

Notice: Archived Document

The content in this document is provided on the FDA's website for reference purposes only. This content has not been altered or updated since it was archived.

Retail Meat Report

National Antimicrobial Resistance Monitoring System

ABBREVIATIONS USED IN THE REPORT, 2004

AR Antimicrobial Resistance

BAP Blood Agar Plate

CCA Campy-Cefex Agar Plate

CDC Centers for Disease Control and Prevention

CVM Center for Veterinary Medicine EAP Enterococcosel Agar Plate EIP Emerging Infections Program

EMB Eosin Methylene Blue

FDA Food and Drug Administration

FoodNet Foodborne Disease Active Surveillance Network

MIC Minimum Inhibitory Concentration

NARMS National Antimicrobial Resistance Monitoring System

CLSI Clinical and Laboratory Standards Institute

PCR Polymerase Chain Reaction
PFGE Pulsed Field Gel Electrophoresis

PulseNet The National Molecular Subtyping Network for Foodborne Disease Surveillance

QC Quality Control

RVR10 Rappaport-Vassiliadis

USDA United States Department of Agriculture

XLD Xylose Lysine Deoxycholate

Antimicrobial Abbreviations:

AMC	Amoxicillin/Clavulanic Acid	FOX	Cefoxitin
AMI	Amikacin	GEN	Gentamicin
AMP	Ampicillin	KAN	Kanamycin
AXO	Ceftriaxone	LIN	Lincomycin
AZI	Azithromycin	LZD	Linezolid
BAC	Bacitracin	NAL	Nalidixic Acid
CHL	Chloramphenicol	NIT	Nitrofurantoin
CIP	Ciprofloxacin	PEN	Penicillin

CLI Clindamycin QDA Quinupristin/Dalfopristin

Trimethoprim/Sulfamethoxazole Streptomycin COT STR DAP Daptomycin TEL Telithromycin Erythromycin Tetracycline ERY TET FFN Florfenicol TYL **Tylosin** FIS TIO Ceftiofur Sulfisoxazole Vancomycin FLA Flavomycin VAN

Meat Types

CB Chicken Breast GT Ground Turkey
GB Ground Beef PC Pork Chop

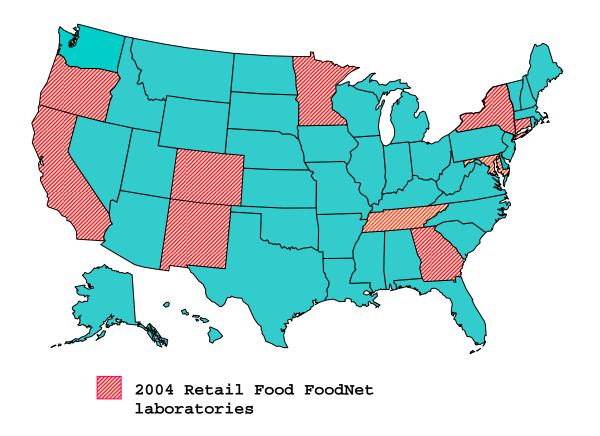
State Abbreviations:

CA	California	MN	Minnesota
CO	Colorado	NM	New Mexico
CT	Connecticut	NY	New York
GA	Georgia	OR	Oregon
MD	Maryland	TN	Tennessee

NARMS Retail Meat Annual Report 2004

Background:

Food animal products destined for human consumption are known to harbor enteric bacteria, including zoonotic foodborne pathogens. Antimicrobial resistance (AR) among these organisms may be associated with the use of antimicrobial agents in food animals. Retail meats represent a point of exposure close to the consumer and, when combined with data from slaughter plants and on-farm studies, provides insight into the prevalence of AR in foodborne pathogens originating from food animals. To gain a better understanding of AR among enteric bacteria in the food supply, the NARMS monitors antimicrobial susceptibility/resistance phenotypes in bacteria isolated from retail meats.


The primary purpose of the NARMS retail meat surveillance program is to monitor the prevalence of antimicrobial resistance among foodborne pathogenic and commensal organisms, in particular, *Salmonella*, *Campylobacter*, *Enterococcus* and *E. coli* The results generated by the NARMS retail meat program will establish a reference point for analyzing trends of antimicrobial resistance among these foodborne bacteria. NARMS retail meat surveillance is an ongoing collaboration between the U.S. Food and Drug Administration (Center for Veterinary Medicine), the Centers for Disease Control and Prevention, and in 2004, all 10 of the current FoodNet laboratories: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York, Oregon, and Tennessee. Retail meats are collected at these FoodNet sites and cultured for the presence of the selected organisms. Bacterial isolates are sent to FDA/CVM for confirmation of species, antimicrobial susceptibility testing, and genetic analysis.

NARMS Retail Meat Annual Report 2004

Background:

Food animal products destined for human consumption are known to harbor enteric bacteria, including zoonotic foodborne pathogens. Antimicrobial resistance (AR) among these organisms may be associated with the use of antimicrobial agents in food animals. Retail meats represent a point of exposure close to the consumer and, when combined with data from slaughter plants and on-farm studies, provides insight into the prevalence of AR in foodborne pathogens originating from food animals. To gain a better understanding of AR among enteric bacteria in the food supply, the NARMS monitors antimicrobial susceptibility/resistance phenotypes in bacteria isolated from retail meats.

The primary purpose of the NARMS retail meat surveillance program is to monitor the prevalence of antimicrobial resistance among foodborne pathogenic and commensal organisms, in particular, *Salmonella*, *Campylobacter*, *Enterococcus* and *E. coli* The results generated by the NARMS retail meat program will establish a reference point for analyzing trends of antimicrobial resistance among these foodborne bacteria. NARMS retail meat surveillance is an ongoing collaboration between the U.S. Food and Drug Administration (Center for Veterinary Medicine), the Centers for Disease Control and Prevention, and in 2004, all 10 of the current FoodNet laboratories: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York, Oregon, and Tennessee. Retail meats are collected at these FoodNet sites and cultured for the presence of the selected organisms. Bacterial isolates are sent to FDA/CVM for confirmation of species, antimicrobial susceptibility testing, and genetic analysis.

FoodNet is the principal foodborne disease component of CDC's Emerging Infections Program (http://www.cdc.gov/foodnet/). It is a collaborative project of the CDC, ten EIP sites (California, Colorado, Connecticut, Georgia, New York, Maryland, Minnesota, Oregon, Tennessee, and New Mexico), the U.S. Department of Agriculture (USDA), and the Food and Drug Administration (FDA). The project consists of active surveillance for foodborne diseases and related epidemiologic studies designed to help public health officials better understand the epidemiology of foodborne diseases in the United States. The NARMS/FoodNet Retail Food Study was developed to monitor the presence of AR among E. coli, Salmonella, Campylobacter, and Enterococcus from convenience samples of fresh meat and poultry purchased monthly from grocery stores in the participating States. These isolates are then subjected to standardized antimicrobial susceptibility testing methods in order to determine the prevalence of resistance. Retail meat sampling:

For calendar year 2004, retail meat sampling started in January among the 10

participating FoodNet laboratories. In each of the FoodNet sites monthly sampling, an attempt was made to go to as many different stores as possible. The object was to purchase as many different brands of fresh (not frozen) meat and poultry as possible. A total of 40 food samples were purchased per month comprised of 10 samples each of chicken breast, ground turkey, ground beef, and pork chops. For each meat and poultry sample, the FoodNet sites recorded the store name, brand name, lot number (if available), sell-by date, purchase date and lab processing date on log sheets (A-9). Additional information with regard to whether or not the meat or poultry was ground or cut in-store was also collected, if possible. Samples were kept cold during transport from the grocery store(s) to the laboratory.

Microbiological analysis:

In the laboratory, samples were refrigerated at 4°C and were processed no later than 96 hours after purchase. After microbiological examination, the sites recorded on the log sheets whether or not the meat and poultry samples were presumptively positive for *Salmonella*, *Campylobacter*, *E. coli*, and *Enterococcus*. Each laboratory used essentially the same procedure for sample collection. Retail meat and poultry packages were kept intact until they were aseptically opened in the laboratory at the start of examination. For chicken and pork samples, one piece of meat was examined. For ground beef and ground turkey samples, 25 g of ground product was analyzed. The analytical portions from each sample were placed in separate sterile plastic bags, 250 mL of buffered peptone water was added to each bag, and the bags were vigorously shaken. Fifty mL of the rinsate from each sample was transferred to separate sterile containers for isolation and identification of *Salmonella*, *Campylobacter*, *E. coli*, or *Enterococcus* using standard microbiological procedures. Once isolated and identified, bacterial isolates were sent to FDA's CVM Office of Research for further characterization including species confirmation, antimicrobial susceptibility testing and PFGE analysis (*Salmonella* and

Campylobacter only).

All ten FoodNet sites cultured the meats and poultry rinsates for the presence of *Salmonella* and *Campylobacter*. Four of the ten FoodNet laboratories (Georgia, Maryland, Oregon, and Tennessee) also cultured meat and poultry rinsates for the presence of *E. coli* and *Enterococcus*.

Changes in 2004

Several notable updates in the NARMS Retail Meat program occurred in 2004. A total of 4699 meats samples were collected, up from 3533 in 2003. This was due to the addition of FoodNet laboratories in Colorado and New Mexico, increasing the number of test sites from 8 to 10.

In 2004, we adopted a broth microdilution antimicrobial susceptibility testing method for *Campylobacter*, which also increased the number of agents tested from 5 to 9. The 9 antimicrobials tested in 2004 were: Azithromycin, Ciprofloxacin*, Clindamycin, Erythromycin*, Florfenicol, Gentamicin*, Nalidixic Acid, Telithromycin, and Tetracycline (* indicates agents also tested in 2003). Meropenem and Doxycycline were dropped from the list of *Campylobacter* agents tested.

The interpretive criteria used for *Campylobacter* antimicrobials is shown in Table 1.

