26. Overall Enterococcus Species Identified, 2003

	Species	n
1.	E. faecalis	1014
2.	E. faecium	575
3.	E. hirae	129
4.	E. gallinarum	12
5.	E. durans	8
6.	E. avium	3
7.	E. casseliflavus]
	Total	1742

Crucia	Chicken Breast		Ground Turkey		Ground Beef		Pork Chop	
Species	n	%	n	%	n	%	n	%
<i>E. faecalis</i> (n=1014)	188	18.5%	289	28.5%	224	22.1%	313	30.9%
<i>E. faecium</i> (n=575)	248	43.1%	118	20.5%	112	19.5%	97	16.9%
<i>E. hirae</i> (n=129)	28	21.7%	3	2.3%	84	65.1%	14	10.9%
<i>E. gallinarium</i> (n=12)	0	_†	8	66.7%	4	33.3%	0	-
<i>E. durans</i> (n=8)	1	12.5%	0	-	7	87.5%	0	-
<i>E. avium</i> (n=3)	1	33.3%	0	-	0	-	2	66.7%
<i>E. casseliflavus</i> (n=1)	0	-	0	-	1	100.0%	0	-
Total (N=1742)	466	26.8%	418	24.0%	432	24.8%	426	24.5%

 Table 27. Enterococcus Species by Meat Type, 2003

 ^{*} Where % = (# isolates per species per meat) / (total # isolates per species).
 * Dashes indicate no isolates of that species were isolated from that meat type.

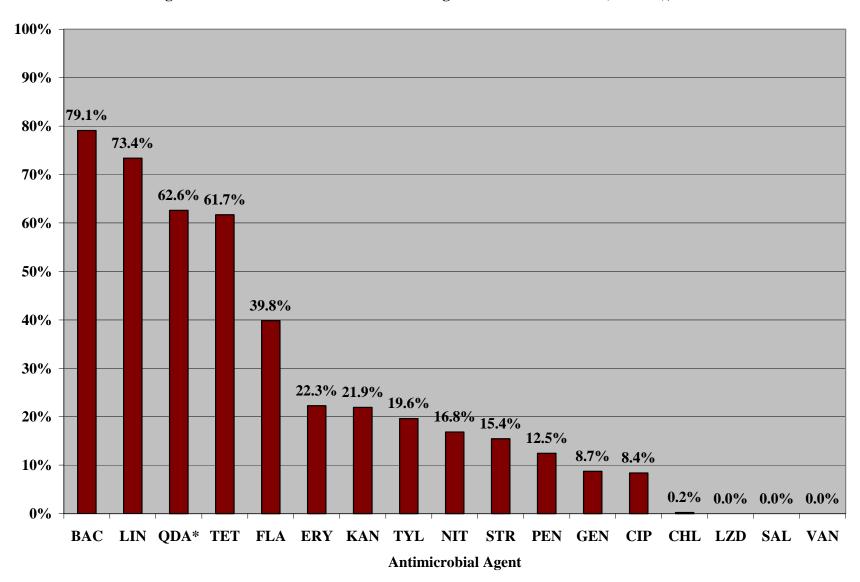
Site	Species	Chicken Breast		Ground Turkey		Ground Beef		Pork Chop	
		п	%*	п	%	п	%	п	%
GA	<i>E. faecalis</i> (n=421)	99	23.5%	118	28.0%	95	22.6%	109	25.9%
	E. faecium (n=32)	16	50.0%	1	3.1%	10	31.3%	5	15.6%
	E. hirae (n=18)	4	22.2%		_†	12	66.7%	2	11.1%
	<i>E. gallinarum</i> (n=2)		-	1	50.0%	1	50.0%		-
	<i>E. durans</i> (n=1)		-		-	1	100.0%		-
	Total (n=474)	119	25.1%	120	25.3%	119	25.1%	116	24.5%
	<i>E. faecalis</i> (n=110)	9	8.2%	33	30.0%	31	28.2%	37	33.6%
	E. faecium (n=233)	93	39.9%	64	27.5%	35	15.0%	41	17.6%
MD	E. hirae (n=43)	9	20.9%	3	7.0%	21	48.8%	10	23.3%
	<i>E. gallinarum</i> (n=5)		-	3	60.0%	2	40.0%		-
	<i>E. durans</i> (n=4)	1	25.0%		-	3	75.0%		-
	<i>E. avium</i> (n=3)	1	33.3%		-		-	2	66.7%
	Total (n=398)	113	28.4%	103	25.9%	92	23.1%	90	22.6%
	E. faecalis (n=248)	43	17.3%	72	29.0%	52	21.0%	81	32.7%
	E. faecium (n=149)	74	49.7%	32	21.5%	22	14.8%	21	14.1%
OR	<i>E. hirae</i> (n=38)	2	5.3%		-	35	92.1%	1	2.6%
UK	<i>E. gallinarum</i> (n=5)		-	4	80.0%	1	20.0%		-
	<i>E. durans</i> (n=1)		-		-	1	100.0%		-
	<i>E. casseliflavus</i> (n=1)		-		-	1	100.0%		-
	Total (n=442)	119	26.9%	108	24.4%	112	25.3%	103	23.3%
TN	<i>E. faecalis</i> (n=235)	37	15.7%	66	28.1%	46	19.6%	86	36.6%
	<i>E. faecium</i> (n=161)	65	40.4%	21	13.0%	45	28.0%	30	18.6%
	<i>E. hirae</i> (n=30)	13	43.3%		-	16	53.3%	1	3.3%
	<i>E. durans</i> (n=2)		-		-	2	100.0%		-
	Total (n=428)	115	26.9%	87	20.3%	109	25.5%	117	27.3%

Table 28. Enterococcus Species by Site and Meat Type, 2003

^{*} Where % = (# isolates per species per meat type per site) / (total # isolates per species per site).

[†] Dashes indicate no isolates for that species were isolated from that meat type.

Month	n	% *
January	154	8.8%
February	146	8.4%
March	139	8.0%
April	145	8.3%
May	144	8.3%
June	147	8.4%
July	139	8.0%
August	154	8.8%
September	129	7.4%
October	155	8.9%
November	148	8.5%
December	142	8.2%
Total (N)	1742	100.0%


 Table 29. Enterococcus Isolates by Month for All Sites, 2003

^{*} Where % = (n / N).

Antimicrobial Agent	n	% R *
Bacitracin	1378	79.1%
Lincomycin	1278	73.4%
Tetracycline	1075	61.7%
Flavomycin	694	39.8%
Quinupristin-Dalfopristin [†]	456	62.6%
Erythromycin	388	22.3%
Kanamycin	382	21.9%
Tylosin	342	19.6%
Penicillin	217	12.5%
Streptomycin	269	15.4%
Nitrofurantoin	293	16.8%
Ciprofloxacin	146	8.4%
Gentamicin	152	8.7%
Chloramphenicol	4	0.2%
Salinomycin	0	0.0%
Linezolid	0	0.0%
Vancomycin	0	0.0%

Table 30. Antimicrobial Resistance (%R) among Enterococcus Isolates (N=1742), 2003

^{*} Where % R = (n / N). [†] Presented for all species except *E. faecalis* (n = 1014).

Figure 12. Antimicrobial Resistance among Enterococcus Isolates (N=1742), 2003

* Presented for all species except *E. faecalis* in QDA (N=1742-1014=728 non-*faecalis*)

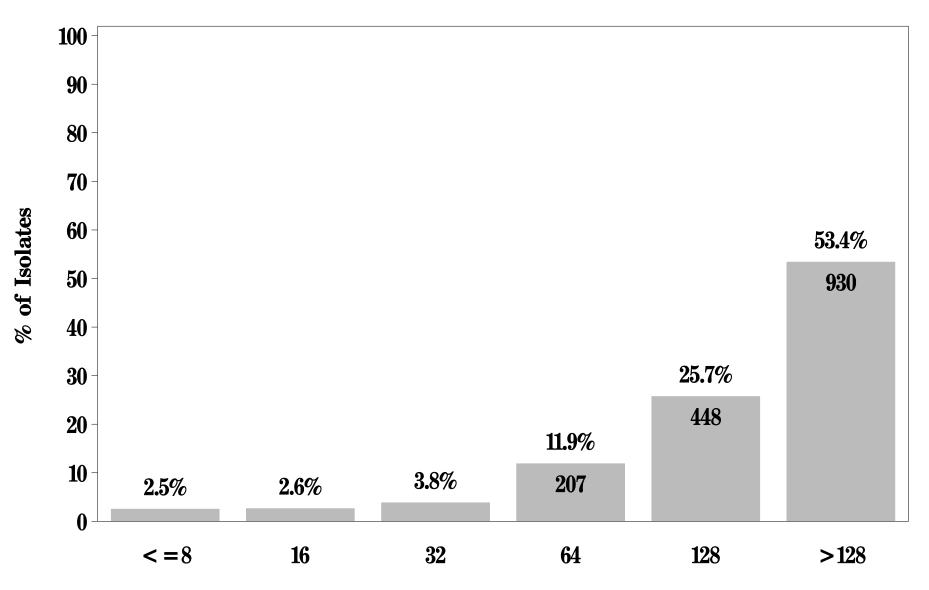
Enterococcus from All Meats (N=1742)								Distrib	ution (%) of	MICs	(in µg/	ml)							
Antimicrobial Agent	% R †	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>2048
Bacitracin*	79.1%										2.5	2.6	3.8	11.9	25.7	53.4				
Chloramphenicol	0.2%								0.2	6.4	92.1	1.1		0.2						
Ciprofloxacin	8.4%				0.1	2.5	12.6	55.2	21.2	6.9	1.4									
Erythromycin	22.3%						33.9	27.7	8.4	7.7	1.5	20.8								
Tylosin*	19.6%					0.1	0.2	2.2	51.3	23.4	3.1	0.2		19.6						
Gentamicin	8.7%											-			91.1	0.2	0.4	0.9	7.5	
Kanamycin*	21.9%														66.7	11.4	7.0	1.5	13.4	
Streptomycin*	15.4%																84.6	2.6	2.8	10.1
Lincomycin*	73.4%							6.8	0.4	0.2	5.6	13.6	40.9	32.5						
Linezolid	0.0%						0.1	3.1	96.2	0.6										
Nitrofurantoin	16.8%									0.1	34.2	24.2	5.3	19.5	10.6	6.2				
Flavomycin*	39.8%							23.4	31.5	4.1	0.6	0.6	0.2	39.7						
Salinomycin*	0.0%							57.7	18.7	13.7	9.9	0.1								
Penicillin	12.5%						5.3	2.3	8.9	65.7	5.3	4.0	8.5							
Tetracycline	61.7%									37.3	1.0	1.0	4.0	56.7						
Quinupristin/Dalfopristin↑	62.6%							14.6	22.8	38.7	12.8	9.5	1.6							
Vancomycin	0.0%						17.3	54.5	24.2	3.2	0.7									

Figure 13. MIC Distribution among all Antimicrobial Agents

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

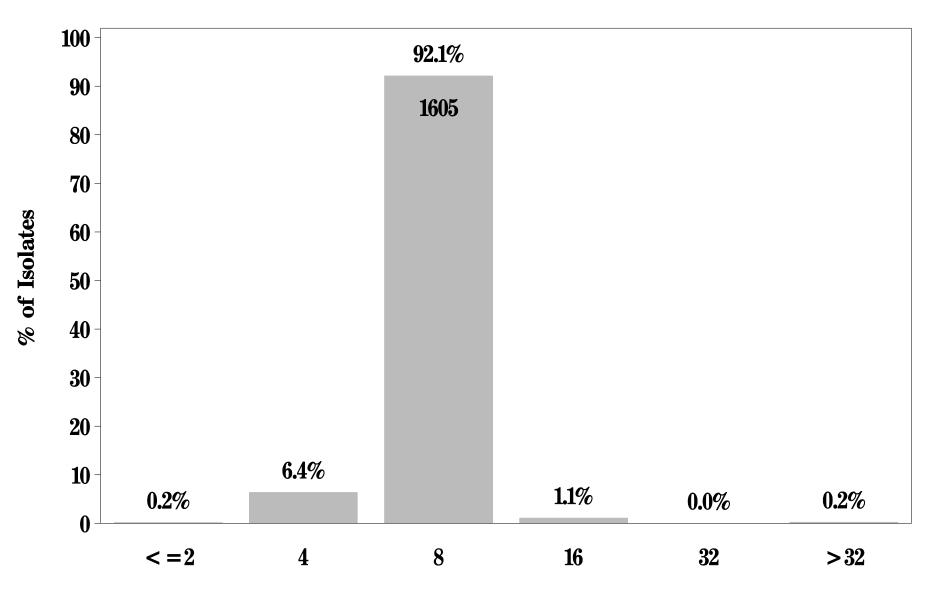

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

↑ Presented for all species except E. faecalis in QDA (n=1742-1014=728 non E. faecalis)

Figure 13a: Minimum Inhibitory Concentration of Bacitracin

for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

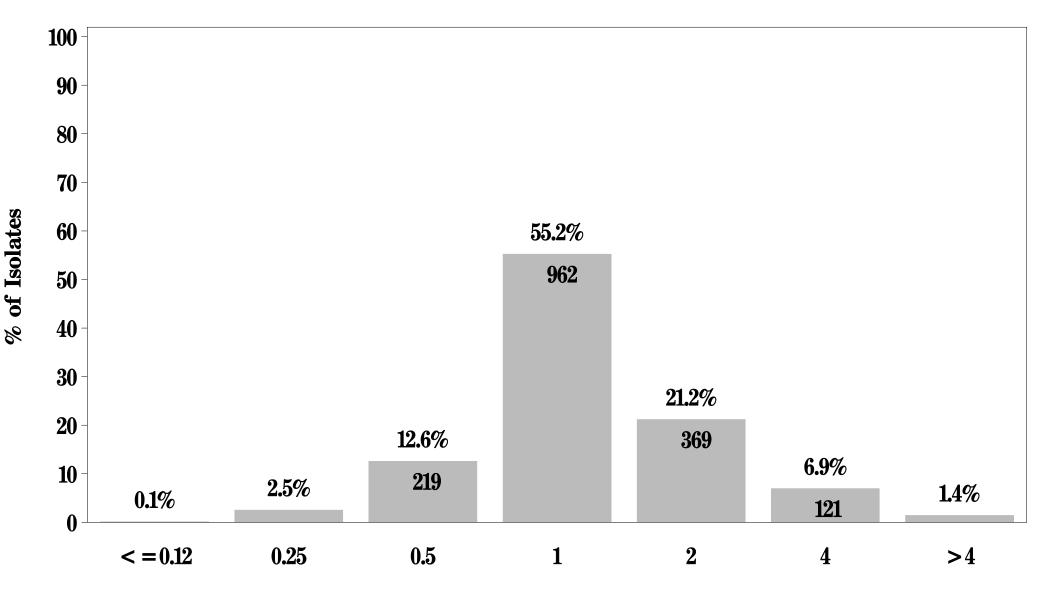


Minimum Inhibitory Concentration

Figure 13b: Minimum Inhibitory Concentration of Chloramphenicol

for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

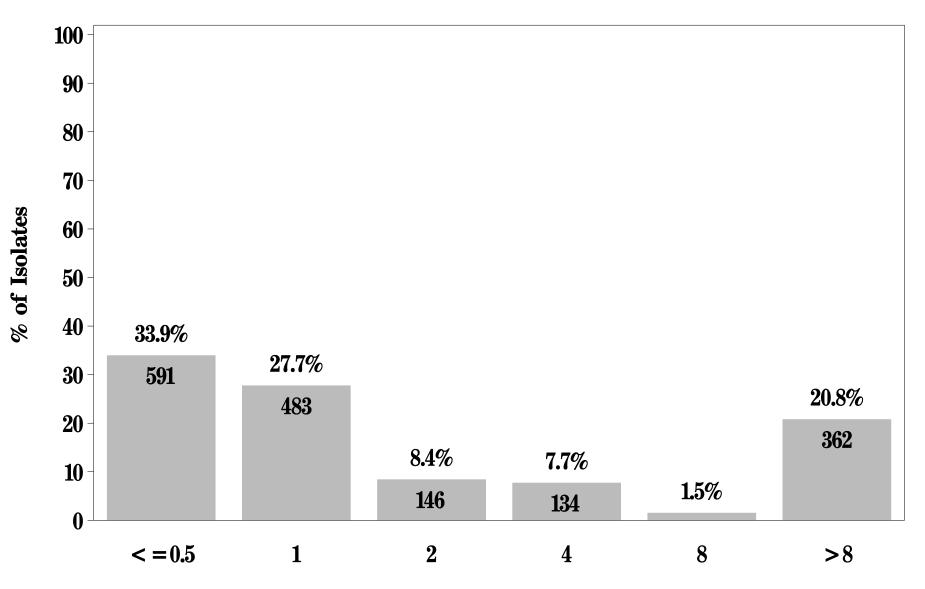


Minimum Inhibitory Concentration

Figure 13c: Minimum Inhibitory Concentration of Ciprofloxacin

for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

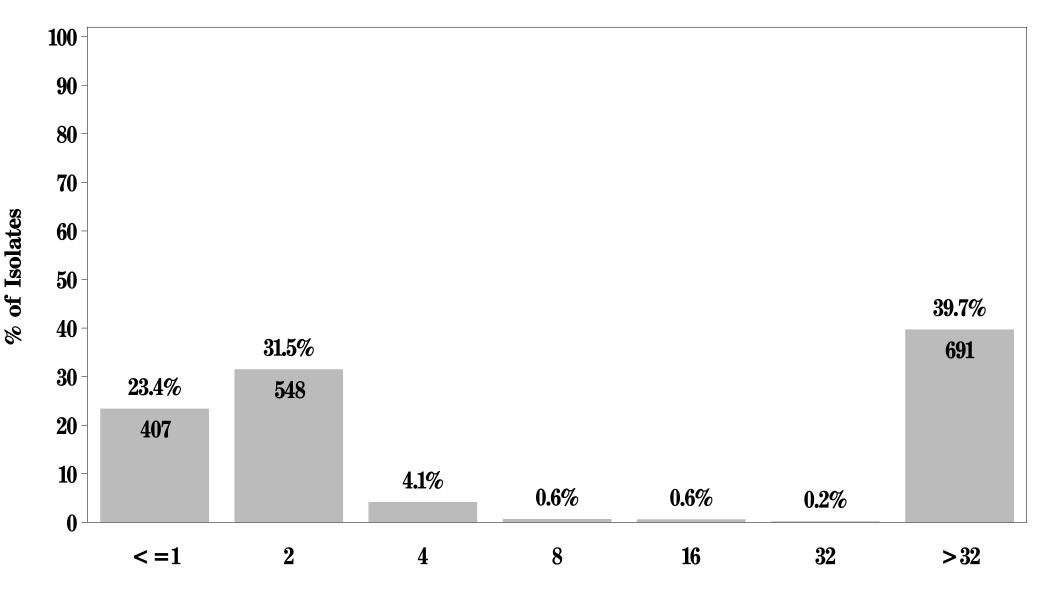


Minimum Inhibitory Concentration

Figure 13d: Minimum Inhibitory Concentration of Erythromycin

for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible < =.5 μ g/mL Resistant > =8 μ g/mL

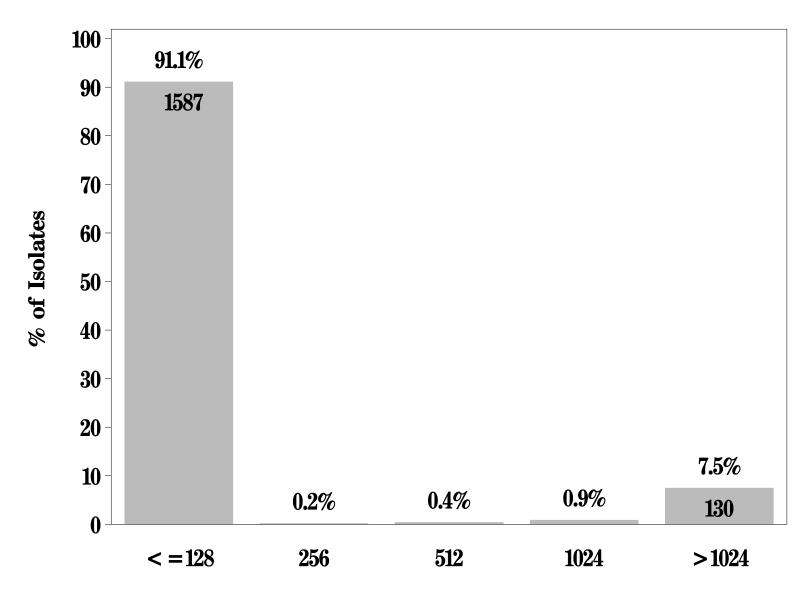


Minimum Inhibitory Concentration

Figure 13e: Minimum Inhibitory Concentration of Flavomycin

for *Enterococcus* (N=1742 Isolates)

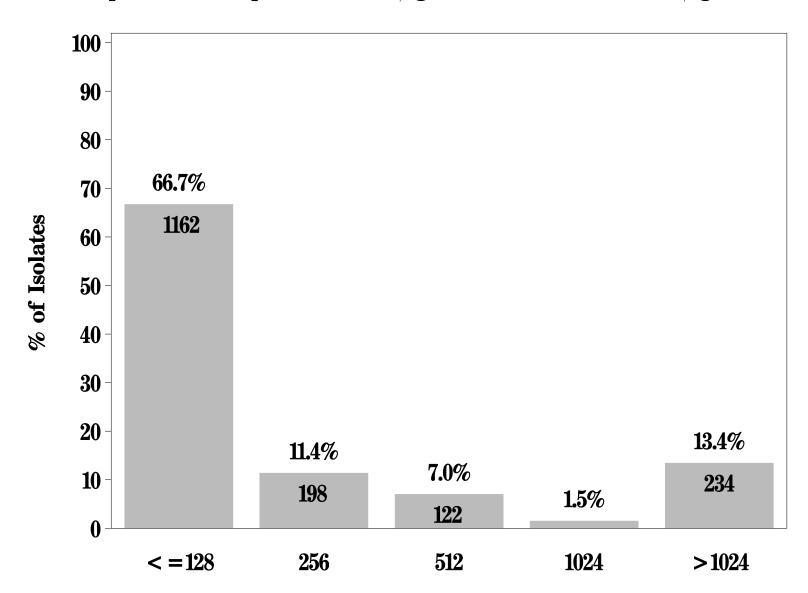
Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$



Minimum Inhibitory Concentration

Figure 13f: Minimum Inhibitory Concentration of Gentamicin

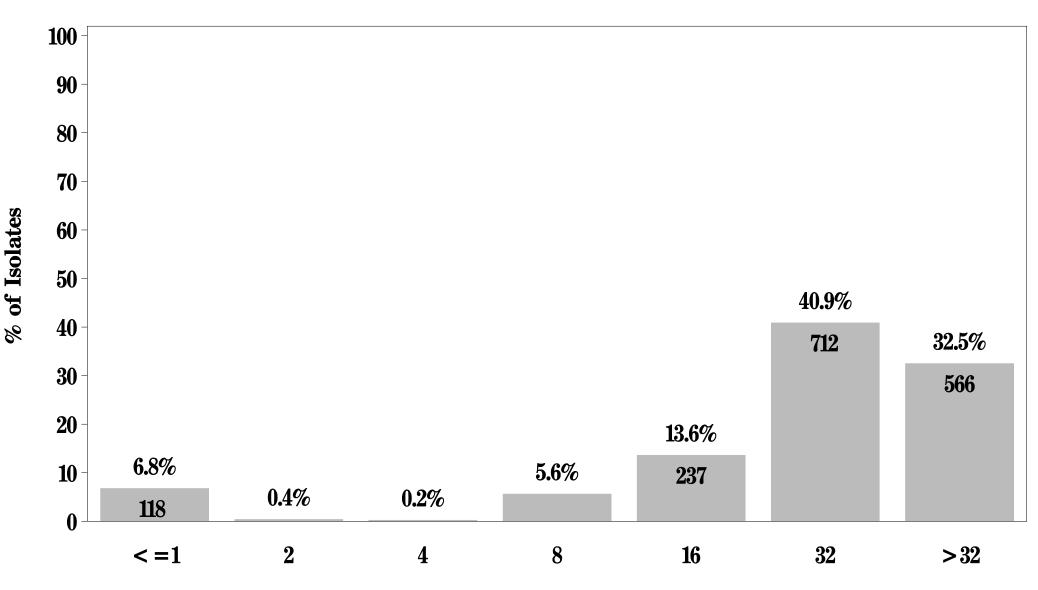
for *Enterococcus* (N=1742 Isolates)


Breakpoints: Susceptible < 500 μ g/mL Resistant > = 500 μ g/mL

Minimum Inhibitory Concentration

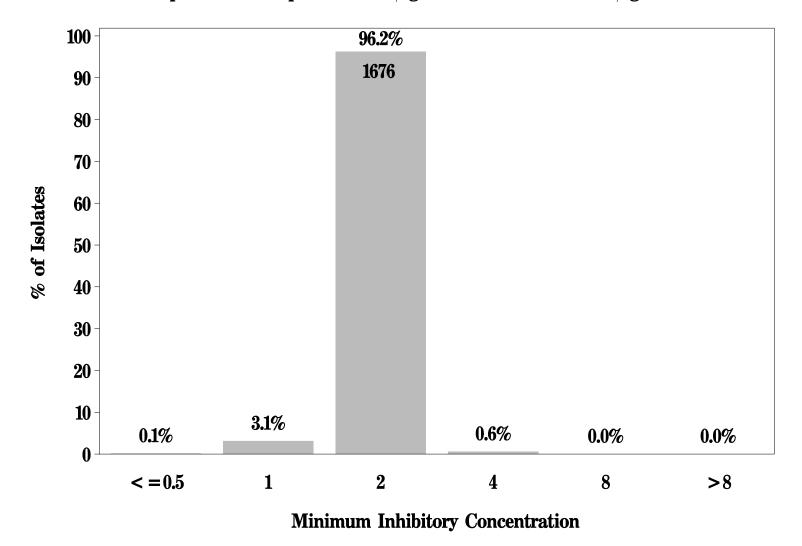
Figure 13g: Minimum Inhibitory Concentration of Kanamycin

for *Enterococcus* (N=1742 Isolates) Breakpoints: Susceptible < = 128 μ g/mL Resistant > = 512 μ g/mL



Minimum Inhibitory Concentration

Figure 13h: Minimum Inhibitory Concentration of Lincomycin


for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

Minimum Inhibitory Concentration

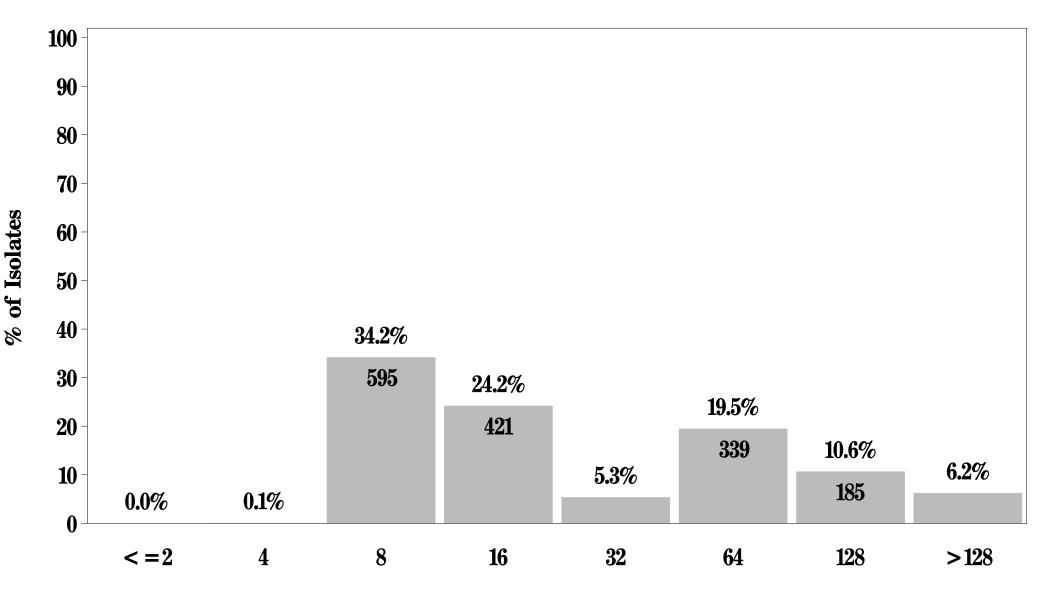
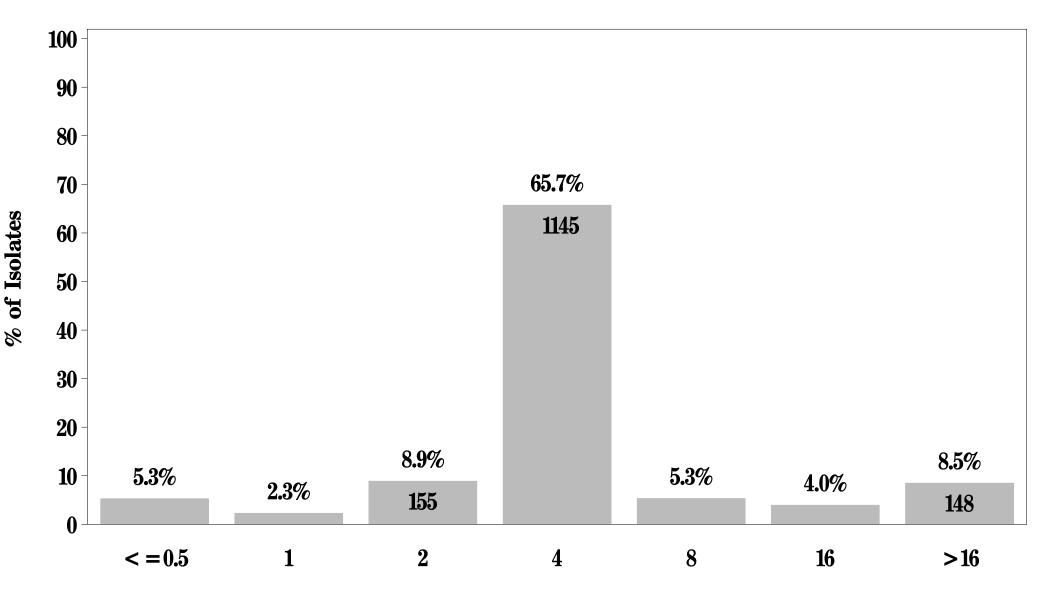

Figure 13i: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* (N=1742 Isolates) Breakpoints: Susceptible <= 2 μ g/mL Resistant >= 8 μ g/mL

Figure 13j: Minimum Inhibitory Concentration of Nitrofurantoin

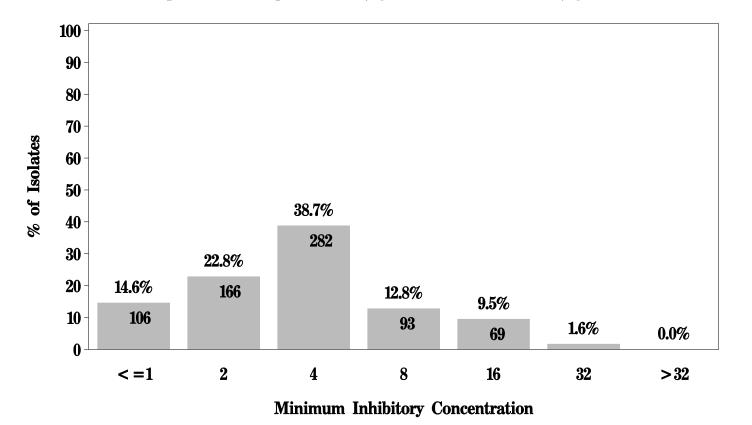
for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible $< = 32 \ \mu g/mL$ Resistant $> = 128 \ \mu g/mL$



Minimum Inhibitory Concentration

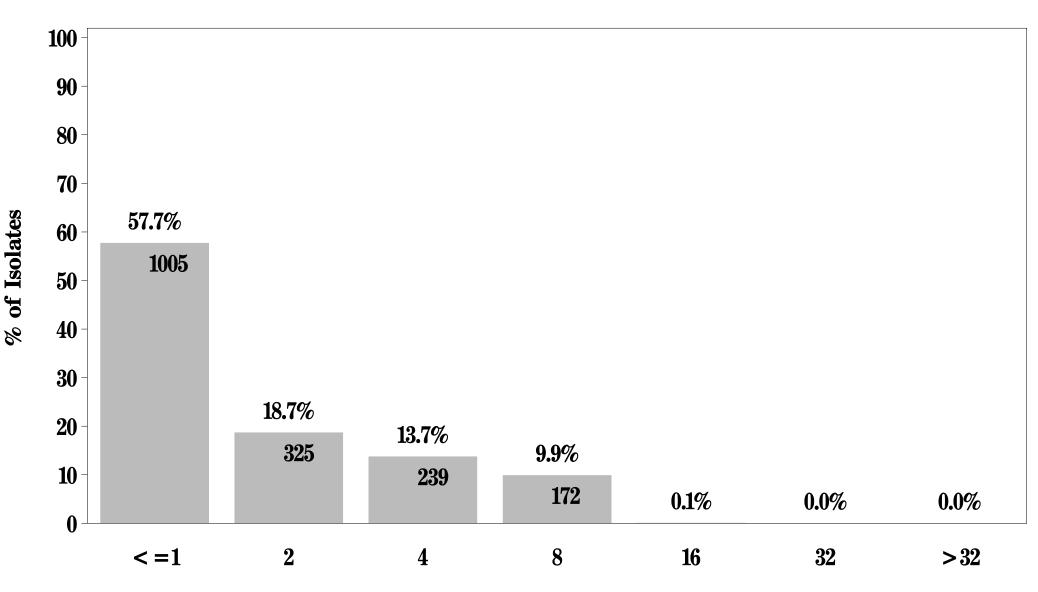
Figure 13k: Minimum Inhibitory Concentration of Penicillin


for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Figure 131: Minimum Inhibitory Concentration of Quinupristin – dalfopristin*
for *Enterococcus* (N=728 Isolates)Breakpoints: Susceptible < =1 μ g/mLResistant > =4 μ g/mL

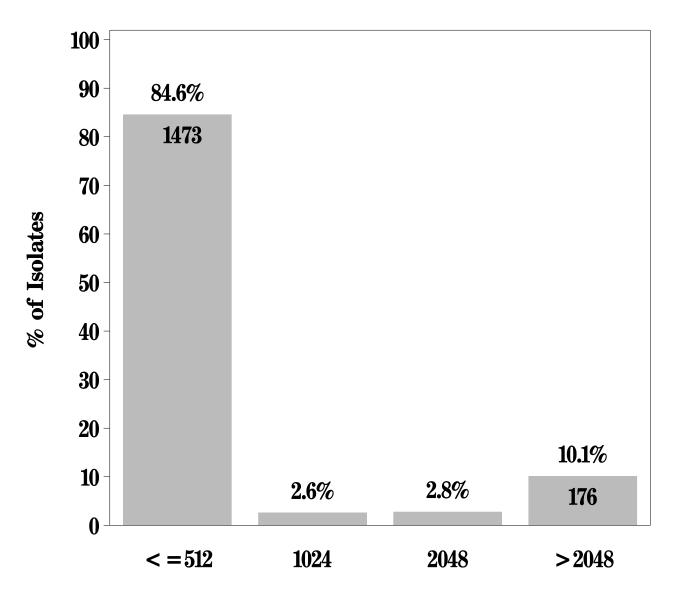


*Presented for all species except *E.faecalis* (N=1742-1014=728)

Figure 13m: Minimum Inhibitory Concentration of Salinomycin

for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL



Minimum Inhibitory Concentration

Figure 13n: Minimum Inhibitory Concentration of Streptomycin

for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible < 1000 μ g/mL Resistant > = 1000 μ g/mL

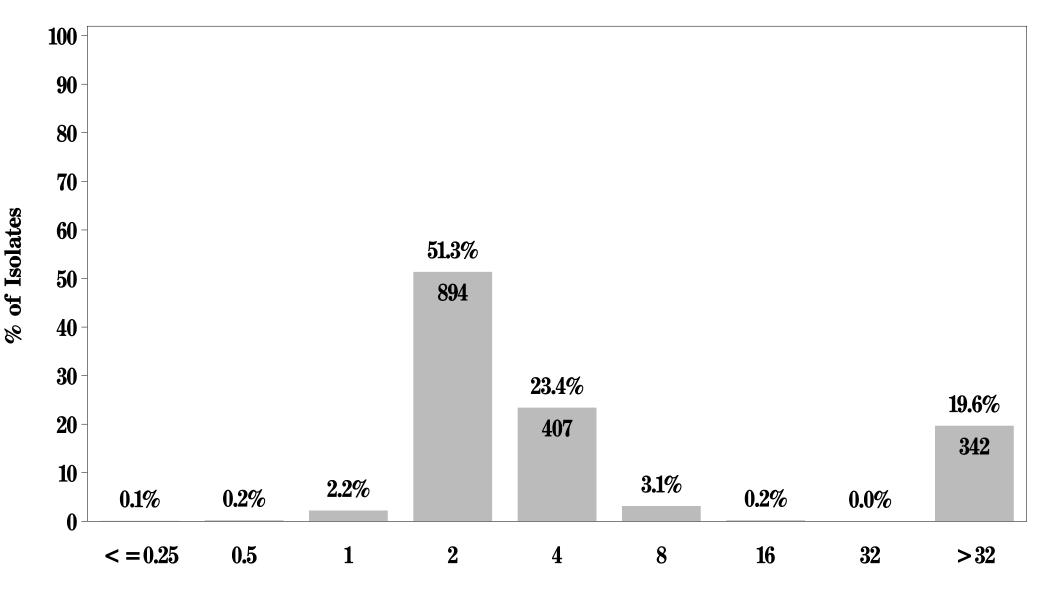


Minimum Inhibitory Concentration

Figure 130: Minimum Inhibitory Concentration of Tetracycline

for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible < =4 μ g/mL Resistant > =16 μ g/mL

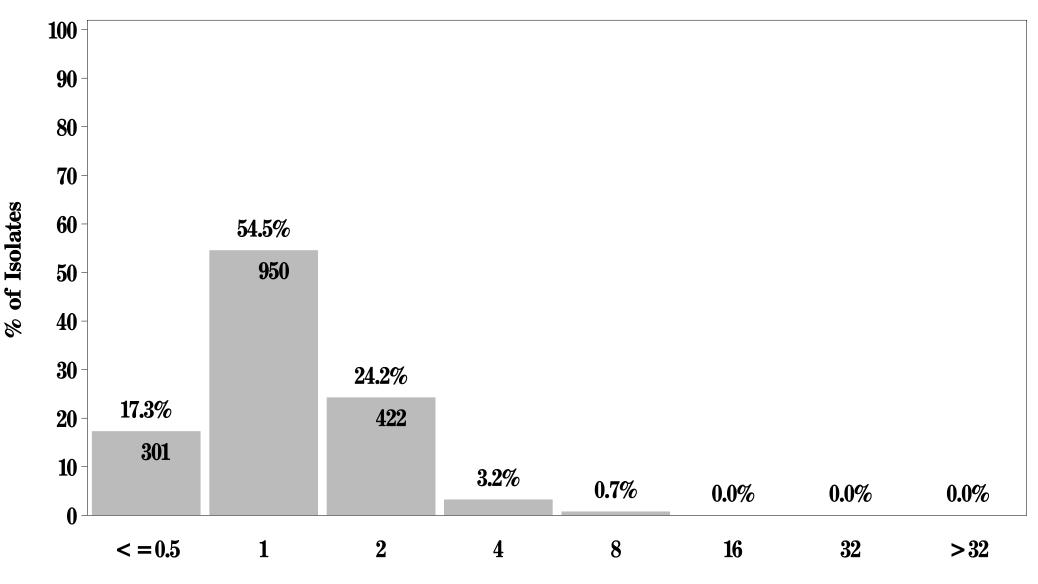


Minimum Inhibitory Concentration

Figure 13p: Minimum Inhibitory Concentration of Tylosin

for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL



Minimum Inhibitory Concentration

Figure 13q: Minimum Inhibitory Concentration of Vancomycin

for *Enterococcus* (N=1742 Isolates)

Breakpoints: Susceptible < =4 μ g/mL Resistant > =32 μ g/mL

Minimum Inhibitory Concentration

Antimicrobial Agent	Chick Brea (N=40	st	Grou Turk (N=4	ey	Groun Beef (N=43	<u>,</u>	Ch	ork 10p 426)
	п	% [*]	n	%	n	%	n	%
Bacitracin	438	94.0%	378	90.4%	284	65.7%	278	65.3%
Lincomycin	364	78.1%	363	86.8%	266	61.6%	285	66.9%
Quinupristin-Dalfopristin ^{†‡}	172	61.9%	103	79.8%	113	54.3%	68	60.2%
Tetracycline	276	59.2%	365	87.3%	120	27.8%	314	73.7%
Flavomycin	268	57.5%	125	29.9%	201	46.5%	100	23.5%
Erythromycin	145	31.1%	180	43.1%	34	7.9%	29	6.8%
Kanamycin	147	31.5%	165	39.5%	42	9.7%	28	6.6%
Tylosin	131	28.1%	161	38.5%	25	5.8%	25	5.9%
Nitrofurantoin	166	35.6%	66	15.8%	43	10.0%	18	4.2%
Streptomycin	99	21.2%	126	30.1%	18	4.2%	26	6.1%
Penicillin	130	27.9%	77	18.4%	9	2.1%	1	0.2%
Gentamicin	52	11.2%	95	22.7%	4	0.9%	1	0.2%
Ciprofloxacin	54	11.6%	47	11.2%	38	8.8%	7	1.6%
Chloramphenicol	0	_ [§]	0	-	0	-	4	0.9%
Linezolid	0	-	0	-	0	-	0	-
Salinomycin	0	-	0	-	0	-	0	-
Vancomycin	0	-	0	-	0	-	0	-

Table 31. Antimicrobial Resistance* among Enterococcus by Meat Type for all Sites, 2003

^{*} Where % Resistance = (# isolates per meat type resistant to antimicrobial) / (total # isolates per meat type). * Data presented for all species except *E. faecalis*, which is considered intrinsically resistant to Quinupristin-Dalfopristin. * Number of *E. faecalis* in CB = 188, GT = 289, GB = 224, PC = 313.

[§] Dashes indicate 0.0% resistance to antimicrobial.

nterococcus from Chicken Breast (N=466)								Distrib	ution ((%) of [MICs (in µg/	ml)							
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>2048
Bacitracin*	94.0%										0.4	0.2	0.9	4.5	18.2	75.8				
Chloramphenicol	0.0%								0.2	5.6	93.3	0.9								
Ciprofloxacin	11.6%				0.2	3.2	7.7	50.4	26.8	10.5	1.1									
Erythromycin	31.1%						36.5	16.5	9.0	6.9	1.3	29.8								
Tylosin*	28.1%							1.1	35.8	30.9	3.6	0.4		28.1						
Gentamicin	11.2%														88.4	0.4	1.1	2.4	7.7	
Kanamycin*	31.5%														45.5	23.0	13.3	2.8	15.5	
Streptomycin*	21.2%																78.8	5.4	5.2	10.7
Lincomycin*	78.1%							6.9		0.4	2.8	11.8	18.2	59.9						
Linezolid	0.0%							3.0	96.1	0.9										
Nitrofurantoin	35.6%										22.5	15.5	5.6	20.8	15.0	20.6				
Flavomycin*	57.5%							16.7	22.3	1.7	0.6	1.1		57.5						
Salinomycin*	0.0%							25.1	12.7	32.8	29.2	0.2								
Penicillin	27.9%						1.3	0.4	7.1	54.5	8.8	10.1	17.8							
Tetracycline	59.2%									38.8	1.9	1.9	6.9	50.4						
Quinupristin/Dalfopristin↑	61.9%							11.9	26.3	33.1	15.5	10.8	2.5							
Vancomycin	0.0%						19.1	60.9	17.8	2.1										

Figure 14a. MIC Distribution among Enterococcus from Chicken Breast

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

↑ Presented for all species except E. faecalis in QDA (n=466-188= 278 non E. faecalis)

Enterococcus from Ground Turkey (N=418)								Distrib	ution (%) of 1	MICs (in µg/ı	ml)							
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>2048
Bacitracin*	90.4%										0.7		1.4	7.4	19.1	71.3				
Chloramphenicol	0.0%								0.2	5.5	92.1	2.2								
Ciprofloxacin	11.2%					1.0	9.1	56.0	22.7	8.6	2.6									
Erythromycin	43.1%						28.0	22.7	3.8	2.4	2.2	40.9								
Tylosin*	38.5%							0.5	41.1	18.7	1.2			38.5			_			
Gentamicin	22.7%														77.0	0.2	0.2	0.7	21.8	
Kanamycin*	39.5%														51.4	9.1	6.2	1.0	32.3	
Streptomycin*	30.1%																69.9	3.1	3.6	23.4
Lincomycin*	86.8%							3.3	0.5		0.7	8.6	34.9	51.9						
Linezolid	0.0%							6.5	93.1	0.5										
Nitrofurantoin	15.8%										44.3	23.9	1.9	14.1	13.9	1.9				
Flavomycin*	29.9%							28.2	35.4	4.8	1.0	0.7	0.5	29.4						
Salinomycin*	0.0%							68.2	9.6	16.7	5.5									
Penicillin	18.4%						1.0	0.5	9.1	67.7	3.3	4.1	14.4							
Tetracycline	87.3%									12.2	0.5	1.0	2.4	84.0						
Quinupristin/Dalfopristin	79.8%							7.0	13.2	28.7	20.9	27.1	3.1							
Vancomycin	0.0%						6.7	55.7	30.1	5.5	1.9									

Figure 14b. MIC Distribution among Enterococcus from Ground Turkey

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

↑ Presented for all species except E. faecalis in QDA (n=418-289= 129 non E. faecalis)

Enterococcus from Ground Beef (N=432)							I	Distrib	ution (%) of	MICs	(in µg	/ml)							
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>2048
Bacitracin*	65.7%										7.2	9.5	5.1	12.5	32.9	32.9				-
Chloramphenicol	0.0%									10.0	89.4	0.7								
Ciprofloxacin	8.8%					3.2	22.0	45.4	20.6	6.7	2.1									
Erythromycin	79.0%						40.0	32.2	10.9	9.0	1.6	6.3								
Tylosin*	5.8%							4.6	63.0	20.6	5.8	0.2		5.8						
Gentamicin	0.9%														99.1			0.2	0.7	
Kanamycin*	9.7%														83.6	6.7	5.3	1.6	2.8	
Streptomycin*	4.2%																95.8	1.4	1.2	1.6
Lincomycin*	61.6%							12.7	1.2	0.2	5.6	18.8	54.4	7.2						
Linezolid	0.0%						0.2	0.9	97.9	0.9										
Nitrofurantoin	10.0%										30.6	22.9	10.6	25.9	9.3	0.7				
Flavomycin*	46.5%							21.8	26.9	4.4	0.2	0.2	0.2	46.3						
Salinomycin*	0.0%							61.1	33.8	2.8	2.3									
Penicillin	2.1%						6.5	6.5	13.2	65.3	6.5	1.2	0.9							
Tetracycline	27.8%									71.5	0.7	0.2	2.8	24.8						
Quinupristin/Dalfopristin	54.3%							25.0	20.7	47.6	5.3	1.4								
Vancomycin	0.0%						26.4	49.3	21.3	1.9	1.2									

Figure 14c. MIC Distribution among *Enterococcus* from Ground Beef

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

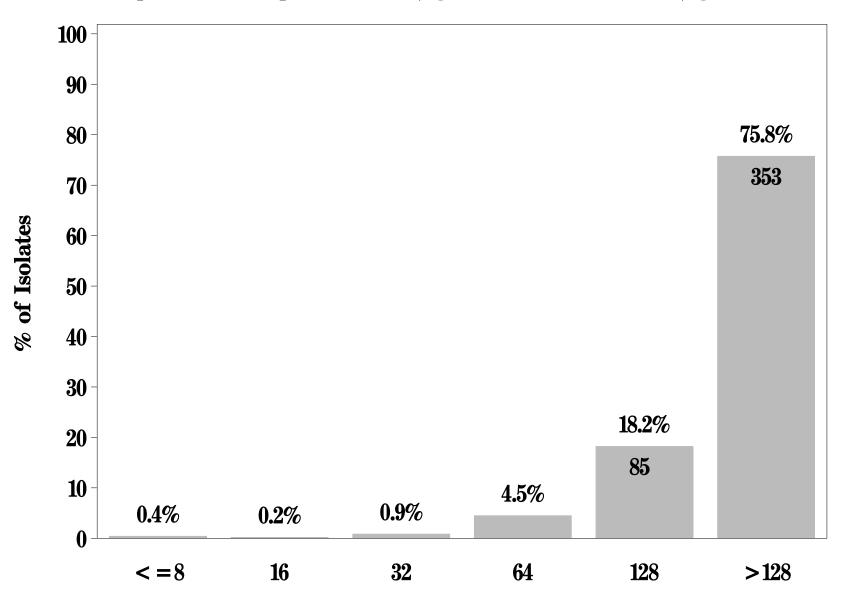
↑ Presented for all species except *E. faecalis* in QDA (n=432-224= 208 non *E. faecalis*)

nterococcus from Pork Chops (N=426)								Distrib	ution (%) of	MICs	(in µg/	/ml)							
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>2048
Bacitracin*	73.7%										1.9	0.9	8.2	23.7	33.1	32.2				-
Chloramphenicol	0.9%								0.2	4.5	93.7	0.7		0.9						
Ciprofloxacin	1.6%				0.2	2.6	11.7	69.7	14.1	1.6										
Erythromycin	6.8%						30.8	40.4	9.6	12.4	0.9	5.9								
Tylosin*	5.9%					0.2	0.7	2.6	66.4	22.5	1.6			5.9			_			
Gentamicin	0.2%														99.8		0.2			
Kanamycin*	6.6%														87.8	5.6	2.6	0.5	3.5	
Streptomycin*	6.1%																93.9	0.2	0.9	4.9
Lincomycin*	66.9%							4.0		0.2	13.6	15.3	57.7	9.2						
Linezolid	0.0%						0.2	2.1	97.7											
Nitrofurantoin	4.2%									0.2	40.6	35.2	3.1	16.7	4.0	0.2				
Flavomycin*	23.5%							27.5	42.3	5.9	0.7	0.2		23.5						
Salinomycin*	0.0%							79.6	18.8	0.9	0.7									
Penicillin	0.2%						12.7	1.9	6.3	76.5	2.3		0.2							
Tetracycline	73.7%									25.6	0.7	0.9	3.5	69.2						
Quinupristin/Dalfopristin	60.2%							10.6	29.2	47.8	10.6	0.9	0.9							
Vancomycin	0.0%						16.4	51.6	28.4	3.5										

Figure 14d. MIC Distribution among Enterococcus from Pork Chops

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

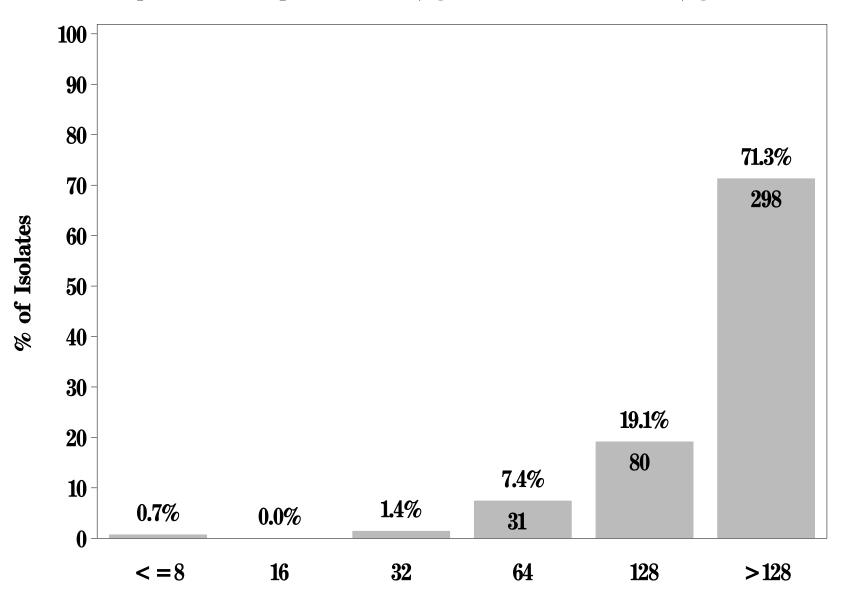
*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.