Based on the upcoming CLSI M45-P document (*Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently-Isolated or Fastidious Bacteria; Proposed Guideline*, CLSI June 2006), the Erythromycin resistance breakpoint was changed from 8 μg/ml to 32 μg/ml.

Based on the MIC distribution published in this report, along with other *Campylobacter* data generated using broth microdilution testing, several other breakpoints have been modified from those used in previous NARMS reports. For resistance breakpoints, these revised values include: Azithromycin (changed from 2 μg/mL to 8 μg/ml); Clindamycin (changed from 4

 μ g/mL to 8μ g/ml); Gentamicin (changed from $16~\mu$ g/mL to $8~\mu$ g/ml); and Nalidixic acid (changed from $32~\mu$ g/mL to $64~\mu$ g/mL).

Two content changes were made in the panel formats. Cephalothin was omitted from the *E. coli/Salmonella* testing panel and Sulfamethoxazole was replaced with Sulfisoxazole.

Daptomycin was used to replace Salinomycin on the *Enterococcus* panel.

NARMS retail meat working group, 2004

U.S. Food and Drug Administration

Jason Abbott
Sherry Ayers
Stuart Gaines

Dr. Mary Bartholomew Shawn McDermott

Sonya Bodeis-Jones Dr. Patrick McDermott

Peggy Carter David Melka

Patti Cullen Dr. Terry Proescholdt

Linda English Sadaf Qaiyumi

Sharon Friedman

Dr. Linda Tollefson

Dr. David Wagner

Dr. Elvira Hall-Robinson Dr. Loretta Antoinette Walker

Dr. Marcia Headrick

Dr. Robert Walker

Dr. David White

Dr. Shaohua Zhao

Centers for Disease Control and Prevention

Dr. Fred Angulo

Althea Glenn

Dr. Tom Chiller

Felicita Medalla

Lauren Stancik-Rosenthal

California Connecticut

Richard Alexander Robert Howard

Melody Hung-Fan Aristea Kinney

Maribel Rickard Mona Mandour

Ruthanne Marcus

Michael A. Pascucilla

Charlie Welles

Colorado

Joe Gossack New Mexico

Dee Jae Dutton Lisa Butler

Melissa Jett Pauline Gutierrez

Marty Piper Paul Torres

Georgia New York

James Benson Gina Conenello
Paul Blake Tashanda Bryant

Bob Manning Tim Root

Mahin Park Oregon

Mahin Park Debbie Bergquist

Maryland Emilio DeBess

Karen Cuenco Eric Espinosa

Jonigene Ruark Trisha Hannan

Mary Warren Helen Packett

Minnesota Larry Stauffer

Craig Braymen Ivor Thomas
Billie Juni Robert Vega

Fe Leano Veronica Williams

Kirk Smith Tennessee

Narina Stepanova Samir Hanna

Stephanie Wedel Henrietta Hardin

Yang Xiong Ryan Mason

Tim Jones

RuthAnn Spence

Acknowledgements

Much thanks to Deborah Brooks and Michelle Talley for providing outstanding web support to the NARMS program.

TABLE OF CONTENTS

Abbreviations
Introduction
Tables & Figures
Tables & Figures

Table 1 Antimicrobial Susceptibility Testing Methods and Interpretive Criteria

PREVALENCE

Table 2	Number of Retail Meat Samples Tested by Site and Meat Type
Table 3	Percent Positive Samples by Bacterium and Meat Type
Table 4	Number of Isolates by Site, Bacterium, and Meat Type

PERCENT POSITIVE SAMPLES FOR

Figure 1a	Campylobacter & Salmonella by Meat Type and Site
Figure 1b	Enterococcus & E. coli by Meat Type and Site
Figure 2a	Campylobacter & Salmonella by Meat Type for All Sites
Figure 2b	Enterococcus & E. coli by Meat Type for All Sites
Figure 3a	Campylobacter & Salmonella and Enterococcus & E. coli by Month and Meat Type for All Sites
Figure 3b	Campylobacter & Salmonella by Month and Meat Type in California
Figure 3c	Campylobacter & Salmonella by Month and Meat Type in Colorado
Figure 3d	Campylobacter & Salmonella by Month and Meat Type in Connecticut
Figure 3e	Campylobacter & Salmonella by Month and Meat Type in Georgia
Figure 3f	Enterococcus & E. coli by Month and Meat Type in Georgia
Figure 3g	Campylobacter & Salmonella by Month and Meat Type in Maryland
Figure 3h	Enterococcus & E. coli by Month and Meat Type in Maryland
Figure 3i	Campylobacter & Salmonella by Month and Meat Type in Minnesota
Figure 3j	Campylobacter & Salmonella by Month and Meat Type in New Mexico
Figure 3k	Campylobacter & Salmonella by Month and Meat Type in New York
Figure 31	Campylobacter & Salmonella by Month and Meat Type in Oregon
Figure 3m	Enterococcus & E. coli by Month and Meat Type in Oregon
Figure 3n	Campylobacter & Salmonella by Month and Meat Type in Tennessee
Figure 3o	Enterococcus & E. coli by Month and Meat Type in Tennessee
-	•

SALMONELLA

Table 5	Overall Salmonella Serotypes Identified
Table 6	Salmonella by Serotype and Meat Type
Table 7	Salmonella Serotype by Site and Meat Type
Table 8	Salmonella Isolates by Month for All Sites
Table 9	Antimicrobial Resistance among Salmonella Isolates
Figure 4	Antimicrobial Resistance among Salmonella Isolates

MIC DISTRIBUTIONS AMONG SALMONELLA

MIC Distribution among all Antimicrobial Agents
Amikacin
Amoxicillin/Clavulanic Acid
Ampicillin
Cefoxitin
Ceftiofur
Ceftriaxone
Chloramphenicol

Figure 5h	Ciprofloxacin
Figure 5i	Gentamicin
Figure 5j	Kanamycin
Figure 5k	Nalidixic Acid
Figure 51	Streptomycin
Figure 5m	Sulfisoxazole
Figure 5n	Tetracycline
Figure 50	Trimethoprim/Sulfamethoxazole

Table 10 Antimicrobial Resistance among Salmonella Isolates by Meat Type

MIC DISTRIBUTIONS AMONG SALMONELLA BY MEAT TYPE

Figure 6a	MIC Distribution among Salmonella from Chicken Breast
Figure 6b	MIC Distribution among Salmonella from Ground Turkey
Figure 6c	MIC Distribution among Salmonella from Ground Beef
Figure 6d	MIC Distribution among Salmonella from Pork Chops
Figure 7a	Amikacin
Figure 7b	Amoxicillin/Clavulanic Acid

Figure 7c Ampicillin

Figure 7d Cefoxitin Figure 7e Ceftiofur

Figure 7f Ceftriaxone Figure 7g Chloramphenicol Figure 7h Ciprofloxacin Figure 7i Gentamicin Figure 7j Kanamycin Figure 7k Nalidixic Acid Figure 71 Streptomycin Figure 7m Sulfisoxazole

Figure 7n Tetracycline Figure 7o Trimethoprim/Sulfamethoxazole

Table 11 Antimicrobial Resistance among Salmonella Isolates by Serotype

Table 12 Antimicrobial Resistance among Salmonella by Meat Type in Overall Top 6 Serotypes Table 13 Antimicrobial Resistance among Salmonella by Top 6 Serotypes within Meat Type Table 14 Antimicrobial Resistance among Salmonella by Site, Meat Type, and Antimicrobial Agent

Table 15 Number of Salmonella Resistant to Multiple Antimicrobial Agents

CAMPYLOBACTER

Table 16	Overall Campylobacter Species Identified
Table 17	Campylobacter Species by Meat Type
Table 18	Campylobacter Species by Site and Meat Type
Table 19	Campylobacter Isolates by Month for All Sites
Table 20	Antimicrobial Resistance among Campylobacter Isolates
Figure 8	Antimicrobial Resistance among Campylobacter Isolates

MIC DISTRIBUTIONS AMONG CAMPYLOBACTER

Figure 9	MIC Distribution Among All Antimicrobial Agents
Figure 9a	Azithromycin
Figure 9b	Ciprofloxacin
Figure 9c	Clindamycin
Figure 9d	Erythromycin
Figure 9e	Florfenicol

Figure 9f	Gentamicin
Figure 9g	Nalidixic Acid
Figure 9h	Telithromycin
Figure 9i	Tetracycline

Table 21 Antimicrobial Resistance among *Campylobacter* by Meat Type

MIC DISTRIBUTIONS AMONG CAMPYLOBACTER BY MEAT TYPE

Figure 10a	MIC Distribution among <i>Campylobacter</i> from Chicken Breast
Figure 10b	MIC Distribution among Campylobacter from Ground Turkey
Figure 10c	MIC Distribution among Campylobacter from Pork Chop
Figure 11a	Azithromycin
Figure 11b	Ciprofloxacin
Figure 11c	Clindamycin
Figure 11d	Erythromycin
Figure 11e	Florfenicol
Figure 11f	Gentamicin
Figure 11g	Nalidixic Acid
Figure 11h	Telithromycin
Figure 11i	Tetracycline
Table 22	Antimicrobial Resistance among Campylobacter by Species
Table 23	Antimicrobial Resistance among Campylobacter species by Meat Type
Table 24	Antimicrobial Resistance among Campylobacter by Site, Meat Type, and Antimicrobial Agent
Table 25	Number of Campylobacter Resistant to Multiple Antimicrobial Agents

ENTEROCOCCUS

Overall Enterococcus Species Identified
Enterococcus Species by Meat Type
Enterococcus Species by Site and Meat Type
Enterococcus Isolates by Month for All Sites
Antimicrobial Resistance among Enterococcus Isolates
Antimicrobial Resistance among Enterococcus Isolates