[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

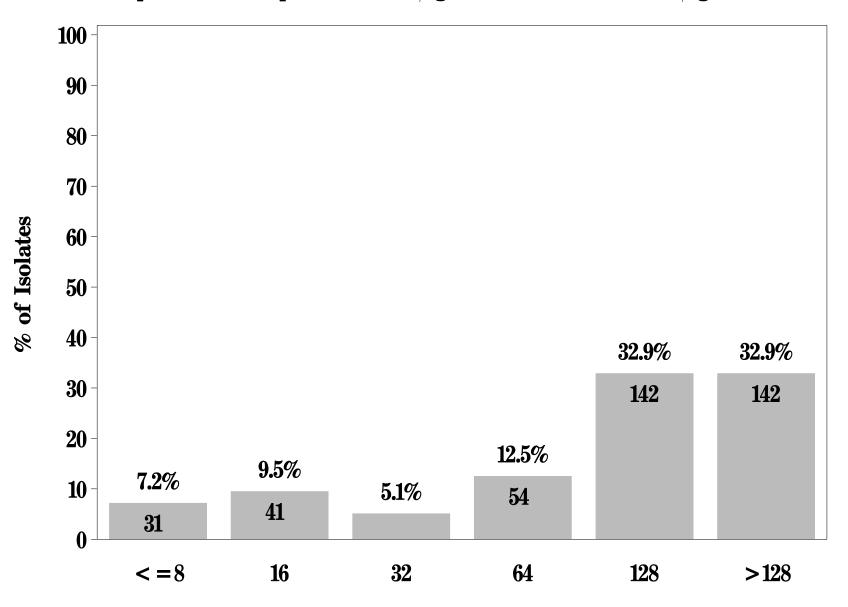
↑ Presented for all species except E. faecalis in QDA (n=426-313= 113 non E. faecalis)

Figure 15a: Minimum Inhibitory Concentration of Bacitracin


for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

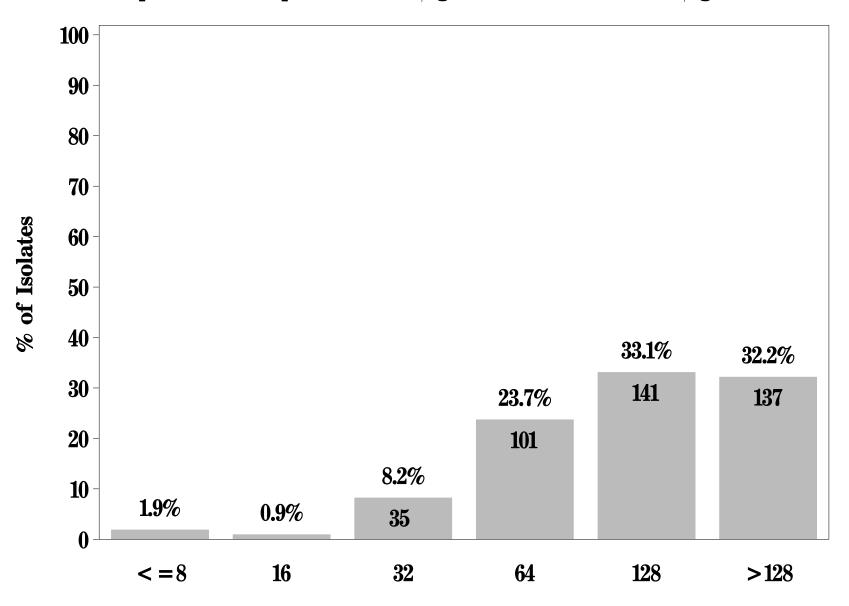
Minimum Inhibitory Concentration

Figure 15a: Minimum Inhibitory Concentration of Bacitracin


for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

Minimum Inhibitory Concentration

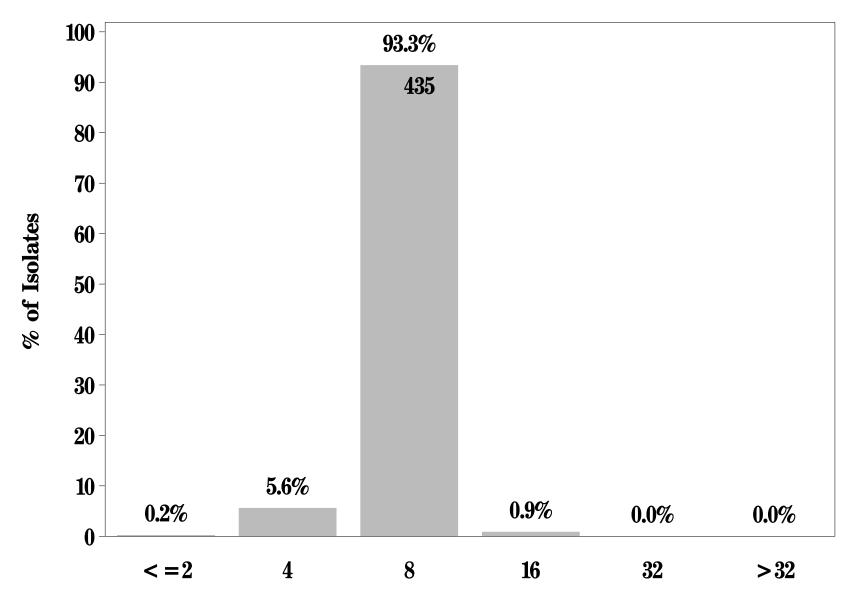
Figure 15a: Minimum Inhibitory Concentration of Bacitracin


for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

Minimum Inhibitory Concentration

Figure 15a: Minimum Inhibitory Concentration of Bacitracin

for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < = $32 \mu g/mL$ Resistant > = $128 \mu g/mL$

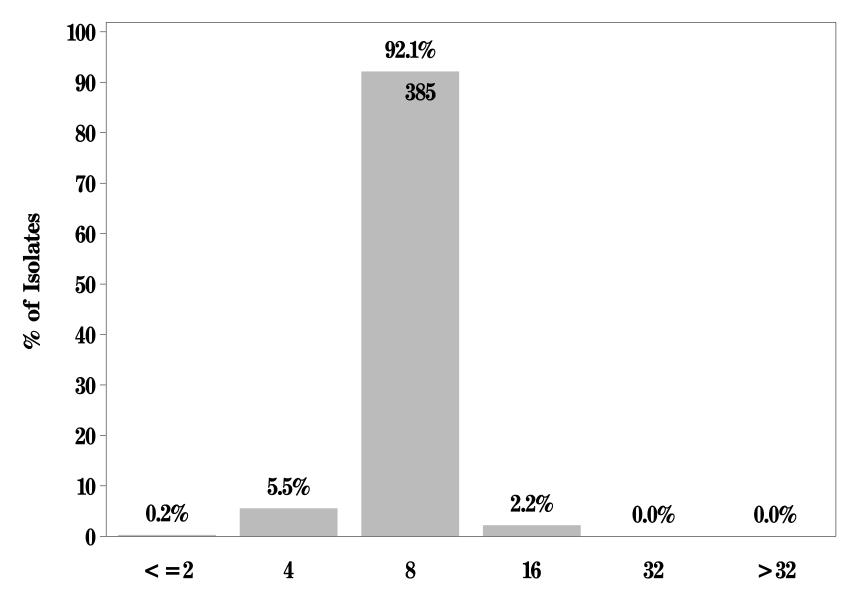


Minimum Inhibitory Concentration

Figure 15b: Minimum Inhibitory Concentration of Chloramphenicol

for *Enterococcus* in Chicken Breast (N=466 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

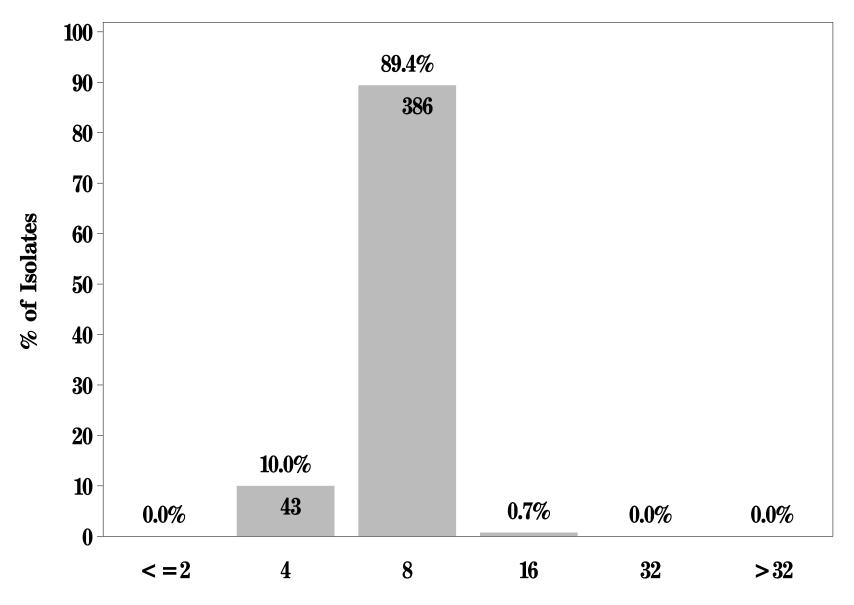


Minimum Inhibitory Concentration

Figure 15b: Minimum Inhibitory Concentration of Chloramphenicol

for *Enterococcus* in Ground Turkey (N=418 Isolates)

Breakpoints: Susceptible $< = 8 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

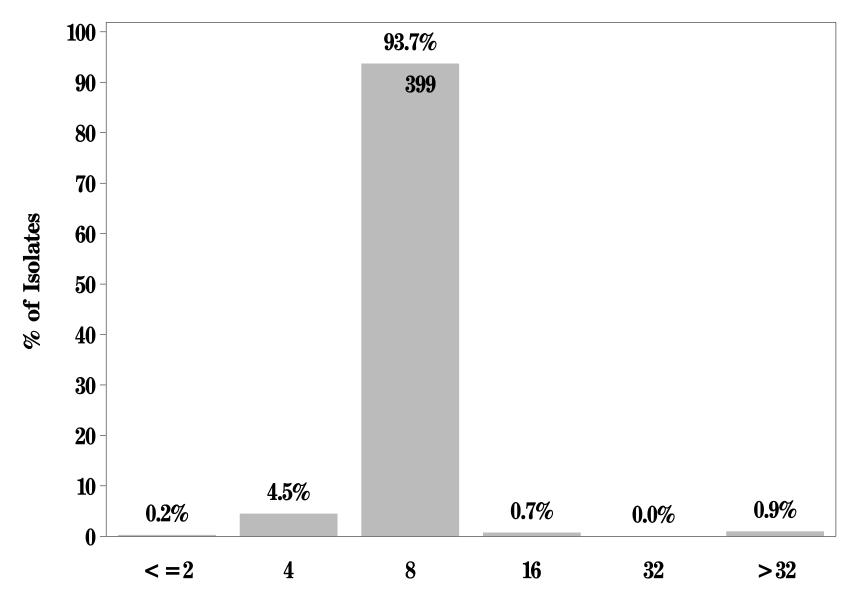


Minimum Inhibitory Concentration

Figure 15b: Minimum Inhibitory Concentration of Chloramphenicol

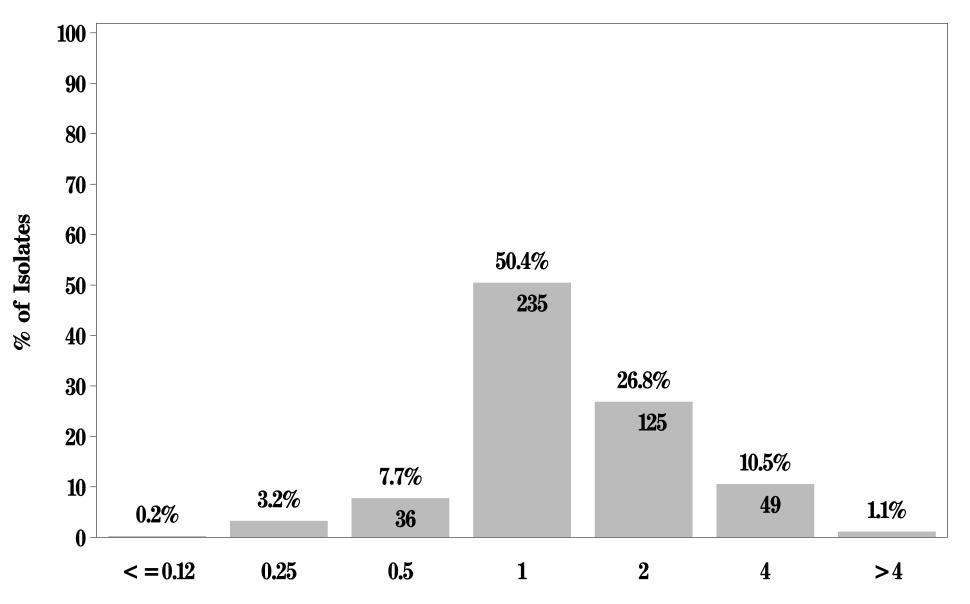
for *Enterococcus* in Ground Beef (N=432 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$



Minimum Inhibitory Concentration

Figure 15b: Minimum Inhibitory Concentration of Chloramphenicol


for *Enterococcus* in Pork Chop (N=426 Isolates)

Breakpoints: Susceptible $< = 8 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

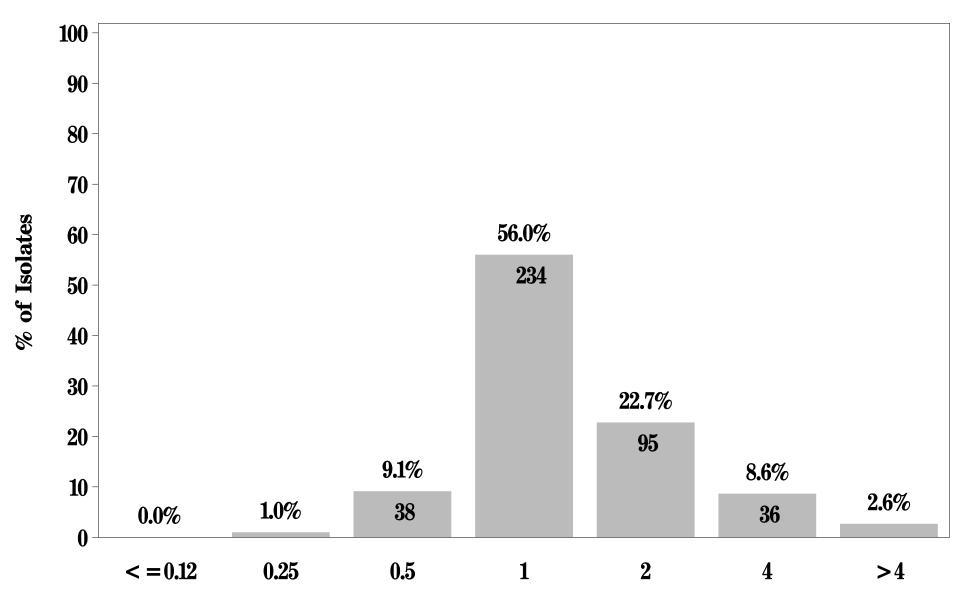

Minimum Inhibitory Concentration

Figure 15c: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

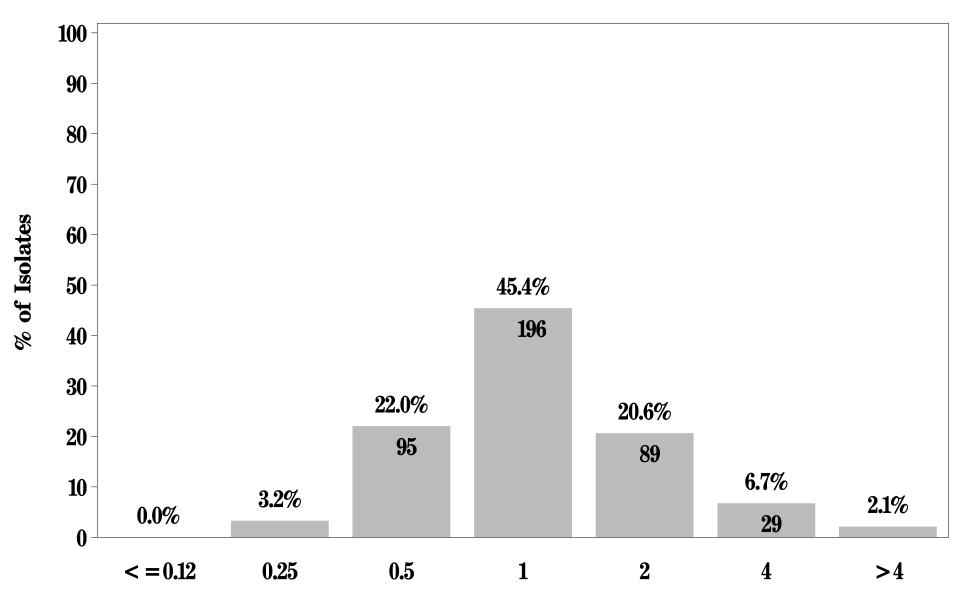

Minimum Inhibitory Concentration

Figure 15c: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

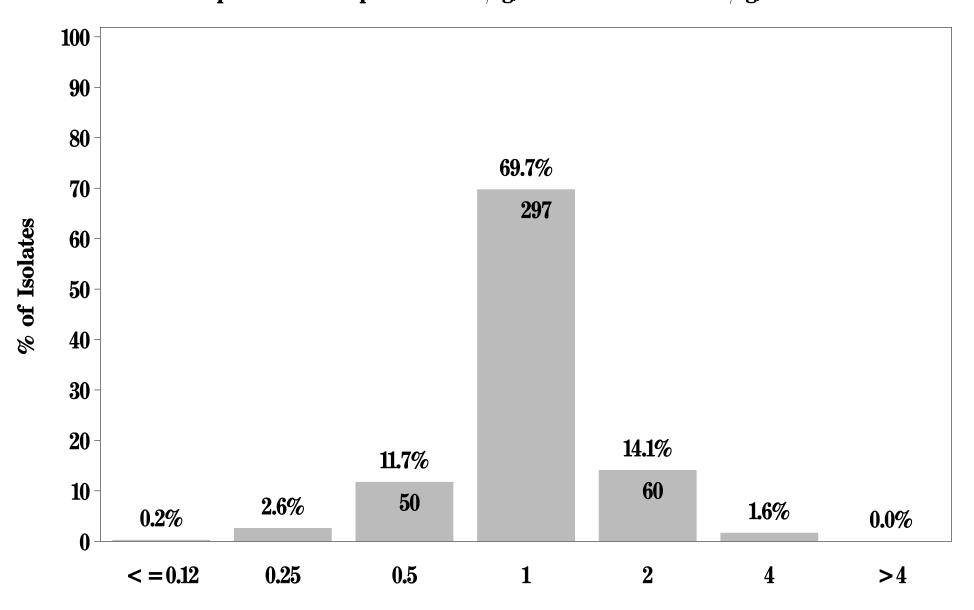

Minimum Inhibitory Concentration

Figure 15c: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

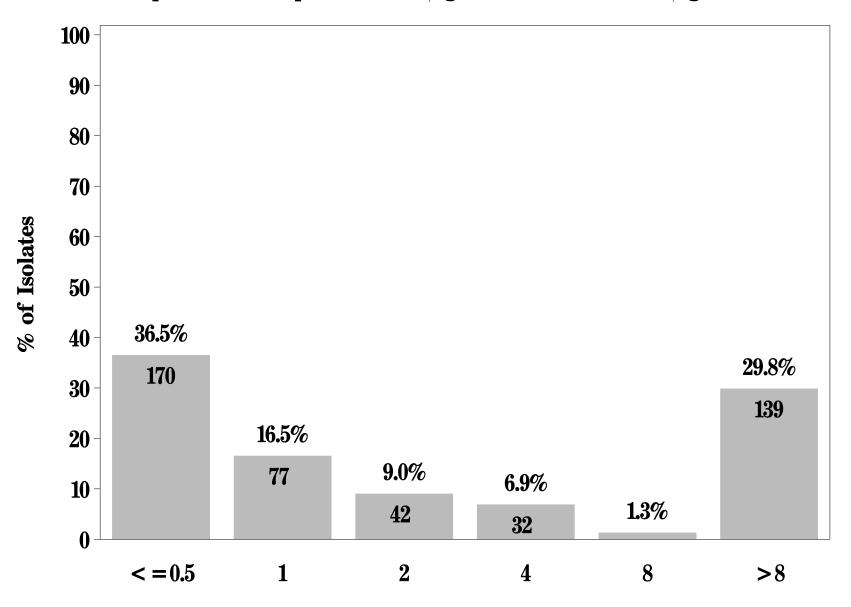
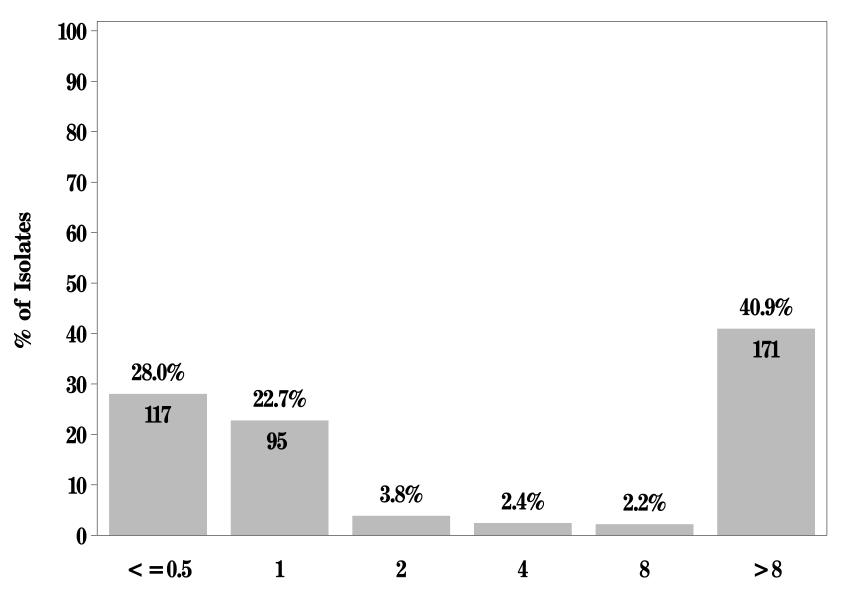

Minimum Inhibitory Concentration

Figure 15c: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

Minimum Inhibitory Concentration

Figure 15d: Minimum Inhibitory Concentration of Erythromycin for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < =.5 μ g/mL Resistant > =8 μ g/mL

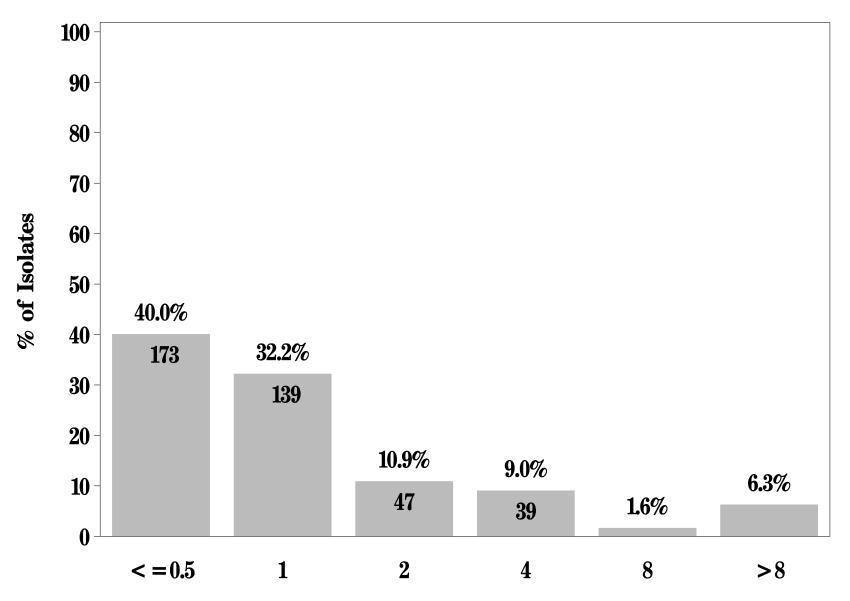


Minimum Inhibitory Concentration

Figure 15d: Minimum Inhibitory Concentration of Erythromycin

for *Enterococcus* in Ground Turkey (N=418 Isolates)

Breakpoints: Susceptible < =.5 μ g/mL Resistant > =8 μ g/mL

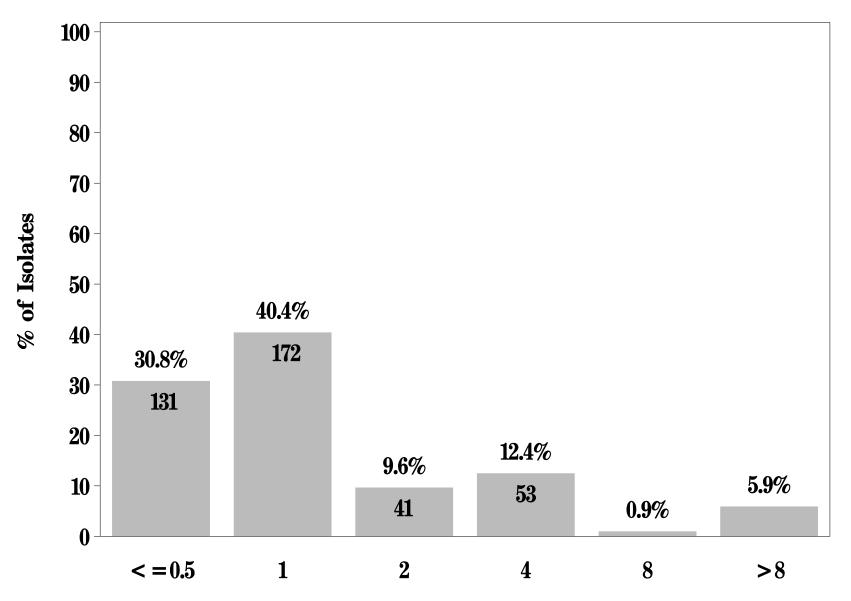


Minimum Inhibitory Concentration

Figure 15d: Minimum Inhibitory Concentration of Erythromycin

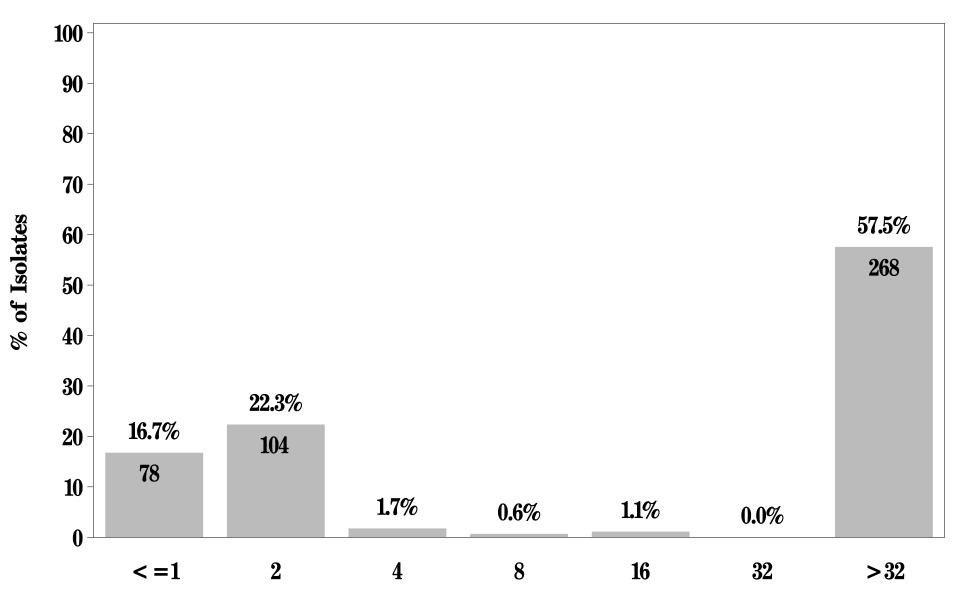
for *Enterococcus* in Ground Beef (N=432 Isolates)

Breakpoints: Susceptible $< =.5 \ \mu$ g/mL Resistant $> =8 \ \mu$ g/mL



Minimum Inhibitory Concentration

Figure 15d: Minimum Inhibitory Concentration of Erythromycin


for *Enterococcus* in Pork Chop (N=426 Isolates)

Breakpoints: Susceptible $< =.5 \ \mu$ g/mL Resistant $> =8 \ \mu$ g/mL

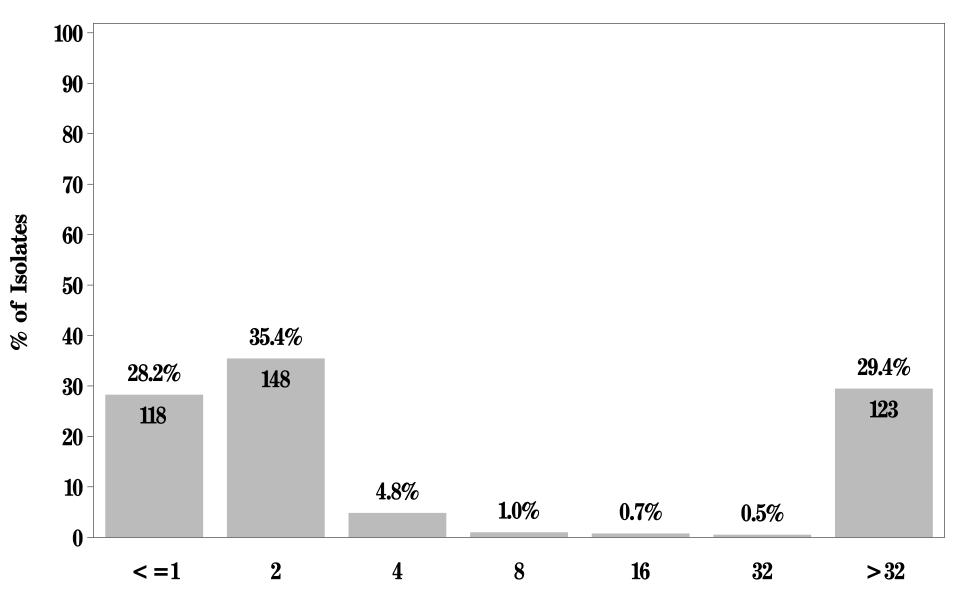

Minimum Inhibitory Concentration

Figure 15e: Minimum Inhibitory Concentration of Flavomycin
for *Enterococcus* in Chicken Breast (N=466 Isolates)Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 32 μ g/mL

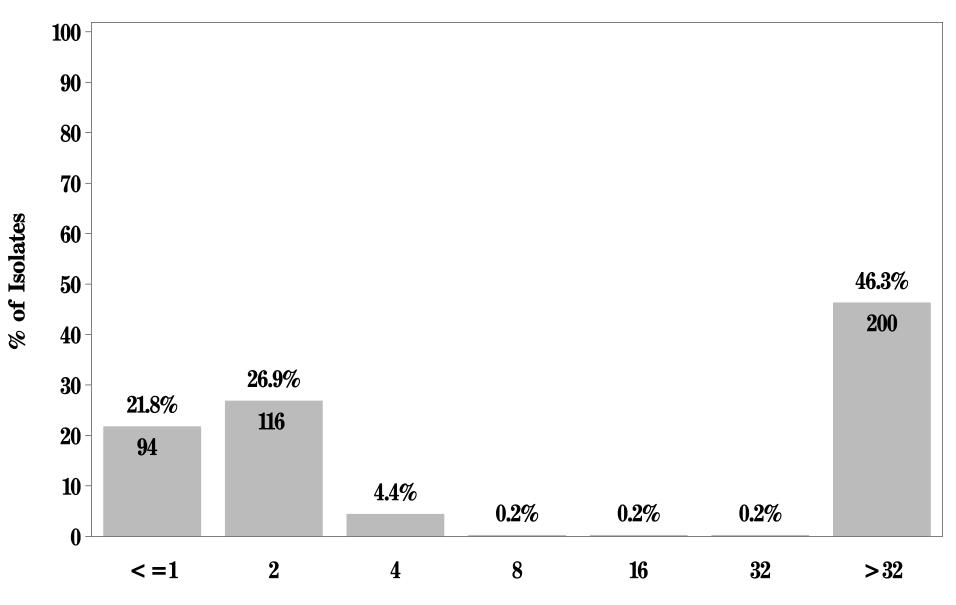

Minimum Inhibitory Concentration

Figure 15e: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

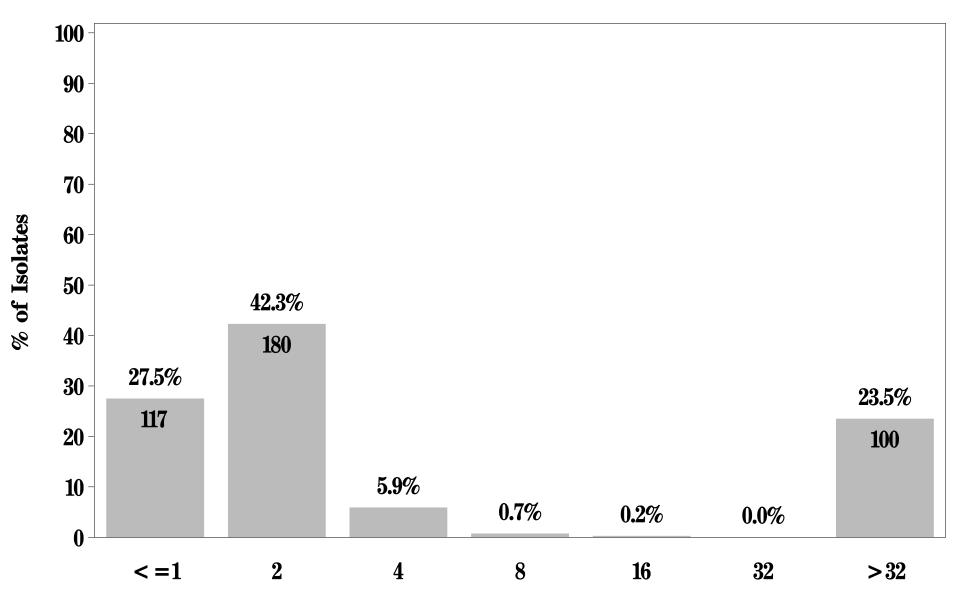
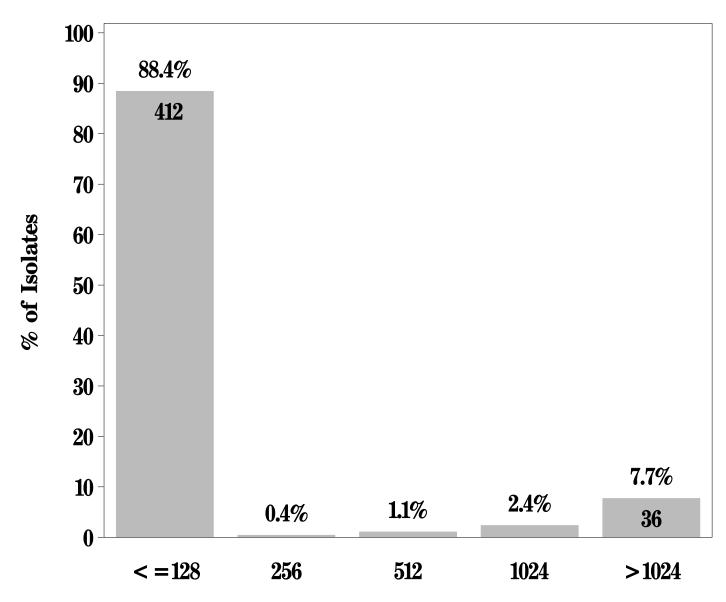

Minimum Inhibitory Concentration

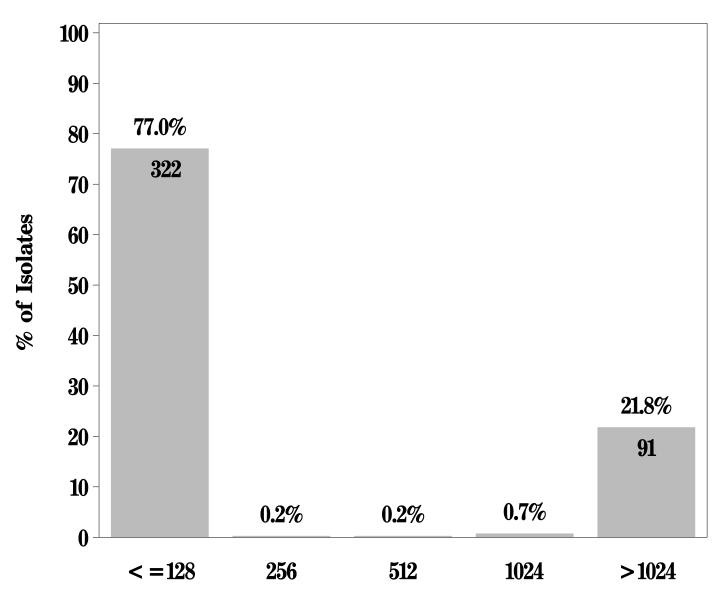
Figure 15e: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < =8 μg/mL Resistant > =32 μg/mL

Minimum Inhibitory Concentration


Figure 15e: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible <=8 μg/mL Resistant >=32 μg/mL

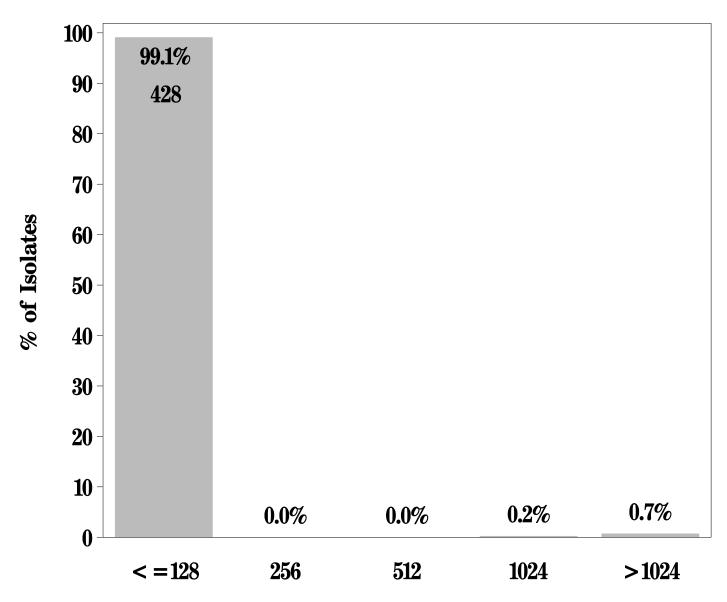
Minimum Inhibitory Concentration

Figure 15f: Minimum Inhibitory Concentration of Gentamicin


for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < 500 μ g/mL Resistant > = 500 μ g/mL

Minimum Inhibitory Concentration

Figure 15f: Minimum Inhibitory Concentration of Gentamicin


for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible < 500 μ g/mL Resistant > = 500 μ g/mL

Minimum Inhibitory Concentration

Figure 15f: Minimum Inhibitory Concentration of Gentamicin

for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < 500 μ g/mL Resistant > = 500 μ g/mL

Minimum Inhibitory Concentration

Figure 15f: Minimum Inhibitory Concentration of Gentamicin for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < 500 μg/mL Resistant > = 500 μg/mL

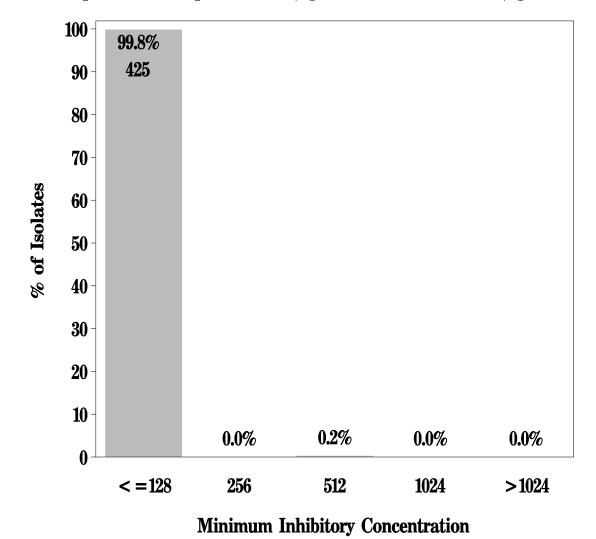
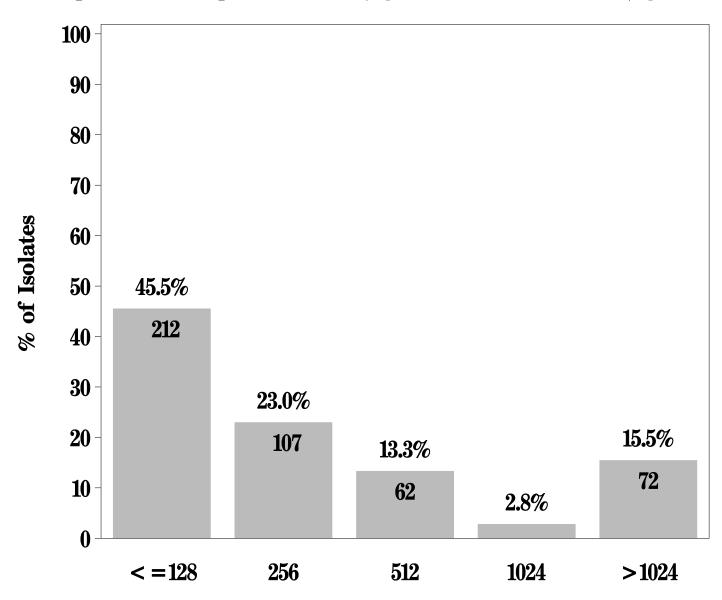
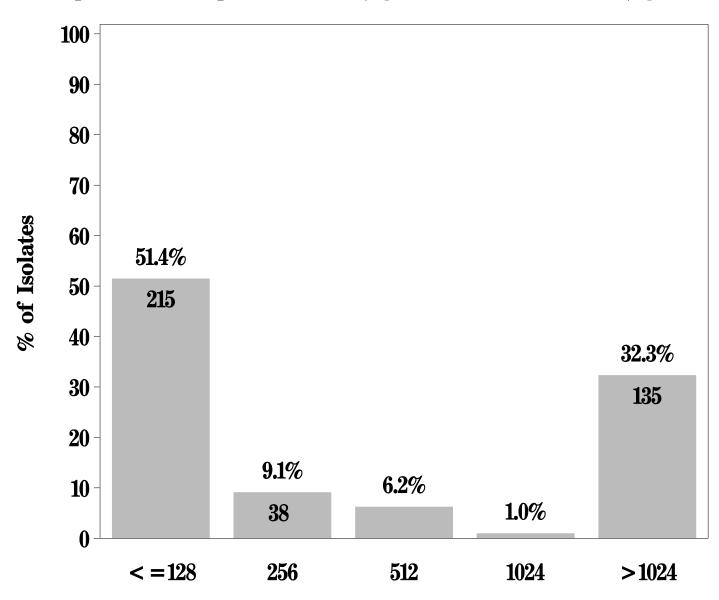
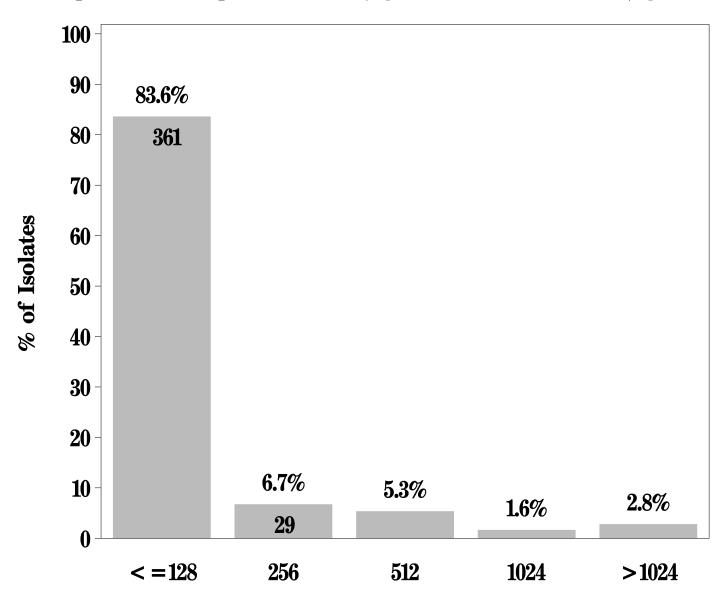



Figure 15g: Minimum Inhibitory Concentration of Kanamycin


for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < =128 μ g/mL Resistant > =512 μ g/mL

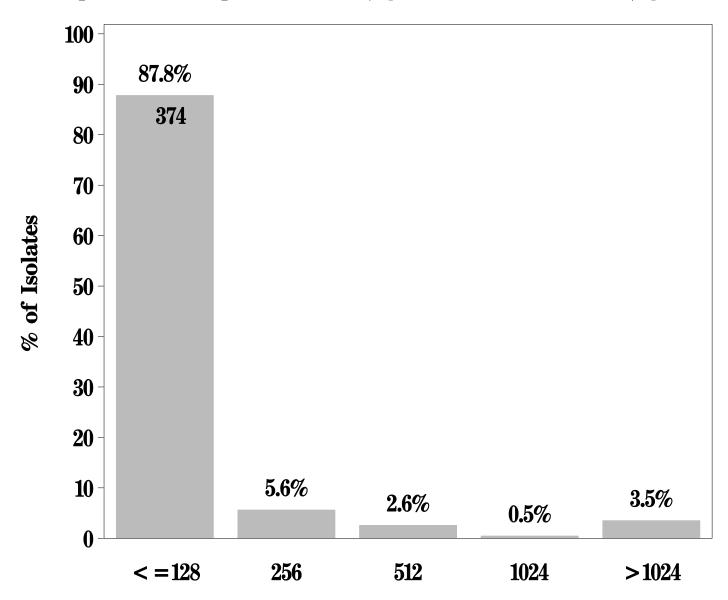
Minimum Inhibitory Concentration

Figure 15g: Minimum Inhibitory Concentration of Kanamycin

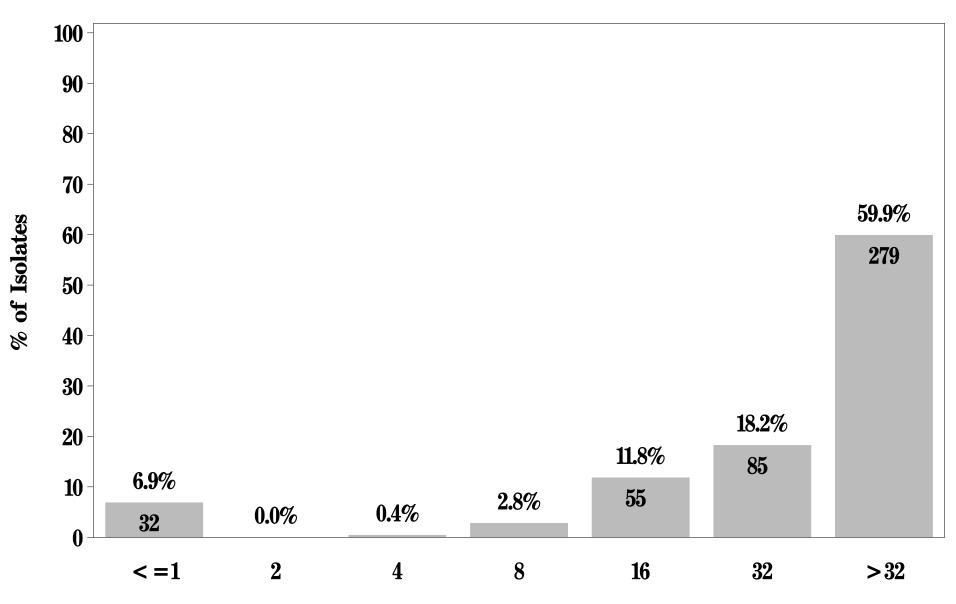

for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible < =128 μ g/mL Resistant > =512 μ g/mL

Minimum Inhibitory Concentration

Figure 15g: Minimum Inhibitory Concentration of Kanamycin


for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < =128 μ g/mL Resistant > =512 μ g/mL

Minimum Inhibitory Concentration


Figure 15g: Minimum Inhibitory Concentration of Kanamycin

for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < =128 μ g/mL Resistant > =512 μ g/mL

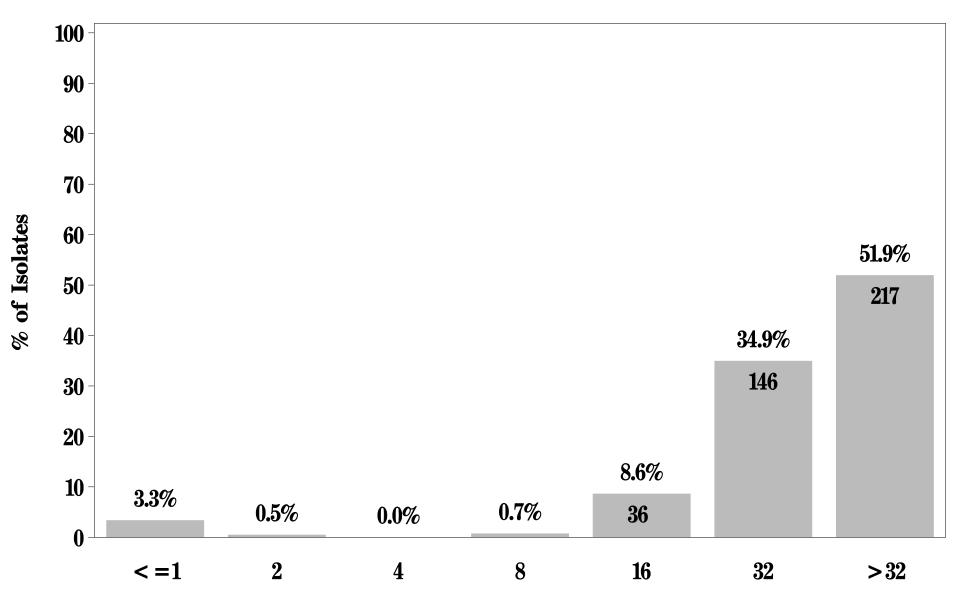

Minimum Inhibitory Concentration

Figure 15h: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

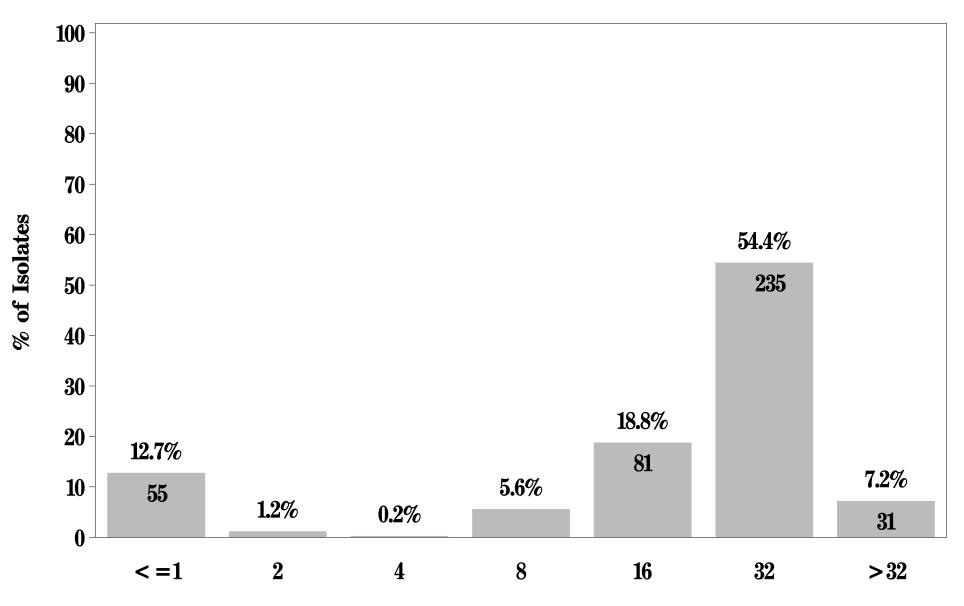

Minimum Inhibitory Concentration

Figure 15h: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

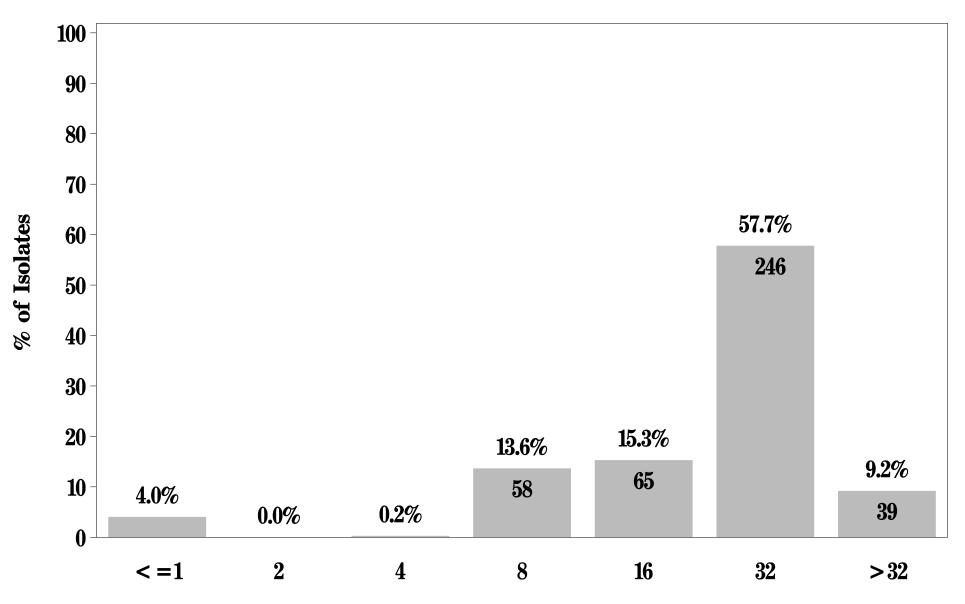

Minimum Inhibitory Concentration

Figure 15h: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < =8 μg/mL Resistant > =32 μg/mL

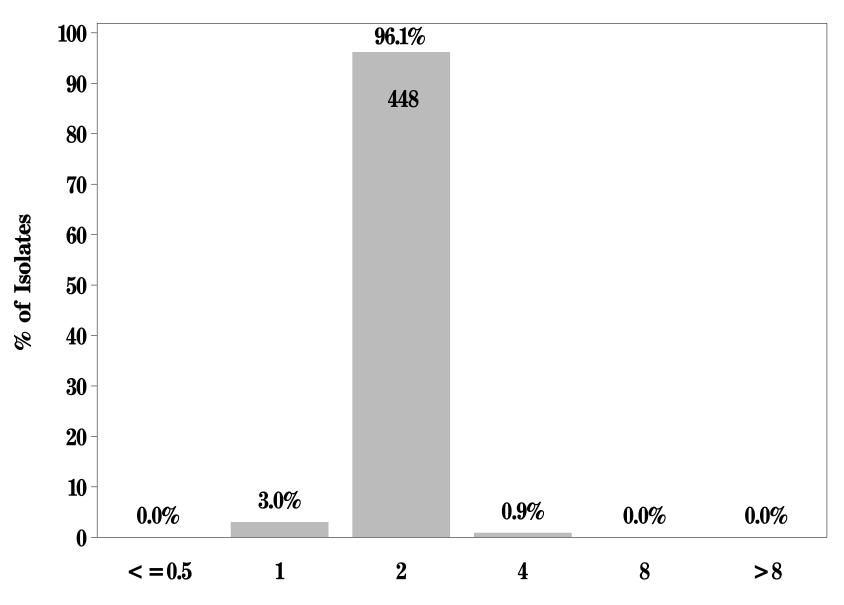

Minimum Inhibitory Concentration

Figure 15h: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < =8 μg/mL Resistant > =32 μg/mL

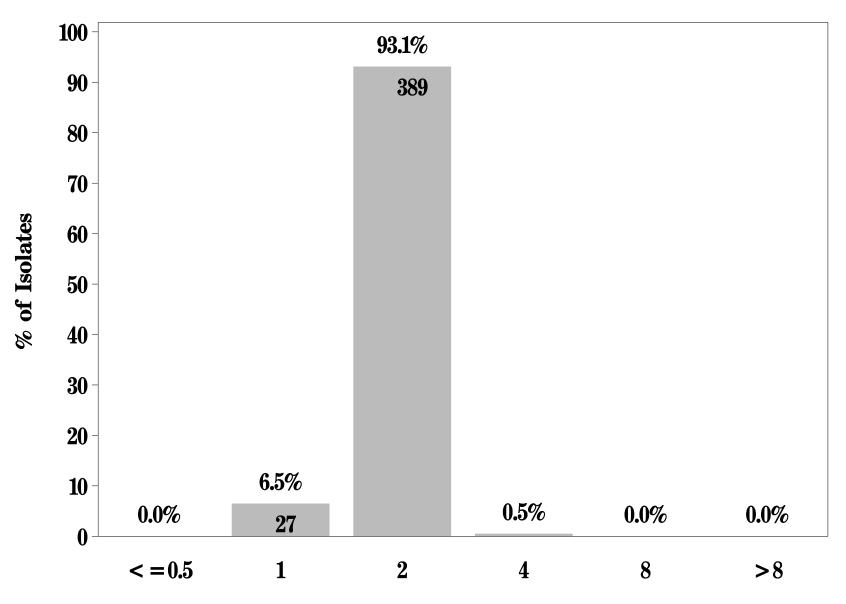
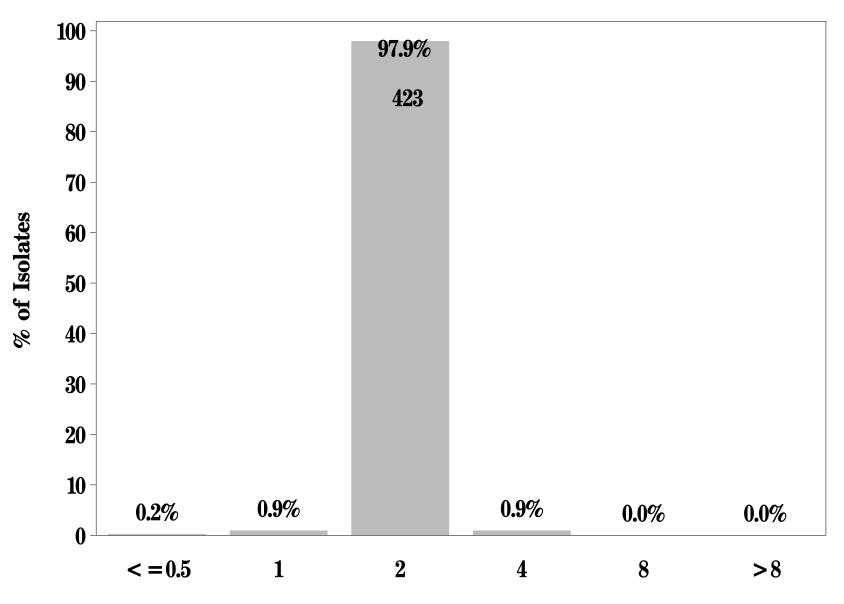

Minimum Inhibitory Concentration

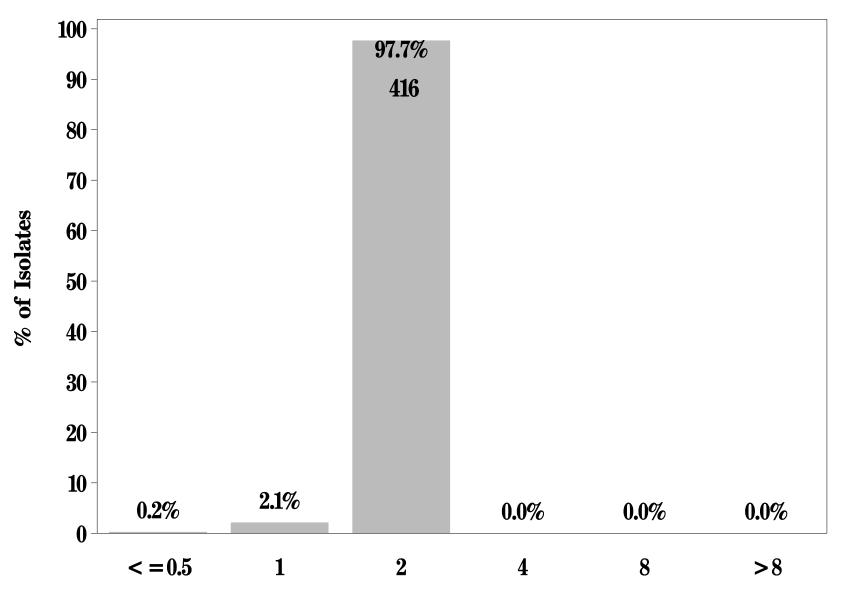
Figure 15i: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible <= 2 μg/mL Resistant >= 8 μg/mL

Minimum Inhibitory Concentration

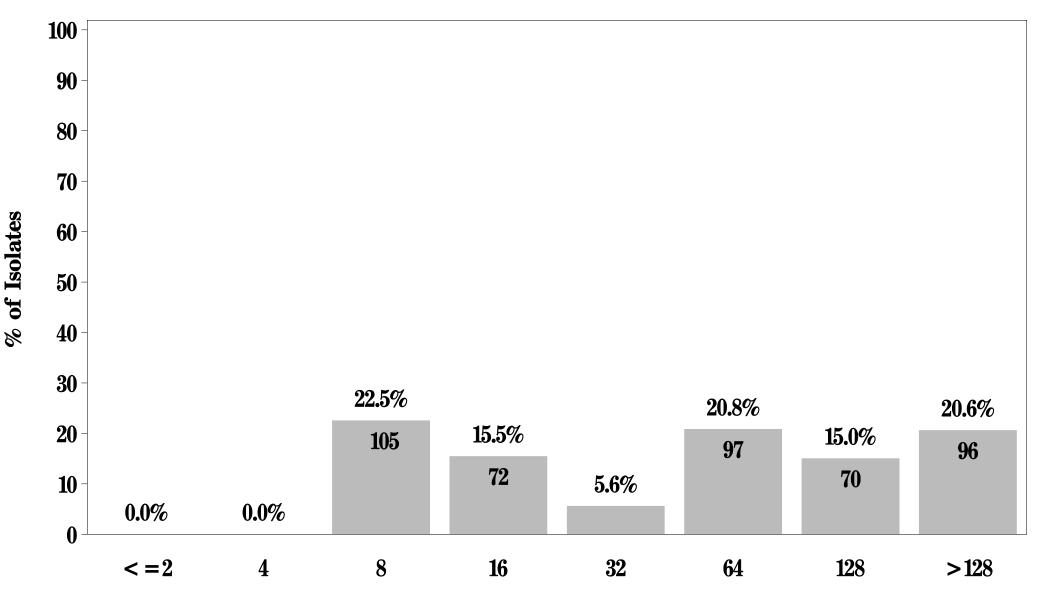

Figure 15i: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible <= 2 μg/mL Resistant >= 8 μg/mL

Minimum Inhibitory Concentration

Figure 15i: Minimum Inhibitory Concentration of Linezolid


for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < = 2 μ g/mL Resistant > = 8 μ g/mL

Minimum Inhibitory Concentration


Figure 15i: Minimum Inhibitory Concentration of Linezolid

for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < = 2 μ g/mL Resistant > = 8 μ g/mL

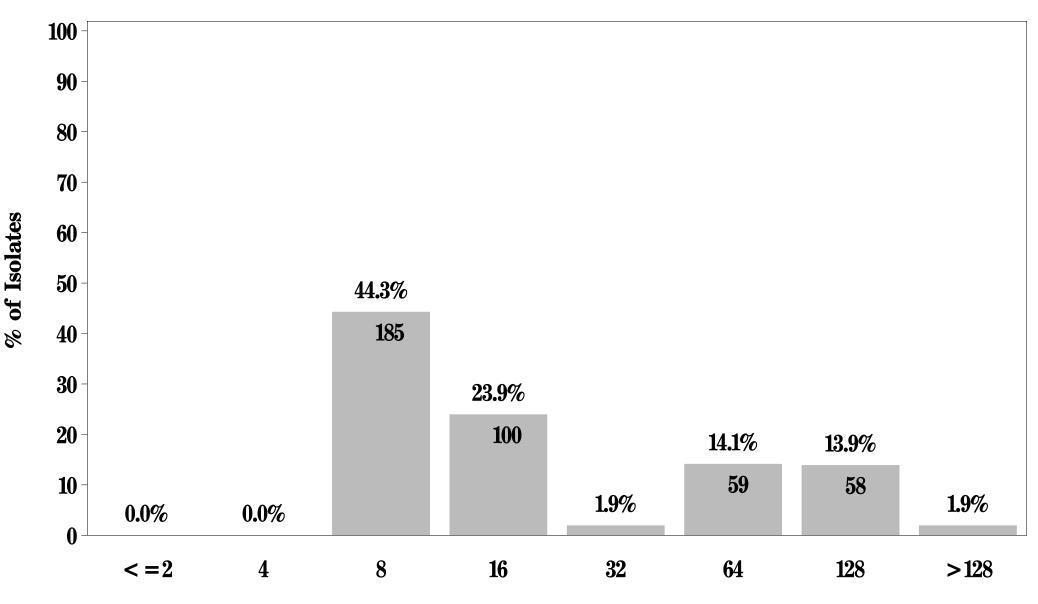

Minimum Inhibitory Concentration

Figure 15j: Minimum Inhibitory Concentration of Nitrofurantoin
for *Enterococcus* in Chicken Breast (N=466 Isolates)Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

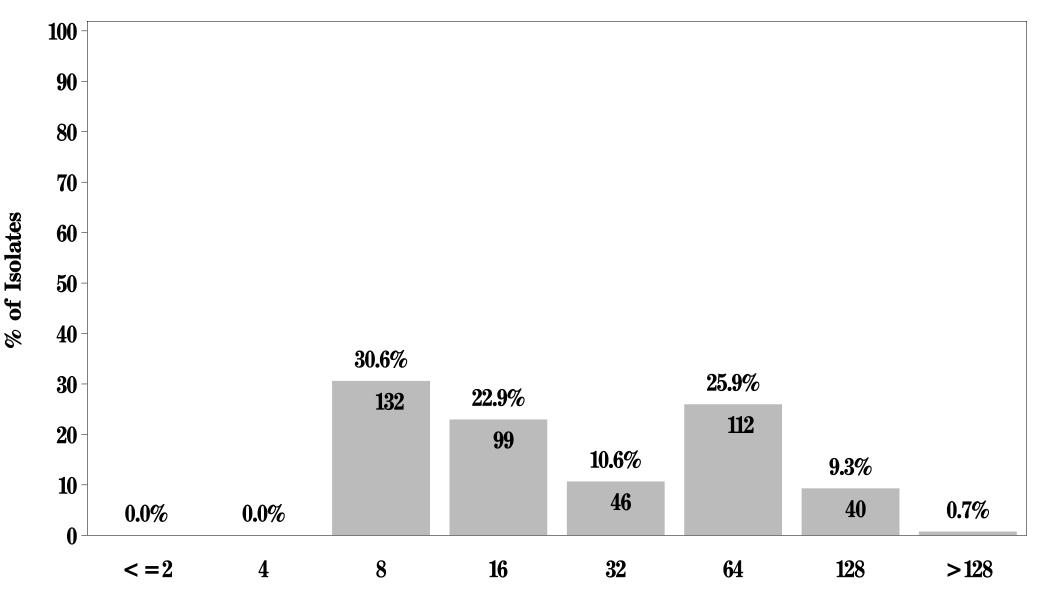

Minimum Inhibitory Concentration

Figure 15j: Minimum Inhibitory Concentration of Nitrofurantoin for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible <= 32 μg/mL Resistant >= 128 μg/mL

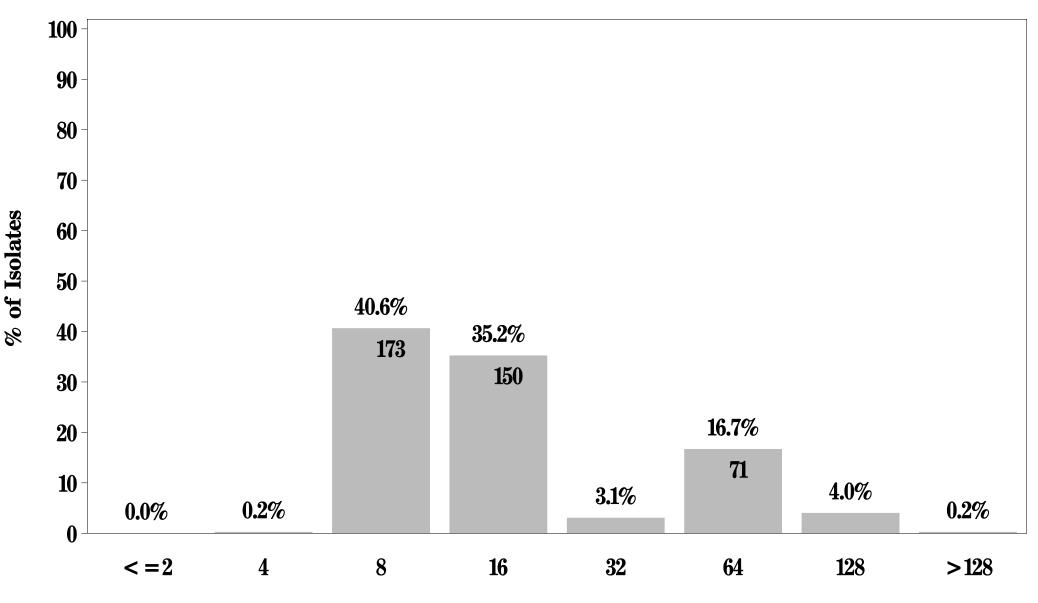

Minimum Inhibitory Concentration

Figure 15j: Minimum Inhibitory Concentration of Nitrofurantoin for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < = 32 μg/mL Resistant > =128 μg/mL

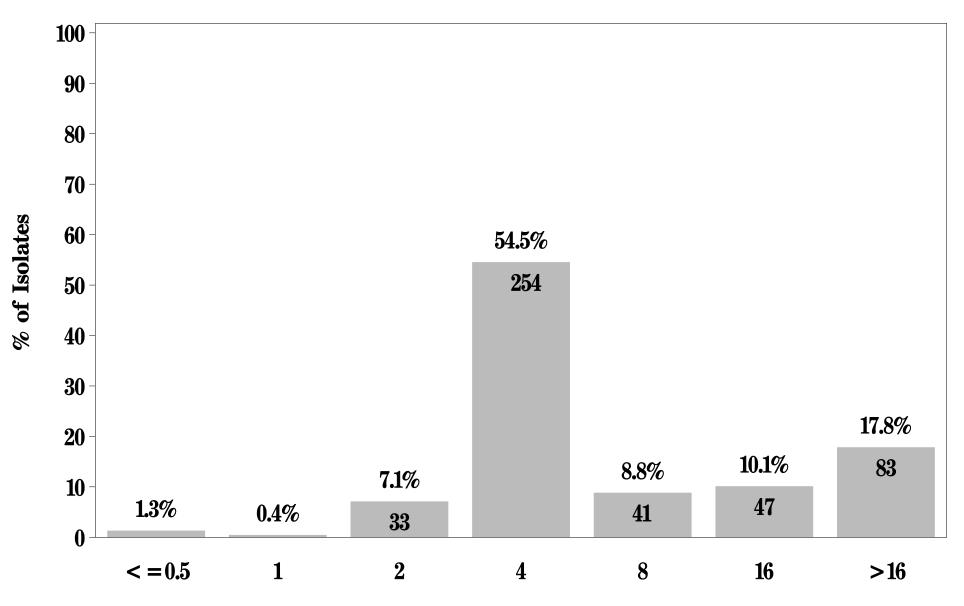

Minimum Inhibitory Concentration

Figure 15j: Minimum Inhibitory Concentration of Nitrofurantoin for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < = 32 μg/mL Resistant > =128 μg/mL

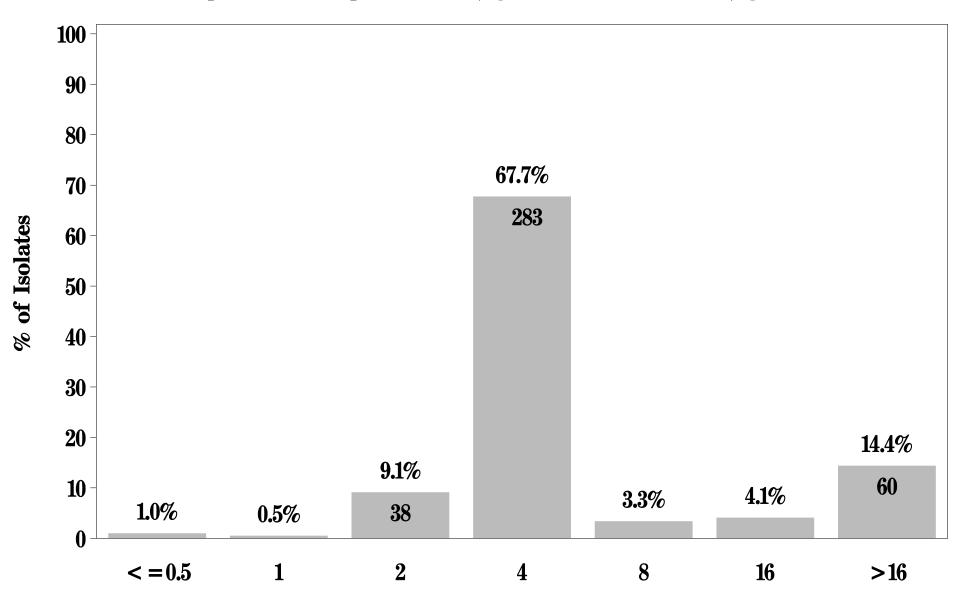

Minimum Inhibitory Concentration

Figure 15k: Minimum Inhibitory Concentration of Penicillin
for *Enterococcus* in Chicken Breast (N=466 Isolates)Breakpoints: Susceptible<=8 μ g/mL Resistant>=16 μ g/mL

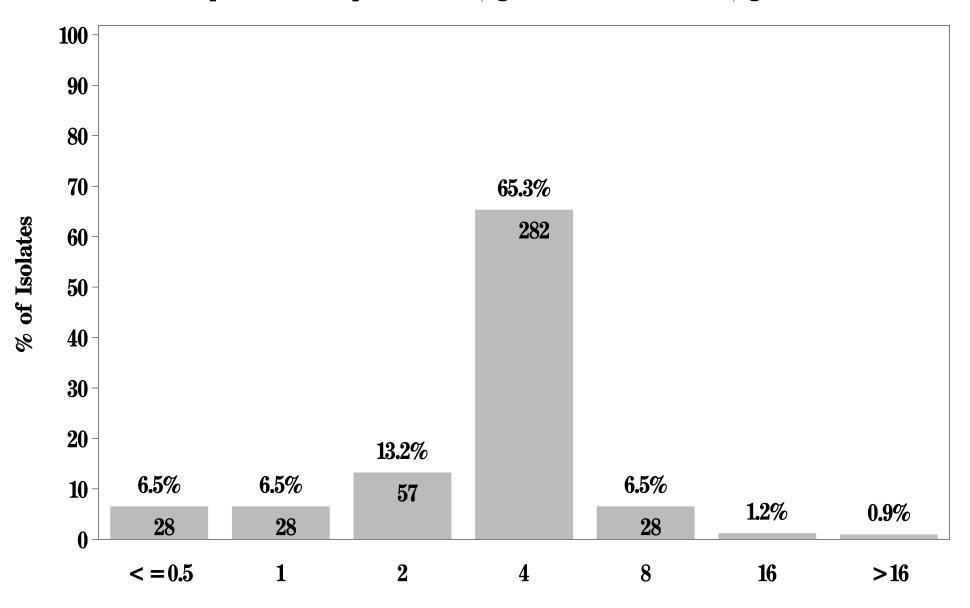
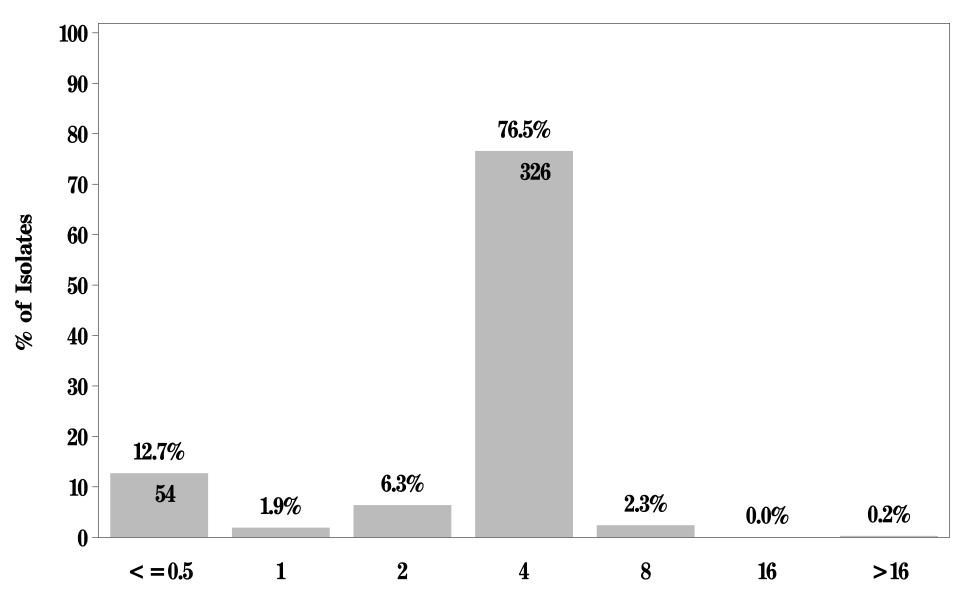
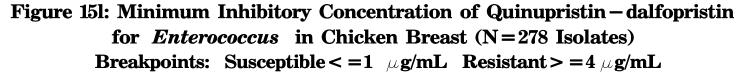
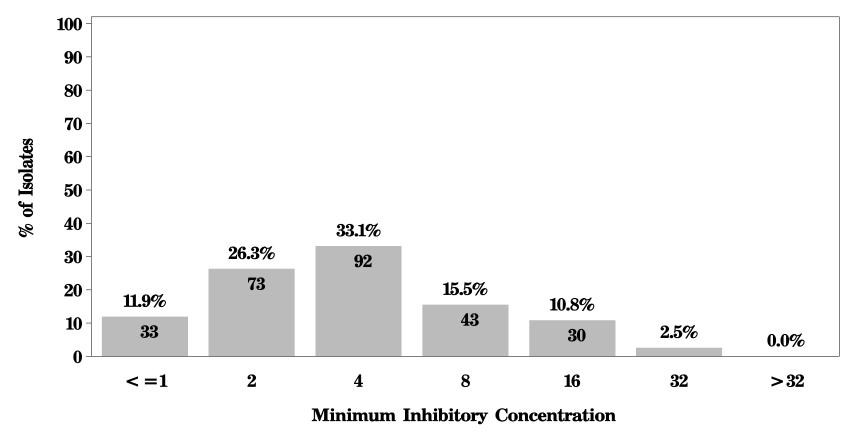

Minimum Inhibitory Concentration

Figure 15k: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 16 μg/mL

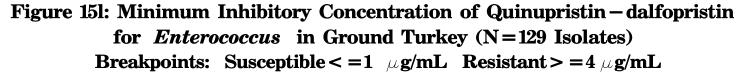
Minimum Inhibitory Concentration

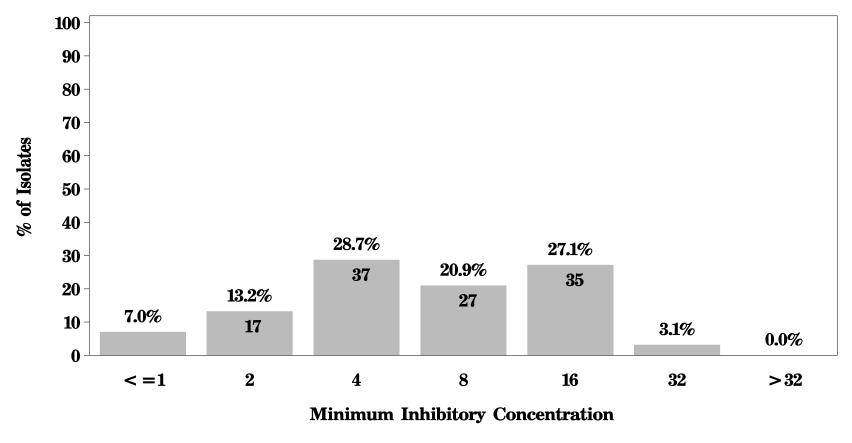

Figure 15k: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 16 μg/mL

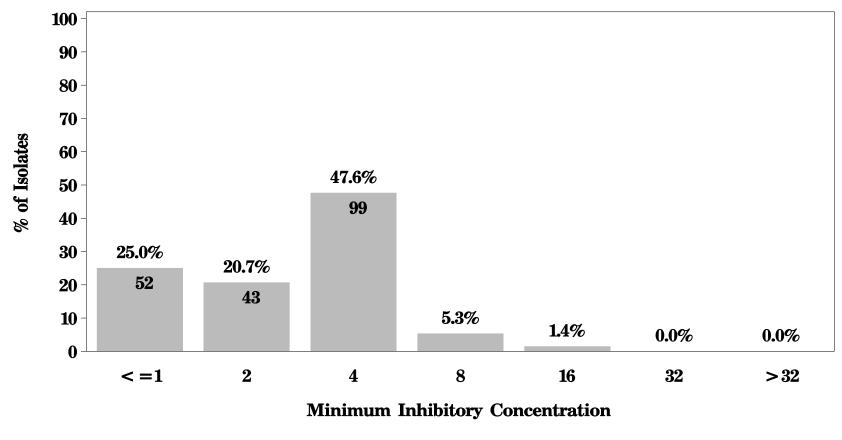

Minimum Inhibitory Concentration


Figure 15k: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* in Pork Chop (N=426 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 16 \mu g/mL$




Minimum Inhibitory Concentration


*Presented for all species except E.faecalis (N = 466 – 188 = 278)

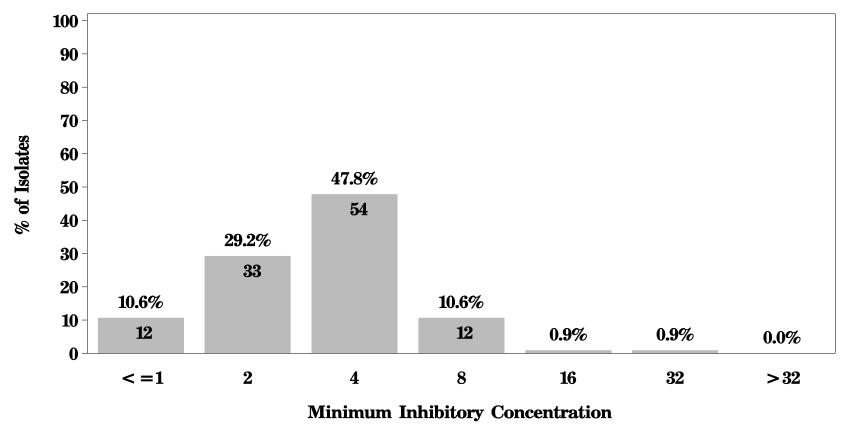

*Presented for all species except E.faecalis (N = 418 – 289 = 129)

Figure 151: Minimum Inhibitory Concentration of Quinupristin – dalfopristin for *Enterococcus* in Ground Beef (N=208 Isolates) Breakpoints: Susceptible <=1 μg/mL Resistant >=4 μg/mL

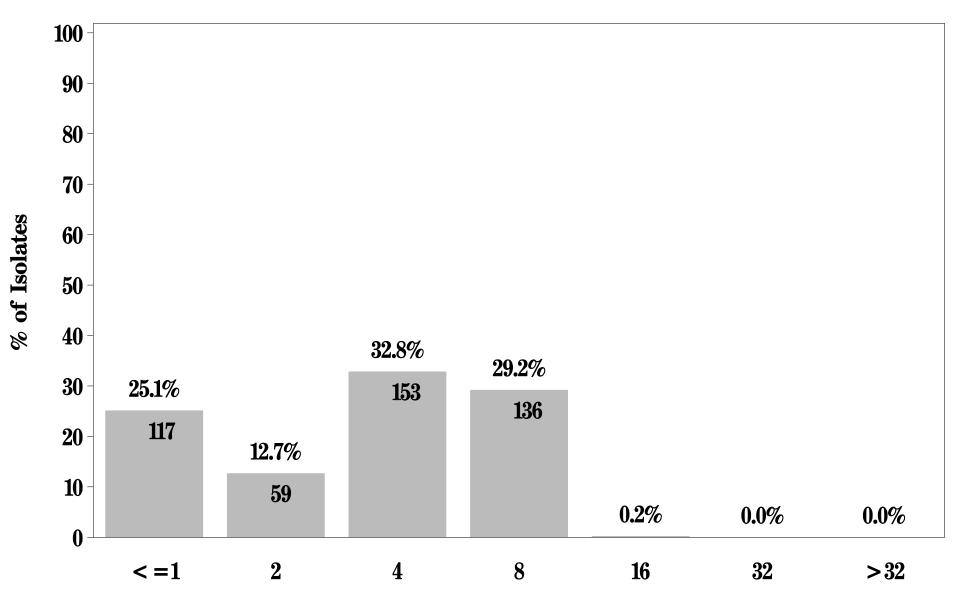

*Presented for all species except E.faecalis (N = 432 - 224 = 208)

Figure 151: Minimum Inhibitory Concentration of Quinupristin – dalfopristin for *Enterococcus* in Pork Chop (N=113 Isolates) Breakpoints: Susceptible < =1 μg/mL Resistant > =4 μg/mL

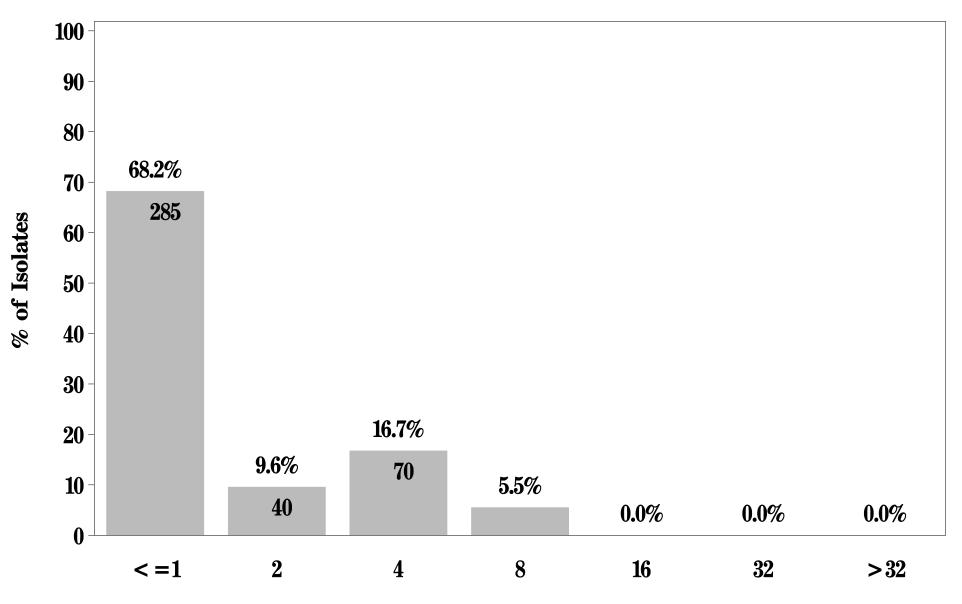

*Presented for all species except *E.faecalis* (N = 426 - 313 = 113)

Figure 15m: Minimum Inhibitory Concentration of Salinomycin for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

Minimum Inhibitory Concentration

Figure 15m: Minimum Inhibitory Concentration of Salinomycin for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

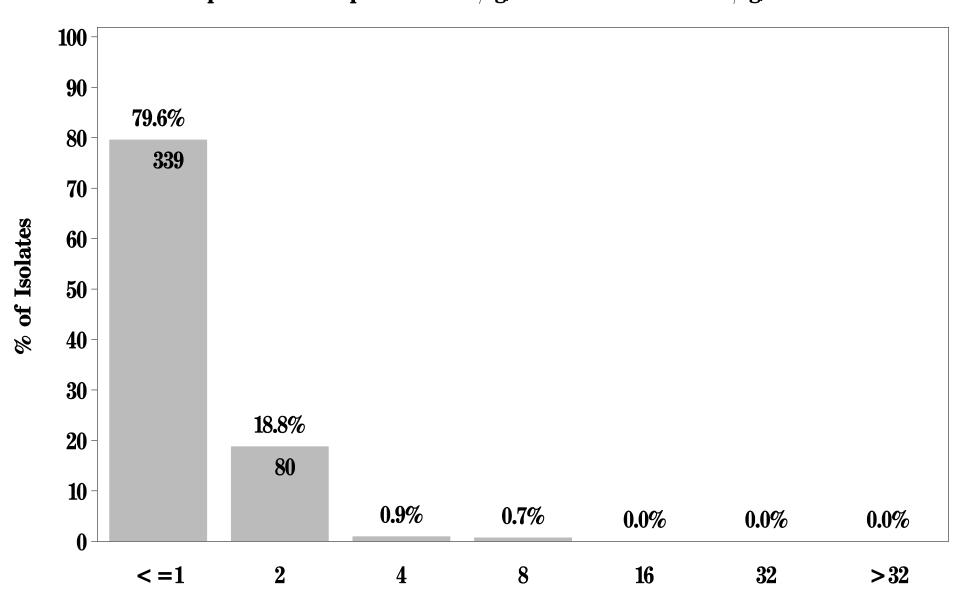
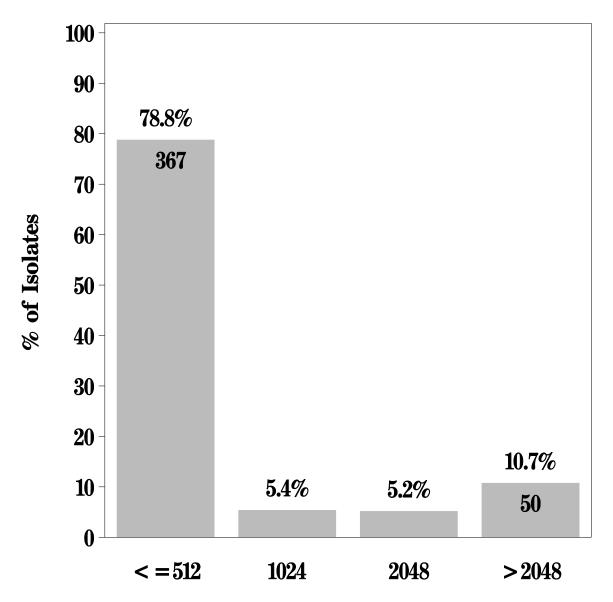

Minimum Inhibitory Concentration

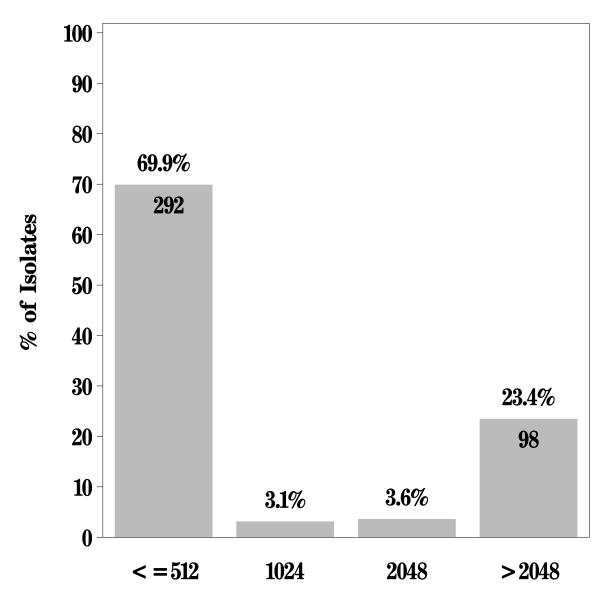
Figure 15m: Minimum Inhibitory Concentration of Salinomycin for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < =8 μg/mL Resistant > =32 μg/mL

Minimum Inhibitory Concentration


Figure 15m: Minimum Inhibitory Concentration of Salinomycin for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

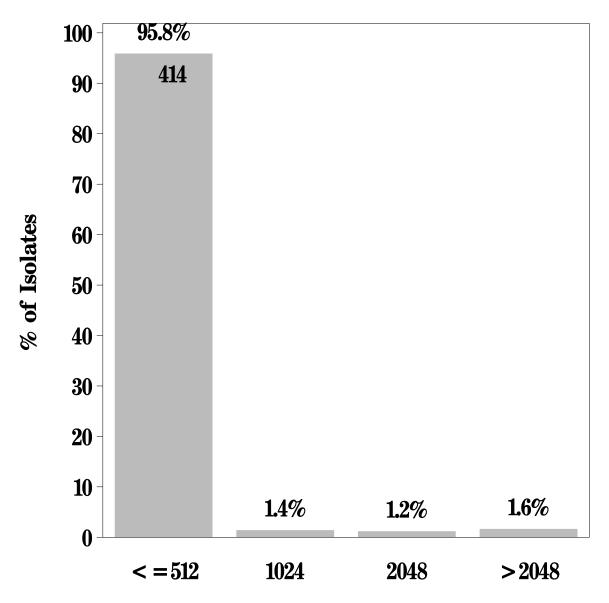
Minimum Inhibitory Concentration

Figure 15n: Minimum Inhibitory Concentration of Streptomycin


for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < 1000 μ g/mL Resistant > = 1000 μ g/mL

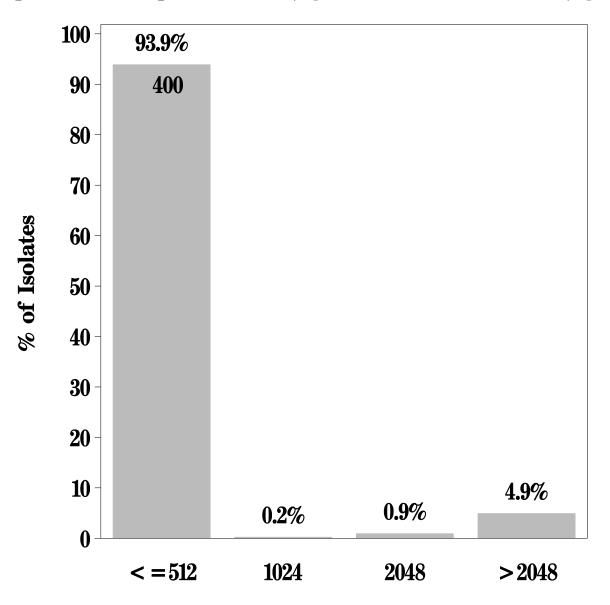
Minimum Inhibitory Concentration

Figure 15n: Minimum Inhibitory Concentration of Streptomycin


for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible < 1000 μ g/mL Resistant > = 1000 μ g/mL