MIC DISTRIBUTIONS AMONG ENTEROCOCCUS

E' 12	MICIDI CI A AILA CI I II A
Figure 13	MIC Distributions Among All Antimicrobial Agents
Figure 13a	Bacitracin
Figure 13b	Chloramphenicol
Figure 13c	Ciprofloxacin
Figure 13d	Daptomycin
Figure 13e	Erythromycin
Figure 13f	Flavomycin
Figure 13g	Gentamicin
Figure 13h	Kanamycin
Figure 13i	Lincomycin
Figure 13j	Linezolid
Figure 13k	Nitrofurantoin
Figure 131	Penicillin
Figure 13m	Quinupristin/Dalfopristin
Figure 13n	Streptomycin
Figure 13o	Tetracycline
Figure 13p	Tylosin
Figure 13q	Vancomycin

Figure 171

Figure 17m

MIC DISTRIBUTIONS AMONG ENTEROCOCCUS BY MEAT TYPE

Figure 14a	MIC Distribution among Enterococcus from Chicken Breast
Figure 14b	MIC Distribution among Enterococcus from Ground Turkey
Figure 14c	MIC Distribution among Enterococcus from Ground Beef
Figure 14d	MIC Distribution among Enterococcus from Pork Chops
Figure 15a	Bacitracin
Figure 15b	Chloramphenicol
Figure 15c	Ciprofloxacin
Figure 15d	Daptomycin
Figure 15e	Erythromycin
Figure 15f	Flavomycin
Figure 15g	Gentamicin
Figure 15h	Kanamycin
Figure 15i	Lincomycin
Figure 15j	Linezolid
Figure 15k	Nitrofurantoin
Figure 151	Penicillin
Figure 15m	Quinupristin/Dalfopristin
Figure 15n	Streptomycin
Figure 15o	Tetracycline
Figure 15p	Tylosin
Figure 15q	Vancomycin
Table 32	Antimicrobial Resistance among Enterococcus by Species
Table 33	Antimicrobial Resistance among Enterococcus faecalis & E. faecium by Meat Type
Table 34	Antimicrobial Resistance among <i>Enterococcus</i> by Site, Meat Type, and Antimicrobial Agent
Table 35	Number of Enterococcus faecalis Resistant to Multiple Antimicrobial Agents
Table 36	Number of Enterococcus faecium Resistant to Multiple Antimicrobial Agents

ESCHERICHIA COLI

Table 37	E. coli by Meat Type
Table 38	E. coli by Site and Meat Type
Table 39	E. coli Isolates by Month for All Sites
Table 40	Antimicrobial Resistance among E. coli Isolates
Figure 16	Antimicrobial Resistance among E. coli Isolates

MIC DISTRIBUTIONS AMONG E. COLI

Figure 17	MIC Distribution Among All Antimicrobial Agents
Figure 17a	Amikacin
Figure 17b	Amoxicillin/Clavulanic Acid
Figure 17c	Ampicillin
Figure 17d	Cefoxitin
Figure 17e	Ceftiofur
Figure 17f	Ceftriaxone
Figure 17g	Chloramphenicol
Figure 17h	Ciprofloxacin
Figure 17i	Gentamicin
Figure 17j	Kanamycin
Figure 17k	Nalidixic Acid

Streptomycin

Sulfisoxazole

Figure 17n Tetracycline

Figure 170 Trimethoprim/Sulfamethoxazole

MIC DISTRIBUTIONS AMONG E. COLI BY MEAT TYPE

Figure 18a	MIC Distribution among E. coli from Chicken Breast
Figure 18b	MIC Distribution among E. coli from Ground Turkey
Figure 18c	MIC Distribution among E. coli from Ground Beef
Figure 18d	MIC Distribution among E. coli from Pork Chops
T' 10	

Figure 19a Amikacin

Figure 19b Amoxicillin/Clavulanic Acid

Figure 19c Ampicillin Figure 19d Cefoxitin Figure 19e Ceftiofur Figure 19f Ceftriaxone Figure 19g Chloramphenicol Figure 19h Ciprofloxacin Figure 19i Gentamicin Figure 19j Kanamycin Figure 19k Nalidixic Acid

Figure 19k Nalidixic Acie Figure 19l Streptomycin Figure 19m Sulfisoxazole

Figure 19n Tetracycline

Figure 190 Trimethoprim/Sulfamethoxazole

Table 41 Antimicrobial Resistance among *E. coli* by Meat Type

Table 42 Antimicrobial Resistance among E. coli by Site, Meat Type, and Antimicrobial Agent

Table 43 Number of *E. coli* resistant to Multiple Antimicrobial Agents

APPENDICES

A-1 Number of Samples Tested by Site, Meat Type, and Month A-2 Percent Positive Samples by Month, Meat Type, and Bacterium

PERCENT POSITIVE SAMPLES BY MEAT TYPE BACTERIUM AND SITE

A-3 All Sites California A-3a A-3b Colorado A-3c Connecticut A-3d Georgia Maryland A-3e Minnesota A-3f New Mexico A-3g A-3h New York A-3i Oregon

A-3i

PFGE PROFILES FOR

A-4a Salmonella Agona
A-4b Salmonella Braenderup
A-4c Salmonella Berta
A-4d Salmonella Hadar
A-4e Salmonella Heidelberg
A-4f Salmonella Kentucky
A-4g Salmonella Mbandaka

Tennessee

A-4h	Salmonella Montevideo
A-4i	Salmonella Muenster
A-4j	Salmonella Newport
A-4k	Salmonella Reading
A-41	Salmonella Saintpaul
A-4m	Salmonella Schwarzengrung

A-4m Salmonella Schwarzengrund A-4n Salmonella Typhimurium A-4o Salmonella IIIa 18:z4,z32:-

A-4p Salmonella 4, 12:i:-

A-4q *Campylobacter coli* A-4r *Campylobacter jejuni*

ANTIMICROBIAL RESISTANCE AMONG

A-5 Salmonella

A-6 Campylobacter
A-6a Campylobacter jejuni
A-6b Campylobacter coli

A-7 Enterococcus

A-7a Enterococcus faecium A-7b Enterococcus faecalis

A-8 Escherichia coli

A-9 Log Sheet Example

A-10 Material and Methods

Table 1. Antimicrobial Susceptibility Test Methods and Interpretive Criteria: NARMS Retail Meat, 2004

Genus: Campylobacter

Susceptibility Testing Method: Broth microdilution Sensititre Plate: CAMPY

QC Organism: Campylobacter jejuni ATCC 33560

Drug	Susceptible (µg/ml)	Intermediate (µg/ml)	Resistant (µg/ml)	
Azithromycin*	≤ 2	4	≥ 8	
Ciprofloxacin	≤ 1	2	≥ 4	
Clindamycin*	≤ 2	4	≥ 8	
Erythromycin	≤ 8	16	≥ 32	
Florfenicol*^	≤ 4			
Gentamicin*	≤ 2	4	≥ 8	
Nalidixic Acid*	≤ 16	32	≥ 64	
Telithromycin*	≤ 4	8	≥ 16	
Tetracycline	≤ 4	8	≥ 16	

Genus: Enterococcus

Susceptibility Testing Method: Broth microdilution Sensititre Plate: CMV1AGPF

QC Organisms: Enterococcus faecalis ATCC 29212 and Enterococcus faecalis ATCC 51299

Drug	Susceptible (µg/ml)	Intermediate (µg/ml)	Resistant (µg/ml)	
Diug	(μg/ ιιιι /	(με/ιπ)	(µg/1111)	
Bacitracin*	≤ 32	64	≥ 128	
Chloramphenicol	≤ 8	16	≥ 32	
Ciprofloxacin	≤ 1	2	≥ 4	
Daptomycin*	≤ 4			
Erythromycin	≤0.5	1,2,4	≥ 8	
Flavomycin*	≤ 8	16	≥ 32	
Gentamicin	< 500		≥ 500	
Kanamycin*	≤ 128	256	≥ 512	
Lincomycin*	≤ 8	16	≥ 32	
Linezolid	≤ 2	4	≥ 8	
Nitrofurantoin	≤ 32	64	≥ 128	
Penicillin	≤ 8		≥ 16	
Streptomycin*	< 1000		≥1000	
Quinupristin/Dalfopristin	≤ 1	2	≥ 4	
Tetracycline	≤ 4	8	≥ 16	
Tylosin*	≤ 8	16	≥ 32	
Vancomycin	≤ 4	8,16	≥ 32	

^{*} No CLSI interpretative criteria for this bacterium / antimicrobial combination currently available.

^{*} Absence of resistant strains precludes defining any results category other than "susceptible."

Genus: Escherichia coli and Salmonella

Susceptibility Testing Method: Broth microdilution Sensititre Plate: CMV1AGNF

QC Organisms: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213,

Pseudomonas aeruginosa ATCC 27853, and Enterococcus faecalis ATCC 29212

Drug	Susceptible (µg/ml)	Intermediate (µg/ml)	Resistant (μg/ml)
Amikacin	≤16	32	≥ 64
Amoxicillin/Clavulanic acid	$\leq 8/4$	16/8	≥ 32/16
Ampicillin	≤ 8	16	≥ 32
Cefoxitin	≤8	16	≥ 32
Ceftiofur	≤2	4	≥ 8
Ceftriaxone	≤ 8	16,32	≥ 64
Chloramphenicol	≤ 8	16	≥ 32
Ciprofloxacin	≤ 1	2	≥ 4
Gentamicin	≤ 4	8	≥ 16
Kanamycin	≤ 16	32	≥ 64
Nalidixic acid	≤ 16		≥ 32
Streptomycin*	≤ 32		≥ 64
Sulfisoxazole	≤ 256		≥ 512
Tetracycline	≤ 4	8	≥ 16
Trimethoprim/sulfamethoxazole	$\leq 2/38$		$\geq 4/76$

_

^{*} No CLSI interpretative criteria for this bacterium / antimicrobial combination currently available.