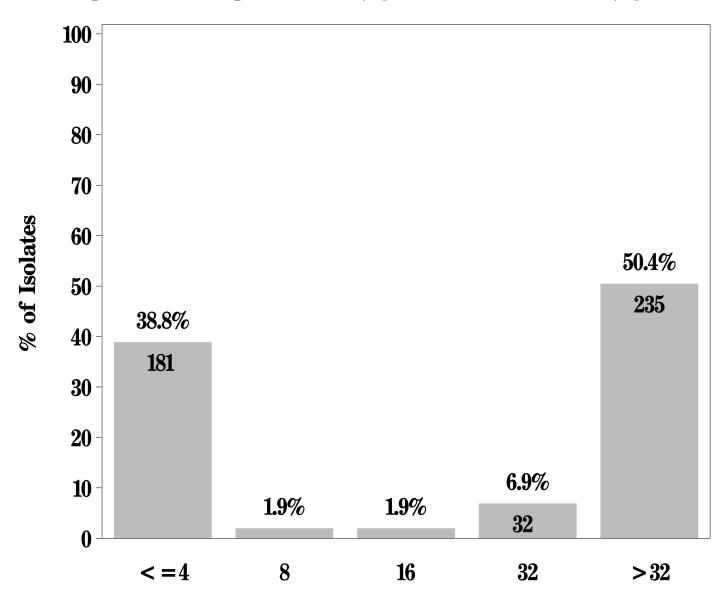
Minimum Inhibitory Concentration

Figure 15n: Minimum Inhibitory Concentration of Streptomycin


for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < 1000 μ g/mL Resistant > = 1000 μ g/mL

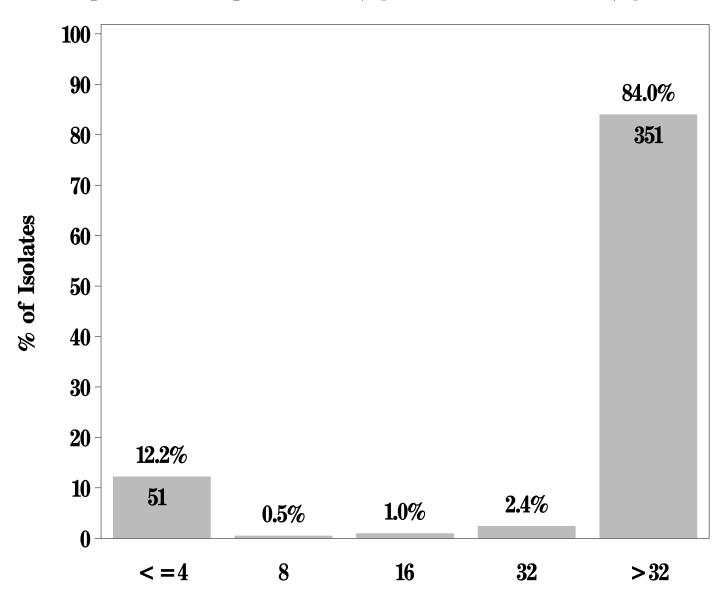
Minimum Inhibitory Concentration

Figure 15n: Minimum Inhibitory Concentration of Streptomycin


for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < 1000 μ g/mL Resistant > = 1000 μ g/mL

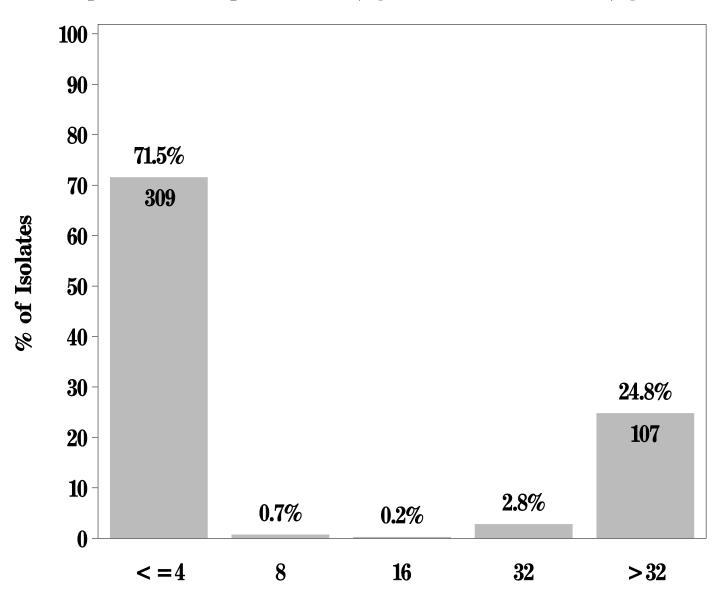
Minimum Inhibitory Concentration

Figure 150: Minimum Inhibitory Concentration of Tetracycline


for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

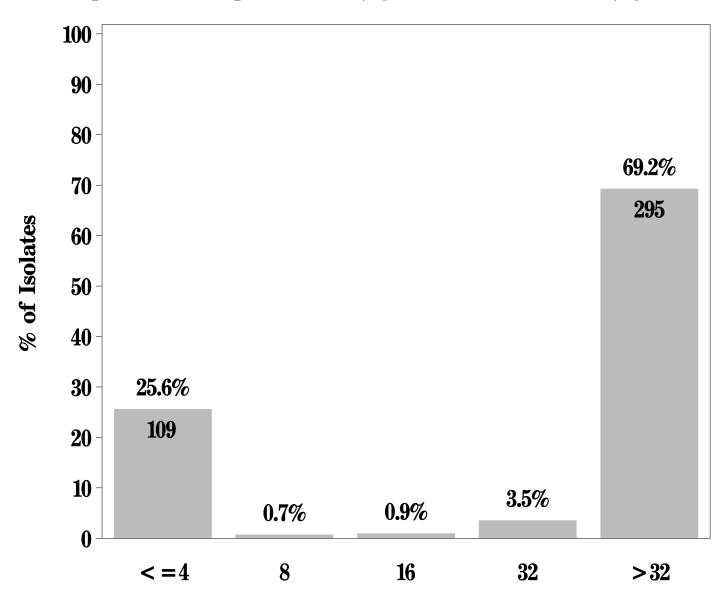
Minimum Inhibitory Concentration

Figure 150: Minimum Inhibitory Concentration of Tetracycline

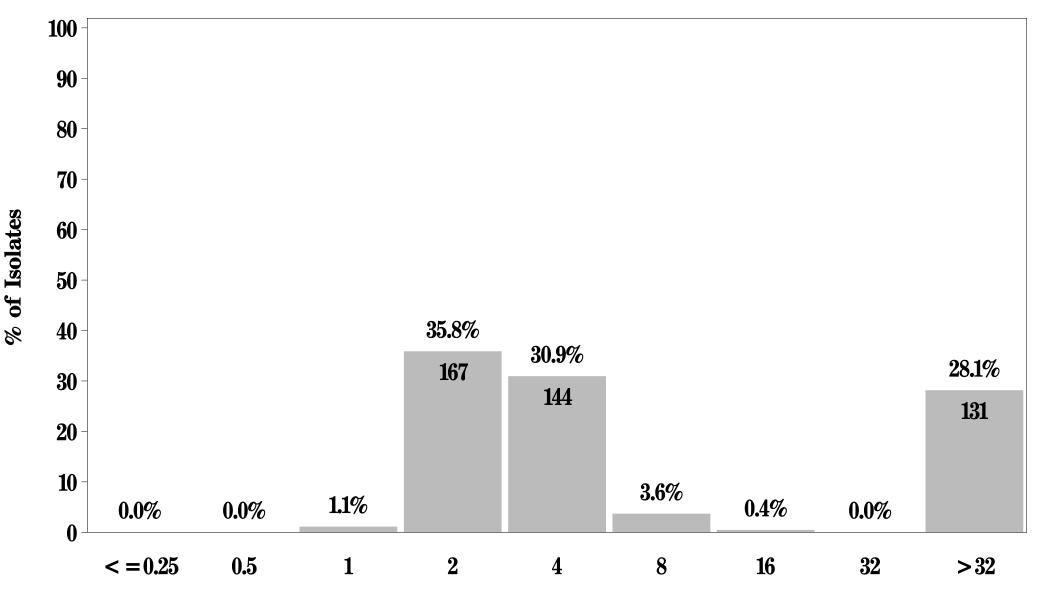

for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Figure 150: Minimum Inhibitory Concentration of Tetracycline


for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration


Figure 150: Minimum Inhibitory Concentration of Tetracycline

for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

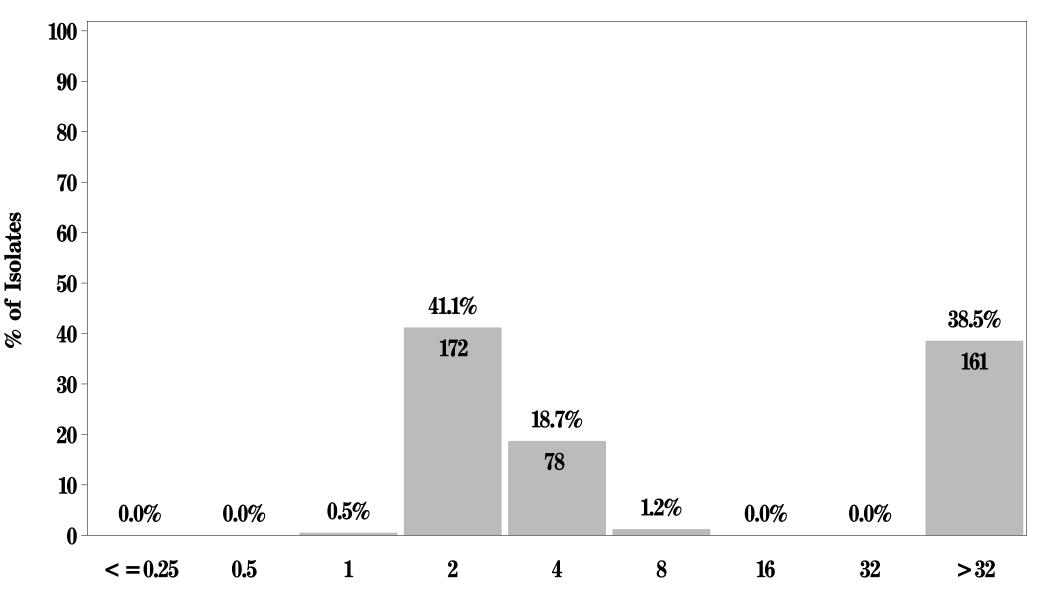

Minimum Inhibitory Concentration

Figure 15p: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

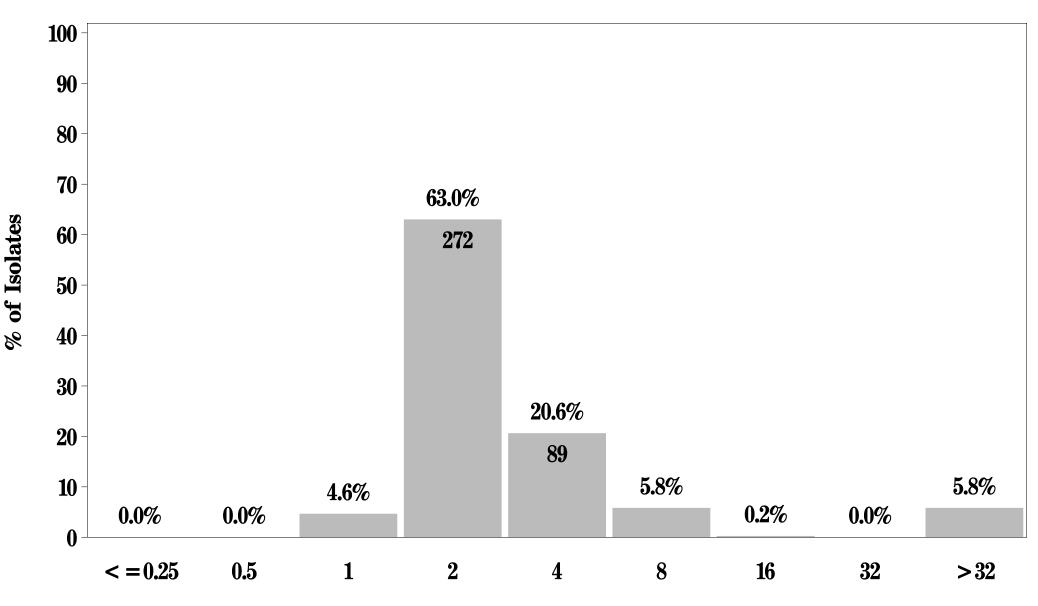

Minimum Inhibitory Concentration

Figure 15p: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

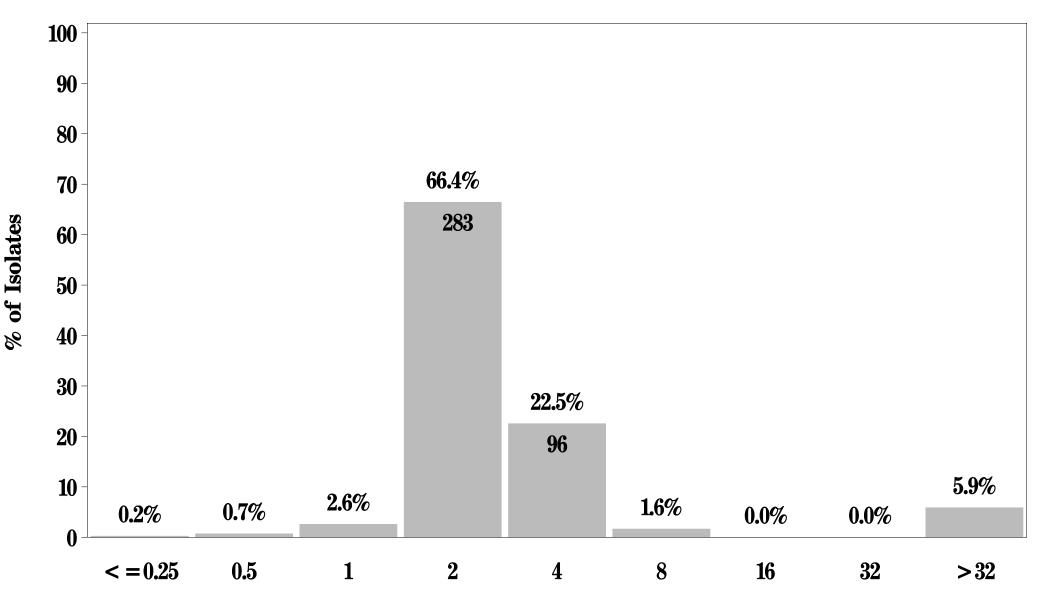

Minimum Inhibitory Concentration

Figure 15p: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

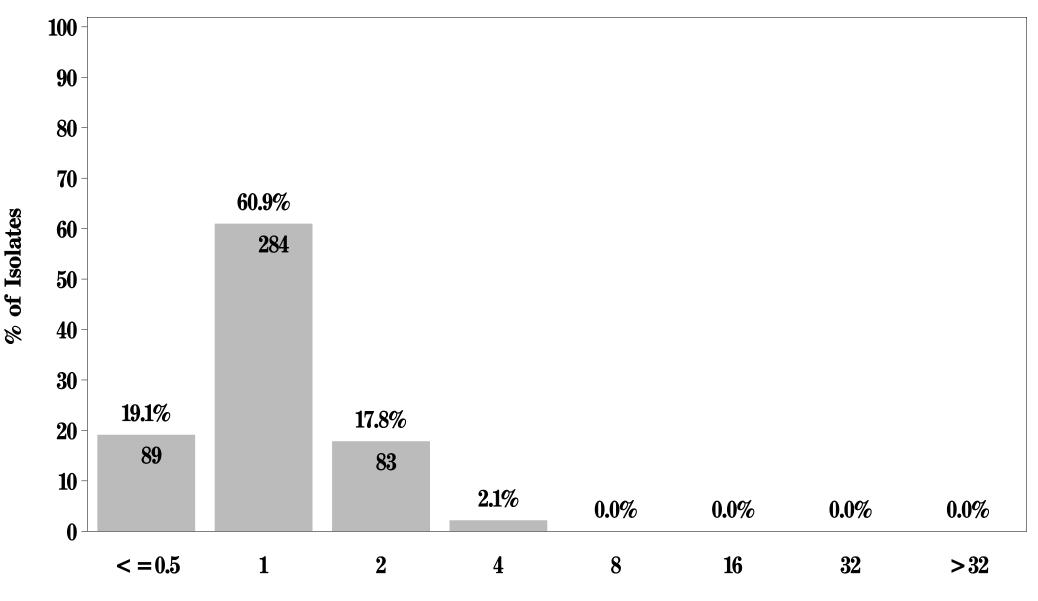

Minimum Inhibitory Concentration

Figure 15p: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Pork Chop (N=426 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

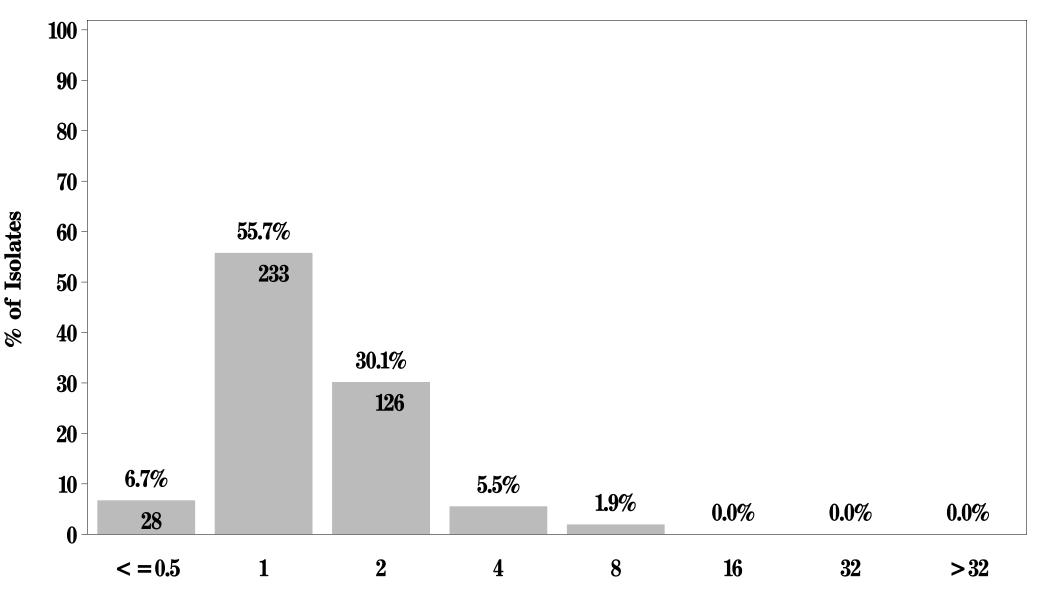

Minimum Inhibitory Concentration

Figure 15q: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 32 μ g/mL

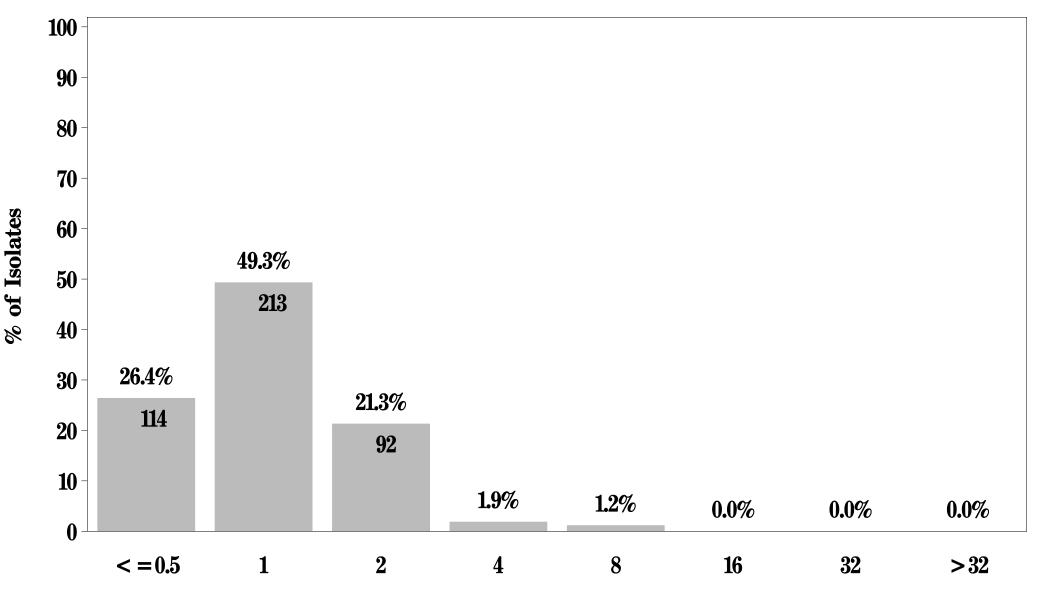

Minimum Inhibitory Concentration

Figure 15q: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* in Ground Turkey (N=418 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 32 μ g/mL

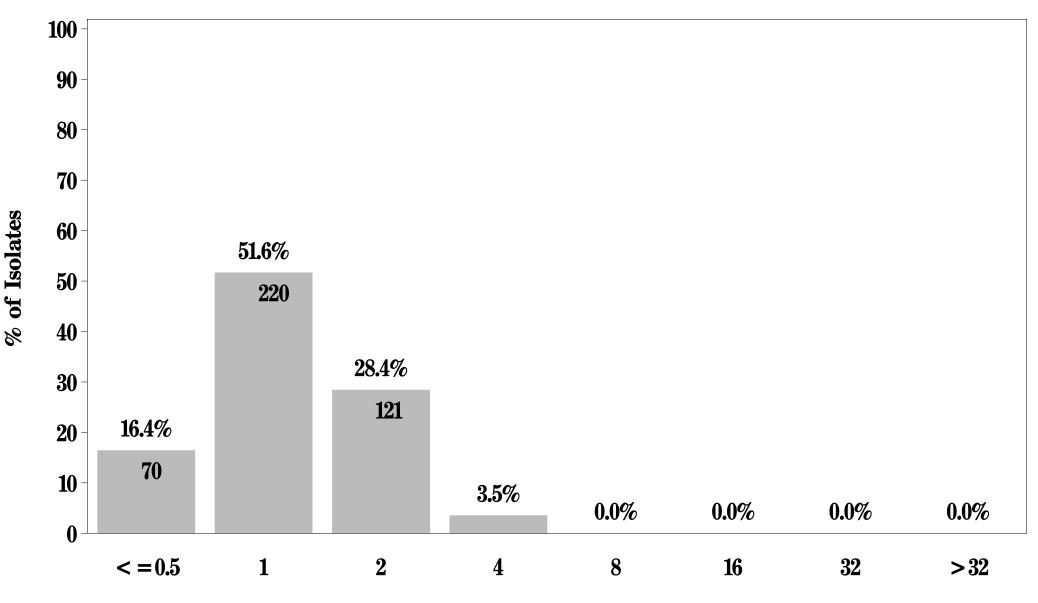

Minimum Inhibitory Concentration

Figure 15q: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* in Ground Beef (N=432 Isolates) Breakpoints: Susceptible < =4 μg/mL Resistant > =32 μg/mL

Minimum Inhibitory Concentration

Figure 15q: Minimum Inhibitory Concentration of Vancomycin
for *Enterococcus* in Pork Chop (N=426 Isolates)Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 32 μ g/mL

Minimum Inhibitory Concentration

Species		Antimicrobial Agent															
Species	QDA	BAC	LIN	TET	FLA	ERY	KAN	TYL	NIT	STR	PEN	GEN	CIP	CHL	LZD	SAL	VAN
<i>E. avium</i> (n=3)	_†	100.0%	33.3%	33.3%	100.0%	33.3%	-	33.3%	33.3%	33.3%	-	-	33.3%	33.3%	-	-	-
<i>E. casseliflavus</i> (n=1)	100.0%	100.0%	-	-	100.0%	-	-	-	-	-	-	-	-	-	-	-	-
E. durans (n=8)	50.0%	75.0%	25.0%	50.0%	75.0%	12.5%	12.5%	12.5%	37.5%	12.5%	12.5%	-	-	-	-	-	-
E. faecalis (n=1014)	ŧ	78.9%	89.1%	66.4%	-	23.7%	17.7%	23.7%	0.6%	16.4%	-	12.1%	0.1%	0.3%	-	-	-
<i>E. faecium</i> (n=575)	62.8%	90.6%	49.9%	58.3%	95.1%	19.3%	32.0%	11.5%	48.5%	15.0%	37.2%	5.0%	24.9%	-	-	-	-
E. gallinarum (n=12)	75.0%	100.0%	58.3%	25.0%	100.0%	-	-	-	-	-	-	-	8.3%	-	-	-	-
<i>E. hirae</i> (n=129)	62.8%	27.1%	60.5%	45.7%	96.9%	27.1%	14.0%	26.4%	3.1%	11.6%	1.6%	-	-	-	-	-	-
Total (N=1742)	82.2%	79.1%	73.4%	61.7%	39.8%	22.3%	21.9%	19.6%	16.8%	15.4%	12.5%	8.7%	8.4%	0.2%	-	-	-

Table 32. Antimicrobial Resistance^{*} among Enterococcus by Species, 2003

^{*} Where % Resistance = (# isolates per species resistant to antimicrobial) / (total # isolates per species). † Dashes indicate 0.0% resistance to antimicrobial.

[‡] QDA resistance is not presented for *E. faecalis*.

							Antimi	crobial A	Agent									
Meat Type	Species	QDA	BAC	LIN	TET	FLA	KAN	ERY	TYL	NIT	STR	PEN	GEN	CIP	CHL	LZD	SAL	VAN
Chicken	<i>E. faecalis</i> (n=188)	_*	88.3%	97.3%	68.6%	_‡	28.2%	43.1%	42.6%	1.1%	22.9%	-	20.2%	-	-	-	-	-
Breast	<i>E. faecium</i> (n=248)	59.7%	98.8%	62.5%	51.6%	96.8%	34.3%	17.3%	12.5%	64.5%	16.9%	51.2%	5.6%	21.8%	-	-	-	-
Ground	E. faecalis (n=289)	_†	87.9%	94.1%	87.9%	-	36.0%	43.6%	43.9%	1.4%	30.4%	-	27.7%	-	-	-	-	-
Turkey	<i>E. faecium</i> (n=118)	79.7%	96.6%	70.3%	91.5%	96.6%	50.0%	44.1%	27.1%	52.5%	32.2%	65.3%	12.7%	39.0%	-	-	-	-
Ground	<i>E. faecalis</i> (n=224)	_†	75.4%	83.0%	20.5%	-	3.1%	4.9%	4.9%	-	5.4%	-	1.8%	0.4%	-	-	-	-
Beef	<i>E. faecium</i> (n=112)	50.0%	88.4%	25.9%	28.6%	96.4%	26.8%	8.9%	0.9%	36.6%	2.7%	8.0%	-	33.0%	-	-	-	-
Pork	<i>E. faecalis</i> (n=313)	_†	67.4%	83.7%	78.0%	-	4.8%	7.0%	7.0%	-	7.3%	-	0.3%	-	1.0%	-	-	-
Chop	<i>E. faecium</i> (n=97)	64.9%	64.9%	20.6%	69.1%	87.6%	10.3%	6.2%	2.1%	16.5%	3.1%	1.0%	-	6.2%	-	-	-	-
То	otal (N=1589)	84.1%	83.1%	74.9%	63.4%	34.4%	22.8%	22.1%	19.3%	17.9%	15.9%	13.5%	9.6%	9.1%	0.2%		-	-

 Table 33. Antimicrobial Resistance^{*} among Enterococcus faecalis & E. faecium by Meat Type, 2003

^{*} Where % Resistance = (# isolates resistant to antimicrobial per meat type per site) / (total # isolates per meat type per site). † QDA resistance is not presented for *E. faecalis*.

[‡] Dashes indicate 0.0% resistance to antimicrobial.

Site	Magt Tura							A	ntimicr	obial Ag	gent							
Site	Meat Type	QDA [†]	BAC	LIN	ТЕТ	FLA	ERY	KAN	TYL	NIT	STR	PEN	GEN	CIP	CHL	LZD	SAL	VAN
	CB (n=119)	75.0%	89.9%	90.8%	72.3%	15.1%	52.1%	26.9%	49.6%	5.0%	26.9%	1.7%	13.4%	2.5%	-	-	-	-
	GT (n=120)	100.0%	88.3%	96.7%	93.3%	1.7%	36.7%	25.8%	37.5%	0.8%	24.2%	0.8%	20.0%	0.8%	-	-	-	_
GA	GB (n=119)	66.7%	61.3%	77.3%	19.3%	16.0%	5.9%	5.9%	5.9%	4.2%	5.0%	-	1.7%	1.7%	-	-	-	-
	PC (n=116)	100.0%	59.5%	72.4%	84.5%	4.3%	3.4%	2.6%	3.4%	-	6.0%	-	-	-	-	-	-	-
	Total (N=474)	75.5%	74.9%	84.4%	67.3%	9.3%	24.7%	15.4%	24.3%	2.5%	15.6%	0.6%	8.9%	1.3%	-	-	-	-
	CB (n=113)	64.4%	98.2%	76.1%	69.9%	87.6%	27.4%	32.7%	21.2%	62.8%	11.5%	55.8%	0.9%	20.4%	-	-	-	-
	GT (n=103)	91.4%	97.1%	91.3%	89.3%	64.1%	49.5%	50.5%	41.7%	49.5%	40.8%	54.4%	19.4%	24.3%	-	-	-	-
MD	GB (n=92	44.3%	76.1%	63.0%	29.3%	66.3%	8.7%	15.2%	7.6%	17.4%	5.4%	7.6%	-	20.7%	-	-	-	-
	PC (n=90)	35.8%	70.0%	44.4%	64.4%	57.8%	5.6%	7.8%	3.3%	13.3%	3.3%	1.1%	-	7.8%	1.1%	-	-	-
	Total (N=398)	61.5%	86.4%	69.8%	64.3%	69.8%	23.9%	27.6%	19.3%	37.7%	15.8%	31.9%	5.3%	18.6%	0.3%	-	-	-
	CB (n=119)	34.2%	96.6%	63.0%	48.7%	62.2%	15.1%	34.5%	14.3%	54.6%	10.9%	43.7%	15.1%	17.6%	-	-	-	-
	GT (n=108)	58.3%	88.9%	65.7%	78.7%	33.3%	41.7%	38.0%	32.4%	6.5%	32.4%	11.1%	18.5%	8.3%	-	-	-	-
OR	GB (n=112)	55.0%	58.0%	52.7%	39.3%	53.6%	4.5%	5.4%	3.6%	10.7%	2.7%	0.9%	-	7.1%	-	-	-	-
	PC (n=103)	90.9%	68.0%	82.5%	62.1%	12.6%	8.7%	4.9%	7.8%	1.9%	6.8%	-	1.0%	-	2.9%	-	-	-
	Total (N=442)	51.5%	78.3%	65.6%	56.8%	41.4%	17.4%	21.0%	14.5%	19.5%	13.1%	14.7%	8.8%	8.6%	0.7%	-	-	-
	CB (n=115)	82.1%	91.3%	82.6%	46.1%	67.0%	29.6%	32.2%	27.0%	20.9%	35.7%	11.3%	14.8%	6.1%	-	-	-	-
	GT (n=87)	76.2%	87.4%	94.3%	87.4%	24.1%	46.0%	47.1%	43.7%	8.0%	23.0%	9.2%	35.6%	13.8%	-	-	-	-
TN	GB (n=109)	58.7%	69.7%	52.3%	23.9%	56.0%	12.8%	13.8%	6.4%	9.2%	3.7%	0.9%	1.8%	8.3%	-	-	-	-
	PC (n=117)	71.0%	65.0%	65.0%	80.3%	25.6%	9.4%	11.1%	8.5%	3.4%	7.7%	-	-	-	-	-	-	-
	Total (N=428)	72.0%	77.8%	72.4%	58.2%	44.2%	23.1%	24.8%	20.1%	10.5%	17.3%	5.1%	11.7%	6.5%	-	-	-	-
Total	(N=1742)	62.6%	79.1%	73.4%	61.7%	39.8%	22.3%	21.9%	19.6%	16.8%	15.4%	12.5%	8.7%	8.4%	0.2%	-	-	-

 Table 34. Antimicrobial Resistance^{*} among *Enterococcus* by Site, Meat Type, and Antimicrobial Agent, 2003

^{*} Where % Resistance = (# isolates resistant to antimicrobial per meat type per site) / (total # isolates per meat type per site).

 [†] Data does not include *E. faecalis* in QDA, as it is considered intrinsically resistant.
 [‡] Dashes indicate 0.0% resistance to antimicrobial.

Meat Type	Nun 0	nber o 1	f Anti 2-4	microl 5-7	bials ≥8
СВ	1	13	80	89	5
GT	7	14	125	106	37
GB	15	53	147	5	4
РС	9	38	246	18	2
Total	31	118	598	218	48

Table 35. Number of *Enterococcus faecalis* (N=1014) Resistant to Multiple Antimicrobial Agents,^{*} 2003

^{*} Data does not include QDA, as *E. faecalis* is considered intrinsically resistant.

Meat Type	Nu	mber	of Ar	ntimicr	obials
Jerre SF	0	1	2-4	5-7	<u>></u> 8
СВ	0	0	73	122	53
GT	1	0	20	37	60
GB	0	8	65	36	3
РС	0	3	81	10	3
Total	1	11	239	205	119

Table 36.Number of Enterococcus faecium (N=575) Resistant to
Multiple Antimicrobial Agents, 2003

Meat Type	N^{*}	\boldsymbol{n}^{\dagger}	% [‡]
Chicken Breast	477	396	83.0%
Ground Turkey	447	333	74.5%
Ground Beef	470	311	66.2%
Pork Chop	479	218	45.5%
Total	1873	1258	67.2%

Table 37.Escherichia coli by Meat Type, 2003

^{*} Where N = Number of retail meat samples.

[†] Where n = number of *E. coli* positive samples. [‡] Where % = (n / N).

Meat Tune		nicken Freast	_	ound urkey	_	ound Beef		Pork Thop
Meat Type	n	% [*]	n	%	n	%	n	%
Georgia (n=395)	120	30.4%	117	29.6%	90	22.8%	68	17.2%
Maryland (n=374)	113	30.2%	103	27.5%	87	23.3%	71	19.0%
Oregon (n=212)	78	36.8%	49	23.1%	57	26.9%	28	13.2%
Tennessee (n=277)	85	30.7%	64	23.1%	77	27.8%	51	18.4%
Total (N=1258)	396	31.5%	333	26.5%	311	24.7%	218	17.3%

Table 38. Escherichia coli by Site and Meat Type, 2003

^{*}Where % Positive = (# isolates per meat type per site) / (total # isolates for that site).

Month	n	% [*]
January	110	8.7%
February	101	8.0%
March	126	10.0%
April	112	8.9%
May	118	9.4%
June	104	8.3%
July	92	7.3%
August	111	8.8%
September	86	6.8%
October	86	6.8%
November	105	8.3%
December	107	8.5%
Total	1258	100.0%

 Table 39. Escherichia coli Isolates by Month for All Sites, 2003

^{*}Where % Positive = (# isolates per month) / (total # isolates).

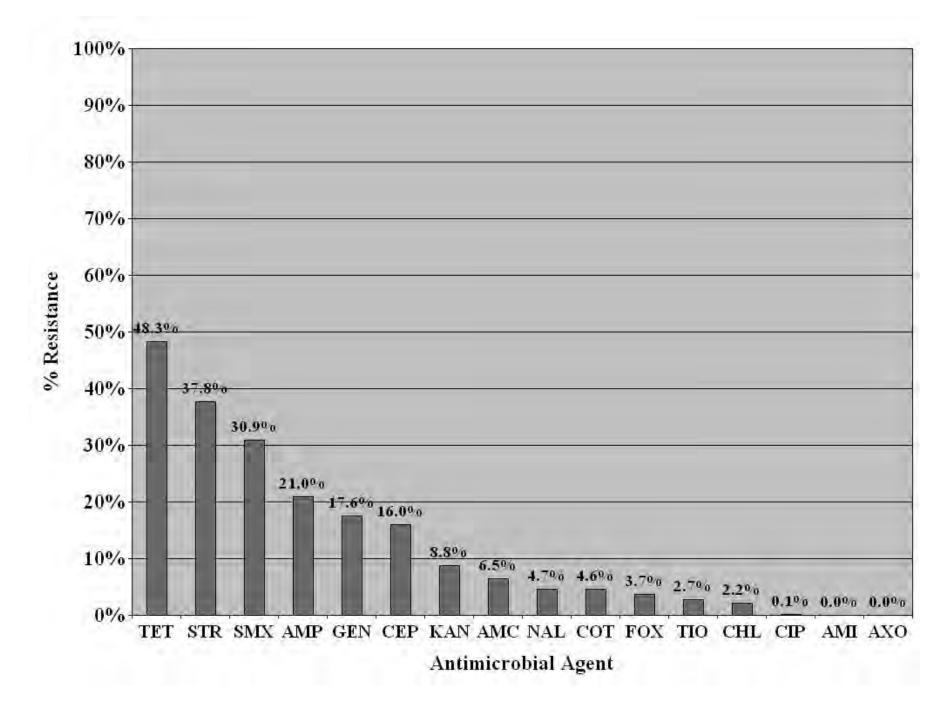
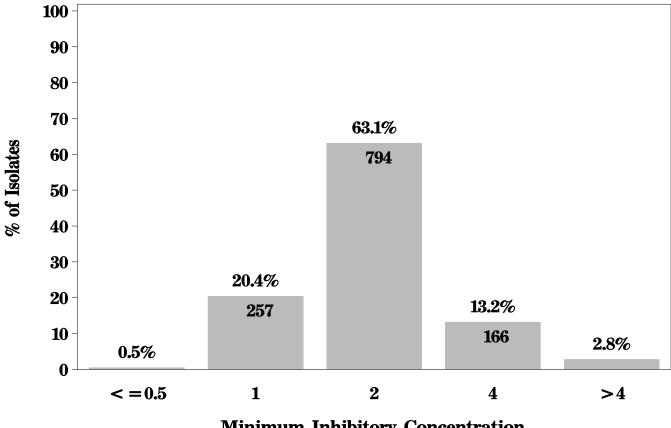


Figure 16. Antimicrobial Resistance among *E. coli* isolates (n =1258), 2003.

E. coli from All Meats Types (N=1258)						Di	stribut	ion (%	5) of M	ICs (ii	n µg/m	l)						
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	21.0%							3.7	24.2	46.7	4.1	0.4	0.2	20.7				
Amoxicillin/Clavulanic Acid	6.5%							3.9	18.7	51.3	17.3	2.3	2.6	3.9				
Cefoxitin	3.7%							0.5	14.1	55.2	23.3	3.3	3.7					
Ceftiofur	2.7%				6.1	51.2	37.0	2.1	0.4	0.5	1.8	0.9						
Ceftriaxone	0.0%					94.6	0.7	1.3	0.2	0.5	1.3	1.3	0.2					
Cephalothin	16.0%								1.0	6.8	35.8	40.5	8.3	7.6				
Nalidixic Acid	4.7%						0.1	2.9	44.6	45.9	1.7	0.1	0.1	4.6				
Ciprofloxacin	0.1%	91.7	3.4	0.2	2.0	2.3	0.4				0.1						_	
Sulfamethoxazole	30.9%											67.5	1.3	0.2		0.1	0.1	30.8
Trimethoprim/Sulfamethoxazole	4.6%				88.0	4.5	2.0	0.6	0.2		4.6							
Amikacin	0.0%						0.5	20.4	63.1	13.2	2.8							
Gentamicin	17.6%					4.1	49.8	24.4	2.8	0.4	1.0	6.4	11.2					
Kanamycin	8.8%										84.7	5.6	0.8	0.2	8.6			
Streptomycin*	37.8%												62.3	11.5	26.2			
Chloramphenicol	2.2%								1.2	20.8	71.5	4.2	0.9	1.4				
Tetracycline	48.3%									49.9	1.7	1.3	1.0	46.1				

Figure 17. MIC Distribution among all Antimicrobial Agents


Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

 $\label{eq:currently} \ \text{no CLSI/NCCLS} \ \text{breakpoints have been established for this organism/antimicrobial combination}.$

 $^{\dagger}\textsc{Discrepancies}$ between %R and sums of distribution %s are due to rounding.

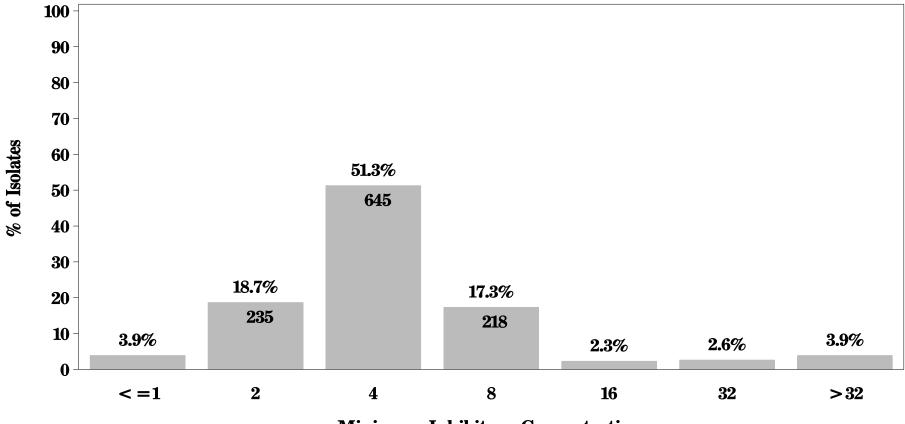

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

Figure 17a: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* (N=1258 Isolates) **Breakpoints:** Susceptible $< = 16 \ \mu g/mL$ Resistant $> = 64 \ \mu g/mL$

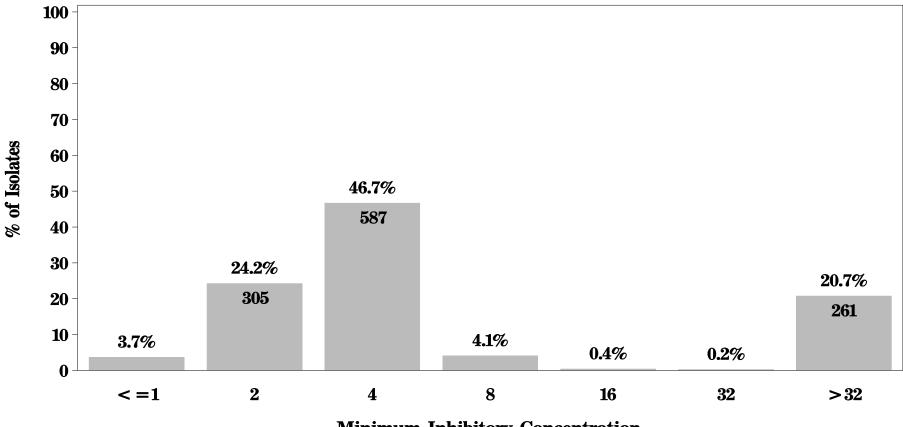
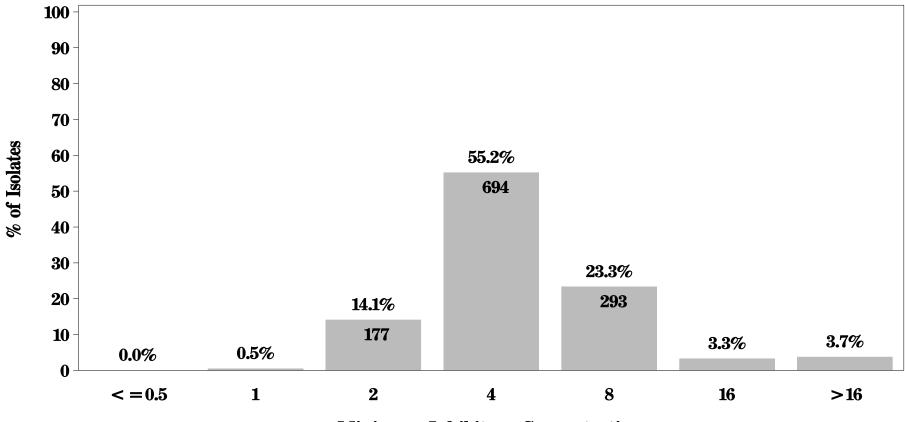
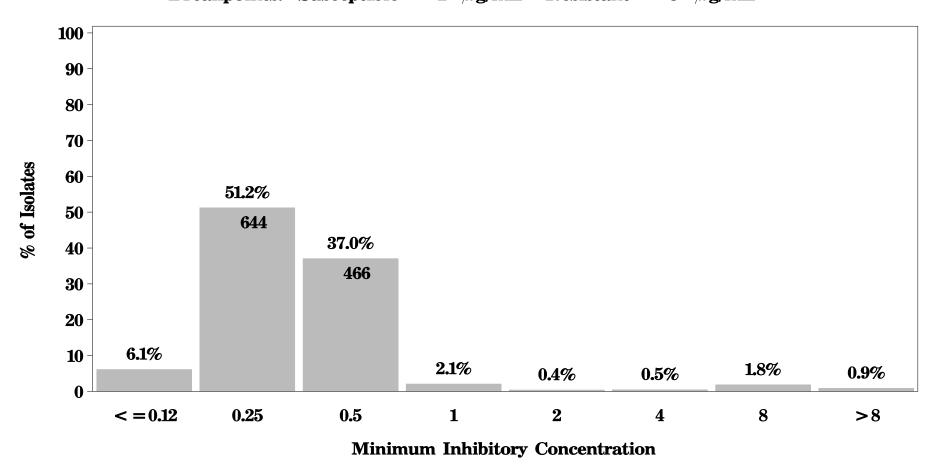
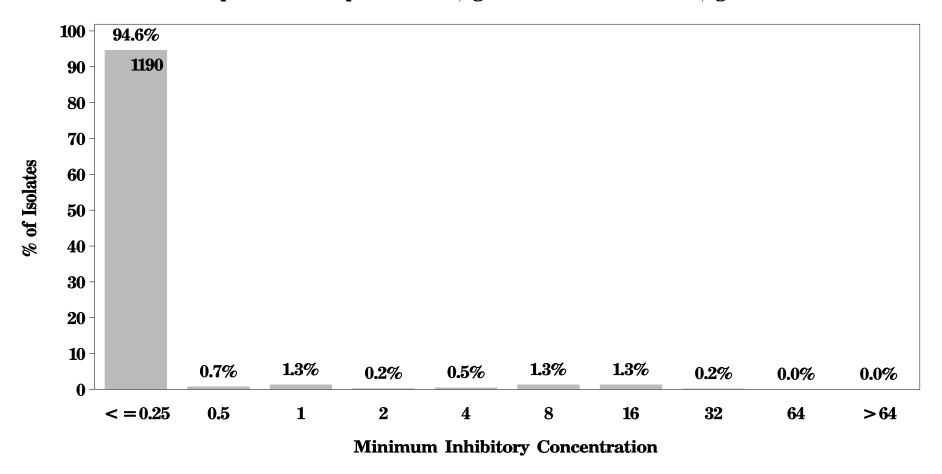


Figure 17b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* (N=1258 Isolates)


Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$


Figure 17c: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* (N=1258 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL


Figure 17d: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia coli* (N=1258 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

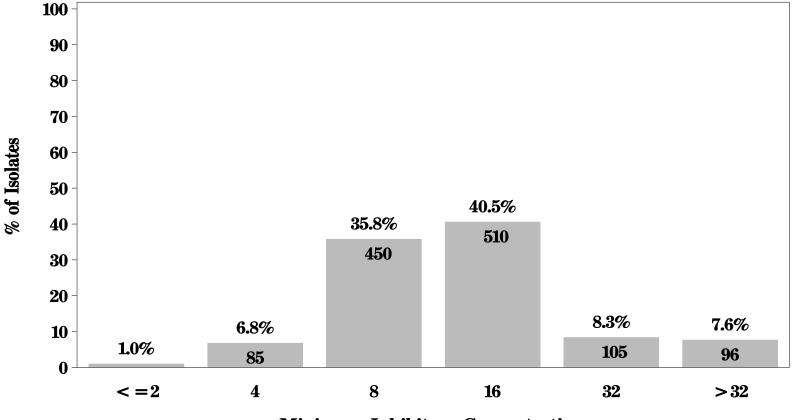

Figure 17e: Minimum Inhibitory Concentration of Ceftiofur
for Escherichia coli (N=1258 Isolates)Breakpoints: Susceptible < =2 μg/mL Resistant > =8 μg/mL

Figure 17f: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia coli* (N=1258 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 64 μ g/mL