Table 2. Number of Retail Meat Samples Tested by Site and Meat Type, 2004

Site	Chicken Breast	Ground Turkey	Ground Beef	Pork Chop	Total
CA	120	120	120	120	480
CO	97	101	106	99	403
CT	120	120	120	120	480
GA	120	120	120	120	480
MD	120	120	120	120	480
MN	120	120	120	120	480
NM	119	118	120	119	476
NY	120	120	120	120	480
OR	120	120	120	120	480
TN	116	106	120	118	460
Total	1172	1165	1186	1176	4699

Table 3. Percent Positive Samples by Bacterium and Meat Type, 2004

	Chick	en Breast	Grou	ınd Turkey	Grou	ınd Beef	Pork	Chop	
Bacterium	N	(%)	N	(%)	N	(%)	N	(%)	
Campylobacter	706	(60.2)	12	(1.0)	0	(0.0)	3	(0.3)	
Salmonella	157	(13.4)	142	(12.2)	14	(1.2)	11	(0.9)	
Enterococcus	466	(97.9)	437	(93.8)	448	(93.3)	404	(84.5)	
Escherichia coli	400	(84.0)	376	(80.7)	338	(70.4)	232	(48.5)	

^{4699 =} Total number of retail meats tested for Salmonella and Campylobacter

^{1172 =} Total Chicken Breast tested

^{1165 =} Total Ground Turkey tested

^{1186 =} Total Ground Beef tested

^{1176 =} Total Pork Chop tested

^{1900 =} Total number of retail meats tested for Enterococcus and Escherichia coli

^{476 =} Total Chicken Breast tested

^{466 =} Total Ground Turkey tested

^{480 =} Total Ground Beef tested

^{478 =} Total Pork Chop tested

Table 4. Number of Isolates by Site, Bacterium, and Meat Type, 2004

	Chicken Breast	Ground Turkey	Ground Beef	Pork Chops
Site: CA				
Campylobacter	96	0	0	1
Salmonella	17	1	9	1
Site: CO				
Campylobacter	21	0	0	0
Salmonella	1	0	8	0
Site: CT				
Campylobacter	86	0	2	1
Salmonella	30	5	26	5
Site: GA				
Campylobacter	61	0	1	0
Salmonella	6	1	38	64
Enterococcus	120	117	120	116
Escherichia coli	115	91	119	68
Site: MD				
Campylobacter	76	0	2	0
Salmonella	24	1	13	0
Enterococcus	114	100	106	62
Escherichia coli	110	83	109	77
Site: MN				
Campylobacter	73	0	6	0
Salmonella	20	0	14	0
Site: NM				
Campylobacter	53	0	6	0
Salmonella	3	0	14	0
Site: NY				
Campylobacter	96	0	0	0
Salmonella	16	0	11	3
Site: OR				
Campylobacter	73	0	0	0
Salmonella	25	6	6	2
Enterococcus	118	115	105	108
Escherichia coli	73	99	53	51
Site: TN				
Campylobacter	71	0	1	0
Salmonella	15	0	8	0
Enterococcus	114	116	106	103
Escherichia coli	102	65	96	55

Figure 1a. Percent Positive Samples for Campylobacter & Salmonella by Meat Type and Site, 2004

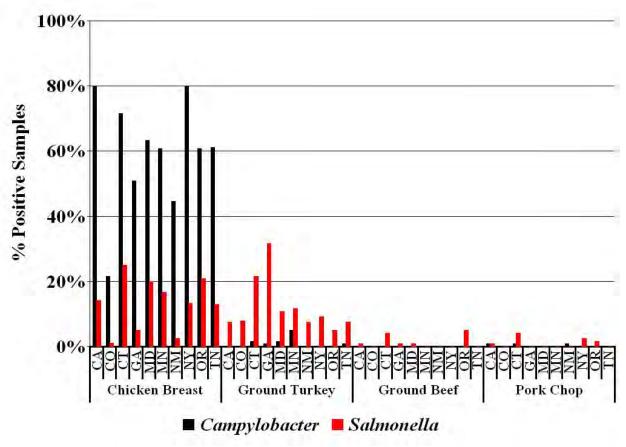


Figure 1b. Percent Positive Samples for Enterococcus & E. coli by Meat Type and Site, 2004

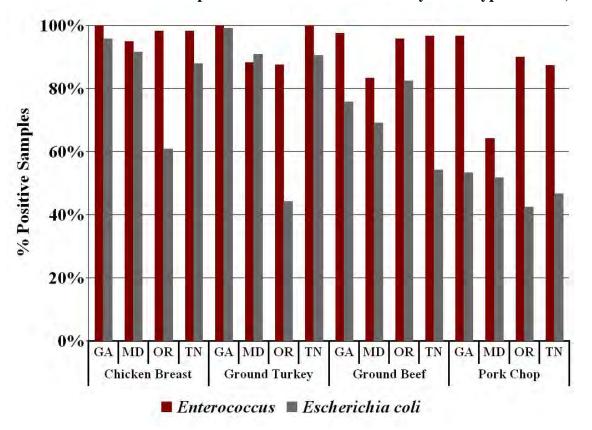


Figure 2a. Percent Positive Samples for Campylobacter & Salmonella by Meat Type for All Sites, 2004

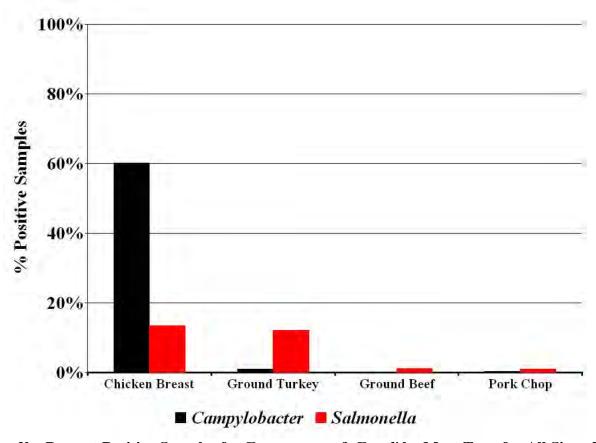


Figure 2b. Percent Positive Samples for Enterococcus & E. coli by Meat Type for All Sites, 2004

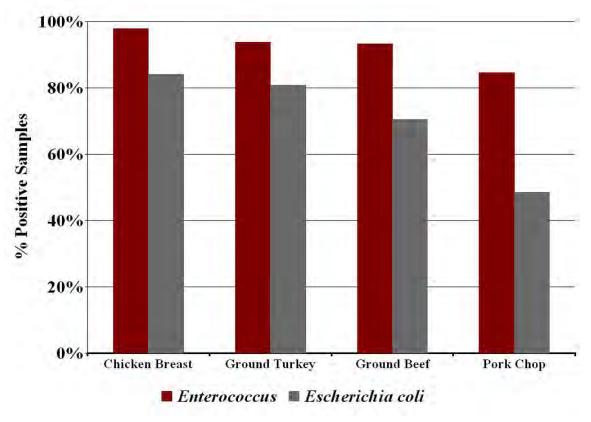


Figure 3a. Percent Positive Samples for Campylobacter & Salmonella and Enterococcus & E. coli by Month and Meat Type for All Sites, 2004

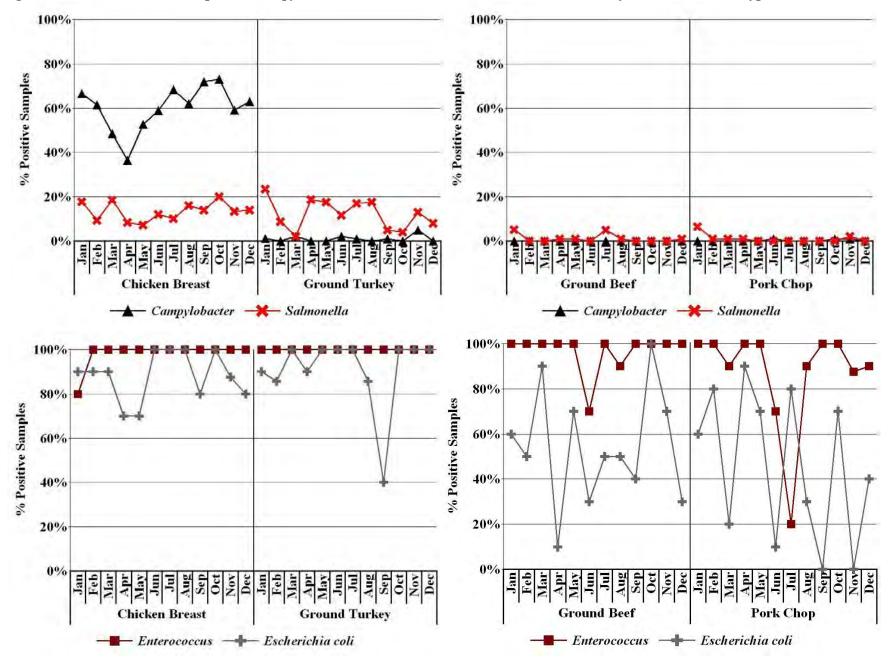


Figure 3b. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in California, 2004