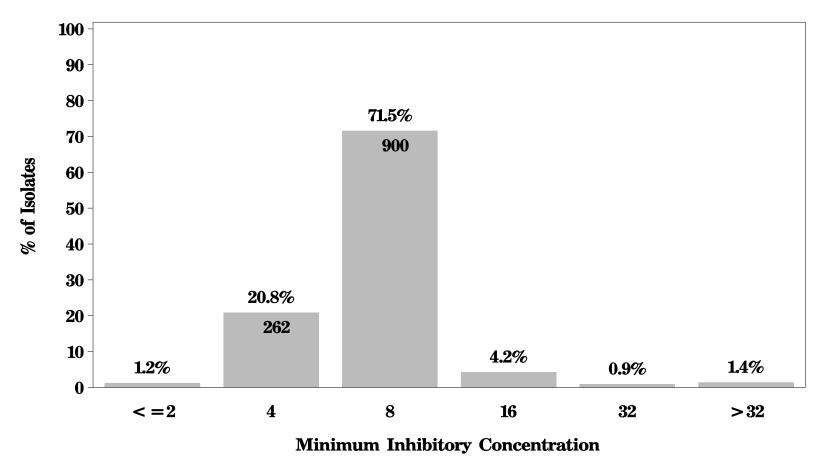
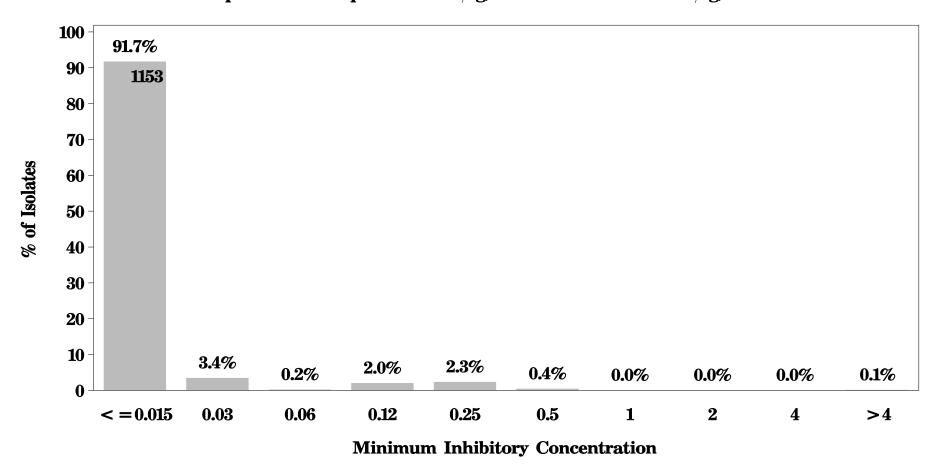
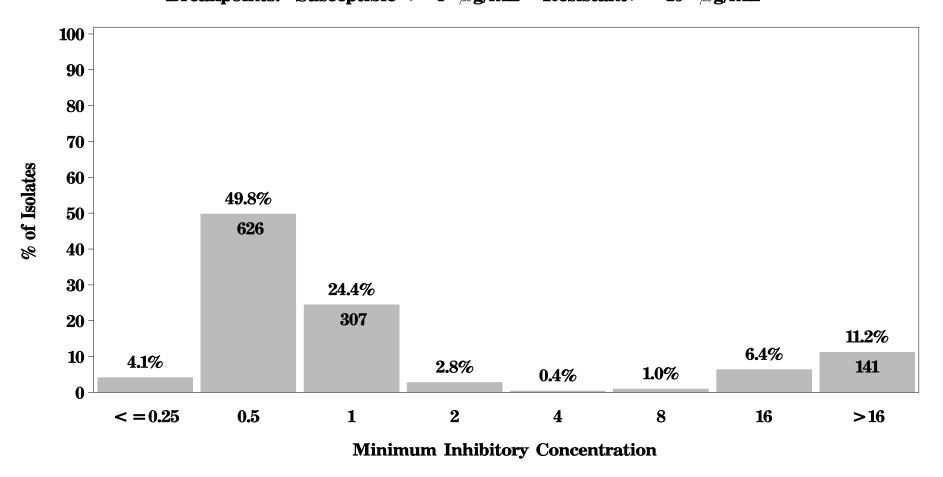


Figure 17g: Minimum Inhibitory Concentration of Cephalothin for *Escherichia coli* (N=1258 Isolates) Breakpoints: Susceptible <= 8 µg/mL Resistant >= 32 µg/mL



Minimum Inhibitory Concentration


Figure 17h: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* (N=1258 Isolates) Breakpoints: Susceptible < =8 μg/mL Resistant > =32 μg/mL

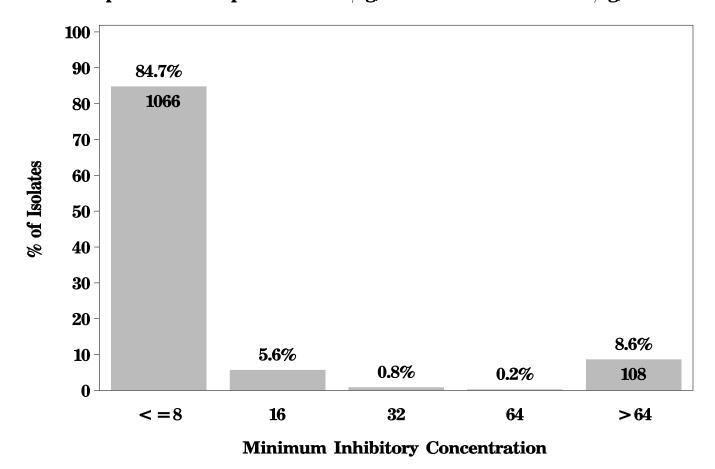

Figure 17i: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* (N=1258 Isolates) Breakpoints: Susceptible < =1 μg/mL Resistant > =4 μg/mL

Figure 17j: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* (N=1258 Isolates) Breakpoints: Susceptible < =4 μg/mL Resistant > =16 μg/mL

Figure 17k: Minimum Inhibitory Concentration of Kanamycin for Escherichia coli (N=1258 Isolates) Breakpoints: Susceptible <=16 μg/mL Resistant >=64 μg/mL

Figure 171: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* (N=1258 Isolates) **Breakpoints:** Susceptible $< = 16 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

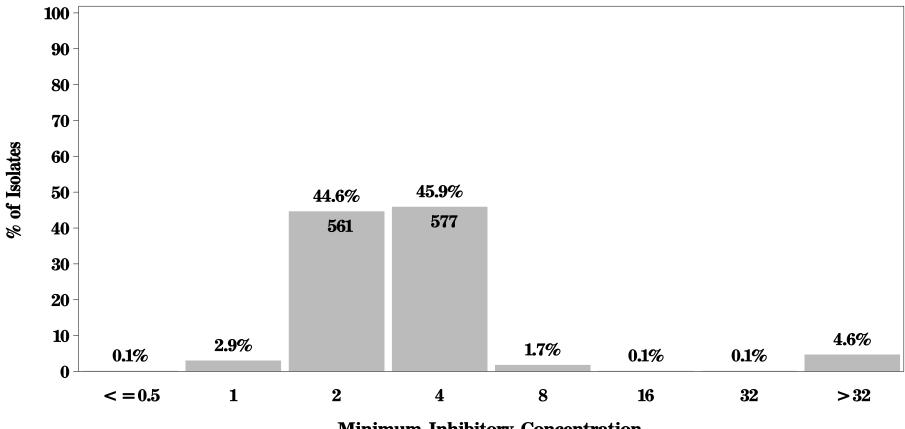
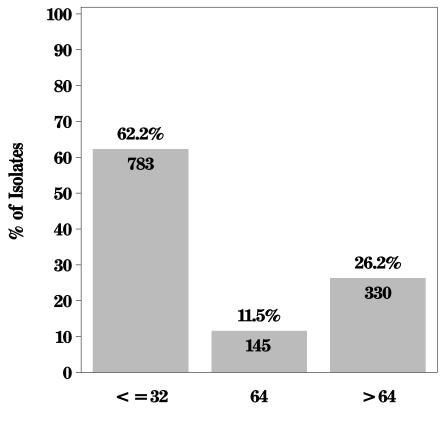
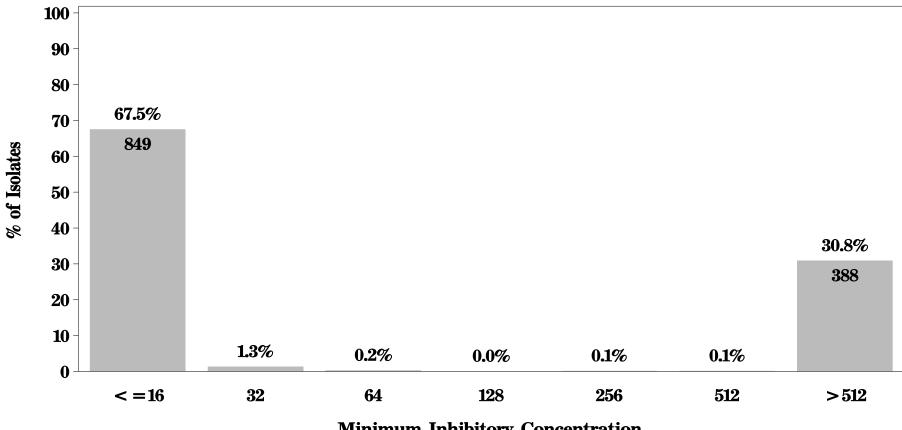
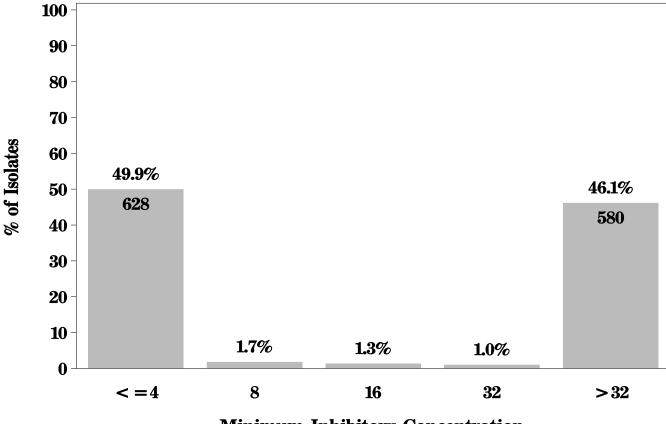




Figure 17m: Minimum Inhibitory Concentration of Streptomycin
for Escherichia coli (N=1258 Isolates)Breakpoints: Susceptible < = 32 μg/mL Resistant > = 64 μg/mL



Minimum Inhibitory Concentration

Figure 17n: Minimum Inhibitory Concentration of Sulfamethoxazole for *Escherichia coli* (N=1258 Isolates) **Breakpoints:** Susceptible $< = 256 \ \mu g/mL$ Resistant $> = 512 \ \mu g/mL$

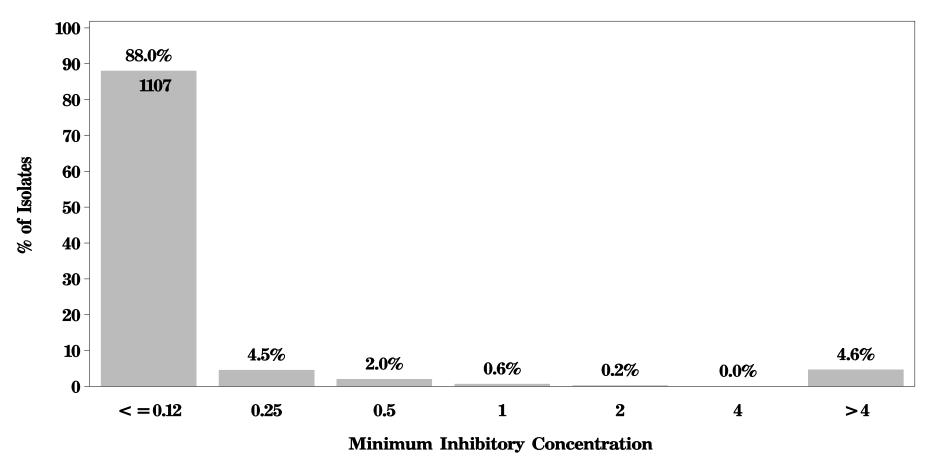


Figure 170: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* (N=1258 Isolates) Breakpoints: Susceptible <= 4 µg/mL Resistant >= 16 µg/mL

Figure 17p: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* (N=1258 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 4 \mu g/mL$

Antimicrobial Agent	n	% R *
Tetracycline	608	48.3%
Streptomycin	475	37.8%
Sulfamethoxazole	389	30.9%
Ampicillin	264	21.0%
Gentamicin	221	17.6%
Cephalothin	201	16.0%
Kanamycin	111	8.8%
Amoxicillin/Clavulanic Acid	82	6.5%
Nalidixic Acid	59	4.7%
Trimethoprim/Sulfamethoxazole	58	4.6%
Cefoxitin	47	3.7%
Ceftiofur	34	2.7%
Chloramphenicol	28	2.2%
Ciprofloxacin	1	0.1%
Ceftriaxone	0	0.0%
Amikacin	0	0.0%

Table 40. Antimicrobial Resistance (%R) among E. coli Isolates (N=1258), 2003

*

^{*}Where % R = (n / N).

E. coli from Chicken Breast (N=396)	Distribution (%) of MICs (in µg/ml)																	
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	25.3%							1.5	24.5	43.9	4.5	0.3	0.5	24.7				
Amoxicillin/Clavulanic Acid	13.6%							2.3	21.2	45.7	15.7	1.5	4.3	9.3				
Cefoxitin	9.3%								10.6	50.5	25.8	3.8	9.3					
Ceftiofur	7.6%				4.0	43.2	39.4	3.3	1.0	1.5	4.8	2.8						
Ceftriaxone	0.0%					87.1	1.0	2.5	0.3	1.5	3.5	3.5	0.5					
Cephalothin	22.0%								0.5	6.1	31.8	39.6	6.8	15.2				
Nalidixic Acid	4.0%							4.0	47.5	43.2	1.3		0.3	3.8				
Ciprofloxacin	0.0%	92.9	3.0		2.3	1.5	0.3											
Sulfamethoxazole	38.4%											59.8	1.3	0.5				38.4
Trimethoprim/Sulfamethoxazole	7.1%				83.6	5.3	2.3	1.3	0.5		7.1							
Amikacin	0.0%						0.8	20.2	63.4	12.4	3.3							
Gentamicin	29.3%					3.5	43.9	20.2	1.5	0.3	1.3	10.6	18.7					
Kanamycin	6.8%										84.1	7.8	1.3	0.5	6.3			
Streptomycin*	56.1%												44.0	15.2	40.9			
Chloramphenicol	0.0%								1.5	25.5	69.4	3.5						
Tetracycline	42.9%									55.6	1.5	0.8	1.0	41.2				

Figure 18a. MIC Distribution among *E. coli* from Chicken Breast

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

E. coli from Ground Turkey (N=333)							Ι	Distrib	ution (%) of N	MICs (in µg/i	ml)					
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	35.7%							3.0	19.2	40.5	1.5		0.3	35.4				
Amoxicillin/Clavulanic Acid	3.0%							3.0	15.3	45.6	27.0	6.0	1.5	1.5				
Cefoxitin	1.2%							0.3	12.6	60.4	22.2	3.3	1.2					
Ceftiofur	0.3%				4.2	55.3	38.7	1.2	0.3		0.3							
Ceftriaxone	0.0%					97.9	0.3	1.2	0.3			0.3						
Cephalothin	18.9%								0.3	6.0	28.2	46.5	14.7	4.2				
Nalidixic Acid	11.7%						0.3	3.0	41.7	41.4	1.5	0.3		11.7				
Ciprofloxacin	0.3%	83.5	3.9	0.6	4.2	6.3	1.2				0.3						_	
Sulfamethoxazole	51.7%											45.9	2.1			0.3		51.7
Trimethoprim/Sulfamethoxazole	6.9%				81.7	7.5	3.0	0.6	0.3		6.9							
Amikacin	0.0%						0.6	24.9	58.6	14.1	1.8							
Gentamicin	29.7%					5.1	42.3	18.3	2.1	0.9	1.5	10.5	19.2					
Kanamycin	16.8%										74.2	7.5	1.5	0.3	16.5			
Streptomycin*	54.7%												45.3	17.7	36.9			
Chloramphenicol	3.6%								1.2	24.0	68.8	2.4	0.6	3.0				
Tetracycline	77.8%									21.3	0.9	0.3	0.9	76.6				

Figure 18b. MIC Distribution among E. coli from Ground Turkey

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

E coli from Ground Beef (N=311)		Distribution (%) of MICs (in µg/ml)																
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	5.1%							8.4	28.3	52.4	5.5	0.3		5.1				
Amoxicillin/Clavulanic Acid	2.3%							7.4	19.6	62.4	7.7	0.6	1.6	0.6				
Cefoxitin	0.3%							1.6	21.2	56.3	18.0	2.6	0.3					
Ceftiofur	0.3%				11.3	55.3	31.5	1.6			0.3							
Ceftriaxone	0.0%					98.4	0.6	0.3	0.3		0.3							
Cephalothin	8.0%								2.6	9.0	44.1	36.3	4.5	3.5				
Nalidixic Acid	1.0%							1.6	44.1	51.1	2.3			1.0				
Ciprofloxacin	0.0%	95.5	3.5		0.6	0.3												
Sulfamethoxazole	10.3%											89.1	0.6				0.3	10.0
Trimethoprim/Sulfamethoxazole	0.3%				97.4	1.3	1.0				0.3							
Amikacin	0.0%							18.6	68.8	11.6	1.0							
Gentamicin	1.0%					4.2	62.7	28.0	3.5		0.6	0.6	0.3					
Kanamycin	2.9%										93.2	3.9			2.9			
Streptomycin*	9.0%												91.0	3.5	5.5			
Chloramphenicol	2.3%								1.0	15.4	76.2	5.1	1.3	1.0				
Tetracycline	25.1%									71.4	3.5	2.6	1.0	21.5				

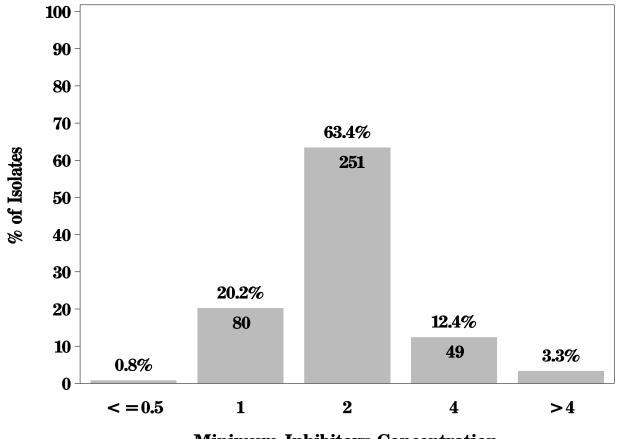
Figure 18c. MIC Distribution among *E. coli* from Ground Beef

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

E. coli from Pork Chop (N=218)							Ι	Distrib	ution (%) of I	MICs (in µg/ı	ml)					
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	13.3%							1.8	25.7	52.8	5.0	1.4		13.3				
Amoxicillin/Clavulanic Acid	5.1%							3.2	17.9	54.1	19.3	0.5	2.8	2.3				
Cefoxitin	2.35								12.4	54.1	28.0	3.2	2.3					
Ceftiofur	0.9%				5.5	53.7	38.1	1.8			0.9							
Ceftriaxone	0.0%					97.7	0.9	0.5			0.5	0.5						
Cephalothin	11.9%								0.5	6.0	42.7	39.0	6.9	5.0				
Nalidixic Acid	0.5%							2.8	44.5	50.0	2.3			0.5				
Ciprofloxacin	0.0%	96.3	3.2			0.5												
Sulfamethoxazole	15.1%											83.5	0.9	0.5				15.1
Trimethoprim/Sulfamethoxazole	2.8%				92.2	3.2	1.4	0.5			2.8			_				
Amikacin	0.0%						0.5	16.5	61.5	15.6	6.0							
Gentamicin	1.4%					3.7	53.2	36.2	5.0	0.5		0.5	0.9					
Kanamycin	8.7%										89.9	1.4			8.7			
Streptomycin*	19.7%												80.3	6.9	12.8			
Chloramphenicol	4.1%								0.9	15.1	72.9	6.9	2.3	1.8				
Tetracycline	46.3%									52.8	0.9	1.8	0.9	43.6				


Figure 18d. MIC Distribution among E. coli from Pork Chop

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

*Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination.

[†]Discrepancies between R and sums of distribution s are due to rounding.

Figure 19a: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible <= 16 μ g/mL Resistant >= 64 μ g/mL

Minimum Inhibitory Concentration

Figure 19a: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible <= 16 μ g/mL Resistant >= 64 μ g/mL

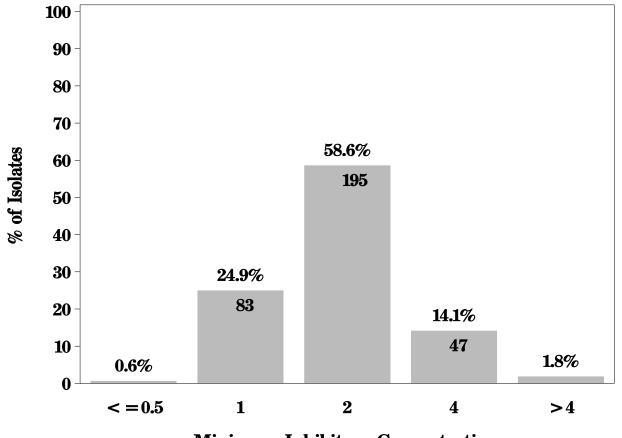
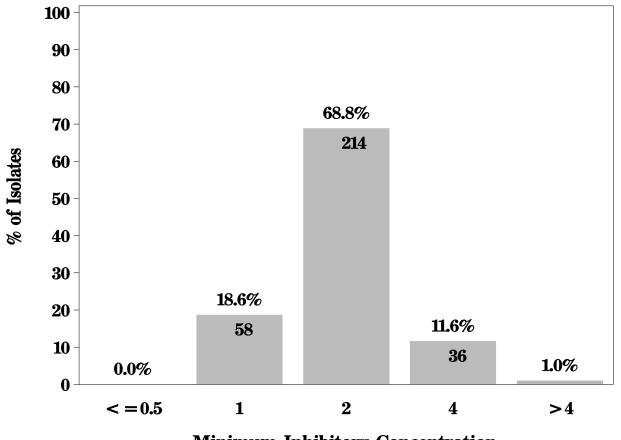
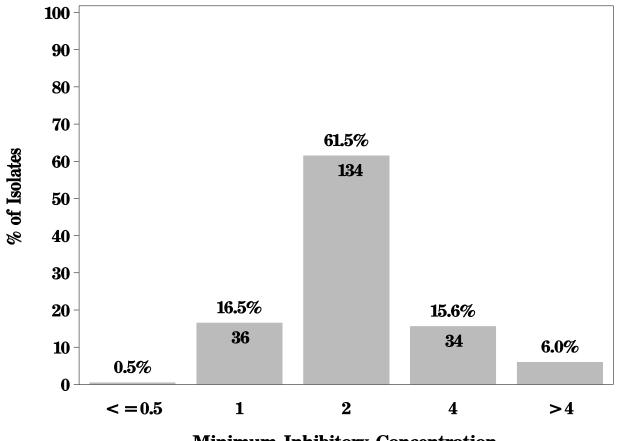
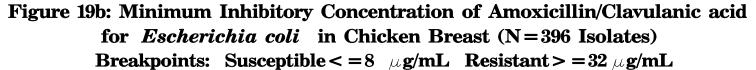
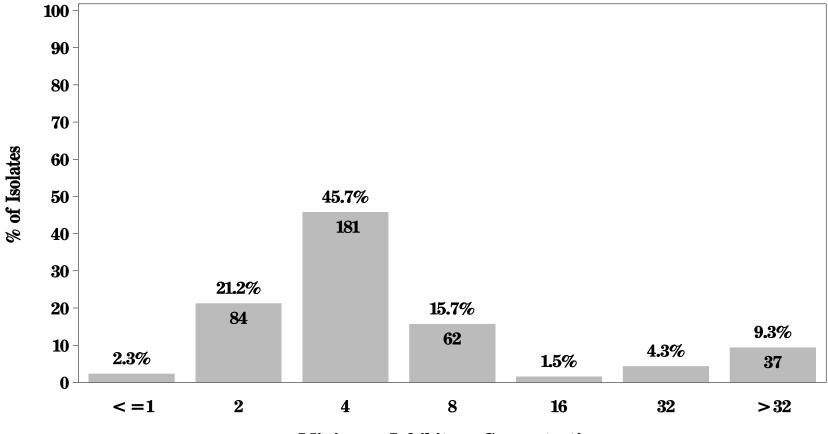
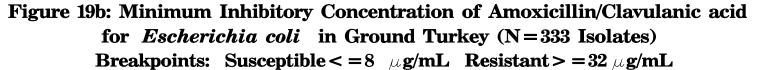
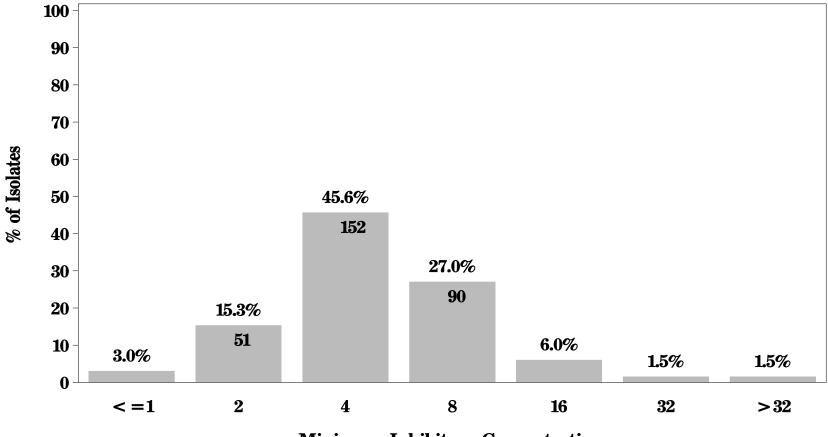
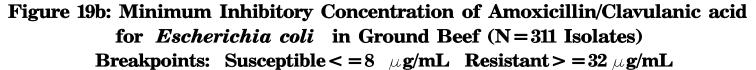
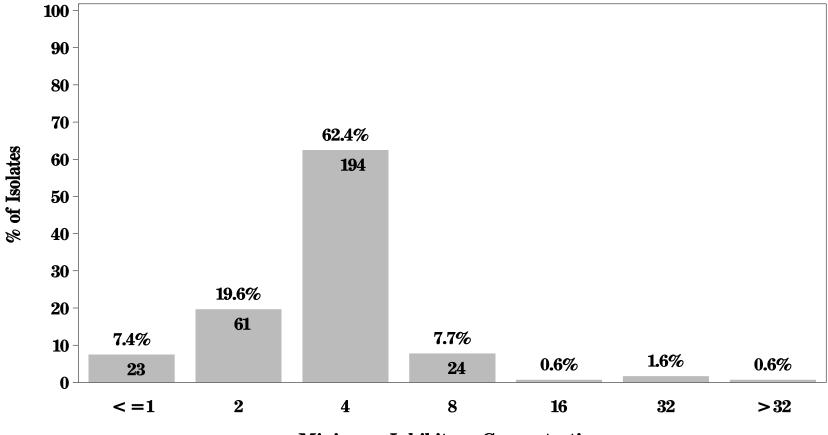


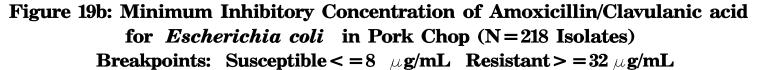
Figure 19a: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Ground Beef (N=311 Isolates)
Breakpoints: Susceptible < =16 μg/mL Resistant > =64 μg/mL


Figure 19a: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Pork Chop (N=218 Isolates)
Breakpoints: Susceptible < =16 μg/mL Resistant > =64 μg/mL







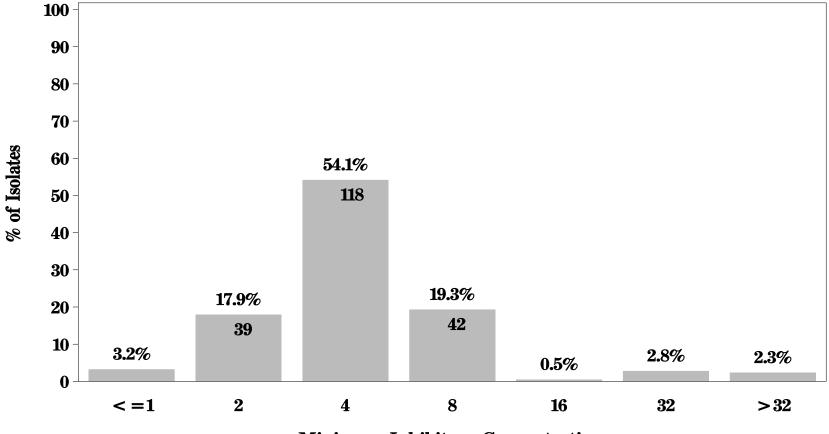


Figure 19c: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

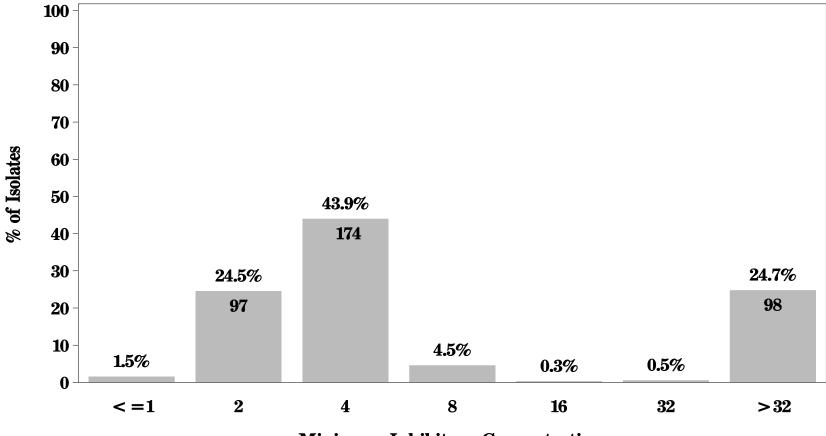


Figure 19c: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

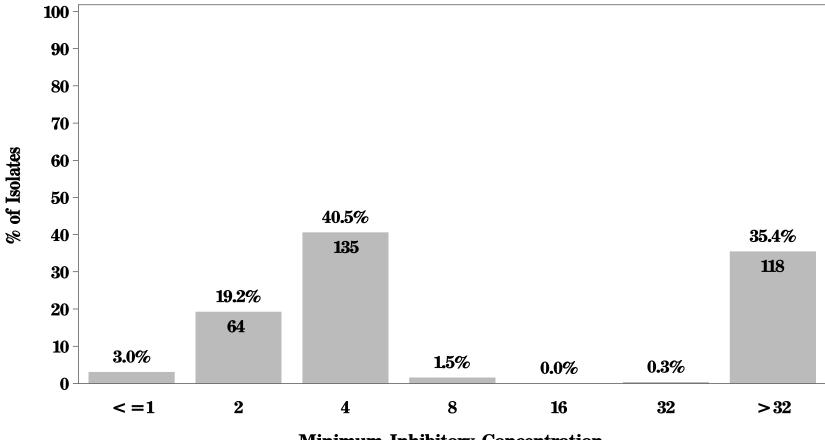


Figure 19c: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Ground Beef (N=311 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

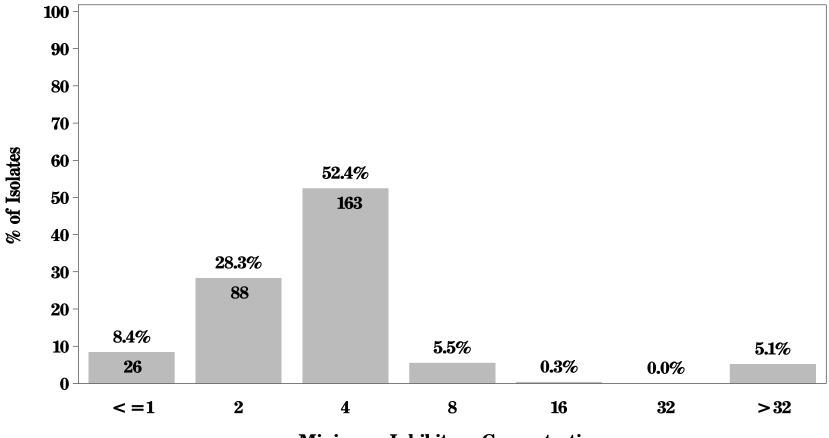


Figure 19c: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Pork Chop (N=218 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

Figure 19d: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 32 μ g/mL

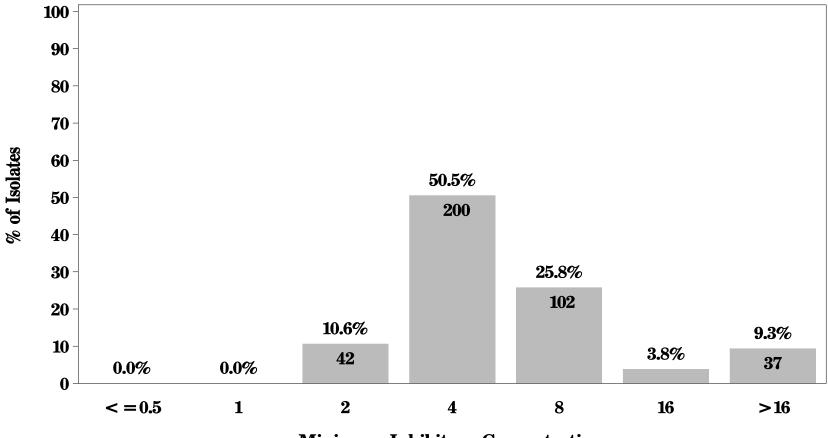


Figure 19d: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

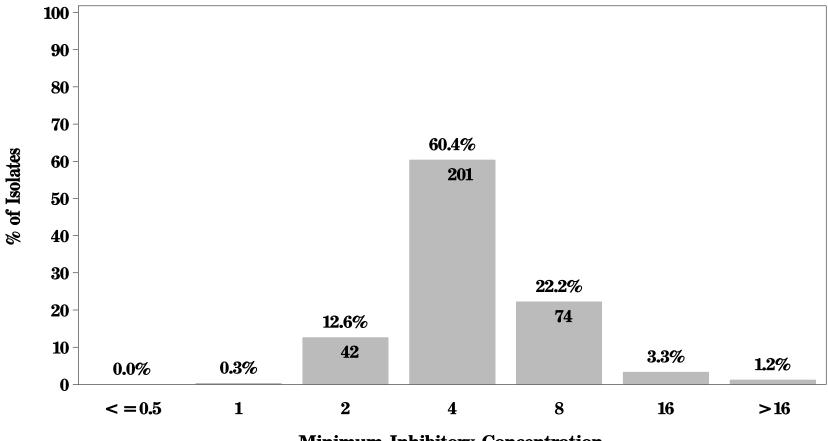


Figure 19d: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia coli* in Ground Beef (N=311 Isolates) Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 32 μ g/mL

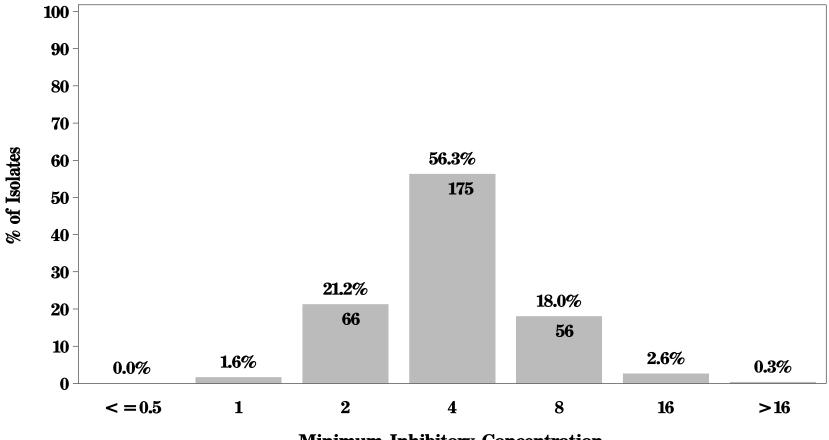
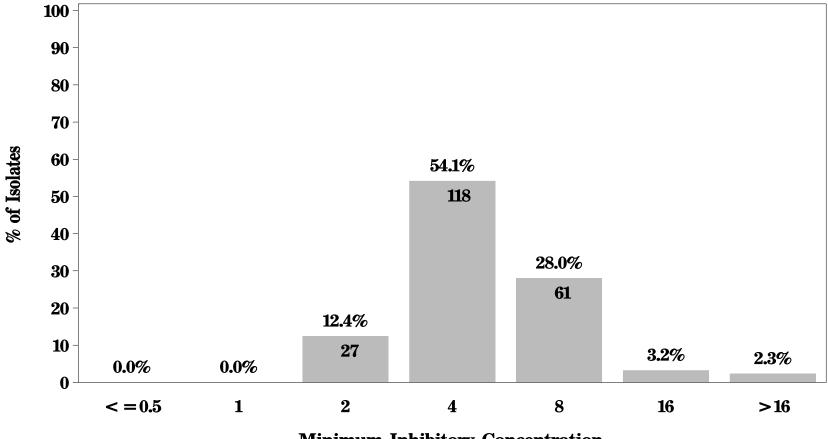



Figure 19d: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia coli* in Pork Chop (N=218 Isolates)
Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

Figure 19e: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Chicken Breast (N=396 Isolates) **Breakpoints:** Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

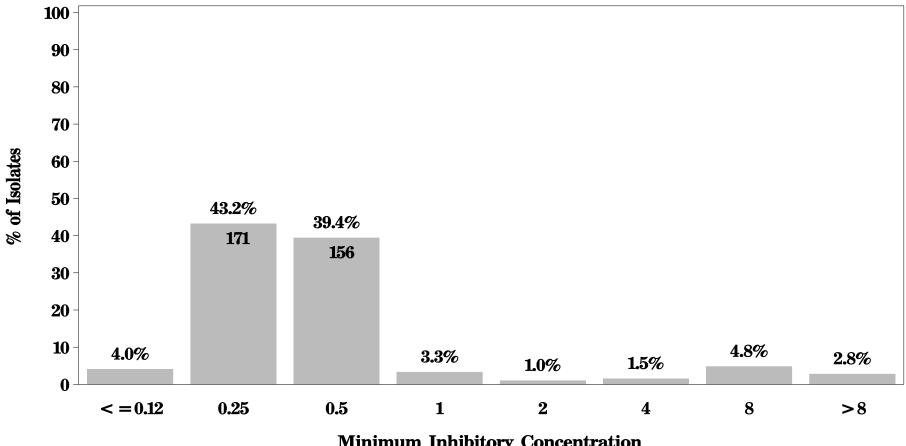
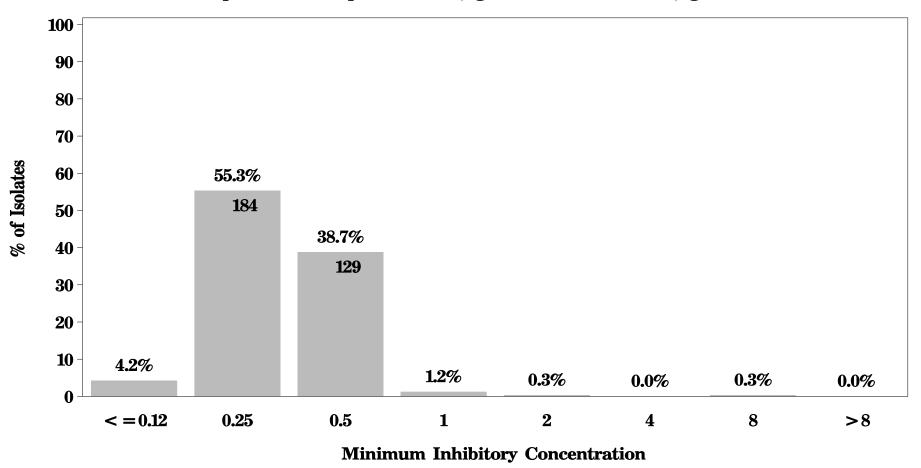



Figure 19e: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible <= 2 μ g/mL Resistant >= 8 μ g/mL

Figure 19e: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Ground Beef (N=311 Isolates) **Breakpoints:** Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

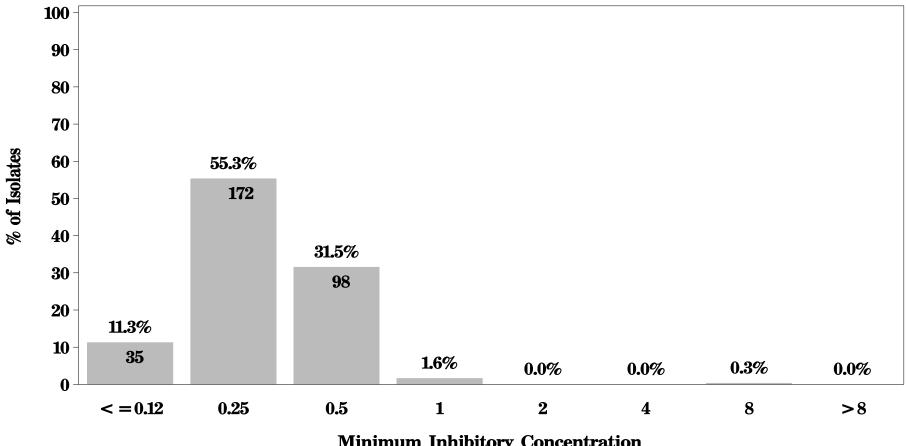


Figure 19e: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Pork Chop (N=218 Isolates)
Breakpoints: Susceptible <= 2 μg/mL Resistant >= 8 μg/mL

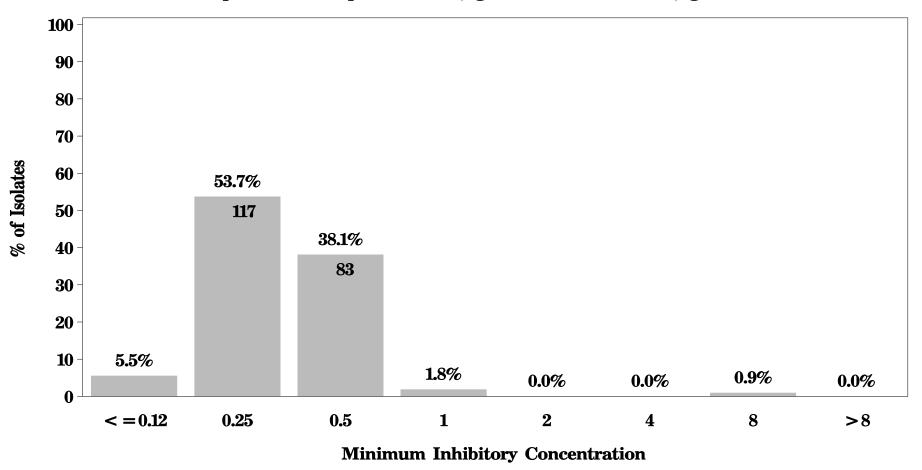


Figure 19f: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 64 μ g/mL

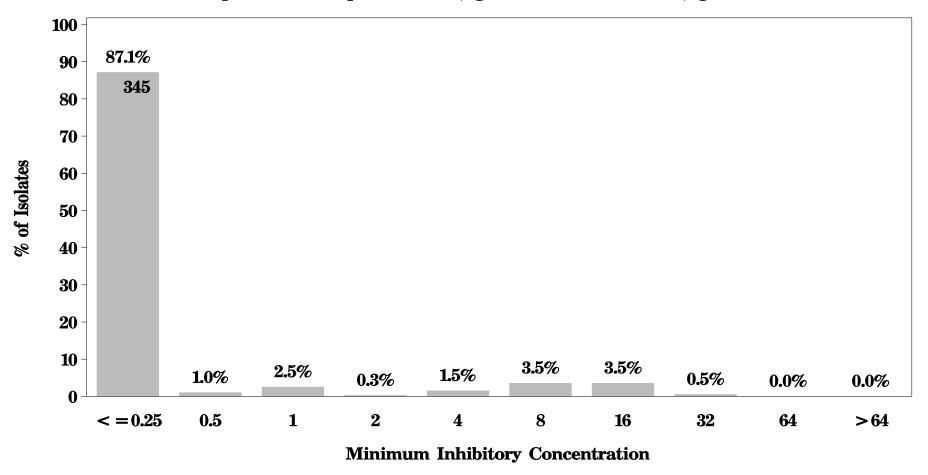


Figure 19f: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 64 μ g/mL

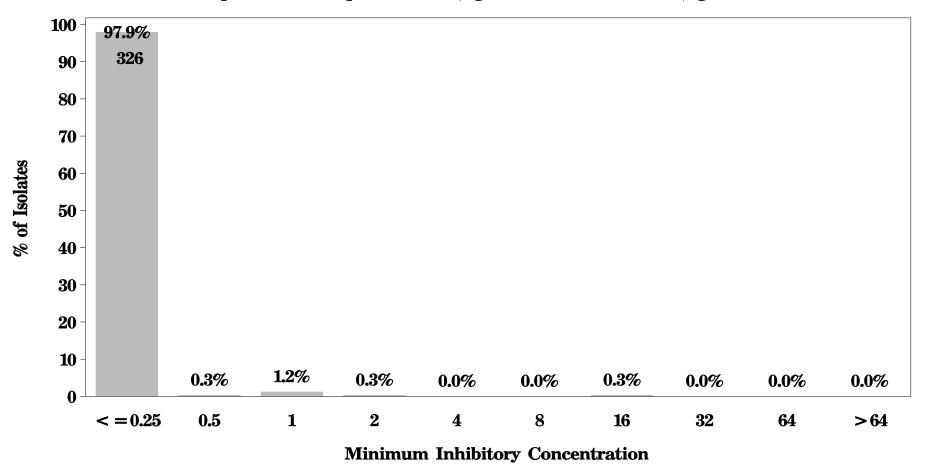


Figure 19f: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia coli* in Ground Beef (N=311 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 64 μg/mL

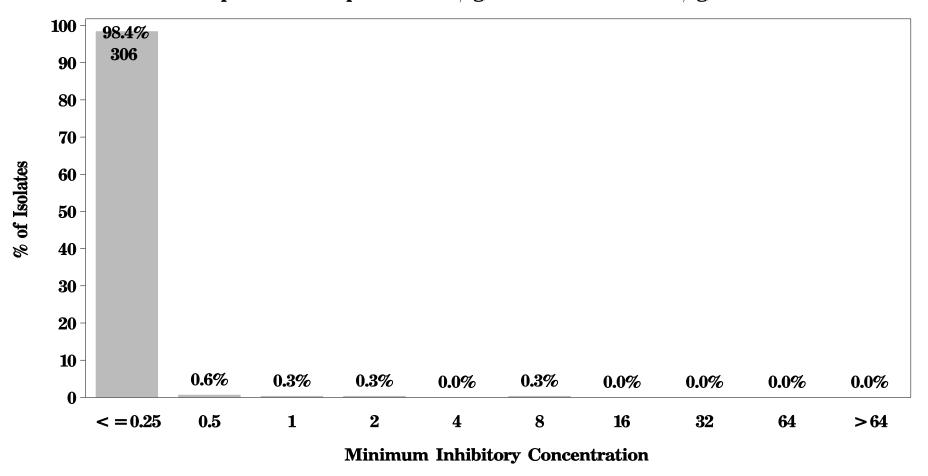


Figure 19f: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia coli* in Pork Chop (N=218 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 64 μg/mL

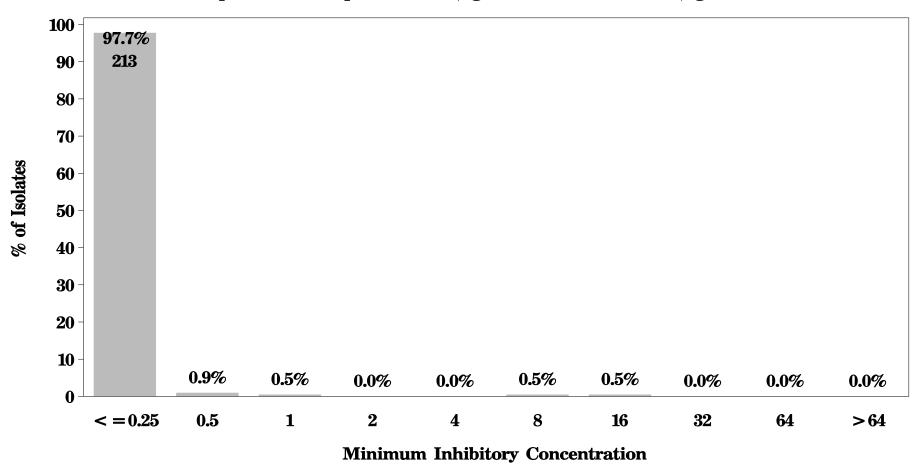


Figure 19g: Minimum Inhibitory Concentration of Cephalothin for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 32 μ g/mL

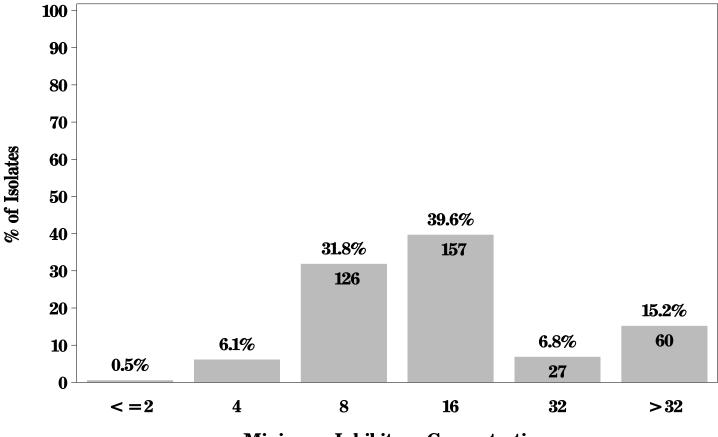


Figure 19g: Minimum Inhibitory Concentration of Cephalothin for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 32 μ g/mL