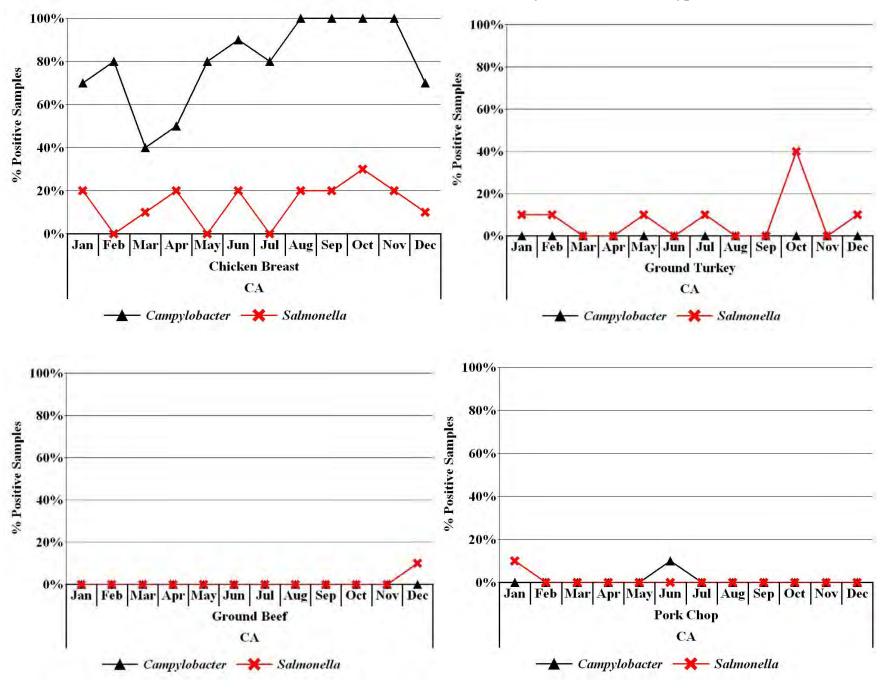


Figure 3c. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Colorado, 2004

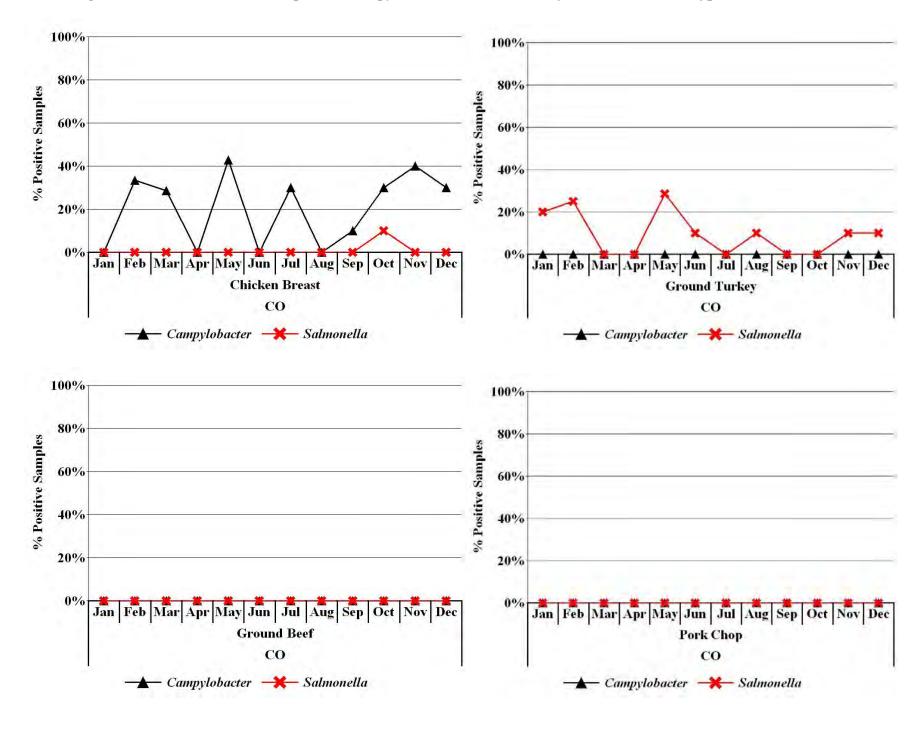


Figure 3d. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Connecticut, 2004

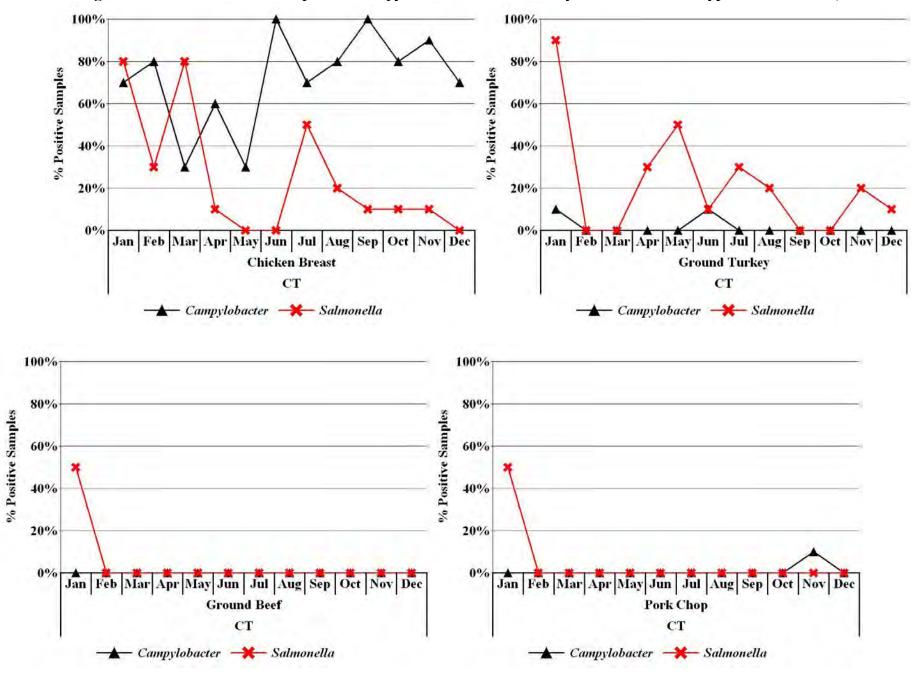


Figure 3e. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Georgia, 2004

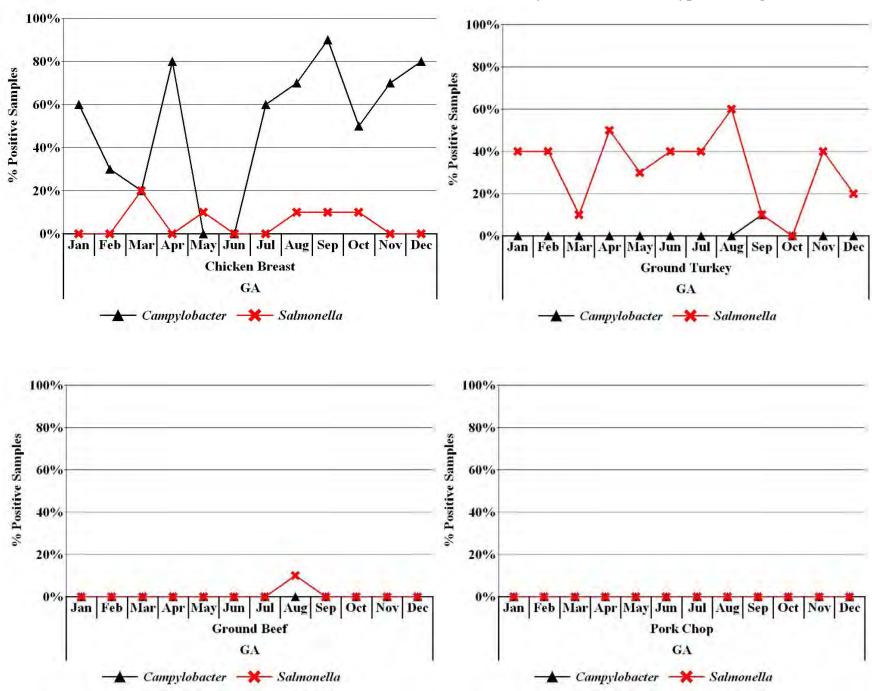


Figure 3f. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Georgia, 2004

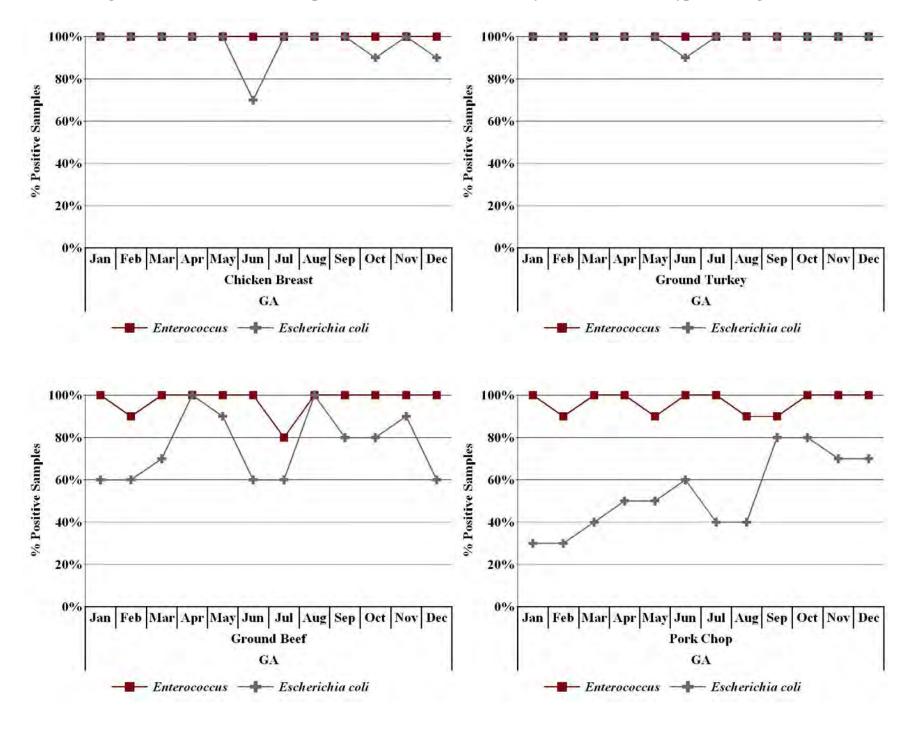


Figure 3g. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Maryland, 2004

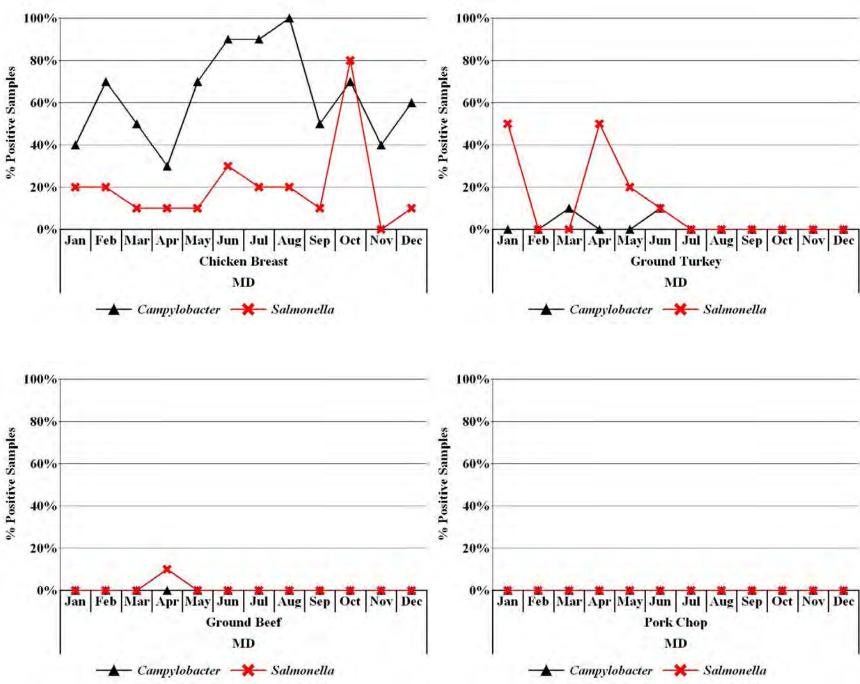


Figure 3h. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Maryland, 2004

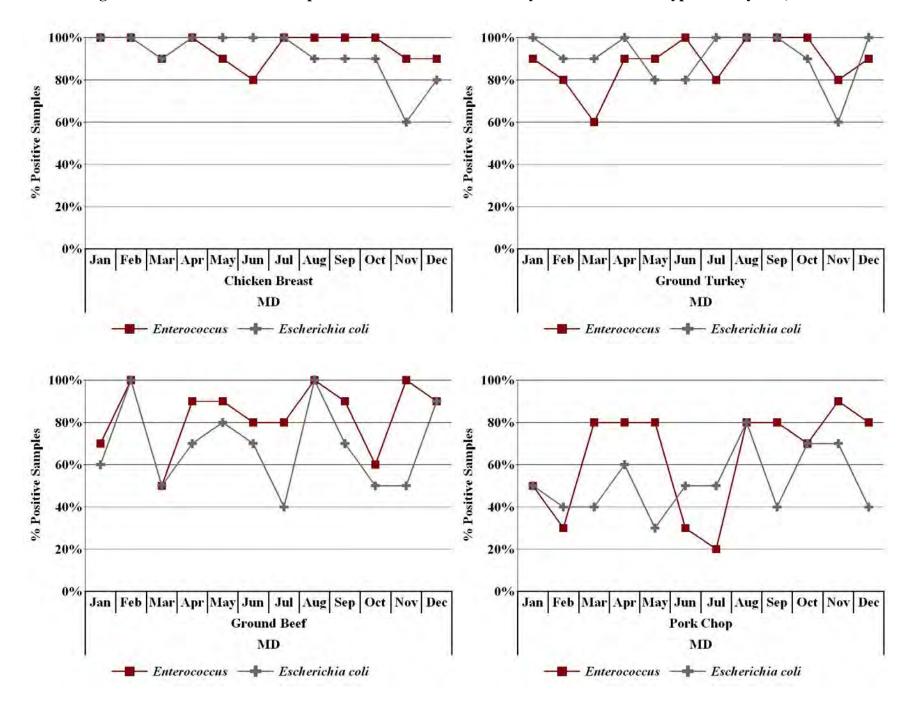


Figure 3i. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Minnesota, 2004

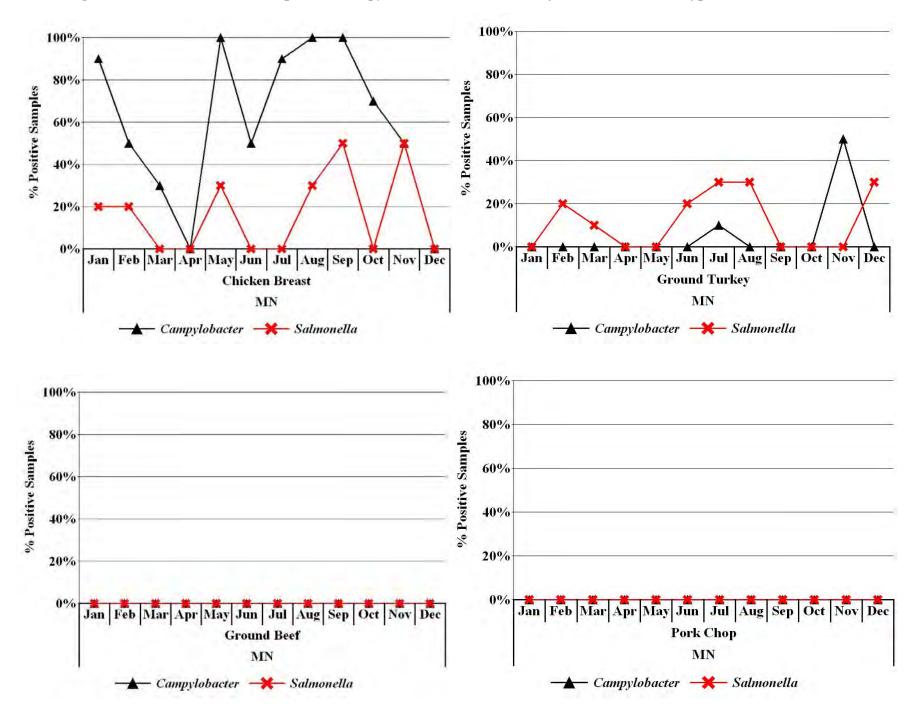


Figure 3j. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in New Mexico, 2004