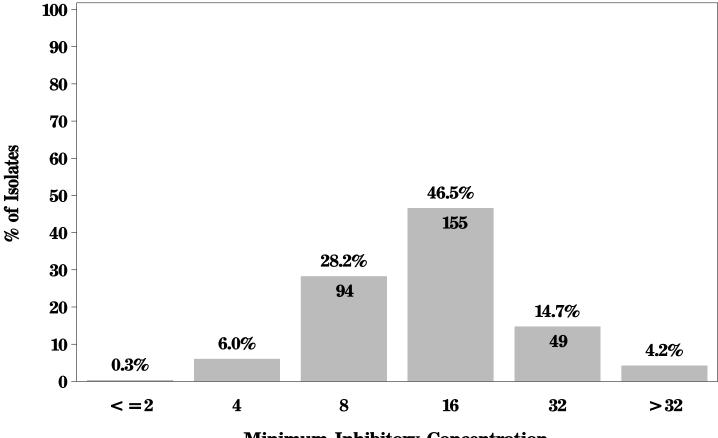


Figure 19g: Minimum Inhibitory Concentration of Cephalothin for *Escherichia coli* in Ground Beef (N=311 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

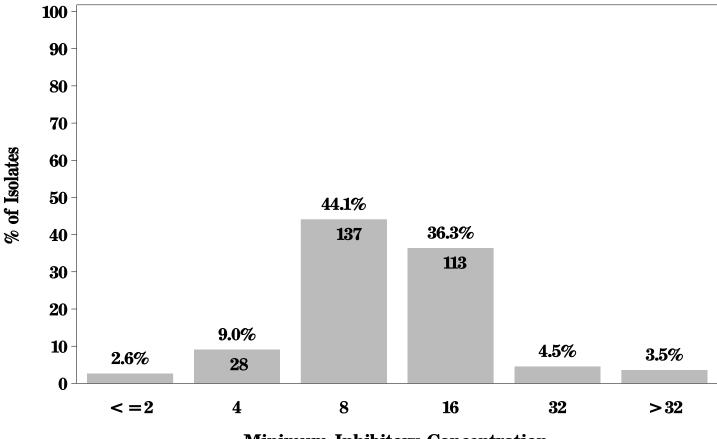
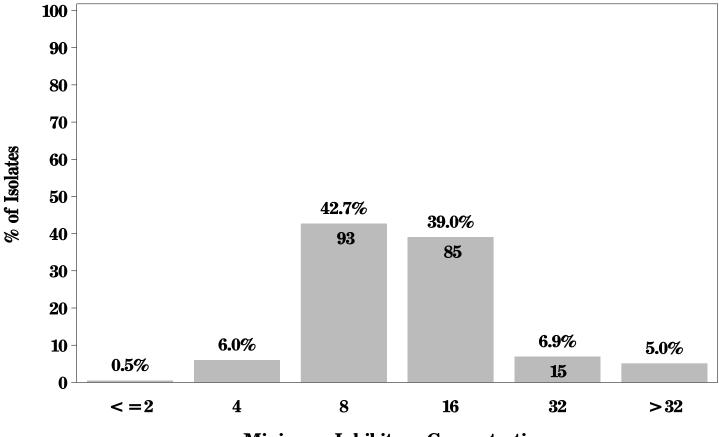
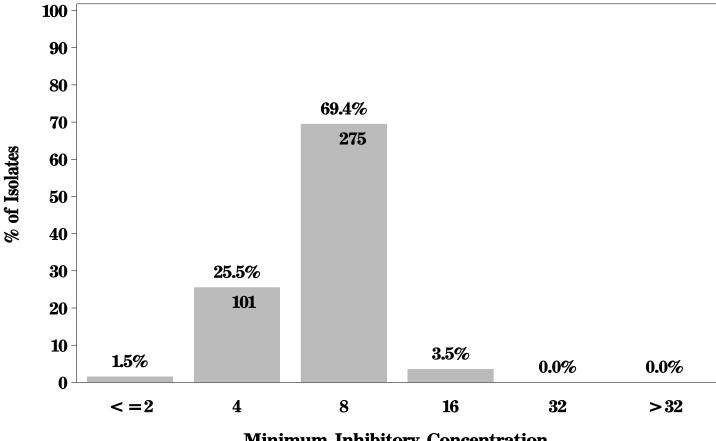




Figure 19g: Minimum Inhibitory Concentration of Cephalothin for *Escherichia coli* in Pork Chop (N=218 Isolates) Breakpoints: Susceptible <= 8 μg/mL Resistant >= 32 μg/mL

Figure 19h: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Chicken Breast (N=396 Isolates) **Breakpoints:** Susceptible $< = 8 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

Figure 19h: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

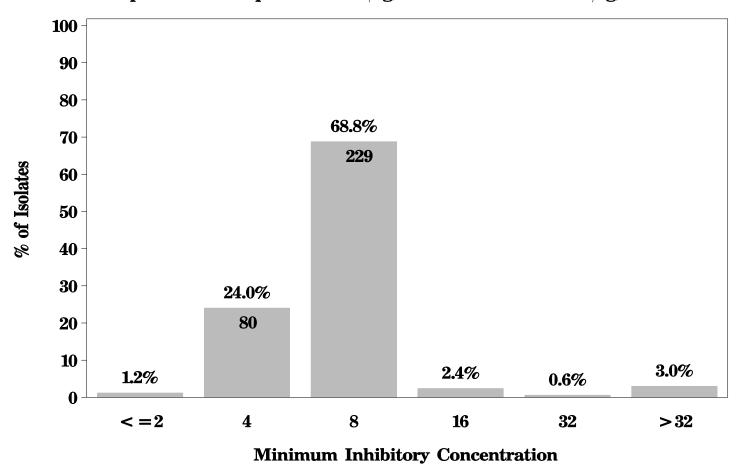
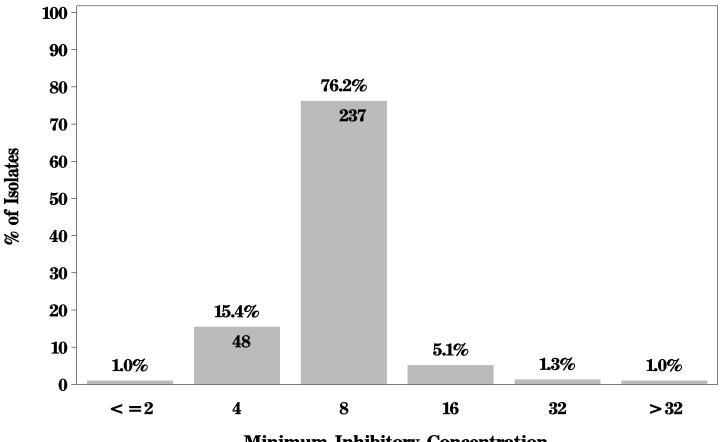



Figure 19h: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Ground Beef (N=311 Isolates) **Breakpoints:** Susceptible $< = 8 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

Figure 19h: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Pork Chop (N = 218 Isolates) **Breakpoints:** Susceptible $< = 8 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

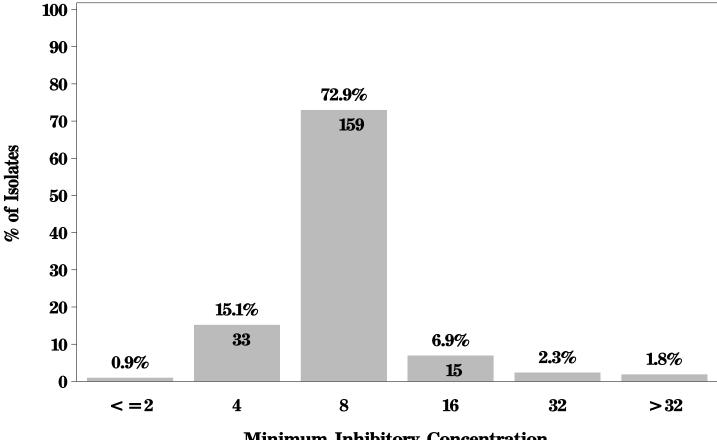


Figure 19i: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

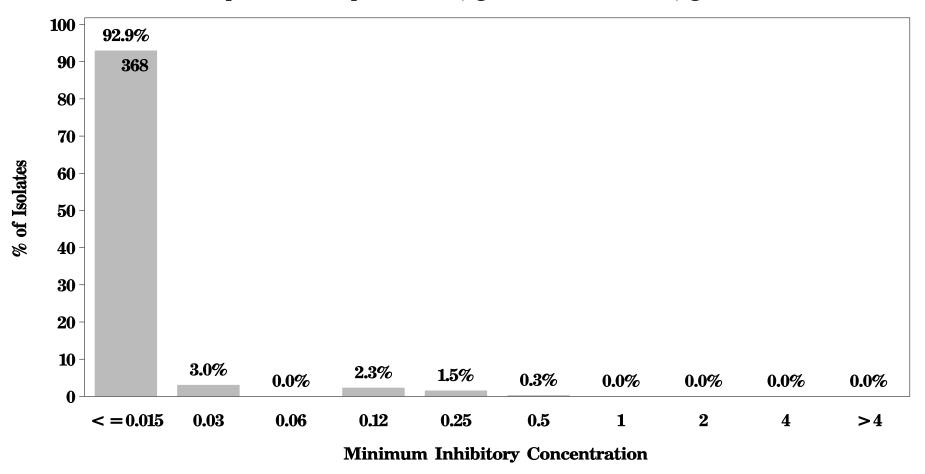


Figure 19i: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

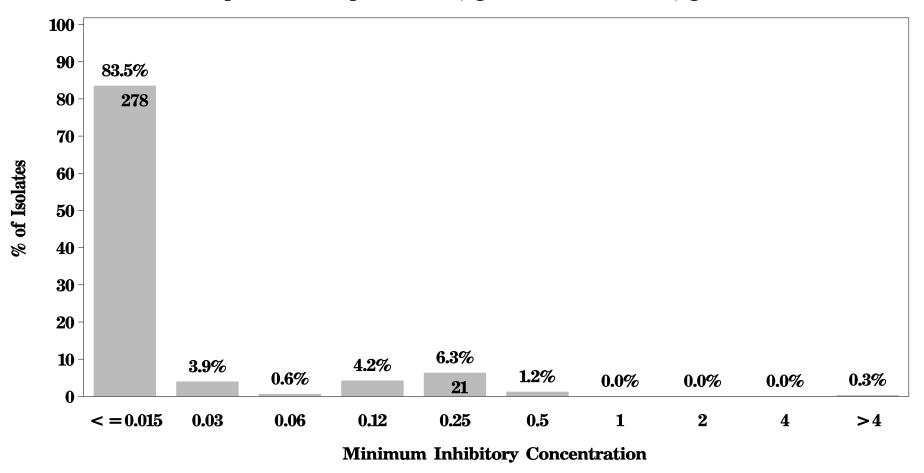


Figure 19i: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Ground Beef (N=311 Isolates) Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

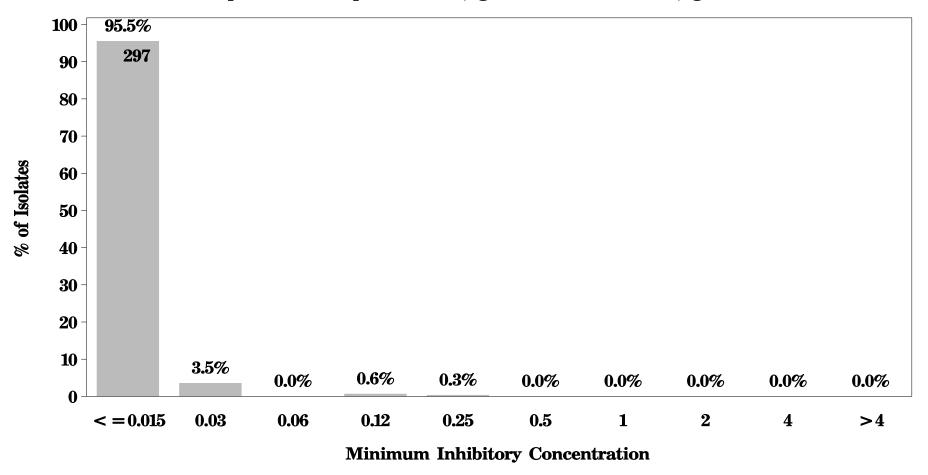


Figure 19i: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Pork Chop (N=218 Isolates) Breakpoints: Susceptible < =1 μg/mL Resistant > =4 μg/mL

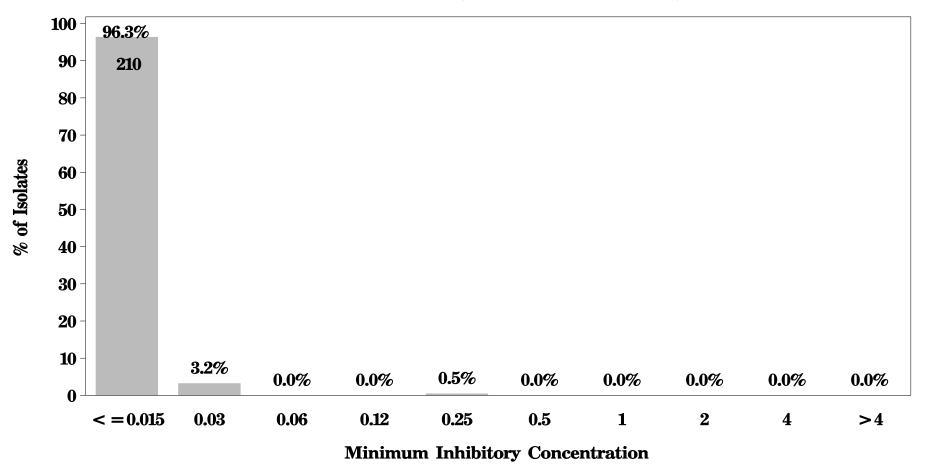


Figure 19j: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Chicken Breast (N=396 Isolates) **Breakpoints:** Susceptible $< = 4 \ \mu g/mL$ Resistant $> = 16 \ \mu g/mL$

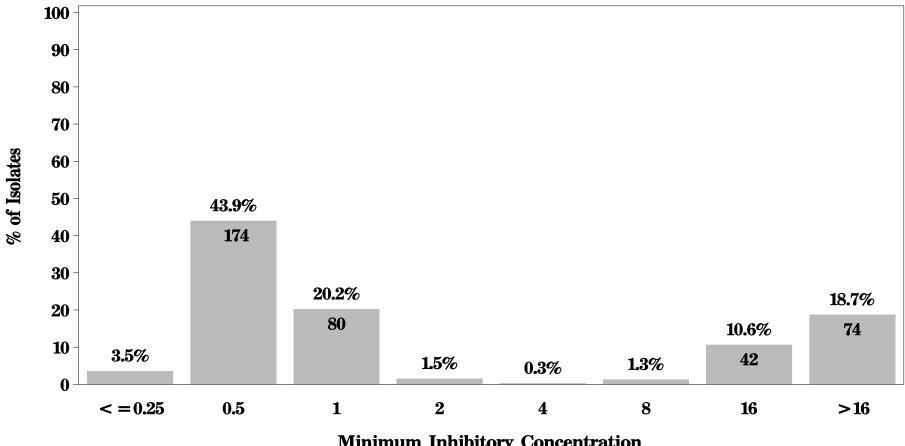


Figure 19j: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

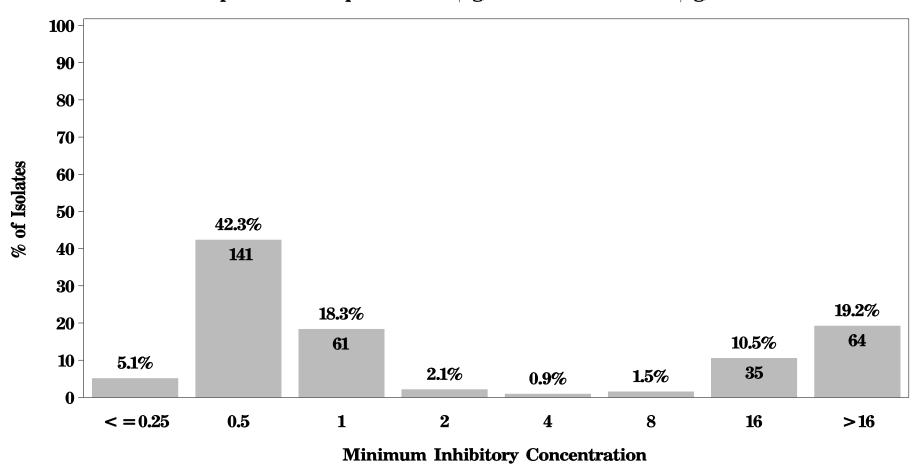


Figure 19j: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Ground Beef (N=311 Isolates) Breakpoints: Susceptible <= 4 μg/mL Resistant >= 16 μg/mL

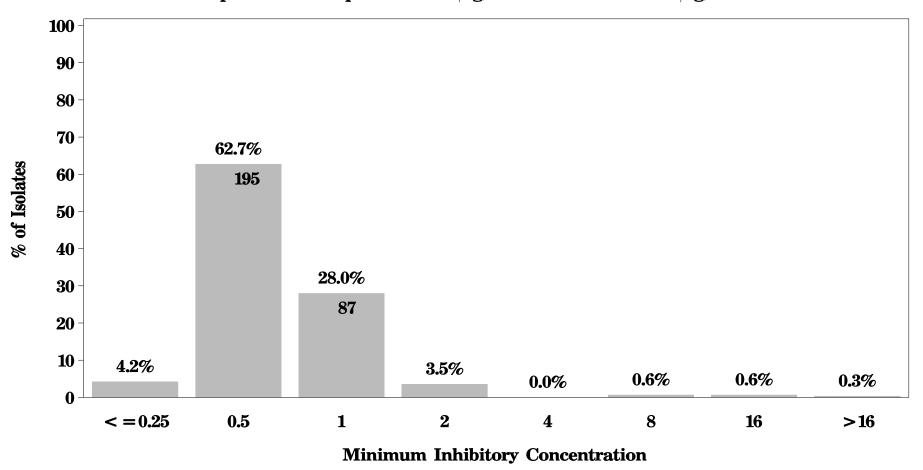


Figure 19j: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Pork Chop (N=218 Isolates) Breakpoints: Susceptible < =4 μg/mL Resistant > =16 μg/mL

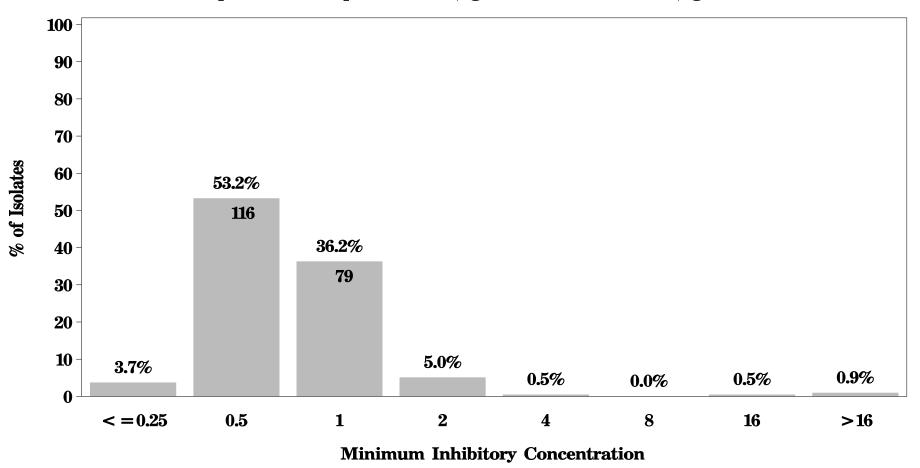
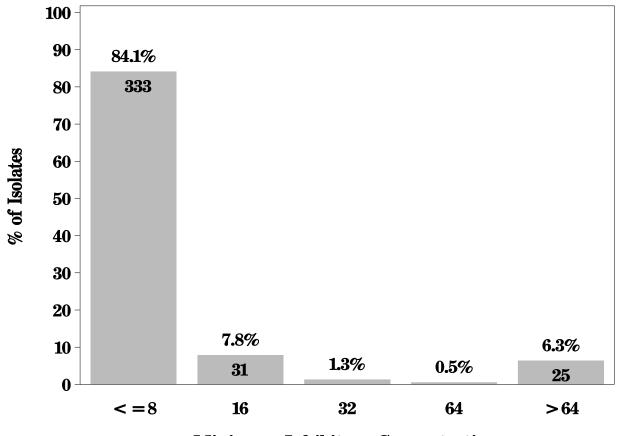
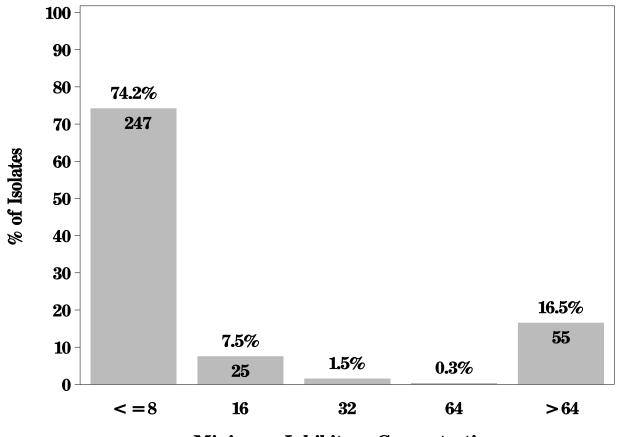




Figure 19k: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

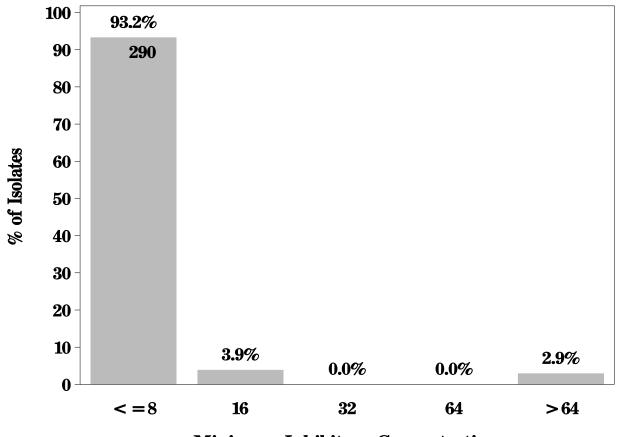

Minimum Inhibitory Concentration

Figure 19k: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

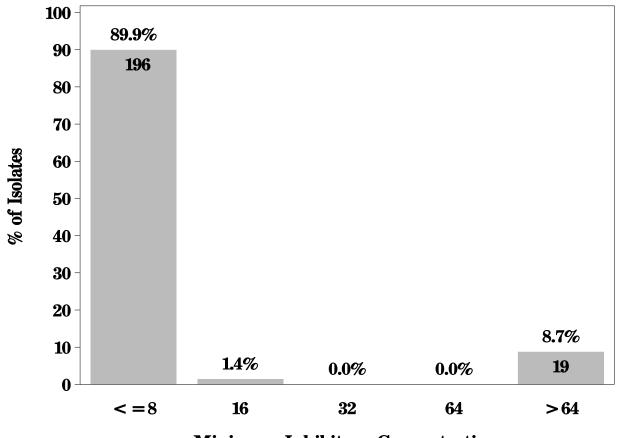

Minimum Inhibitory Concentration

Figure 19k: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Ground Beef (N=311 Isolates) Breakpoints: Susceptible < =16 μg/mL Resistant > =64 μg/mL

Minimum Inhibitory Concentration

Figure 19k: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Pork Chop (N=218 Isolates) Breakpoints: Susceptible <= 16 μg/mL Resistant >= 64 μg/mL

Minimum Inhibitory Concentration

Figure 19I: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible <= 16 μg/mL Resistant >= 32 μg/mL

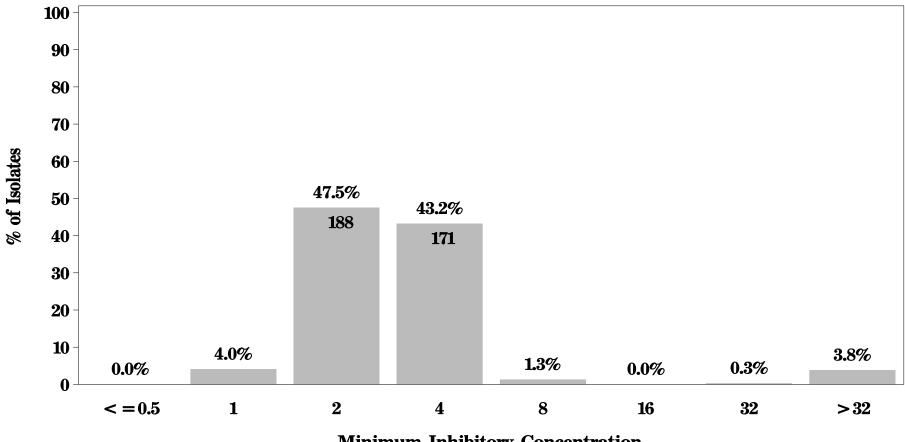


Figure 191: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Ground Turkey (N=333 Isolates) **Breakpoints:** Susceptible $< = 16 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

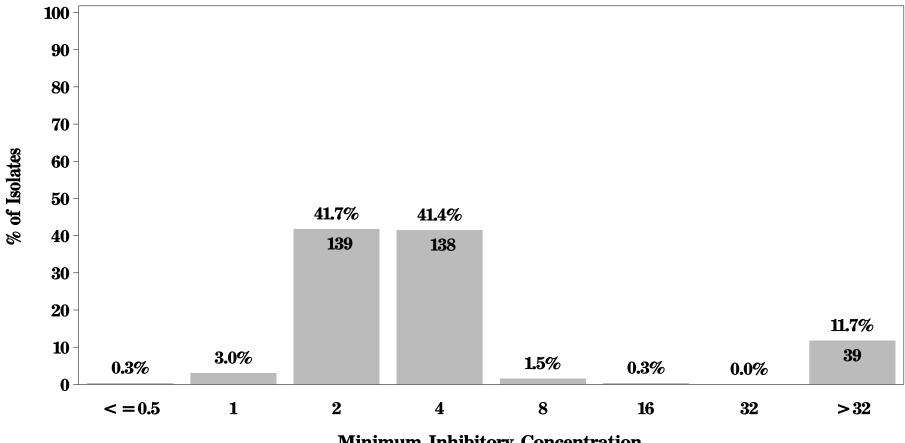


Figure 191: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Ground Beef (N=311 Isolates) **Breakpoints:** Susceptible $< = 16 \ \mu g/mL$ Resistant $> = 32 \ \mu g/mL$

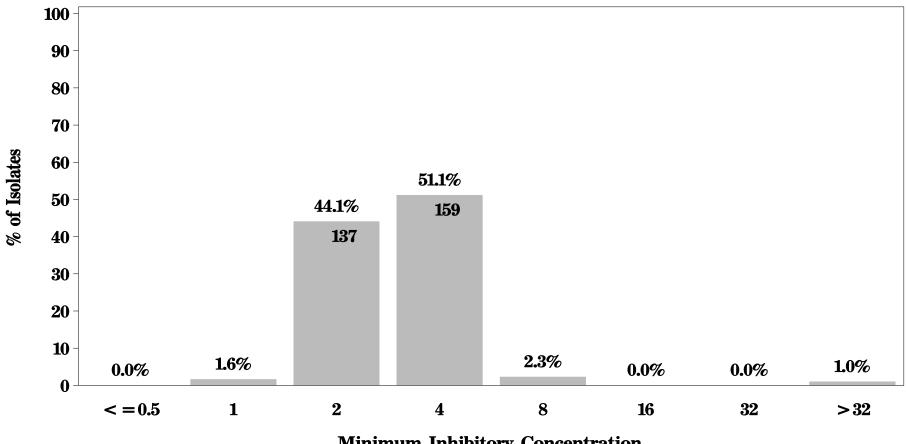


Figure 19I: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Pork Chop (N=218 Isolates) Breakpoints: Susceptible <= 16 μg/mL Resistant >= 32 μg/mL

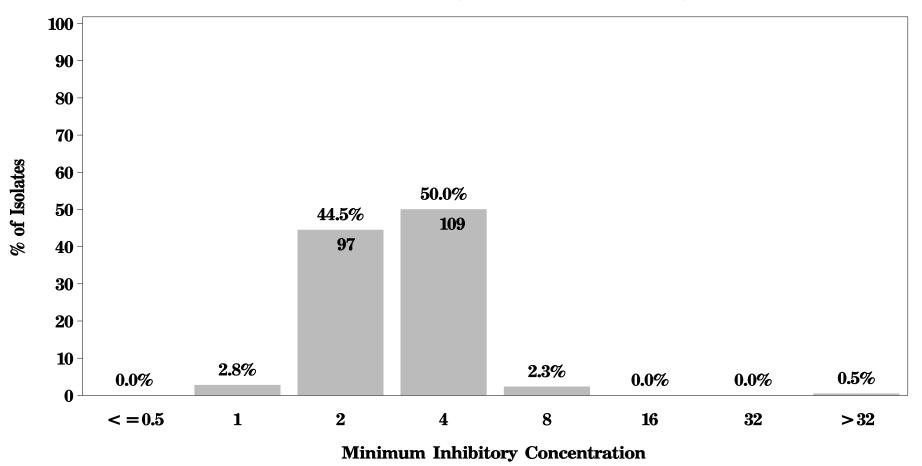
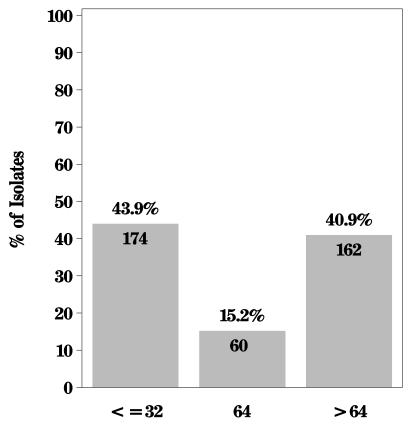
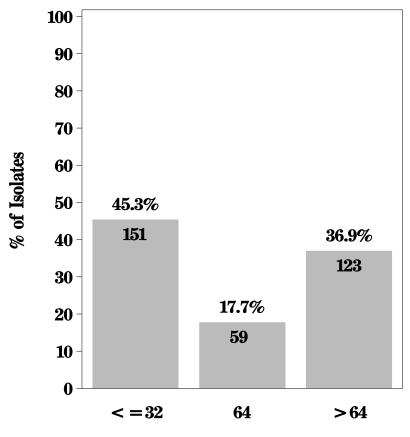




Figure 19m: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible <= 32 μg/mL Resistant >= 64 μg/mL

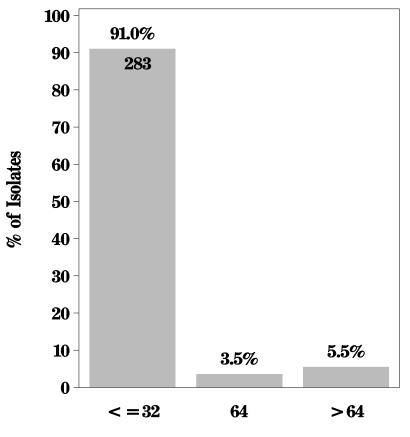

Minimum Inhibitory Concentration

Figure 19m: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible < = 32 μg/mL Resistant > = 64 μg/mL

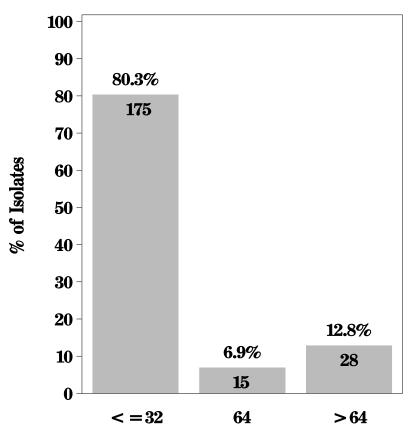

Minimum Inhibitory Concentration

Figure 19m: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Ground Beef (N=311 Isolates) Breakpoints: Susceptible <= 32 μg/mL Resistant >= 64 μg/mL

Minimum Inhibitory Concentration

Figure 19m: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Pork Chop (N=218 Isolates) Breakpoints: Susceptible <= 32 μg/mL Resistant >= 64 μg/mL

Minimum Inhibitory Concentration

Figure 19n: Minimum Inhibitory Concentration of Sulfamethoxazole for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible <= 256 μg/mL Resistant >= 512 μg/mL

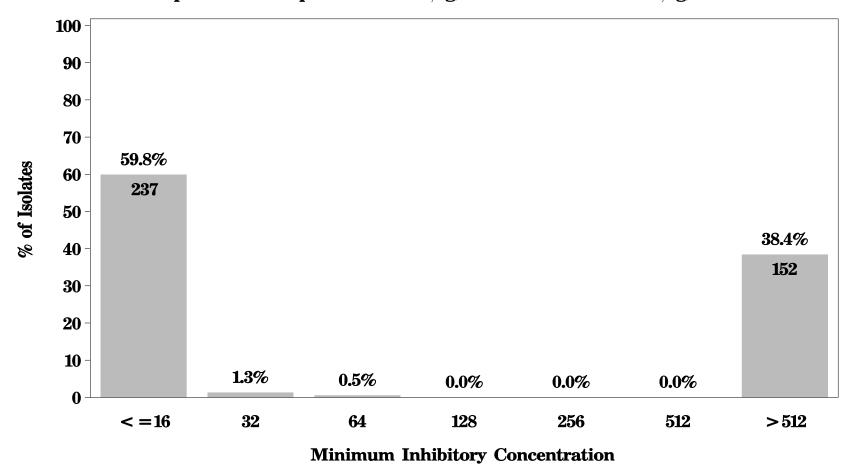
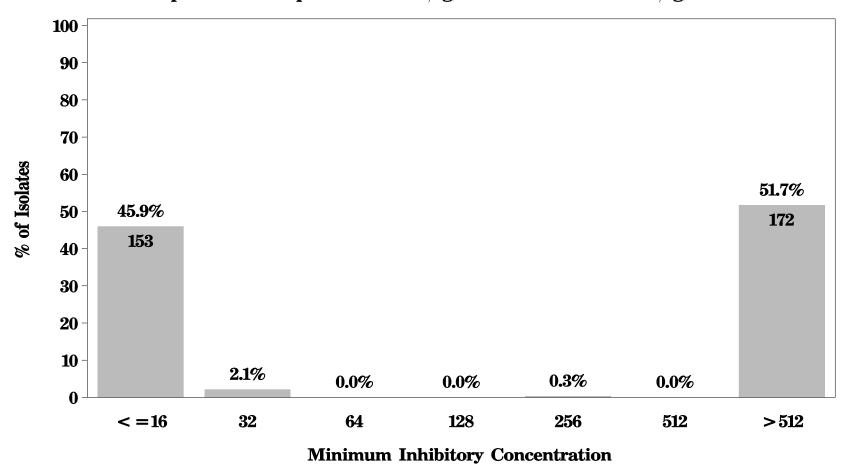
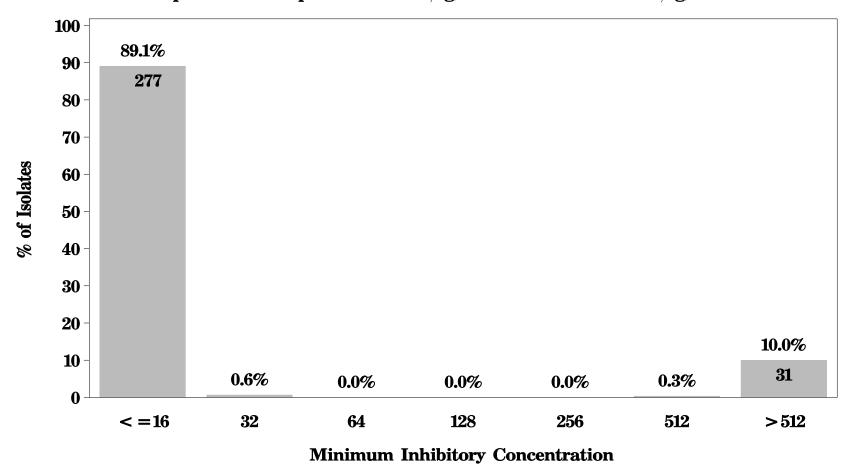




Figure 19n: Minimum Inhibitory Concentration of Sulfamethoxazole for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible <= 256 μg/mL Resistant >= 512 μg/mL

Figure 19n: Minimum Inhibitory Concentration of Sulfamethoxazole for *Escherichia coli* in Ground Beef (N=311 Isolates) Breakpoints: Susceptible <= 256 µg/mL Resistant >= 512 µg/mL

Figure 19n: Minimum Inhibitory Concentration of Sulfamethoxazole for *Escherichia coli* in Pork Chop (N=218 Isolates) Breakpoints: Susceptible <= 256 µg/mL Resistant >= 512 µg/mL

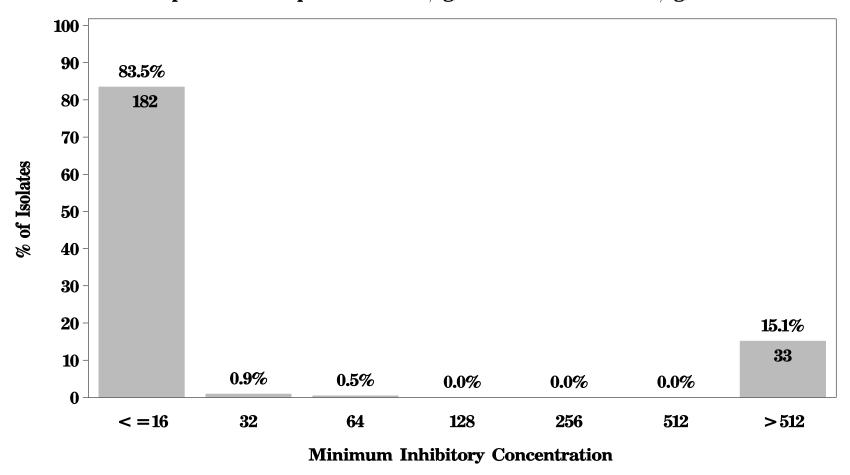
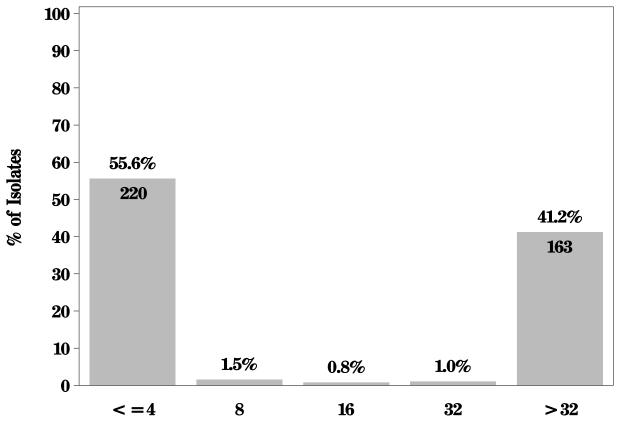
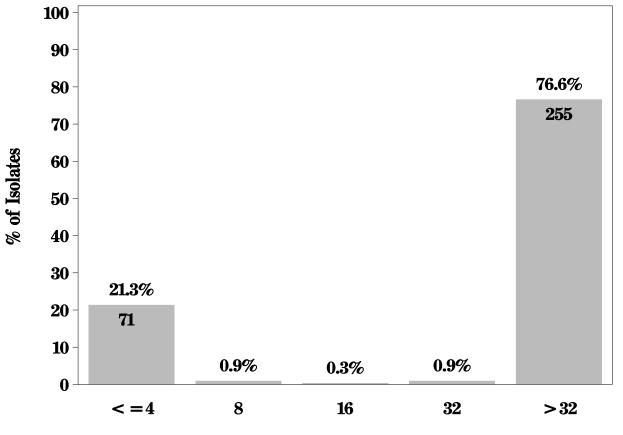




Figure 190: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

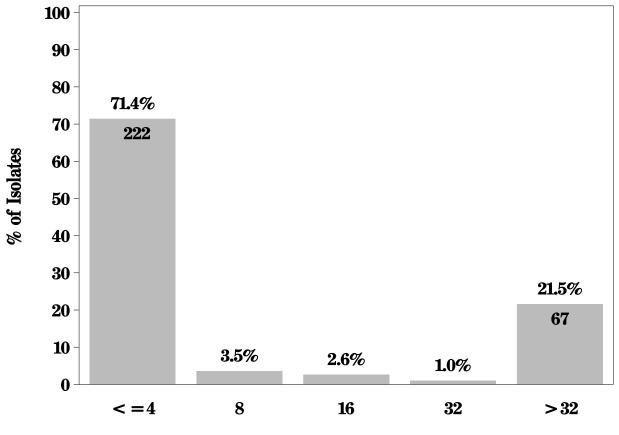

Minimum Inhibitory Concentration

Figure 190: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

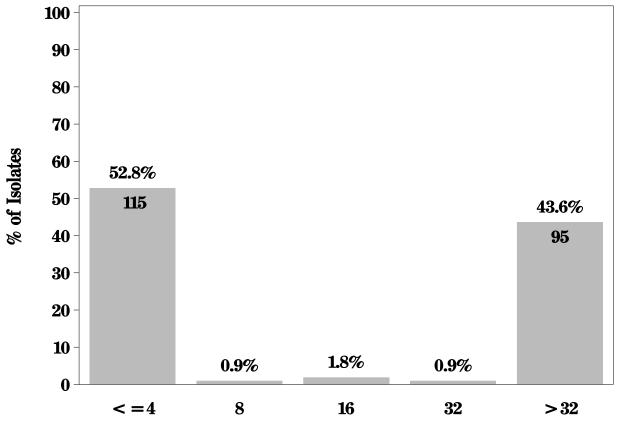

Minimum Inhibitory Concentration

Figure 190: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Ground Beef (N=311 Isolates) Breakpoints: Susceptible <= 4 μg/mL Resistant >= 16 μg/mL

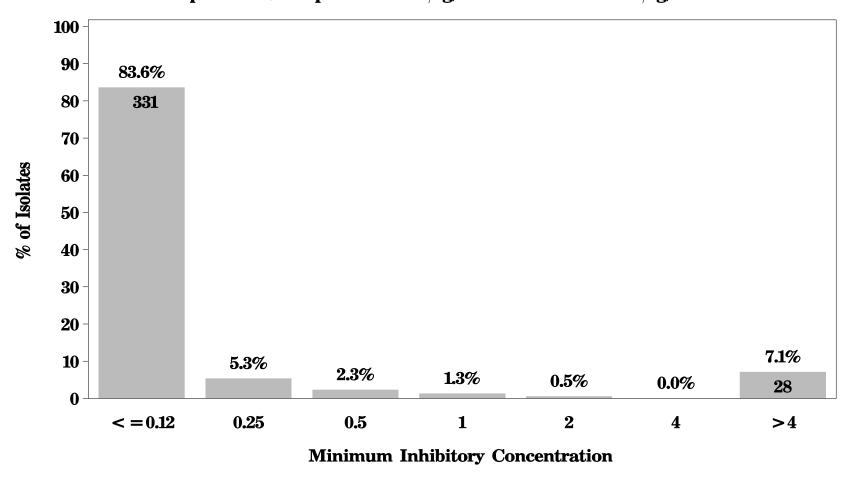
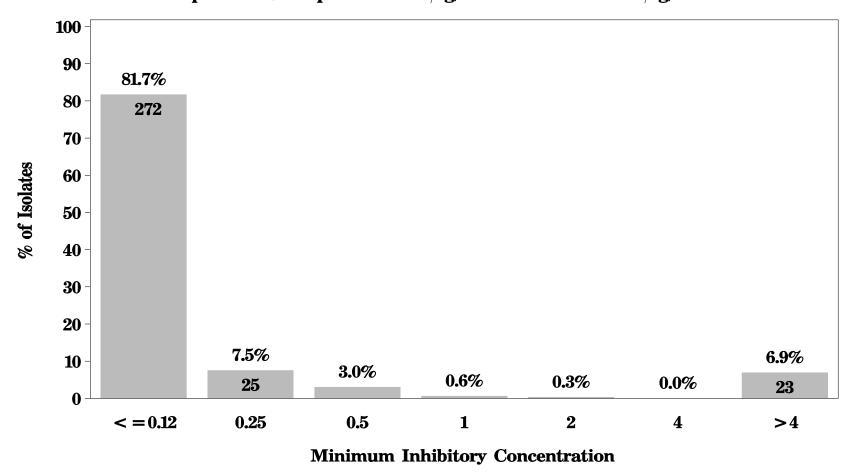
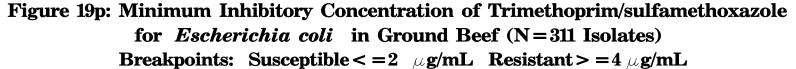
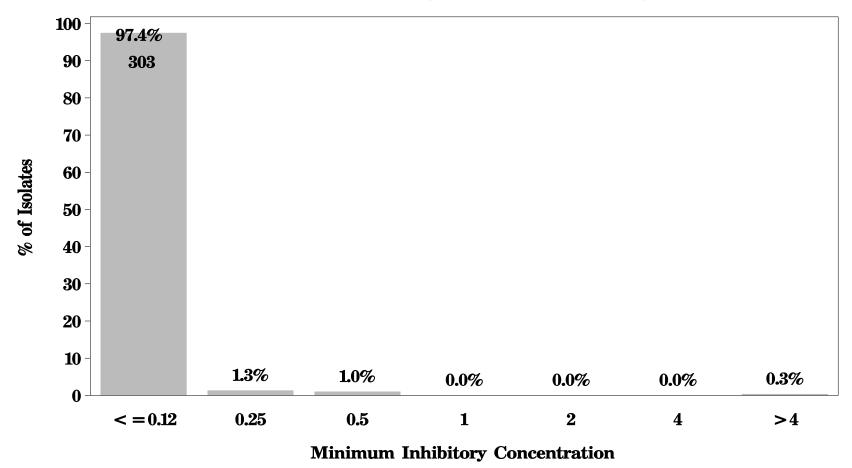
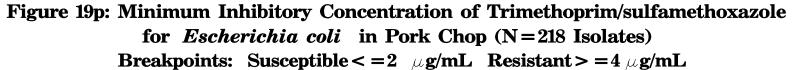

Minimum Inhibitory Concentration

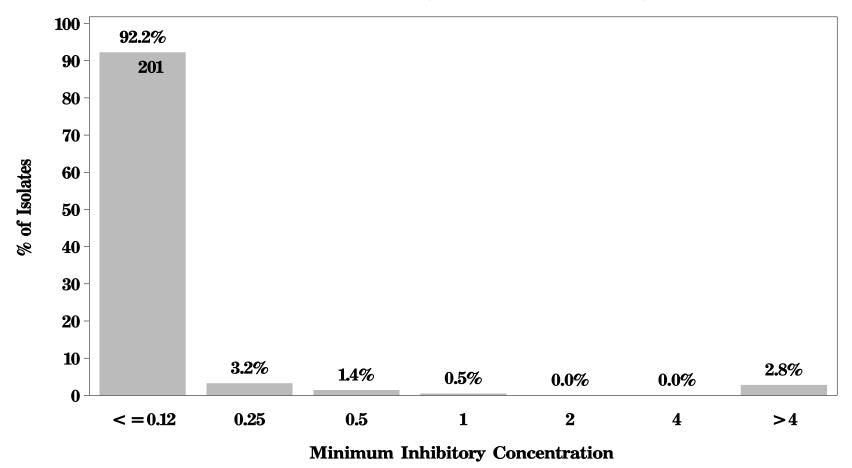
Figure 190: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Pork Chop (N=218 Isolates) Breakpoints: Susceptible <= 4 μg/mL Resistant >= 16 μg/mL




Minimum Inhibitory Concentration


Figure 19p: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* in Chicken Breast (N=396 Isolates) Breakpoints: Susceptible <= 2 μg/mL Resistant >= 4 μg/mL




Figure 19p: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* in Ground Turkey (N=333 Isolates) Breakpoints: Susceptible <= 2 μg/mL Resistant >= 4 μg/mL

						An	ntimicro	bial Ag	gent						
Meat Type	ТЕТ	STR	SMX	AMP	GEN	СЕР	AMC	NAL	СОТ	FOX	ΤΙΟ	CHL	CIP	AMI	AXO
Chicken Breast (n=396)	42.9%	56.1%	38.4%	25.3%	29.3%	22.0%	13.6%	4.0%	7.1%	9.3%	7.6%	_†	-	-	-
Ground Turkey (n=333)	77.8%	54.7%	51.7%	35.7%	29.7%	18.9%	3.0%	11.7%	6.9%	1.2%	0.3%	3.6%	0.3%	-	-
Ground Beef (n=311)	25.1%	9.0%	10.3%	5.1%	1.0%	8.0%	2.3%	1.0%	0.3%	0.3%	0.3%	2.3%	-	-	-
Pork Chop (n=218)	46.3%	19.7%	15.1%	13.3%	1.4%	11.9%	5.0%	0.5%	2.8%	2.3%	0.9%	4.1%	-	-	-
Total (N=1258)	48.3%	37.8%	30.9%	21.0%	17.6%	16.0%	6.5%	4.7%	4.6%	3.7%	2.7%	2.2%	0.1%	-	-

Table 41. Antimicrobial Resistance^{*} among Escherichia coli by Meat Type, 2003

 † Dashes indicate 0.0% resistance to antimicrobial.