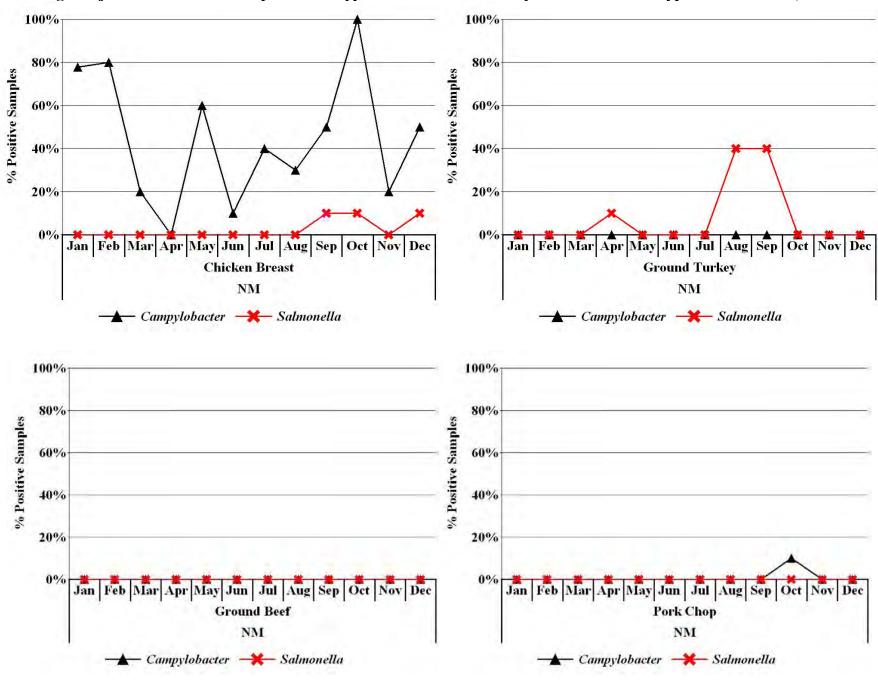


Figure 3k. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in New York, 2004

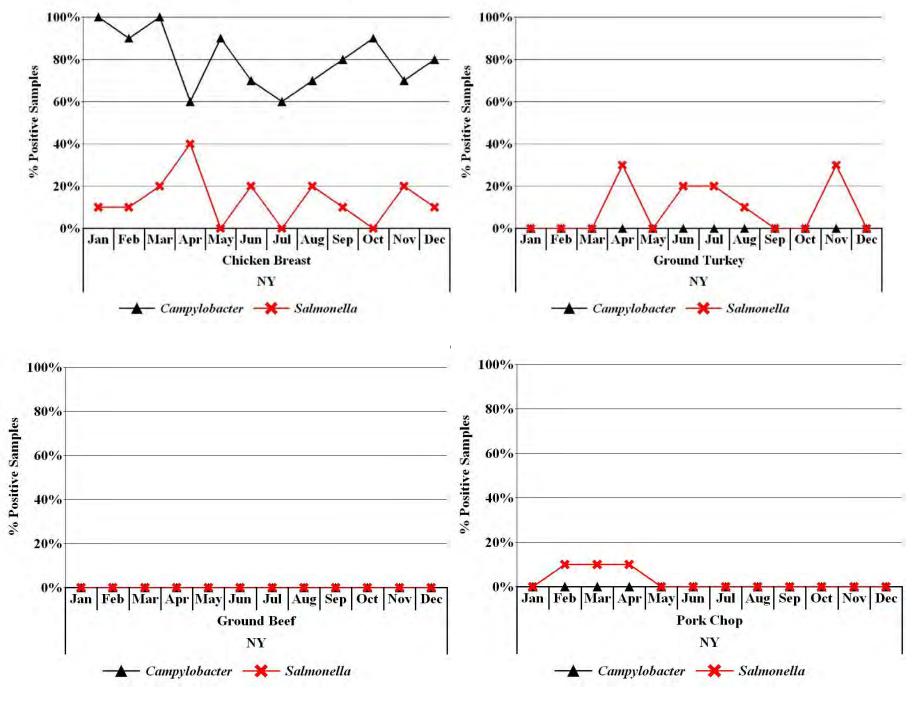


Figure 31. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Oregon, 2004

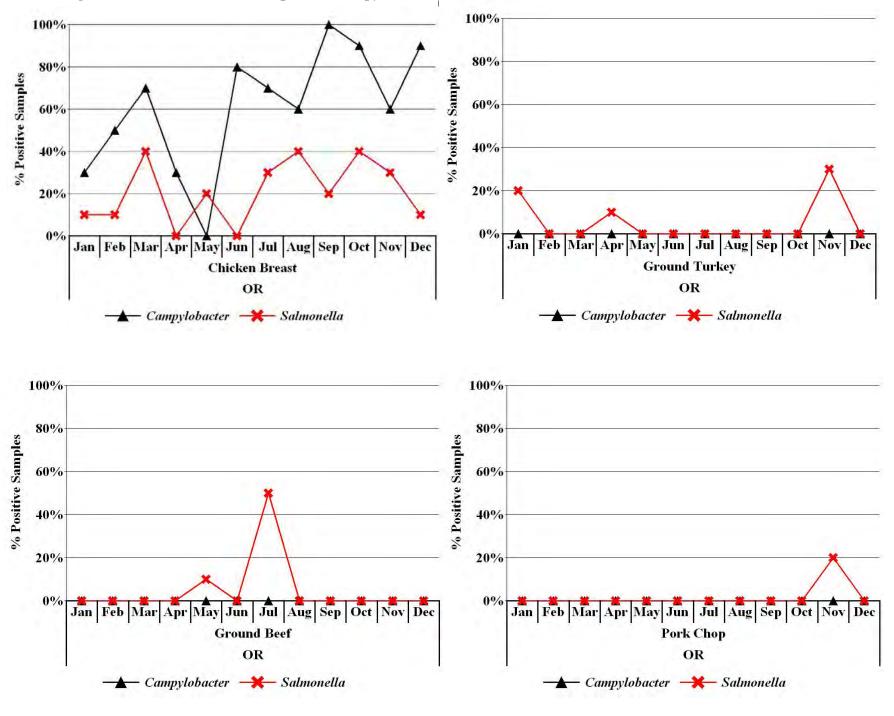


Figure 3m. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Oregon, 2004

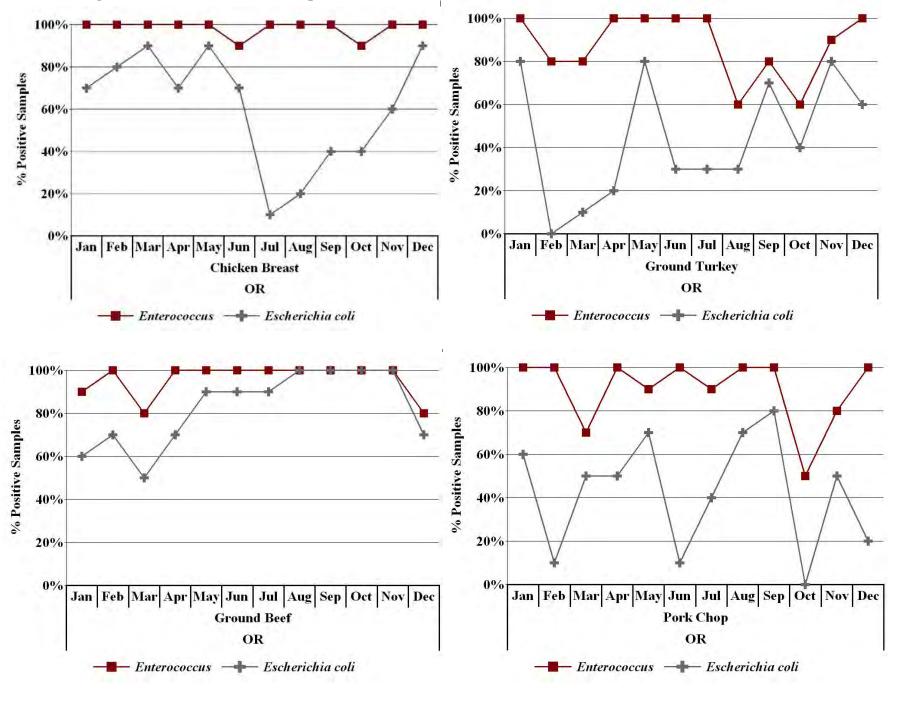


Figure 3n. Percent Positive Samples for Campylobacter & Salmonella by Month and Meat Type in Tennessee, 2004

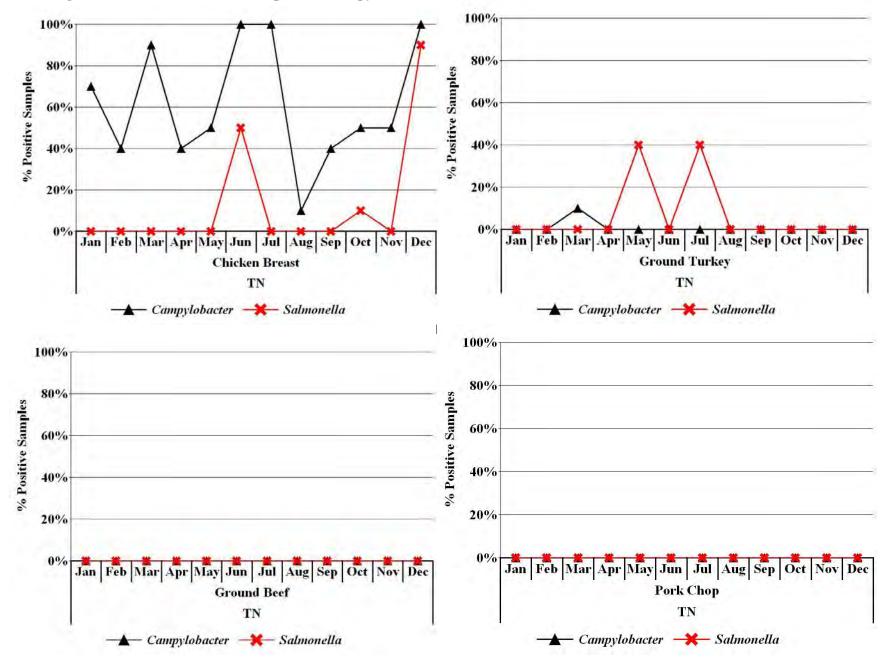


Figure 3o. Percent Positive Samples for Enterococcus & E. coli by Month and Meat Type in Tennessee, 2004

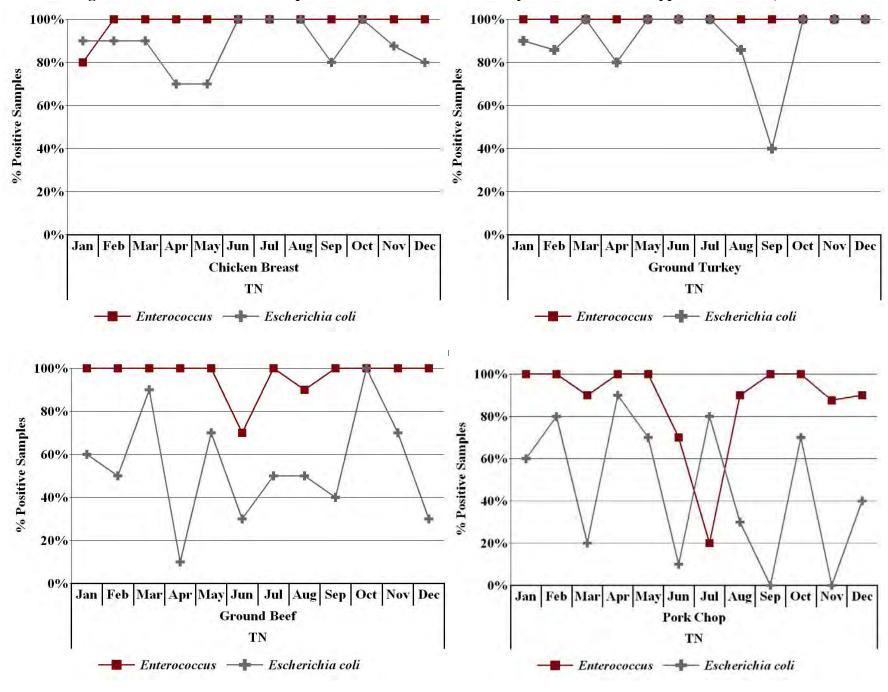


Table 5. Overall Salmonella Serotypes Identified, 2004

Serotype	n
1. S. Heidelberg	71
2. S. Typhimurium	53
3. S. Kentucky	43
4. S. Saintpaul	24
5. S. Schwarzengrund	21
6. S. Hadar	19
7. S. Reading	16
8. S. Braenderup	11
9. S. Muenster	10
10. S. Agona	9
11. S. III 18a: z4, z32:-	6
12. <i>S.</i> Berta	5
13. S. Montevideo	5
14. S. Mbandaka	4
15. S. Newport	4
16. S. I 4, 12 : I :-	4
17. S. Derby	3
18. S. Enteritidis	3
19. S. IIIa 18: z4, z23: -	2
20. S. I 4, 12 : r :-	2
21. S. Senftenberg	2
22. S. Bredeney	1
23. S. Dublin	1
24. S. Livingstone	1
25. S. Minnesota	1
26. S. Muenchen	1
27. S. I 4, 12 : d :-	1
28. S. Urbana	1
Total	324