^{*} Where % Resistance = (# *E. coli* isolates resistant to antimicrobial) / (total # *E. coli* isolates).

								Antimicr	robial Ag	gent						
Site	Meat Type	ТЕТ	STR	SMX	AMP	GEN	CEP	AMC	NAL	СОТ	FOX	TIO	CHL	CIP	AMI	AXO
	CB (n=120)	49.2%	59.2%	50.8%	19.2%	50.0%	17.5%	7.5%	2.5%	10.8%	5.8%	5.0%	_†	-	-	-
GA	GT (n=117)	77.8%	48.7%	41.9%	35.0%	24.8%	22.2%	3.4%	3.4%	3.4%	2.6%	0.9%	1.7%	-	-	-
GA	GB (n=90)	25.6%	7.8%	7.8%	1.1%	1.1%	4.4%	1.1%	-	-	1.1%	1.1%	1.1%	-	-	-
	PC (n=68)	50.0%	19.1%	13.2%	19.1%	1.5%	14.7%	2.9%	-	2.9%	2.9%	2.9%	5.9%	-	-	-
	Total (n=395)	52.4%	37.5%	31.9%	19.7%	23.0%	15.4%	4.1%	1.8%	4.8%	3.3%	2.5%	1.8%	-	-	-
	CB (n=113)	42.5%	50.4%	27.4%	39.8%	12.4%	32.7%	18.6%	8.8%	5.3%	15.0%	14.2%	-	-	-	-
MD	GT (n=103)	73.8%	64.1%	60.2%	40.8%	35.9%	25.2%	1.0%	20.4%	4.9%	-	-	1.0%	-	-	-
	GB (n=87)	29.9%	6.9%	10.3%	4.6%	2.3%	6.9%	2.3%	3.4%	-	-	-	2.3%	-	-	-
	PC (n=71)	22.5%	9.9%	5.6%	7.0%	2.8%	14.1%	11.3%	1.4%	2.8%	4.2%	-	-	-	-	-
	Total (n=374)	44.4%	36.4%	28.3%	25.7%	14.7%	21.1%	8.6%	9.4%	3.5%	5.3%	4.3%	0.8%	-	-	-
	CB (n=78)	43.6%	65.4%	28.2%	20.5%	16.7%	11.5%	9.0%	1.3%	3.8%	3.8%	1.3%	-	-	-	-
OR	GT (n=49)	85.7%	42.9%	44.9%	32.7%	32.7%	10.2%	2.0%	16.3%	12.2%	-	-	4.1%	-	-	-
OK	GB (n=57)	21.1%	14.0%	14.0%	8.8%	-	12.3%	3.5%	-	-	-	-	1.8%	-	-	-
	PC (n=28)	50.0%	28.6%	28.6%	3.6%	-	-	-	-	7.1%	-	-	7.1%	-	-	-
	Total (n=212)	48.1%	41.5%	28.3%	17.9%	13.7%	9.9%	4.7%	4.2%	5.2%	1.4%	0.5%	2.4%	-	-	-
	CB (n=85)	34.1%	50.6%	44.7%	18.8%	34.1%	23.5%	20.0%	2.4%	7.1%	11.8%	8.2%	-	-	-	-
TN	GT (n=64)	78.1%	59.4%	60.9%	31.3%	26.6%	9.4%	6.3%	9.4%	12.5%	1.6%	-	10.9%	1.6%	-	-
	GB (n=77)	22.1%	9.1%	10.4%	7.8%	-	10.4%	2.6%	-	1.3%	-	-	3.9%	-	-	-
	PC (n=51)	72.5%	29.4%	23.5%	19.6%	-	11.8%	2.0%	-	-	-	-	5.9%	-	-	-
	Total (n=277)	48.0%	37.2%	35.0%	18.8%	16.6%	14.4%	8.7%	2.9%	5.4%	4.0%	2.5%	4.7%	0.4%	-	-
To	otal (N=1258)	48.3%	37.8%	30.9%	21.0%	17.6%	16.0%	6.5%	4.7%	4.6%	3.7%	2.7%	2.2%	0.1%	-	-

 Table 42. Antimicrobial Resistance^{*} among Escherichia coli by Site, Meat Type, and Antimicrobial Agent, 2003

^{*} Where % Resistance = (# isolates resistant to antimicrobial per meat type per site) / (total # isolates per meat type per site). † Dashes indicate 0.0% resistance to antimicrobial.

	Num	ber of	^r Antii	nicrol	bials
Meat Type	0	1	2-4	5-7	<u>></u> 8
СВ	85	75	170	52	14
GT	51	44	157	74	7
GB	218	45	39	8	1
PC	102	40	64	8	4
Total	456	204	430	142	26

Table 43. Number of Escherichia coli Resistant to Multiple Antimicrobial Agents, 2003

Appendix A-1. Number of Samples Tested by Site, Meat Type, and Month, 2003

Site: CA

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Incken breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Fotal	40	40	40	40	40	40	40	40	40	40	40	40	480
: CT													
Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total

Chicken Breast	5	5	5	5	5	5	5	5	5	5	5	5	60	
Ground Turkey	5	5	5	5	5	5	5	5	5	5	5	5	60	
Ground Beef	5	5	5	5	5	5	5	5	5	5	5	5	60	
Pork Chop	5	5	5	5	5	5	5	5	5	5	5	5	60	
Total	20	20	20	20	20	20	20	20	20	20	20	20	240	

Site: GA

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Total	40	40	40	40	40	40	40	40	40	40	40	40	480

Site: MD

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	5	5	5	5	5	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Total	40	40	40	40	40	40	40	40	40	40	40	40	480

Site:	MN

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	*	10	10	10	10	10	10	10	10	10	10	10	110
Ground Beef	*	10	10	10	10	10	10	10	10	10	10	10	110
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Total:	20	40	40	40	40	40	40	40	40	40	40	40	460
te: NY													

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Total	40	40	40	40	40	40	40	40	40	40	40	40	480

Site: OR

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Total:	40	40	40	40	40	40	40	40	40	40	40	40	480

Site: TN

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	8	117
Ground Turkey	10	5	8	10	10	4	*	10	*	10	10	10	87
Ground Beef	10	10	10	10	10	10	10	10	*	10	10	10	110
Pork Chop	10	10	10	10	10	10	10	10	9	10	10	10	119
Fotal:	40	40	35	40	40	40	40	40	39	40	40	20	433

Appendix A-2. Percent Positive^{*} Samples by Month, Meat Type, and Bacterium, 2003

Month: January

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	32	42.7%
Salmonella	75	9	12.0%
Enterococcus	40	40	100.0%
Escherichia	40	31	77.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	65	0	0.0%
Enterococcus	40	39	97.5%
Escherichia	40	31	77.5%
Salmonella	65	2	3.1%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	65	0	0.0%
Salmonella	65	9	13.8%
Enterococcus	40	38	95.0%
Escherichia	40	36	90.0%

Meat Type: Pork Chop

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	2	2.7%
Salmonella	75	2	2.7%
Enterococcus	40	37	92.5%
Escherichia	40	12	30.0%

 $*_*$ Where % Positive= (# isolates of isolates / # of samples).

Month: February

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	31	41.3%
Salmonella	75	6	8.0%
Enterococcus	40	40	100.0%
Escherichia	40	33	82.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	1	1.3%
Salmonella	75	2	2.7%
Enterococcus	40	38	95.0%
Escherichia	40	32	80.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	70	0	0.0%
Salmonella	70	7	10.0%
Enterococcus	35	29	82.9%
Escherichia	35	19	54.3%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	39	97.5%
Escherichia	40	17	42.5%

Month: March

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	27	36.0%
Salmonella	75	12	16.0%
Enterococcus	40	40	100.0%
Escherichia	40	40	100.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	2	2.7%
Enterococcus	40	35	87.5%
Escherichia	40	28	70.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	73	1	1.4%
Salmonella	73	8	11.0%
Enterococcus	38	34	89.5%
Escherichia	38	28	73.7%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	1	1.3%
Enterococcus	40	30	75.0%
Escherichia	40	30	75.0%

Month: April

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	30	40.0%
Salmonella	75	4	5.3%
Enterococcus	40	38	95.0%
Escherichia	40	36	90.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	1	1.3%
Enterococcus	40	34	85.0%
Escherichia	40	22	55.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	9	12.0%
Enterococcus	40	34	85.0%
Escherichia	40	30	75.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	39	97.5%
Escherichia	40	24	60.0%

Month: May

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	40	53.3%
Salmonella	75	9	12.0%
Enterococcus	40	36	90.0%
Escherichia	40	37	92.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	38	95.0%
Escherichia	40	30	75.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	1	1.3%
Salmonella	75	17	22.7%
Enterococcus	40	37	92.5%
Escherichia	40	30	75.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	1	1.3%
Salmonella	75	0	0.0%
Enterococcus	40	33	82.5%
Escherichia	40	21	52.5%

Month: June

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	41	54.7%
Salmonella	75	9	12.0%
Enterococcus	40	39	97.5%
Escherichia	40	33	82.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	1	1.3%
Enterococcus	40	40	100.0%
Escherichia	40	30	75.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	69	0	0.0%
Salmonella	69	13	18.8%
Enterococcus	34	33	97.1%
Escherichia	34	27	79.4%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	1	1.3%
Salmonella	75	0	0.0%
Enterococcus	40	35	87.5%
Escherichia	40	14	35.0%

Month: July

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	74	53	71.6%
Salmonella	74	6	8.1%
Enterococcus	39	39	100.0%
Escherichia	39	29	74.4%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter Salmonella	75 75	0 0	0.0% 0.0%
Enterococcus	40	34	85.0%
Escherichia	40	17	42.5%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	65	0	0.0%
Salmonella	65	11	16.9%
Enterococcus	30	30	100.0%
Escherichia	30	29	96.7%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	2	2.7%
Enterococcus	40	36	90.0%
Escherichia	40	17	42.5%

Month: August

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	29	38.7%
Salmonella	75	9	12.0%
Enterococcus	40	39	97.5%
Escherichia	40	31	77.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	37	92.5%
Escherichia	40	28	70.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Enterococcus	40	39	97.5%
Escherichia	40	30	75.0%
Salmonella	75	13	17.3%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	39	97.5%
Escherichia	40	22	55.0%

Month: September

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	50	66.7%
Salmonella	75	3	4.0%
Enterococcus	40	39	97.5%
Escherichia	40	32	80.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	65	0	0.0%
Salmonella	65	2	3.1%
Enterococcus	30	26	86.7%
Escherichia	30	18	60.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	65	0	0.0%
Salmonella	65	11	16.9%
Enterococcus	30	30	100.0%
Escherichia	30	19	63.3%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	74	0	0.0%
Salmonella	74	0	0.0%
Enterococcus	39	34	87.2%
Escherichia	39	17	43.6%

Month: October

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	58	77.3%
Salmonella	75	2	2.7%
Enterococcus	40	39	97.5%
Escherichia	40	26	65.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	39	97.5%
Escherichia	40	24	60.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	3	4.0%
Salmonella	75	5	6.7%
Enterococcus	40	40	100.0%
Escherichia	40	28	70.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	37	92.5%
Escherichia	40	8	20.0%

Month: November

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	26	34.7%
Salmonella	75	10	13.3%
Enterococcus	40	39	97.5%
Escherichia	40	31	77.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	36	90.0%
Escherichia	40	28	70.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	3	4.0%
Enterococcus	40	38	95.0%
Escherichia	40	28	70.0%

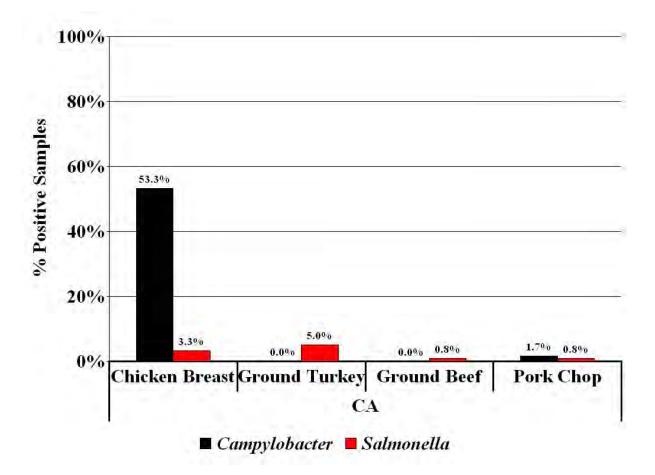
Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	35	87.5%
Escherichia	40	18	45.0%

Month: December

Meat Type: Chicken Breast

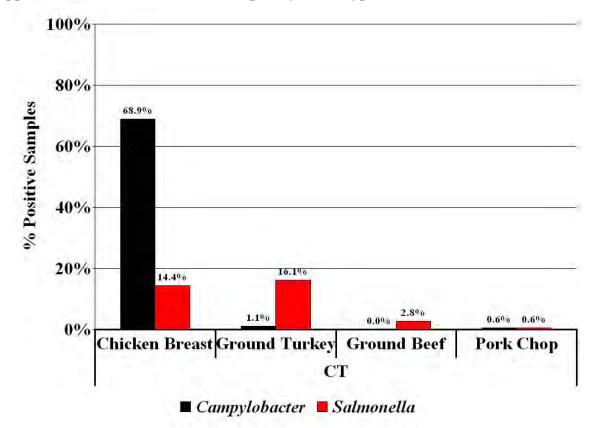
Bacterium	# of Samples	# of Isolates	Positive (%)	
Campylobacter	73	52	71.2%	
Salmonella	73	4	5.5%	
Enterococcus	38	38	100.0%	
Escherichia	38	37	97.4%	

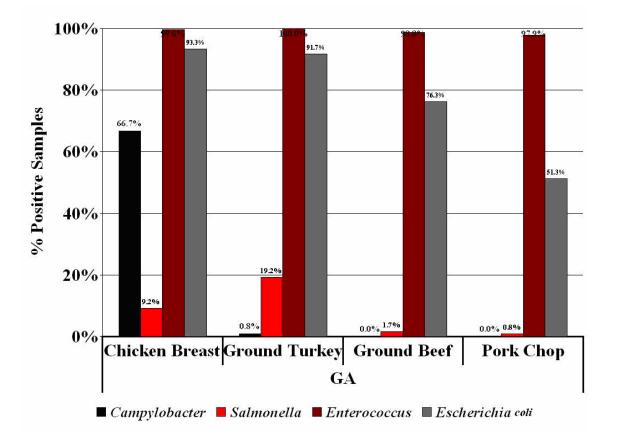
Meat Type: Ground Beef


Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	36	90.0%
Escherichia	40	23	57.5%

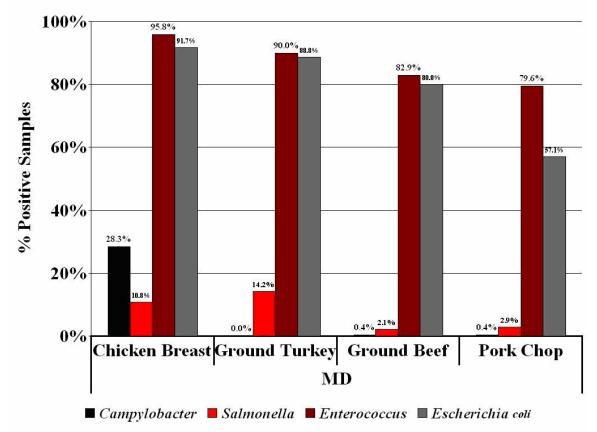
Meat Type: Ground Turkey

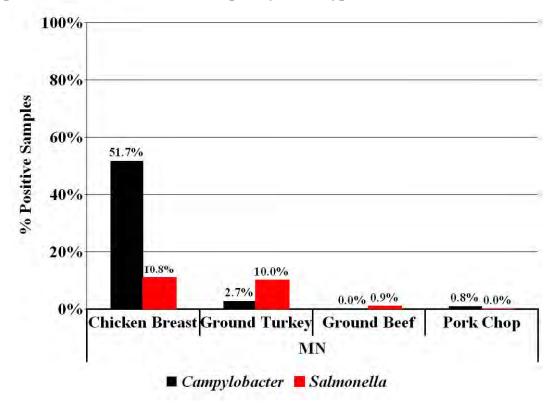
Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	8	10.7%
Enterococcus	40	36	90.0%
Escherichia	40	29	72.5%


Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	75	0	0.0%
Salmonella	75	0	0.0%
Enterococcus	40	32	80.0%
Escherichia	40	18	45.0%

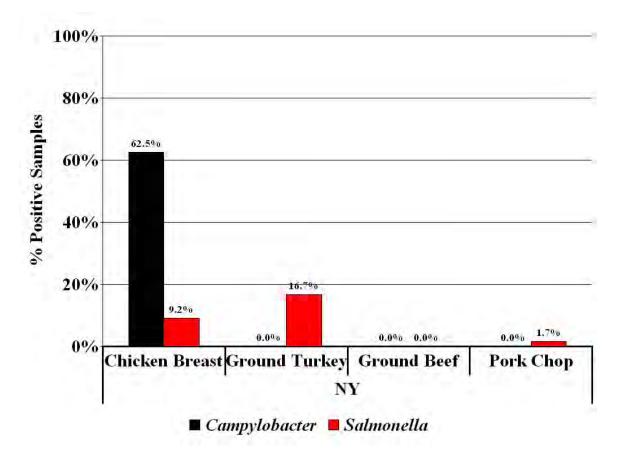

				Appendix	A-3.	Percent Pa	ositive Samp	les by	Meat Type	e, Bacterium	, and S	Site	
			Campylobacter Salmonella			ella		Enteroco	ccus	Escherichia			
Meat Type	Site	Ν	Isolate	%Positive	Ν	Isolate	%Positive	Ν	Isolate	%Positive	Ν	Isolate	%Positive
	CA	120	64	53.3%	120	4	3.3%						
	CT	60	50	83.3%	60	9	15.0%						
	GA	120	76	63.3%	120	8	6.7%	120	119	99.2%	120	120	100.0%
	MD	120	38	31.7%	120	18	15.0%	120	113	94.2%	120	113	94.2%
	MN	120	62	51.7%	120	13	10.8%						
Chicken Breast	NY	120	75	62.5%	120	11	9.2%						
	OR	120	45	37.5%	120	17	14.2%	120	119	99.2%	120	78	65.0%
	TN	117	59	50.4%	117	3	2.6%	117	115	98.3%	117	85	72.6%
	Total	897	469	52.3%	897	83	9.3%	477	466	97.7%	477	396	83.0%
Ground Turkey	CA	120	0	-	120	6	5.0%						
	CT	60	0	-	60	8	13.3%						
	GA	120	2	1.7%	120	27	22.5%	120	120	100.0%	120	117	97.5%
	MD	120	0	-	120	25	20.8%	120	103	85.8%	120	103	85.8%
	MN	110	3	2.7%	110	11	10.0%						
	NY	120	0	-	120	20	16.7%						
	OR	120	0	-	120	5	4.2%	120	108	90.0%	120	49	40.8%
	TN	87	0	-	87	12	13.8%	87	87	100.0%	87	64	73.6%
	Total	857	5	0.6%	857	114	13.3%	447	418	93.5%	447	333	74.5%
	CA	120	0	-	120	1	0.8%						
	СТ	60	0	-	60	0	-						
	GA	120	0	-	120	2	1.7%	120	119	99.2%	120	90	75.0%
	MD	120	1	0.8%	120	3	2.5%	120	92	76.7%	120	87	72.5%
	MN	110	0	-	110	1	0.9%						
Ground Beef	NY	120	0	-	120	0	-						
	OR	120	0	-	120	2	1.7%	120	112	93.3%	120	57	47.5%
	TN	110	0	-	110	1	0.9%	110	109	99.1%	110	77	70.0%
	Total	880	1	0.1%	880	10	1.1%	470	432	91.9%	470	311	66.2%
	CA	120	2	1.7%	120	1	0.8%						
	CT	60	0	-	60	0	-						:
	GA	120	0	-	120	0	-	120	116	96.7%	120	68	56.7%
	MD	120	0	-	120	1	0.8%	120	90	75.0%	120	71	59.2%
Pork Chop	MN	120	1	0.8%	120	0	-						
	NY	120	0	-	120	2	1.7%	100	100	05.00	100	20	22.264
	OR	120	1	0.8%	120	1	0.8%	120	103	85.8%	120	28	23.3%
	TN	119	0	-	119	0	-	119	117	98.3%	119	51	42.9%
	Total	899	4	0.4%	889	5	0.6%	479	426	88.9%	479	218	45.5%
Total		3533	479	13.6%	3533	212	6.0%	1873	1742	93.0%	1873	1258	67.2%

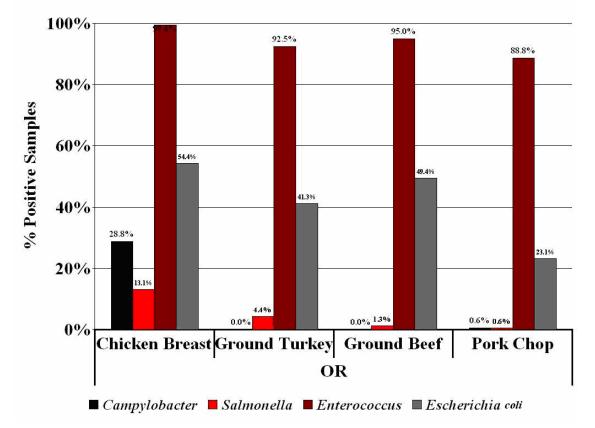
Appendix 3a. Percent Positive Samples by Meat Type, Bacterium in California, 2003

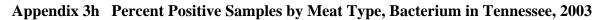

Appendix 3b. Percent Positive Samples by Meat Type, Bacterium in Connecticut, 2003

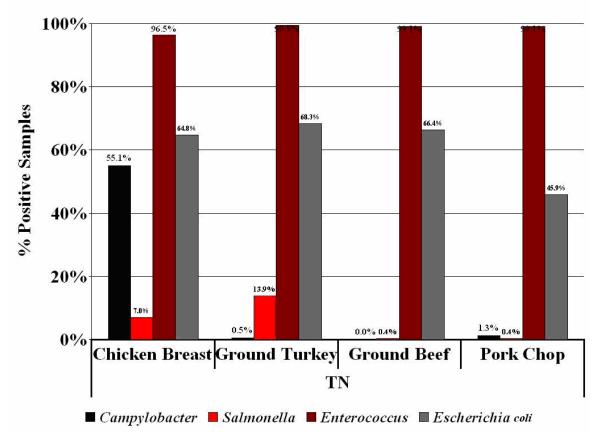


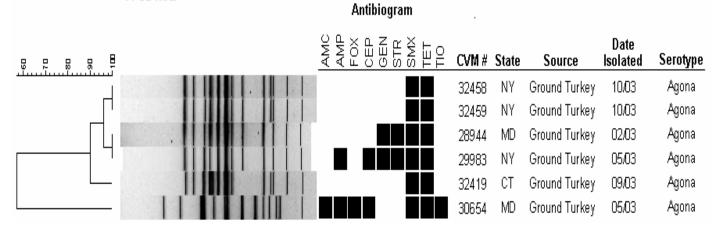
Appendix 3c. Percent Positive Samples by Meat Type, Bacterium in Georgia, 2003






Appendix 3e. Percent Positive Samples by Meat Type, Bacterium in Minnesota, 2003




Appendix 3g. Percent Positive Samples by Meat Type, Bacterium in Oregon, 2003

A-4a. PFGE Profiles for Salmonella Agona

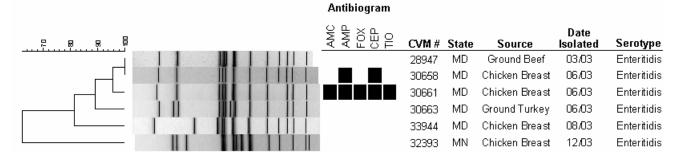
Dise (Opt0.50%) (Tol 1.5%-1.5%) (H>0.0% S>0.0%) (D.0%-100.0%) PFGE-Xbal **PFGE-Xbal**

A-4b. PFGE Profiles for *Salmonella* Brandenburg

Dive (Opt0.50%) (Tol 1.5%-1.5%) (H=0.0% S=0.0%) (0.0% -100.0%) PFGE-Xbal PFGE-Xbal

	CVM #	State	Source	Date Isolated	Serotype
	29189	GA	Chicken Breast	02/03	Brandenburg
	29190	GA	Chicken Breast	02/03	Brandenburg
	29459	CA	Pork Chop	01/03	Brandenburg

A-4c. PFGE Profiles for Salmonella Dublin

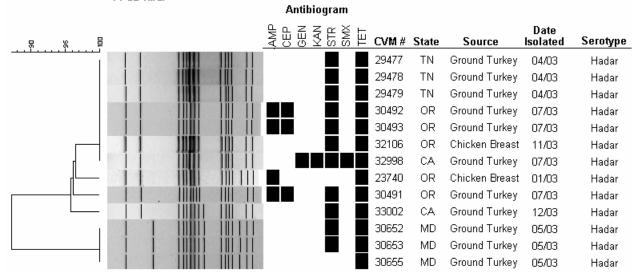

01% (0pt0.50%) (Tol 1.5%-1.5%) (H>0.0% S>0.0%) (0.0%-100.0%) PFGE-Xbal **PFGE-Xbal**

Antibiogram

 AMP AMP AMP AMP AMP AXO AXO AMP AMP AMP AMP AMP AMP AMP AMP AMP AMP	CVM # State	Source	Date Isolated	Serotype
	23742 OR	Ground Beef	01,03	Dublin
	23743 OR	Ground Beef	01,03	Dublin
	29440 MN	Ground Beef	04/03	Dublin

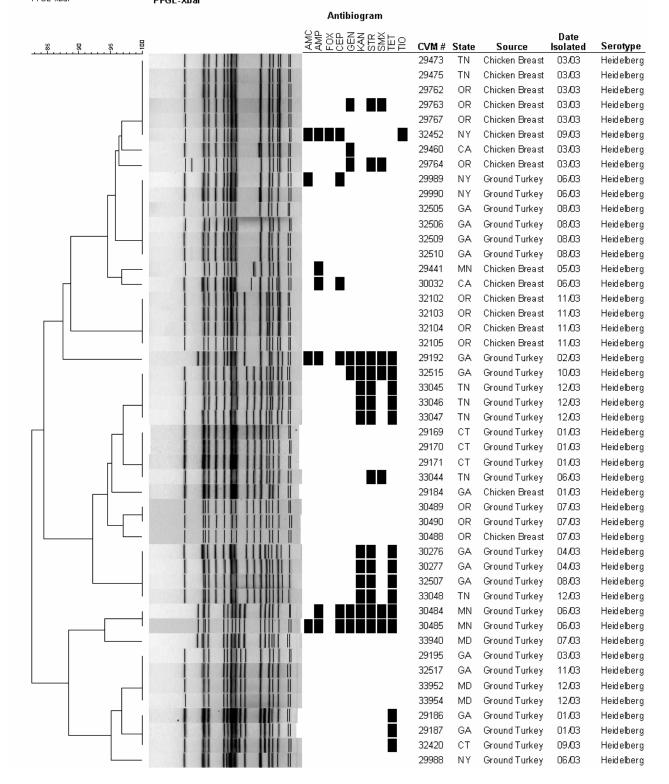
A-4d. PFGE Profiles for Salmonella Enteritidis

0ke (0pt0.50%) (7011.5%-1.5%) (H=0.0% S=0.0%) (0.0%-100.0%) PFGE-Xbal **PFGE-Xbal**


A-4e. PFGE Profiles for Salmonella Haardt

ווא (Opt0.50%) (Tol 1.5%-1.5%) (אסטרא S-0.0%) (סטרא (Tol 1.5%-1.5%) PFGE-Xbal **PFGE-Xbal**

Ē			CVM #	State	Source	Date Isolated	Serotype
		11	23741	OR	Chicken Breast	01/03	Haardt
		11	23744	OR	Chicken Breast	02/03	Haardt
		11	23745	OR	Chicken Breast	02/03	Haardt
I			23746	OR	Chicken Breast	02/03	Haardt


A-4f. PFGE Profiles for Salmonella Hadar

Dies (Opt0.50%) (Tol 1.5%-1.5%) (H>0.0% S+0.0%) (0.0%-100.0%) PFGE-Xbal **PFGE-Xbal**

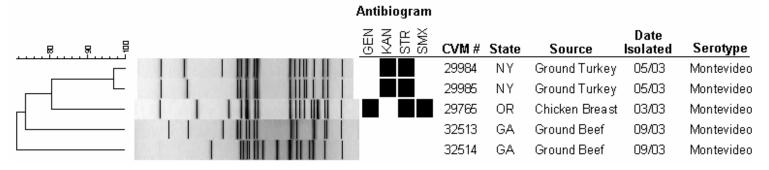
A-4g. PFGE Profiles for Salmonella Heidelberg

Dise (Opt0.50%) (Tol 1.5%-1.5%) (H=0.0% S=0.0%) (0.0%-100.0%) PFGE-Xbal PFGE-Xbal

A-4h. PFGE Profiles for Salmonella Kentucky

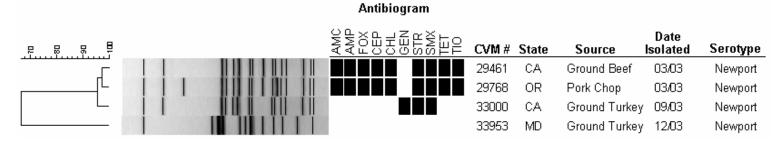
ווויייייייייייייייייייייייייייייייייי						
	Antibiogram					
문 문 문	AMC FOX STR STR TET TO	CVM #	State	Source	Date Isolated	Serotype
		32413	СТ	Chicken Breast	08/03	Kentucky
		33001	CA	Chicken Breast	10/03	Kentucky
		29442	MN	Chicken Breast	05/03	Kentucky
		30033	CA	Chicken Breast	06/03	Kentucky
		29437	MN	Chicken Breast	04/03	Kentucky
		29438	MN	Chicken Breast	04/03	Kentucky
		29439	MN	Chicken Breast	04/03	Kentucky
		29766	OR	Chicken Breast	03/03	Kentucky
		29981	NY	Chicken Breast	05/03	Kentucky
		32387	MN	Chicken Breast	10/03	Kentucky
		32388	MN	Ground Turkey	10/03	Kentucky
		32390	MN	Ground Turkey	10/03	Kentucky
		32392	MN	Chicken Breast	11/03	Kentucky
		28915	NY	Chicken Breast	03/03	Kentucky
		29166	CT	Chicken Breast	01/03	Kentucky
		29167	СТ	Chicken Breast	01/03	Kentucky
		29188	GA	Chicken Breast	02/03	Kentucky
		29980	NY	Chicken Breast	05/03	Kentucky
		32453	NY	Chicken Breast	09/03	Kentucky
		29474	TN	Chicken Breast	03/03	Kentucky
		32460	NY	Chicken Breast	11/03	Kentucky
		29978	NY	Chicken Breast	04/03	Kentucky
		29471	TN	Ground Turkey	01/03	Kentucky
		30440	GA	Ground Turkey	06/03	Kentucky

A-4i. PFGE Profiles for Salmonella Mbandaka


0108 (Opt0.50%) (To11.5%-1.5%) (H>0.0% S>0.0%) (0.0%-100.0%) PFGE-Xbal **PFGE-Xbal**

SS - 15 - 15	TET	CVM #	State	Source	Date Isolated	Serotype
		29185	GA	Chicken Breast	01/03	Mbandaka
		32511	GA	Chicken Breast	09/03	Mbandaka
1 1		30479	MN	Chicken Breast	07/03	Mbandaka
		30480	MN	Chicken Breast	07/03	Mbandaka
		30481	MN	Chicken Breast	07/03	Mbandaka
		30482	MN	Chicken Breast	07/03	Mbandaka
1		30483	MN	Chicken Breast	07/03	Mbandaka

Antibiogram


A-4j. PFGE Profiles for Salmonella Montevideo

Dise (0pt0.50%) (Tol 1.5%-1.5%) (H=0.0% S=0.0%) [0.0%-100.0%] PFGE-Xbal **PFGE-Xbal**

A-4k. PFGE Profiles for Salmonella Newport

Die (Opt0.50%) (Tol 1.5%-1.5%) (H=0.0% S=0.0%) (0.0%-100.0%) PFGE-Xbal PFGE-Xbal

A-41. PFGE Profiles for Salmonella Reading

Antibiogram

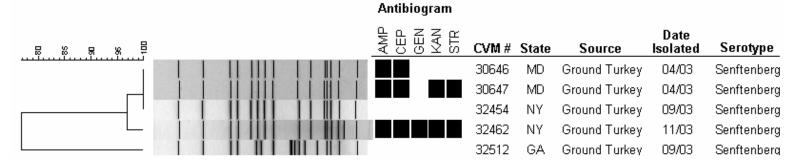
Diæ (0pt0.50%) (Tol 1.5%-1.5%) (H=0.0% S=0.0%) (0.0%-100.0%) PFGE-Xbal **PFGE-Xbal**

Antibiogram														
	AMAD STR NAME SMX R NAME AMAD TET NAME	State	Source	Date Isolated	Serotype									
	29443	MN	Ground Turkey	05/03	Reading									
	29444	MN	Ground Turkey	05/03	Reading									
	29445	MN	Ground Turkey	05/03	Reading									
	29446	MN	Ground Turkey	05/03	Reading									
	29447	MN	Ground Turkey	05/03	Reading									
	29480	ΤN	Ground Turkey	04/03	Reading									
	32451	NY	Ground Turkey	08/03	Reading									
	32997	CA	Ground Turkey	07/03	Reading									
	29436	MN	Ground Turkey	03/03	Reading									
	32999	CA	Ground Turkey	08/03	Reading									
	29476	ΤN	Ground Turkey	04/03	Reading									
	32386	MN	Ground Turkey	08/03	Reading									
	32508	GA	Ground Turkey	08/03	Reading									

A-4m. PFGE Profiles for *Salmonella* Saintpaul

0ke (0pt0.50%) (Tol 1.5%-1.5%) (H>0.0% S>0.0%) (0.0%-100.0%) PFGE-Xbal **PFGE-Xbal**

Antibiogram													
AMC AMP	CEP GEN	KAN	NAL STR	SMX TET	CVM #	State	Source	Date Isolated	Serotype				
					29982	NY	Ground Turkey	05/03	Saintpaul				
					30357	GA	Ground Turkey	05/03	Saintpaul				
					30659	MD	Chicken Breast	06/03	Saintpaul				
					32455	NY	Ground Turkey	09/03	Saintpaul				
					32456	NY	Ground Turkey	09/03	Saintpaul				
					32461	NY	Ground Turkey	11/03	Saintpaul				
					33941	MD	Ground Turkey	07/03	Saintpaul				
					33946	MD	Ground Turkey	09/03	Saintpaul				
					33947	MD	Ground Turkey	09/03	Saintpaul				
					28939	MD	Ground Turkey	01/03	Saintpaul				
					33948	MD	Ground Turkey	09/03	Saintpaul				
					29193	GA	Ground Turkey	03/03	Saintpaul				
					32418	СТ	Ground Turkey	08/03	Saintpaul				
					29194	GΑ	Ground Turkey	03/03	Saintpaul				
					32417	СТ	Ground Turkey	08/03	Saintpaul				
					28916	NY	Ground Turkey	03/03	Saintpaul				
					29196	GA	Ground Turkey	03/03	Saintpaul				
					28943	MD	Ground Turkey	02/03	Saintpaul				
					32416	СТ	Ground Turkey	08/03	Saintpaul				
					28940	MD	Ground Turkey	01/03	Saintpaul				
					29191	GA	Ground Turkey	02/03	Saintpaul				
					33043	ΤN	Ground Turkey	06/03	Saintpaul				
					30656	MD	Ground Turkey	05/03	Saintpaul				
					30657	MD	Ground Turkey	05/03	Saintpaul				
					30660	MD	Chicken Breast	06/03	Saintpaul				
					30664	MD	Ground Turkey	06/03	Saintpaul				

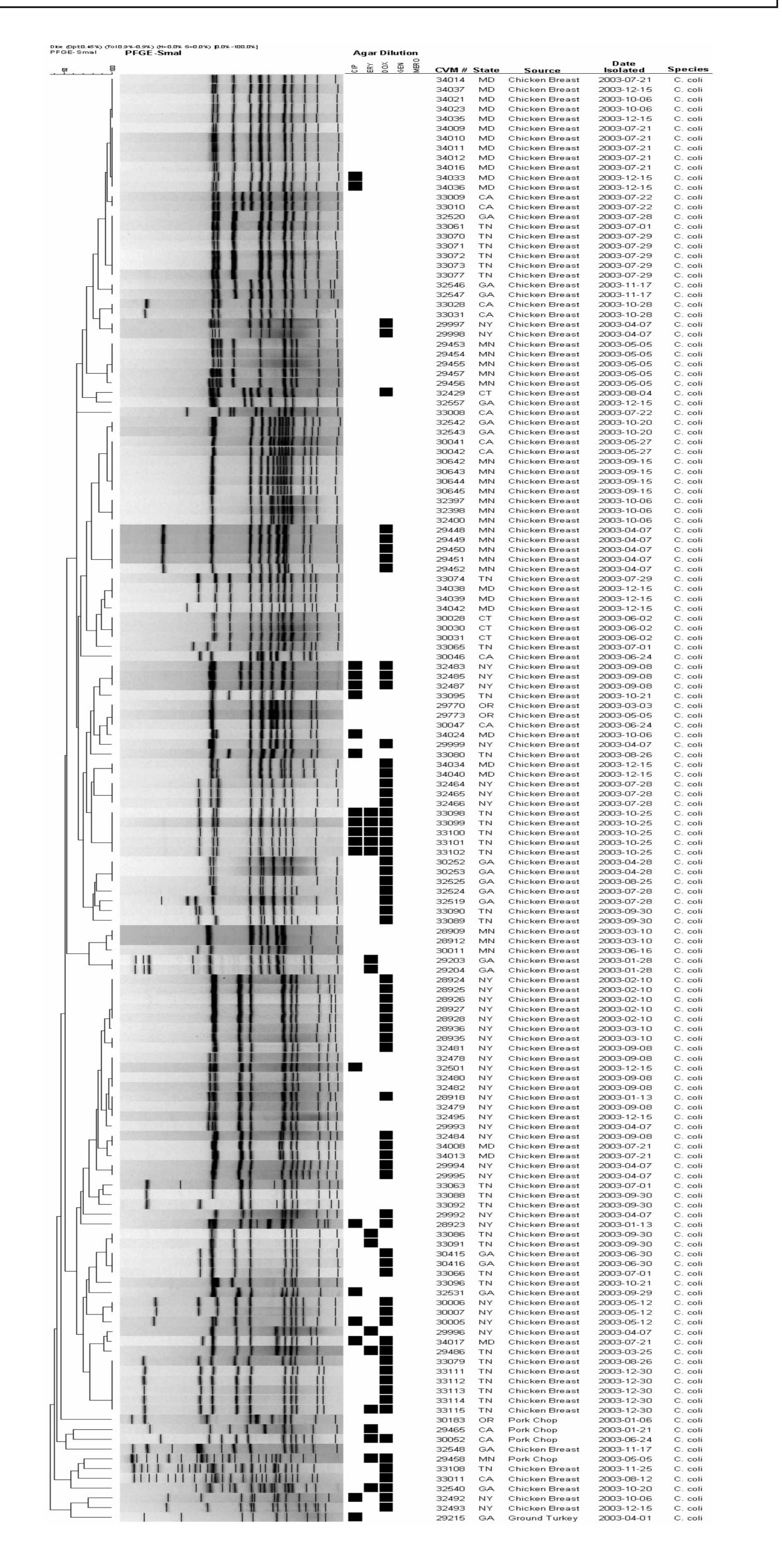

A-4n. PFGE Profiles for Salmonella Schwarzengrund

Dies (Opt0.50%) (Tol 1.5%-1.5%) (אסטטא 2-0.0%) (דער 1.5%-100.0%) PFGE-Xbal **PFGE-Xbal**

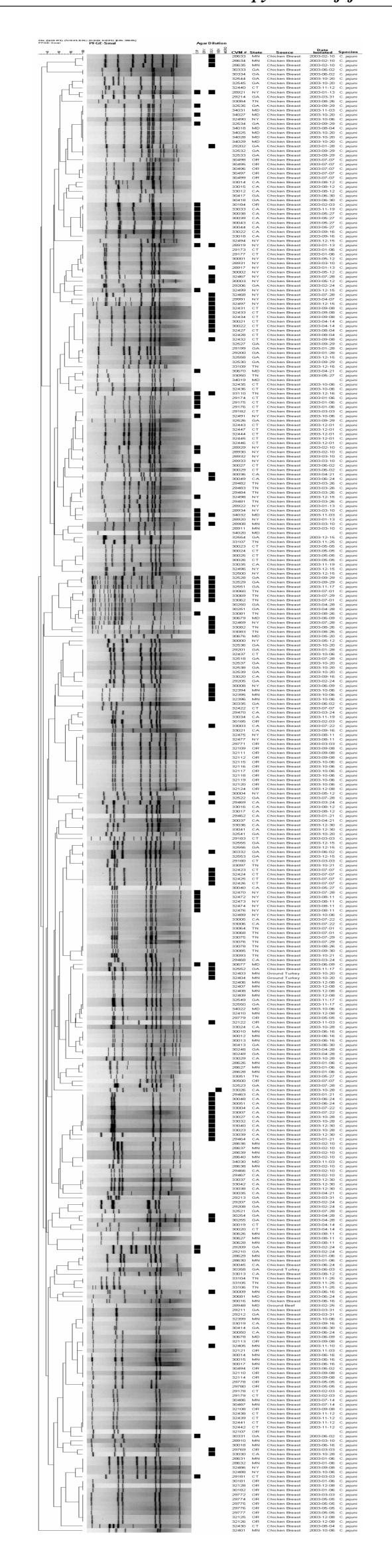
	CVM #	State	Source	Date Isolated	Serotype
	28945	MD	Ground Turkey	02/03	Schwarzengrund
	29197	GA	Ground Turkey	03/03	Schwarzengrund
	32516	GA	Chicken Breast	11.03	Schwarzengrund

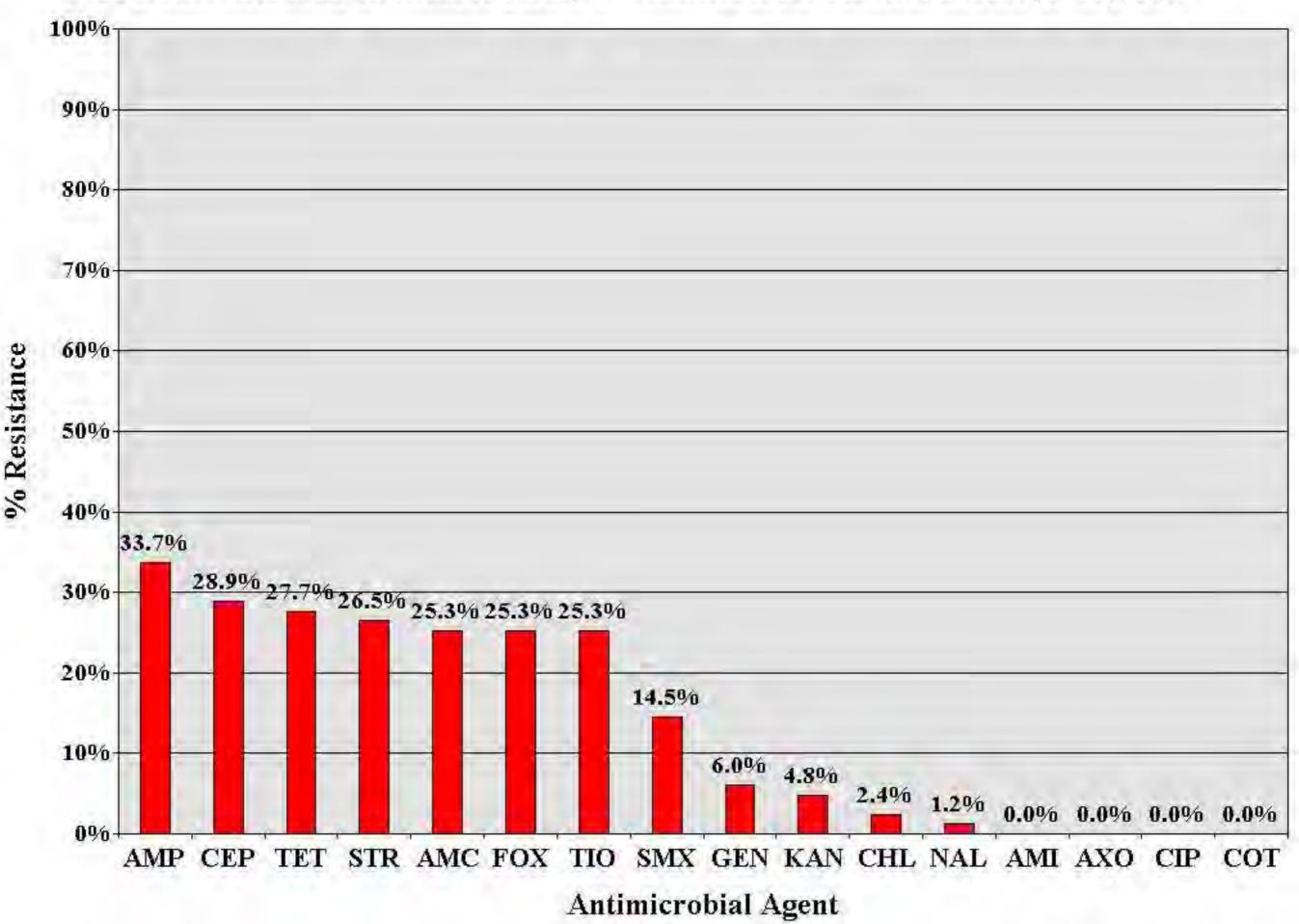
A-40. PFGE Profiles for Salmonella Senftenberg

Die (0pt0.50%) (Tol 1.5%-1.5%) (H>0.0% S>0.0%) (0.0%-100.0%) PFGE-Xbal **PFGE-Xbal**

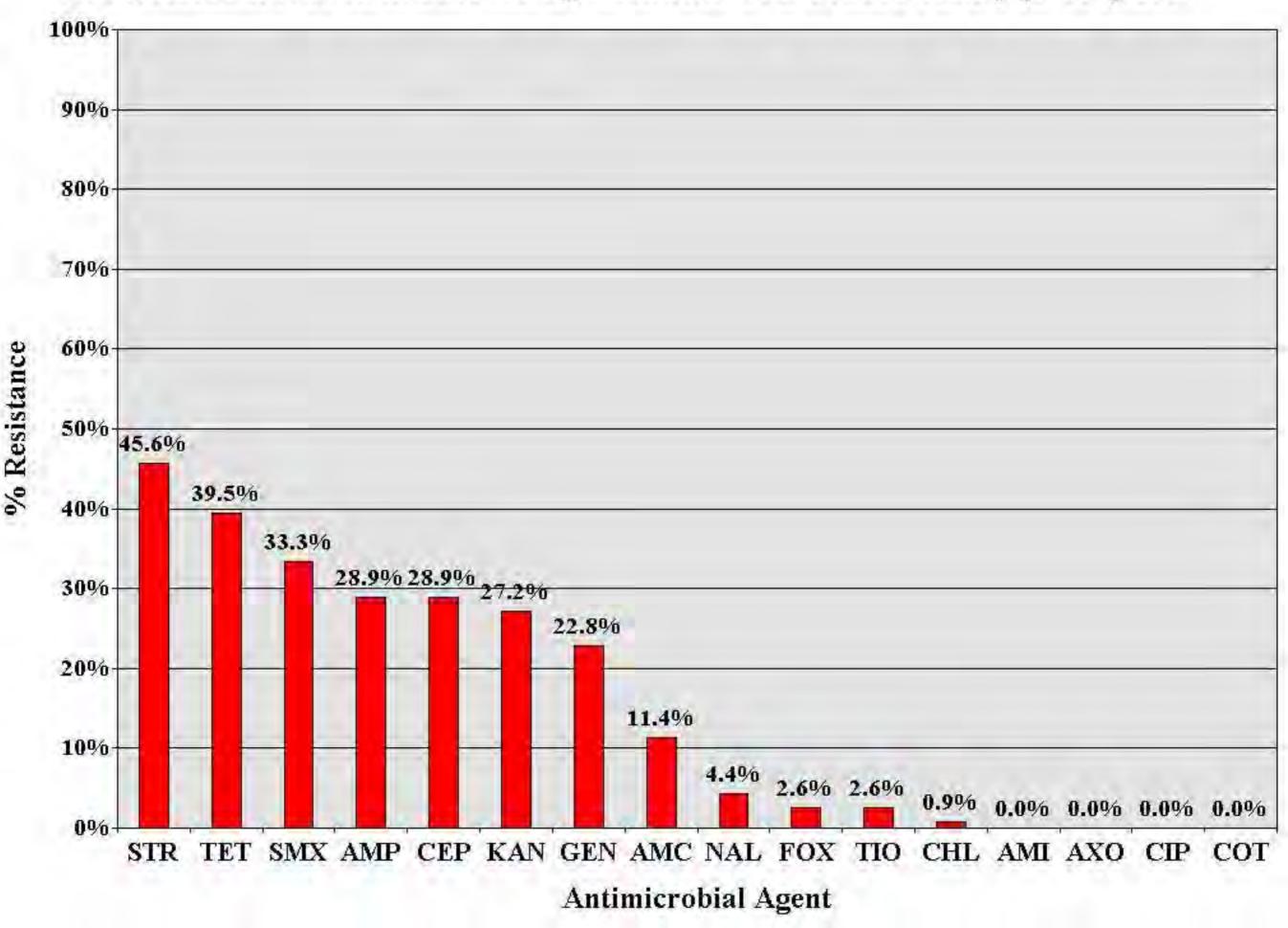


A-4p. PFGE Profiles for Salmonella Typhimurium

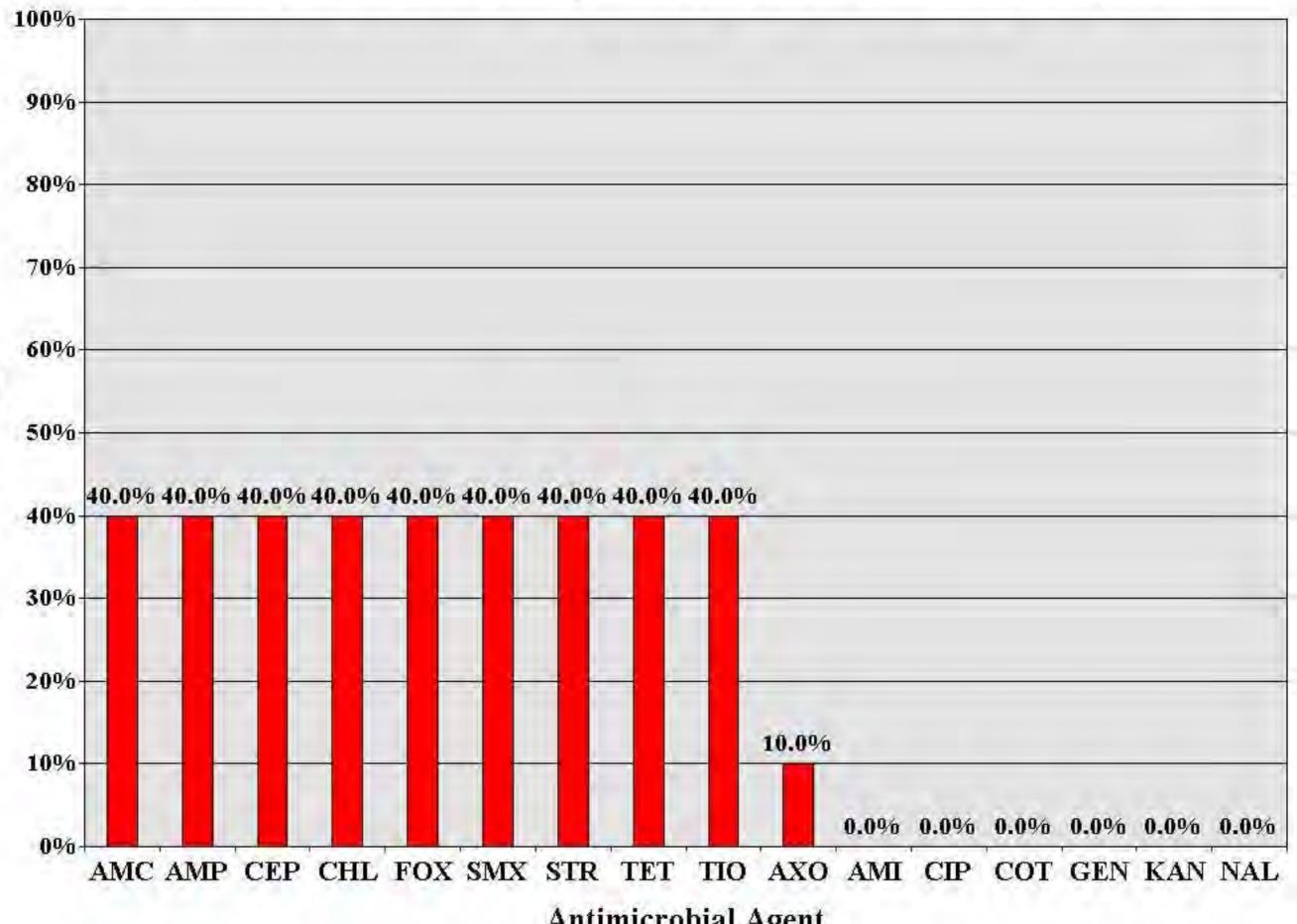

Dise (Opt0.50%) (Tol1.5%-1.5%) (H>0.0% S>0.0%) (0.0%-100.0%) PFGE-Xbal **PFGE-Xbal**


	Antibiogram					
2	AMC AMC FOX CEP KAN NAL STR SMX TET TIO	CVM #	State	Source	Date Isolated	Serotype
		32504	GA	Chicken Breast	08/03	Typhimurium var. 05- (Copenhagen)
		33949	MD	Chicken Breast	11/03	Typhimurium var. 05- (Copenhagen)
		33950	MD	Chicken Breast	11/03	Typhimurium var. 05- (Copenhagen)
		28937	MD	Chicken Breast	01/03	Typhimurium var. 05 - (Copenhagen)
		33951	MD	Chicken Breast	11/03	Typhimurium var. 05 - (Copenhagen)
		29979	NY	Chicken Breast	05/03	Typhimurium
		33942	MD	Chicken Breast	08/03	Typhimurium var. 05 - (Copenhagen)
		33943	MD	Chicken Breast	08/03	Typhimurium var. 05- (Copenhagen)
		32412	СТ	Chicken Breast	08/03	Typhimurium var. 05- (Copenhagen)
		32414	СТ	Chicken Breast	08/03	Typhimurium var. 05- (Copenhagen)
		32415	СТ	Chicken Breast	08/03	Typhimurium var. 05 - (Copenhagen)
		32463	NY	Chicken Breast	12/03	Typhimurium var. 05 - (Copenhagen)
		32421	CT	Chicken Breast	12/03	Typhimurium var. 05 - (Copenhagen)
		28914	NY	Ground Turkey	02/03	Typhimurium
		33945	MD	Chicken Breast	08/03	Typhimurium var. 05- (Copenhagen)
		30034	CA	Ground Turkey	06/03	Typhimurium var. 05- (Copenhagen)
		30648	MD	Chicken Breast	05/03	Typhimurium
		30649	MD	Chicken Breast	05/03	Typhimurium
		30650	MD	Chicken Breast	05/03	Typhimurium
		30651	MD	Chicken Breast	05/03	Typhimurium
		30666	MD	Ground Beef	06/03	Typhimurium var. 05 - (Copenhagen)
		28938	MD	Chicken Breast	01/03	Typhimurium var. 05 - (Copenhagen)
		28941	MD	Pork Chop	01/03	Typhimurium var. 05 - (Copenhagen)
		30662	MD	Chicken Breast	06/03	Typhimurium var. 05 - (Copenhagen)
		29168	СТ	Chicken Breast	01/03	Typhimurium
		29172	СТ	Chicken Breast	03/03	Typhimurium var. 05- (Copenhagen)

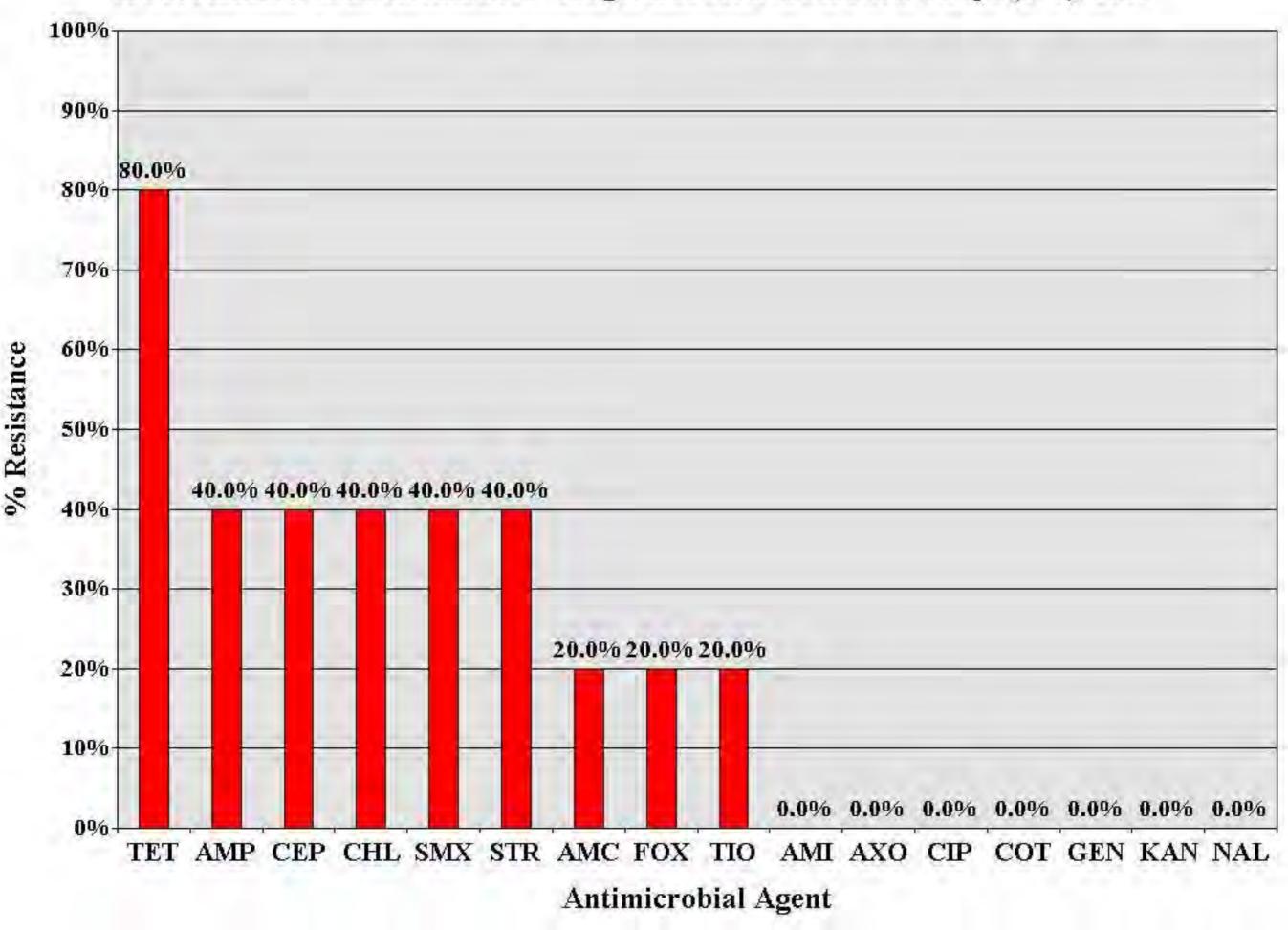
A-4q. PFGE Profiles for Campylobacter coli

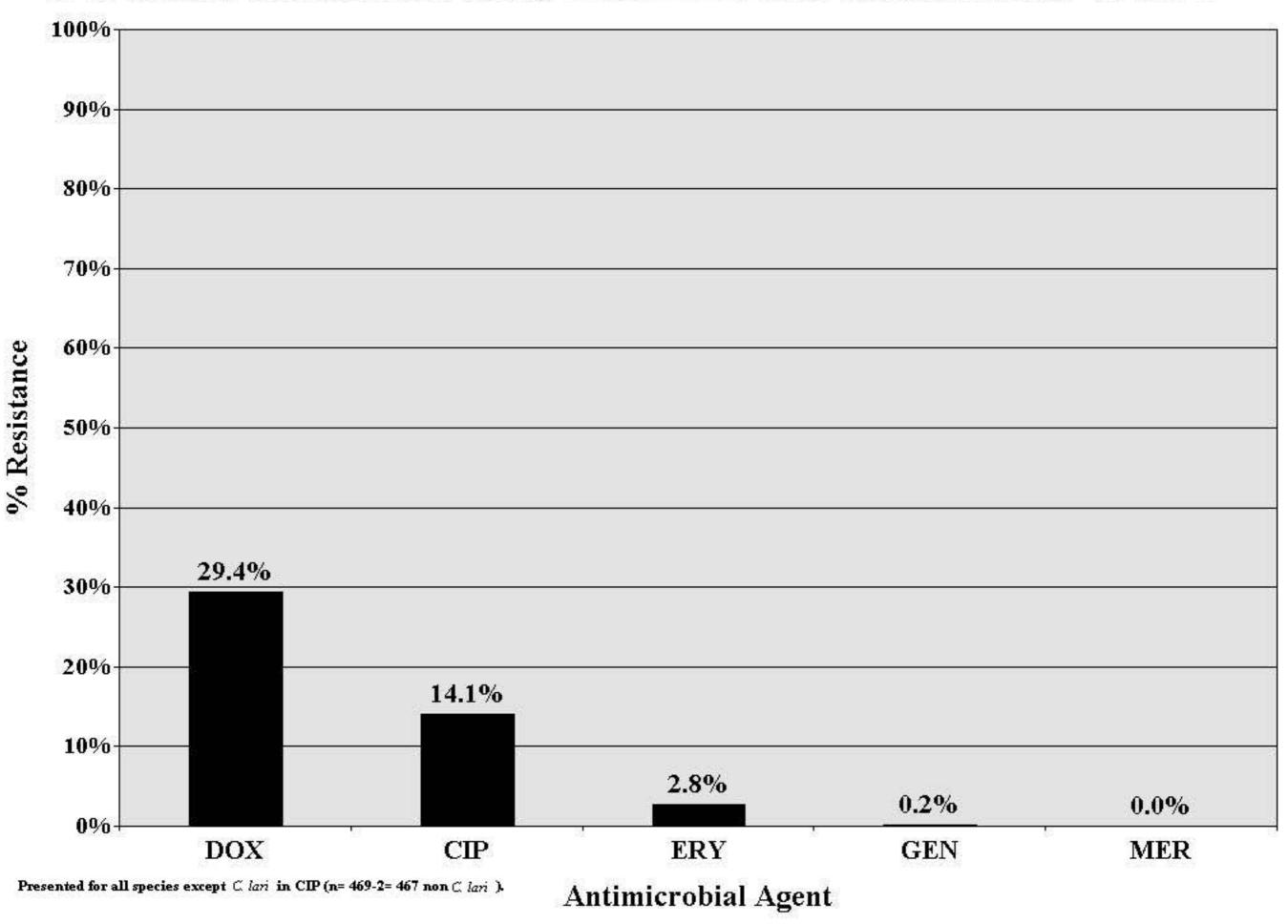


A-4r. PFGE Profiles for Campylobacter jejuni

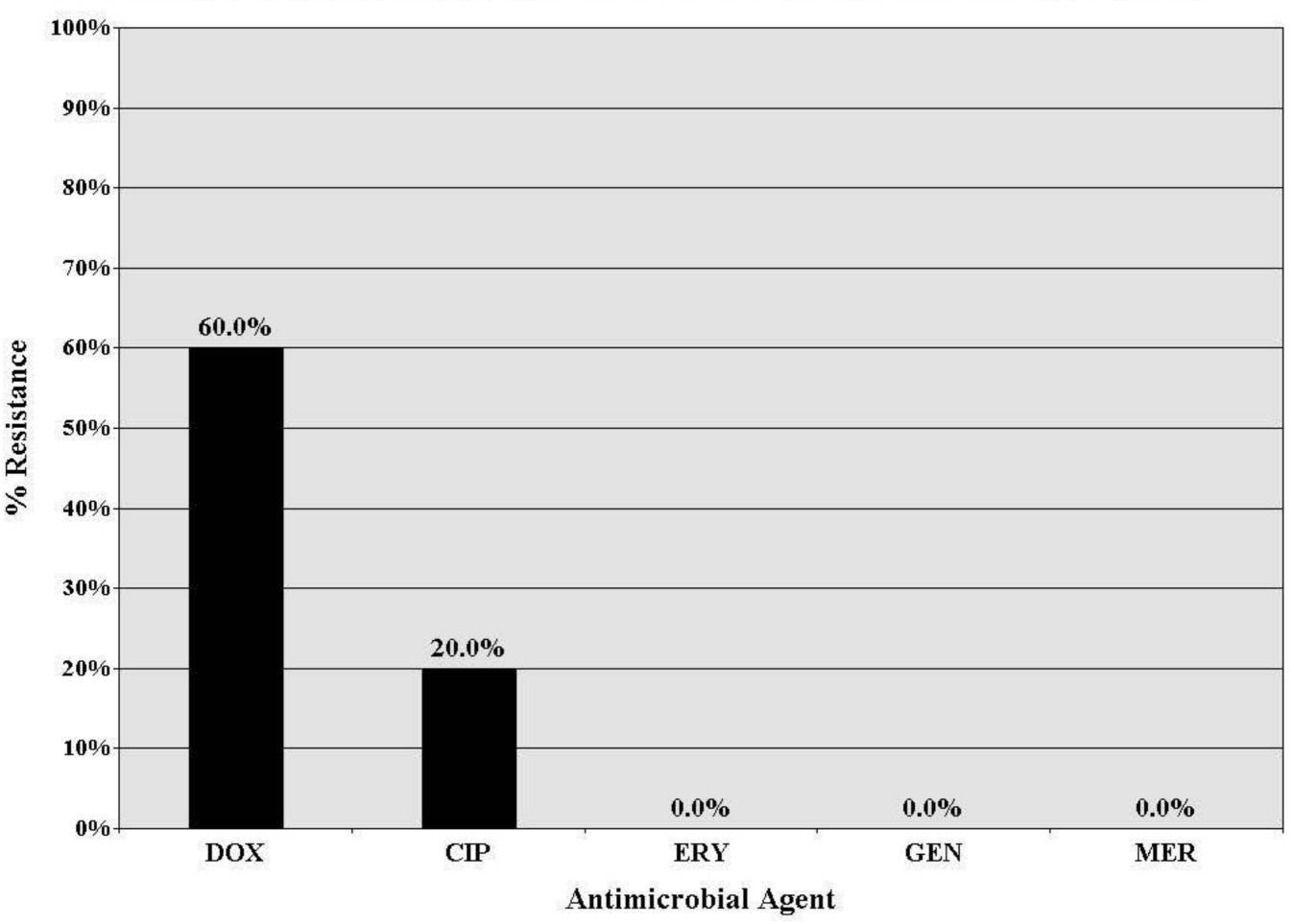


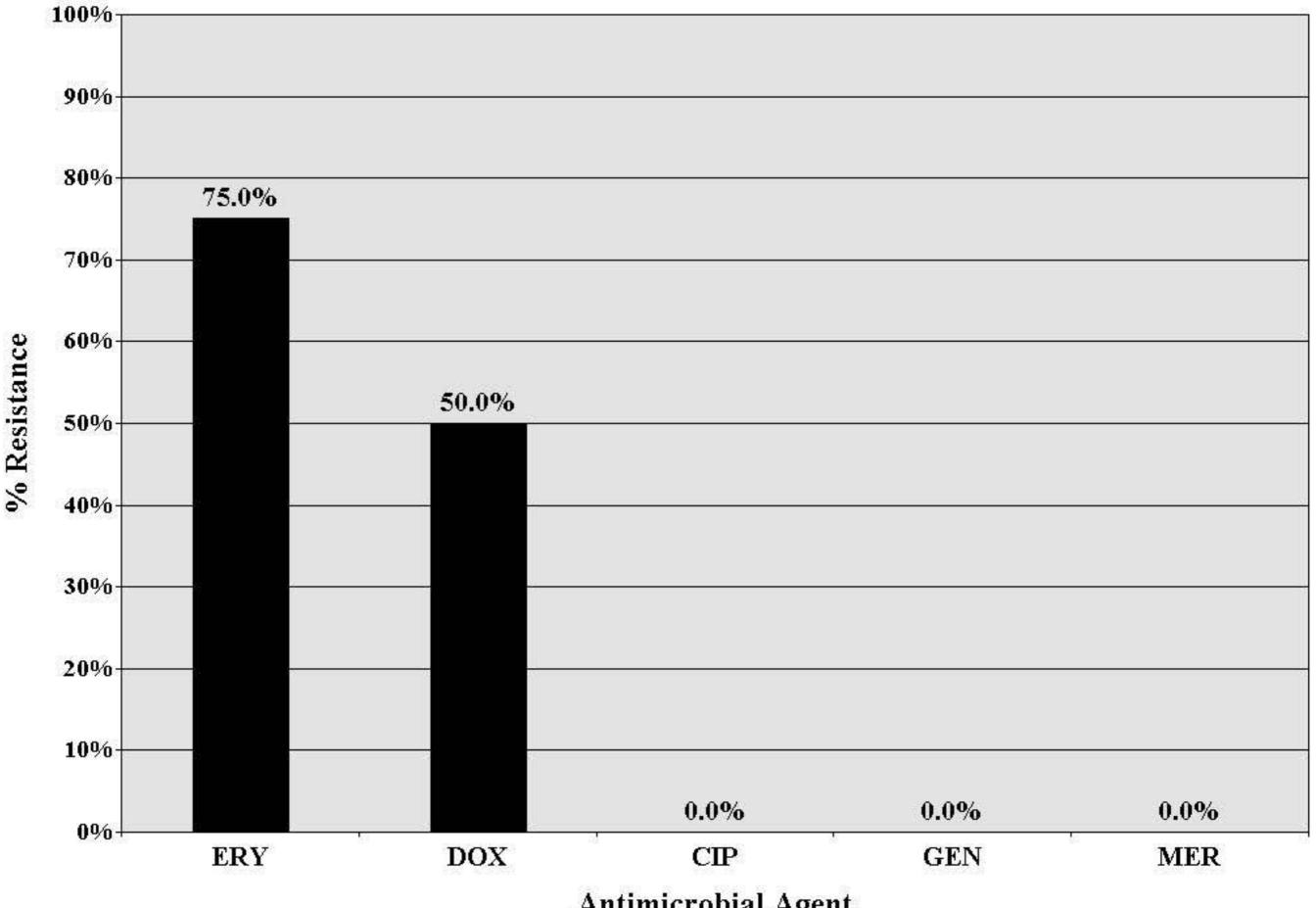
A-5a. Antimicrobial Resistance among Salmonella from Chicken Breast (n=83), 2003


A-5b. Antimicrobial Resistance among Salmonella from Ground Turkey (n=114), 2003

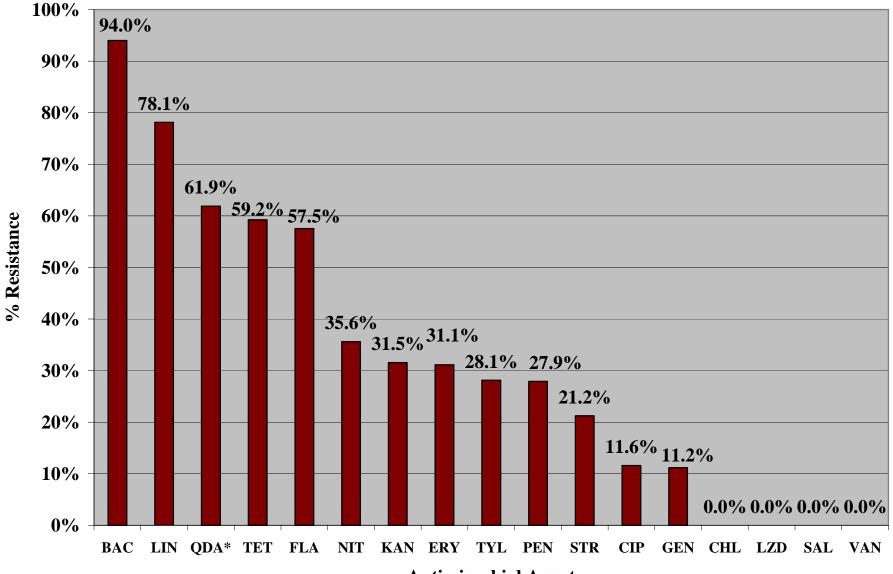

% Resistance

A-5c. Antimicrobial Resistance among Salmonella from Ground Beef (n=10), 2003

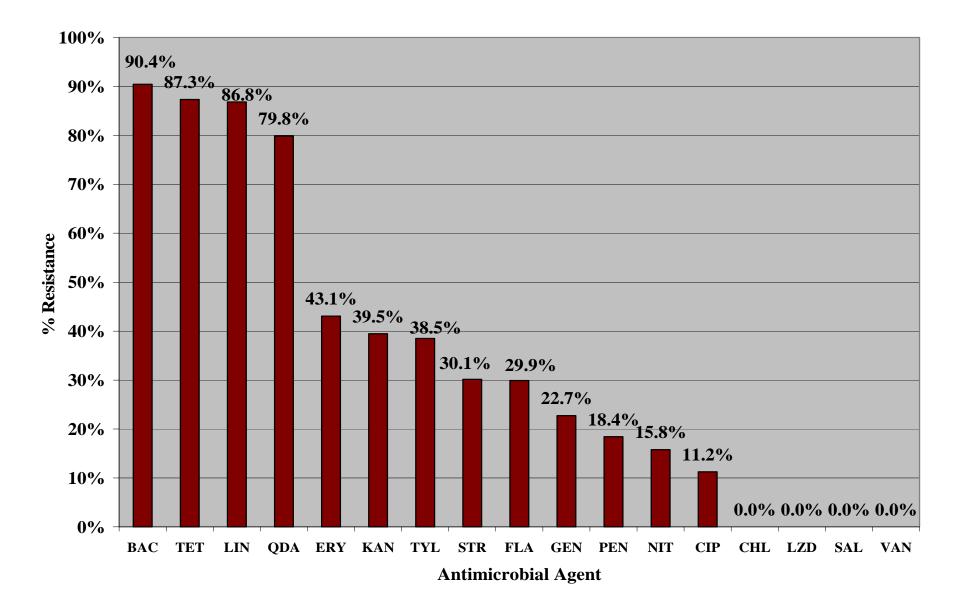

Antimicrobial Agent


A-5d. Antimicrobial Resistance among Salmonella from Pork Chops (n=5), 2003

A-6a. Antimicrobial Resistance among Campylobacter from Chicken Breast (n=469), 2003



A-6b. Antimicrobial Resistance among Campylobacter from Ground Turkey (n=5), 2003


A-6c. Antimicrobial Resistance among Campylobacter from Pork Chops (n=4), 2003

Antimicrobial Agent

Figure A-7a. Antimicrobial Resistance among *Enterococcus* from Chicken Breast (n=466), 2003

Antimicrobial Agent

Figure A-7b. Antimicrobial Resistance among *Enterococcus* from Ground Turkey (n=418), 2003

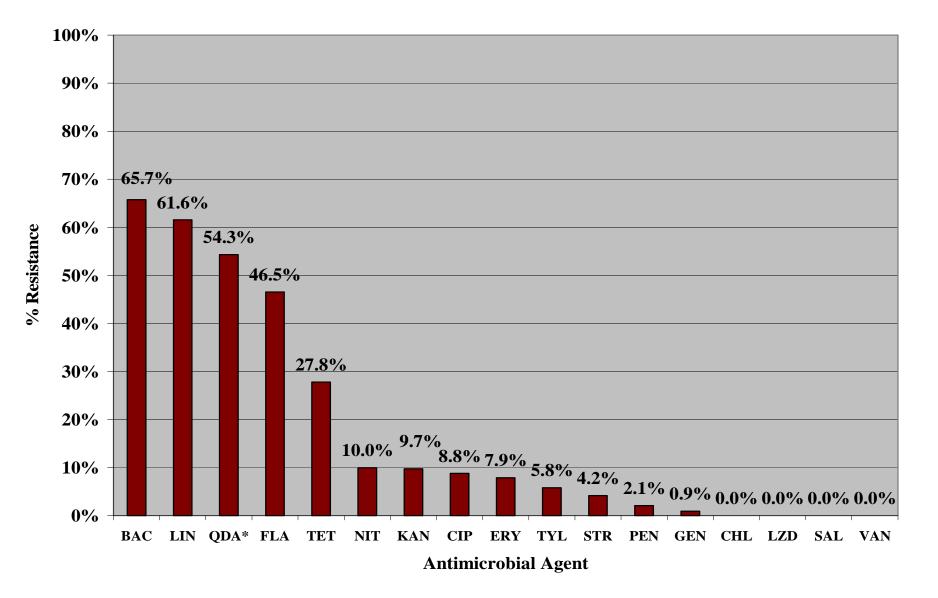


Figure A-7c. Antimicrobial Resistance among *Enterococcus* from Ground Beef (n=432), 2003

Figure A-7d. Antimicrobial Resistance among *Enterococcus* from Pork Chop (n=426), 2003

* Presented for all species except E. faecalis in QDA (n=426-313=113 non E. faecalis)

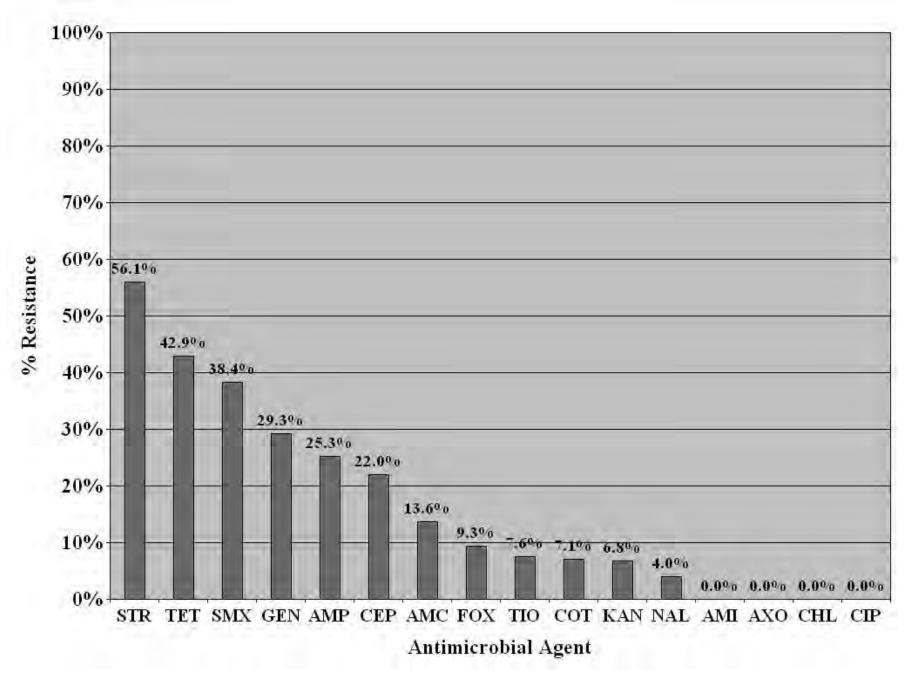


Figure A-8a. Antimicrobial Resistance among *E. coli* from Chicken Breast (n=396), 2003.

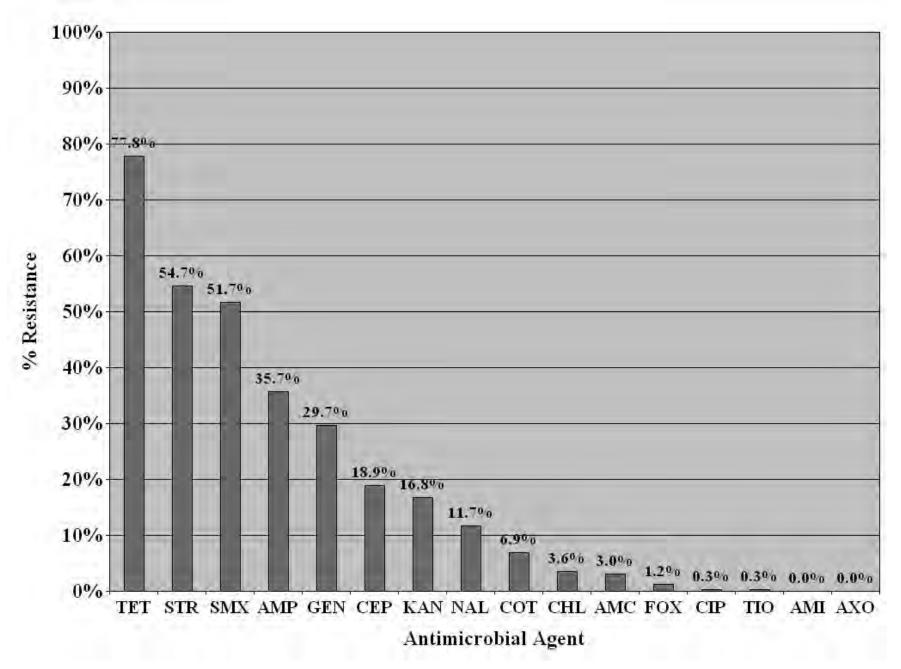


Figure A-8b. Antimicrobial Resistance among E. coli from Ground Turkey (n=333), 2003

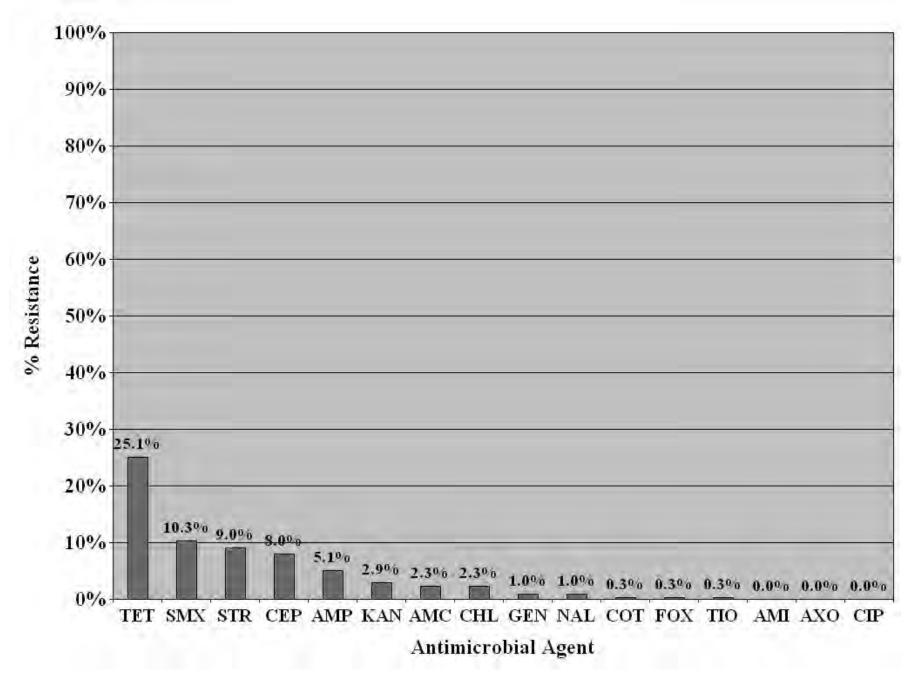


Figure A-8c. Antimicrobial Resistance among *E. coli* from Ground Beef (n=311), 2003.

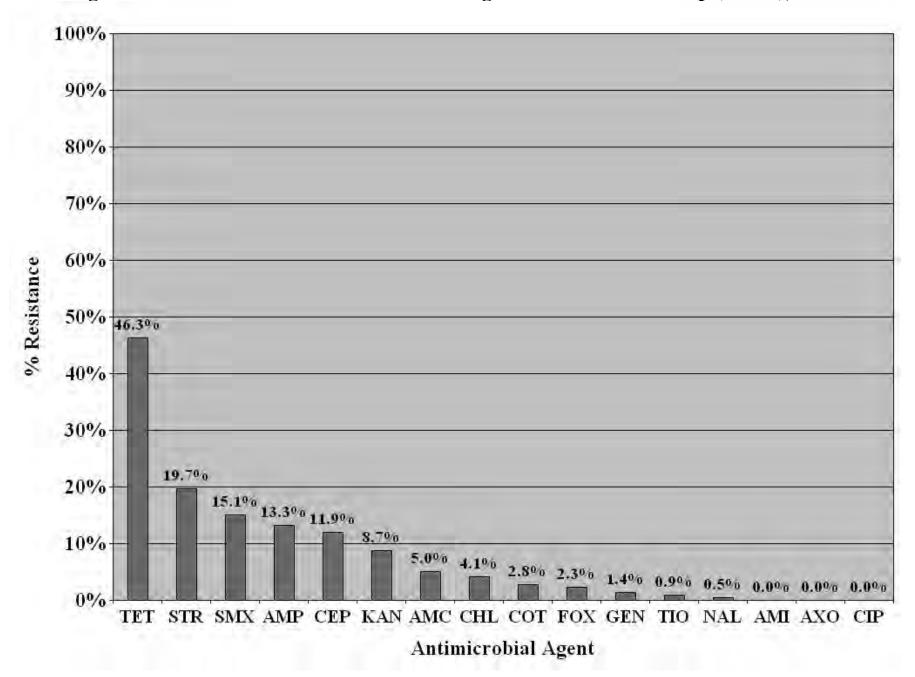


Figure A-8d. Antimicrobial Resistance among *E. coli* from Pork Chop (n=218), 2003

NATIONAL ANTIMICROBIAL RESISTANCE MONITORING SYSTEM – RETAIL FOOD STUDY ISOLATES MONTHLY LOG SHEET

STATE_____ MONTH_____ YEAR___

Completed By (Initials):

	Circle One \rightarrow CHICKEN BREAST GROUND TURKEY GROUND BEEF							PO	RK (CHOP															
	PARTI																								
Sample ID Number Store			e Name, City Brand Name					L	ot N	umb	er	(√ One)			Sell-by Date (M / D / Y)			rcha Date / D /		Lab Proces Date (M / D / Y)					
1																									
2 3																									
3																									
4																									
5																									
6																									
5 6 7 8 9																									
8																									
9																									
10																									
						<u> </u>				PART II															
C D N T.	Grov	wth		Salmonell F GROWT			Growth (√ One)			mpylobacter GROWTH			owth One)		li (GA, OR) GROW			Gro\ (√ O	wth	Ente		0	(GA,M R) OWTH		N,
↓	(√ O Y		Serotype		ID Number	Y	N	Species		Isolate ID N	umber	Y	N		te ID N			Y	N	I	sola	te ID	Numt	ber	
1																									
1 2																									
3																									
4																									
5																									
6																									
7																									
8																									
3 4 5 6 7 8 9																									
10																									

Fax log sheet to CDC at 404-371-5444; send original log sheet with specimens to FDA-CVM and keep a copy for your records. Thank you.

NARMS Retail Meat, 2003

Experimental Design and Procedures:

Microbiological analysis:

In the laboratory, samples were refrigerated at 4°C and processed no later than 96 hours after purchase. After microbiological examination, recordings were made on the log sheets whether or not the meat and poultry samples were presumptively positive for Salmonella, Campylobacter, E. coli, and Enterococcus. Each laboratory used essentially the same procedure for sample collection. Retail meat and poultry packages were kept intact until they were aseptically opened in the laboratory at the start of examination. For chicken and pork samples, one piece of meat was examined, whereas, 25 g of ground product was examined for ground beef and ground turkey samples. The analytical portions from each sample were placed in separate sterile plastic bags, 250 mL of buffered peptone water was added to each bag, and the bags were vigorously shaken. Fifty mL of the rinsate from each sample was transferred to separate sterile flasks (or other suitable sterile containers) for isolation and identification of *Salmonella*, *Campylobacter*, *E. coli*, or *Enterococcus* using standard microbiological procedures. Once isolated and identified, bacterial isolates were sent to FDA's CVM Office of Research for further characterization including species confirmation, antimicrobial susceptibility testing and PFGE analysis (Salmonella and Campylobacter only).

Salmonella isolation:

Fifty mL of double strength lactose broth was added to each flask containing the 50 mL of rinsate to be used for *Salmonella* isolation. The contents were mixed thoroughly and incubated at 35°C for 24 hours. From each flask, 0.1 ml was then transferred to 9.9 mL tubes of RVR10 medium. The tubes of RVR10 medium were incubated in a water bath at 42°C for 16-20 hours before transferring one ml to pre-warmed (35-37°C) 10 mL tubes of M Broth. The

inoculated M Broth tubes were incubated in a water bath at 35-37°C for 6-8 hours. From each M Broth culture, one ml was heated at 100°C for 15 minutes, and the remaining portion was refrigerated. The heated portion from each culture was cooled to room temperature and tested using the TECRA Salmonella Visual Immunoassay kit (International BioProducts, Bothell, WA) or the VIDAS® Salmonella Immunoassay kit (bioMerieux, Hazelwood, MO) according to the manufacturers' instructions. If the TECRA or VIDAS assay was negative, the sample was considered negative for Salmonella. If the TECRA or VIDAS assay was positive, a loopful of the corresponding, unheated M Broth culture was streaked for isolation onto a XLD agar plate. The inoculated plate was incubated at 35°C for 24 hours. Each XLD agar plate was examined for typical Salmonella colonies (pink colonies with or without black centers). If no Salmonella like growth was observed on a XLD agar, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. When Salmonella like growth was observed, one well-isolated colony was streaked for isolation onto a trypticase soy agar plate supplemented with 5% defribrinated sheep blood (BAP). The BAP(s) were incubated at 35°C for 18-24 hours before sub-culturing an isolated colony for further biochemical identification and serotyping using the FoodNet laboratory's standard procedures. Salmonella isolates were subsequently frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, every isolate was streaked for purity on a BAP before being confirmed as *Salmonella* using the Vitek microbial identification system (bioMérieux, Hazelwood, MO). These isolates were further serotyped for O and H antigens using either commercially available (Difco-Becton Dickinson, Sparks, MD) or CDC antisera.

Campylobacter isolation:

Fifty mL of double strength Bolton broth was added to each flask containing the 50 mL

of rinsate to be used for *Campylobacter* isolation. The broth and rinsate were mixed thoroughly, but gently to avoid aeration, and incubated at 42°C for 24 hours in a reduced oxygen atmosphere that was obtained using a Campy Pak (BBL-Becton Dickinson, Sparks, MD) or a gas mixture containing 85% nitrogen, 10% carbon dioxide, and 5% oxygen. Using a swab, the first quadrant of a CCA Plate was inoculated with the incubated Bolton broth culture. The remainder of each plate was then streaked with a loop to obtain isolated colonies, and the CCA plates were incubated at 42°C in the above atmosphere for 24 to 48 hours. Each CCA plate was examined for typical *Campylobacter* colonies (round to irregular with smooth edges; thick translucent white growth to spreading, film-like transparent growth). If no *Campylobacter* like growth was observed on a CCA plate, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. When *Campylobacter* like growth was observed, one typical well-isolated *Campylobacter* like colony from each positive CCA plate was sub-cultured to a BAP and incubated as described for the CCA plates. Following incubation, one typical well-isolated *Campylobacter* like colony was gram stained and tested using a smear catalase, oxidase, hippurate and/or motility test. If the Gram stain showed small, Gram- negative, curved rods, and the isolate was positive with the other test(s) that were conducted, a sample was considered presumptively positive for Campylobacter. If the CCA plates or BAPs had no typical colonies or isolate testing was inconsistent with Campylobacter, a sample was considered negative. All isolates presumptively identified as *Campylobacter* were frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, isolates were streaked for purity on a BAP twice before being confirmed as *Campylobacter* using a repeat Gram stain and an AccuProbe *Campylobacter* Identification Test (Gen-Probe, San Diego, CA). Campylobacter species were determined using a multiplex PCR assay previously described (3,7).

<u>E. coli isolation</u> (Georgia, Maryland, Oregon and Tennessee)

Fifty mL of double strength MacConkey broth was added to each flask containing the 50 mL of rinsate to be used for *E. coli* isolation. The contents were mixed thoroughly and incubated at 35°C for 24 hours. One loopful from each flask was then transferred to an EMB agar plate and streaked for isolation. Agar plates were then incubated at 35°C for 24 hours in ambient air and examined for typical E. coli colonies (colonies having a dark center and usually a green metallic sheen). If no typical growth was observed on an EMB agar plate, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. When E. coli-like growth was present, one typical, well-isolated colony was streaked for isolation onto a BAP. The BAPs were incubated at 35°C for 24 hours in ambient air and examined for purity. One typical, well-isolated colony was subcultured for indole and oxidase tests. Indole positive and oxidase negative isolates were considered presumptively positive as E. coli. Presumptive E. coli isolates were subsequently frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, every isolate was streaked for purity on a BAP before being confirmed as E. coli using the Vitek microbial identification system (bioMérieux, Hazelwood, MO). *Enterococcus* isolation (Georgia, Maryland, Oregon and Tennessee)

Fifty mL of double strength Enterococcosel broth was added to each flask containing the 50 ml of rinsate to be used for *Enterococcus* isolation. The contents were mixed thoroughly and incubated at 45°C for 24 hours in ambient air. If no typical growth or blackening was observed in the flask, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. If blackening of the broth was observed, a loopful was streaked onto an EAP for isolation. The plates were then incubated at 35°C for 24 hours in ambient air and examined for enterococci-like colonies (small colonies surrounded by a

blackening of the agar). If no typical growth was observed on the EAP, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. If enterococci-like growth was present, one well-isolated colony was streaked for isolation onto a BAP, and incubated at 35°C for 24 hours in ambient air. Presumptive *Enterococcus* isolates were subsequently frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, every isolate was streaked for purity on a BAP before being confirmed as *Enterococcus* using the Vitek microbial identification system (bioMérieux, Hazelwood, MO).

Antimicrobial Susceptibility Testing:

For *E. coli, Enterococcus*, and *Salmonella*, antimicrobial MICs were determined using a 96 well broth microdiltion method (Sensititre, Trek Diagnostic Systems, Westlake, OH) according to NCCLS standards (4,5,6). *Salmonella* and *E. coli* isolates were tested using a custom plate developed for Gram negative bacteria, catalog # CMV6CNCD; *Enterococcus* isolates were tested using a custom plate developed for Gram positive bacteria, catalog # CMV5ACDC (Table 1). CLSI/NCCLS recommended QC organisms were used each time that antimicrobial susceptibility testing was performed. The QC organisms included *Escherichia coli* ATCC 25922 and 35218, *Enterococcus faecalis* ATCC 29212, *Staphylococcus aureus* ATCC 29213, and *Pseudomonas aeruginosa* ATCC 27853 (4,5,6).

For isolates confirmed as *Campylobacter*, the CLSI/NCCLS approved agar dilution procedure was used to determine MICs to ciprofloxacin, doxycycline, erythromycin, gentamicin, and meropenem. (4,5). The CLSI/NCCLS recommended quality control organism *Campylobacter jejuni* ATCC 33560 was used each time that antimicrobial susceptibility testing was performed (5). As there are no CLSI/NCCLS-approved interpretive criteria for *Campylobacter*, tentative breakpoints used by NARMS are shown in Table 1. All of the resistant breakpoints with the exception of meropenem, have been used previously in the absence of CLSI/NCCLS approved interpretive criteria (2). All antimicrobial susceptibility testing was conducted in the laboratories of the Division of Animal and Food Microbiology, CVM-FDA, Laurel, MD.

Pulsed Field Gel Electrophoresis (PFGE):

Pulsed-field gel electrophoresis was used to assess genetic relatedness among *Salmonella* and *Campylobacter* isolates. The PFGE was performed according to protocols developed by CDC (1). Agarose-embedded DNA was digested with the enzyme *Xba*I for *Salmonella* isolates and *Smal*I for *Campylobacter* isolates DNA restriction fragments were separated by electrophoresis using a Chef Mapper electrophoresis system (Bio-Rad, Hercules, CA). Genomic-DNA profiles or "fingerprints" were analyzed using BioNumerics software (Applied-Maths, Kortrijk, Belgium), and banding patterns were compared using Dice coefficients with a 1.5% band position tolerance. PFGE analysis was conducted in the laboratories of the Division of Animal and Food Microbiology, CVM-FDA, Laurel, MD.

References

- Center for Disease Control and Prevention. 2002. Standardized molecular subtyping of foodborne bacterial pathogens by pulsed-field gel electrophoresis. Center for Disease Control and Prevention. Atlanta, GA.
- Ge, B., S. Bodeis, R.D. Walker, D.G. White, S. Zhao, P.F. McDermott, and J. Meng.
 2002. Comparison of the Etest and agar dilution for in vitro antimicrobial susceptibility testing of *Campylobacter*. J. Antimicrob. Chemother. 50:487-494.

- Linton, D., A. J. Lawson, R. J. Owen, and J. Stanley. 1997. PCR detection, identification to species level, and fingerprinting of *Campylobacter jejuni* and *Campylobacter coli* direct from diarrheic samples. J. Clin. Microbiol. 35:2568-2572
- National Committee for Clinical Laboratory Standards. 2003. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; 2nd edition. NCCLS M31-A2. NCCLS, Wayne, Pa.
- 5. National Committee for Clinical Laboratory Standards. 2004. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; first information supplement. NCCLS M31-S1. NCCLS, Wayne, Pa.
- National Committee for Clinical Laboratory Standards. 2004. Performance standards for antimicrobial susceptibility testing; fourteenth information supplement. NCCLS M100-S14. NCCLS, Wayne, Pa.
- Zhao, C., B. Ge, J. De Villena, R. Sudler, E. Yeh, S. Zhao, D. G. White, D. Wagner, and J. Meng. 2001. Prevalence of *Campylobacter* spp., *Escherichia coli*, and *Salmonella* serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C., area. Appl.Environ.Microbiol. 67:5431-5436