Table 6. Salmonella by Serotype and Meat Type, 2004

	Ch	icken	Gı	round	G	round	Pork		
Serotype	В	reast	Tı	ırkey		Beef		Chop	
	n	% *	n	%	n	%	n	%	
S. Heidelberg (n=71)	31	43.7%	37	52.1%	0	_†	3	4.2%	
S. Typhimurium [‡] (n=53)	49	92.5%	2	3.8%	0	-	2	3.8%	
S. Kentucky (n=43)	42	97.7%	1	2.3%	0	-	0	-	
S. Saintpaul (n=24)	0	-	24	100.0%	0	-	0	-	
S. Schwarzengrund (n=21)	5	23.8%	16	76.2%	0	-	0	-	
S. Hadar (n=19)	8 42.1%		11	57.9%	0	-	0	-	
S. Reading (n=16)	0 -		16	100.0%	0	-	0	-	
S. Braenderup (n=11)	1	9.1%	0	-	5	45.5%	5	45.5%	
S. Muenster (n=10)	1	10.0%	4	40.0%	5	50.0%	0	-	
S. Agona (n=9)	2	22.2%	6	66.7%	0	-	1	11.1%	
S. III 18a: z4, z32: - (n=6)	0	-	6	100.0%	0	-	0	-	
S. Berta (n=5)	2	40.0%	2	40.0%	1	20.0%	0	-	
S. Montevideo (n=5)	3	60.0%	2	40.0%	0	-	0	-	
S. Mbandaka (n=4)	4	100.0%	0	-	0	-	0		
S. Newport (n=4)	0	-	2	50.0%	2	50.0%	0		
S. I 4, 12 : i : - (n=4)	4	100.0%	0	-	0	-	0	-	
S. Derby (n=3)	0	-	3	100.0%	0	-	0	-	
S. Enteritidis (n=3)	3	100.0%	0	-	0	-	0	-	
S. III 18a: z4, z23: - (n=2)	0	-	2	100.0%	0	-	0	-	
S. I 4, 12 : r : - (n=2)	0	-	2	100.0%	0	-	0	-	
S. Senftenberg (n=2)	0	-	2	100.0%	0	-	0	-	
S. Bredeney (n=1)	0	-	1	100.0%	0	-	0	-	
S. Dublin (n=1)	0	-	0	-	1	100.0%	0	-	
S. Livingstone (n=1)	1	100.0%	0	-	0	-	0	-	
S. Minnesota (n=1)	0 -		1	100.0%	0	-	0	-	
S. Muenchen (n=1)	1 100.0%		0	-	0	-	0	-	
S. I 4, 12 : d :- (n=1)	0	-	1	100.0%	0	-	0	-	
S. Urbana (n=1)	0		1	100.0%	0		0		
Total 324	157	48.5%	142	43.8%	14	4.3%	11	3.4%	

*Where % = (# isolates per serotype per meat) / (total # isolates per serotype).

† Dashes indicate that no isolates from serotype were isolated from meat type.

‡ Includes Typhimurium var. 5-.

Table 7. Salmonella Serotype by Site and Meat Type, 2004

			hicken		round	(Ground		Pork
Site	Serotype	I	Breast		urkey	ļ	Beef		Chop
		n	%*	n	%	n	%	n	%
	S. Heidelberg (n=8)	4	50.0%	4	50.0%	0	_†	0	-
	S. Kentucky (n=5)	5	100.0%	0	-	0	-	0	-
	S. Typhimurium [‡] (n=3)	1	33.3%	1	33.3%	0	-	1	33.3%
	S. III 18a: z4, z32: - (n=2)	0	-	2	100.0%	0	-	0	-
	S. Montevideo (n=2)	2	100.0%	0	-	0	-	0	-
	S. Hadar (n=2)	2	100.0%	0	-	0	-	0	-
CA	S. Agona (n=1)	1	100.0%	0	-	0	-	0	-
	S. Braenderup (n=1)	1	100.0%	0	-	0	-	0	-
	S. Saintpaul (n=1)	0	-	1	100.0%	0	-	0	-
	S. Reading (n=1)	0	-	1	100.0%	0	-	0	-
	S. Dublin (n=1)	0	-	0	-	1	100.0%	0	-
	S. Livingstone (n=1)	1	100.0%	0	-	0	-	0	-
	Total (n=28)	17	60.7%	9	32.1%	1	3.6%	1	3.6%
	S. Heidelberg (n=4)	0	-	4	100.0%	0	-	0	-
	S. Saintpaul (n=2)	0	-	2	100.0%	0	-	0	-
co	S. Reading (n=1)	0	-	1	100.0%	0	-	0	-
CO	S. Agona (n=1)	1	100.0%	0	-	0	-	0	-
	S. Minnesota (n=1)	0	-	1	100.0%	0	-	0	-
	Total (n=9)	1	11.1%	8	88.9%	0	-	0	-
	S. Typhimurium (n=20)	19	95.0%	1	5.0%	0	-	0	-
	S. Heidelberg (n=10)	2	20.0%	8	80.0%	0	-	0	-
	S. Braenderup (n=10)	0	-	0	-	5	50.0%	5	50.0%
	S. Schwarzengrund (n=9)	0	-	9	100.0%	0	-	0	-
	S. Kentucky (n=8)	8	100.0%	0	-	0	-	0	-
CT	S. Saintpaul (n=3)	0	-	3	100.0%	0	-	0	-
	S. III 18a: z4, z32: - (n=2)	0	-	2	100.0%	0	-	0	-
	S. I 4, 12 : r : - (n=2)	0	-	2	100.0%	0	-	0	-
	S. Enteritidis (n=1)	1	100.0%	0	-	0	-	0	-
	S. Bredeney (n=1)	0	-	1	100.0%	0	-	0	-
	Total (n=66)	30	45.5%	26	39.4%	5	7.6%	5	7.6%
	S. Heidelberg (n=12)	1	8.3%	11	91.7%	0	-	0	-
	S. Saintpaul (n=6)	0	-	6	100.0%	0	-	0	-
	S. Reading (n=5)	0	-	5	100.0%	0	-	0	-
	S. Agona (n=4)	0	-	4	100.0%	0	-	0	-
	S. III 18a: z4, z32: - (n=3)	0	-	3	100.0%	0	-	0	-
	S. Newport (n=3)	0	-	2	66.7%	1	33.3%	0	-
a .	S. Kentucky (n=2)	2	100.0%	0	100.05:	0	-	0	-
GA	S. Schwarzengrund (n=2)	0	-	2	100.0%	0	-	0	-
	S. Montevideo (n=2)	0	100.00	2	100.0%	0	-	0	-
	S. Mbandaka (n=2)	2	100.0%	0	-	0	-	0	-
	S. Hadar (n=1)	0	-	1	100.0%	0	-	0	-
	S. Derby (n=1)	0	100.004	1	100.0%	0	-	0	-
	S. Enteritidis (n=1)	1	100.0%	0	100.00/	0	-	0	-
	S. Senftenberg (n=1)	0	-	1	100.0%	0	-	0	-
	Total (n=45)	6	13.3%	38	84.4%	1	2.2%	0	

^{*} Where % = (# isolates per serotype per meat type per site)/(total # isolates per serotype per site).

† Dashes indicate that no isolates from serotype were isolated from meat type.

‡ Includes Typhimurium var. 5-.

Table $7_{(cont'd)}$. Salmonella Serotype by Site and Meat Type, 2004

Site	Serotype		hicken Breast		Fround Furkey	(Ground Beef		Pork Chop
Site	serotype	n	%	n	wikey %	n	%	n	Спор %
	S. Typhimurium (n=14)	14	100.0%	0	-	0	-	0	-
	S. Muenster (n=5)	1	20.0%	4	80.0%	0	_	0	_
	S. Schwarzengrund (n=4)	2	50.0%	2	50.0%	0	_	0	_
	S. Berta (n=3)	0	-	2	66.7%	1	33.3%	0	_
	S. Kentucky (n=3)	3	100.0%	0	-	0	-	0	_
	S. Derby (n=2)	0	-	2	100.0%	0	_	0	_
	S. Enteritidis (n=1)	1	100.0%	0	-	0	_	0	_
MD	S. Heidelberg (n=1)	1	100.0%	0	-	0	-	0	_
		1	100.0%	0	-	0	-	0	-
	S. Hadar (n=1)	1	100.0%	0	-	0	-	0	-
	S. Montevideo (n=1)		100.0%		100.00/		-		-
	S. Senftenberg (n=1)	0	-	1	100.0%	0	-	0	-
	S. I 4, 12 : d :- (n=1)	0	-	1	100.0%	0	-	0	-
	S. Urbana (n=1)	0	-	1	100.0%	0	-	0	-
	Total (n=38)	24	63.2%	13	34.2%	1	2.6%	0	-
	S. Heidelberg (n=10)	7	70.0%	3	30.0%	0	-	0	-
	S. Kentucky (n=10)	9	90.0%	1	10.0%	0	-	0	-
	S. Hadar (n=5)	0	-	5 4	100.0%	0	-	0	-
MN	S. Reading (n=4)	0 2	100.0%		100.0%	0	-	0	-
	S. Mbandaka (n=2)	2		0	-	0	-	0	-
	S. Berta (n=2)	0	100.0%	0	- 100.0%	0	-	0	-
	S. Saintpaul (n=1)	20	58.8%	14	41.2%	0	-	0	-
	Total (n=34)	0	30.0 70	5	100.0%	0	<u>-</u>	0	<u> </u>
	S. Reading (n=5)	1	33.3%	2	66.7%	0	-	0	-
	S. Heidelberg (n=3) S. Saintpaul (n=2)	0	33.370	2	100.0%	0	-	0	-
NM	S. Schwarzengrund (n=1)	1	100.0%	0	100.070	0	-	0	_
	S. Kentucky (n=1)	1	100.0%	0	_	0	_	0	_
	Total (n=12)	3	25.0%	9	75.0%	0	_	0	_
	S. Kentucky (n=10)	10	100.0%	0	-	0		0	
	S. Typhimurium (n=7)	6	85.7%	0	_	0	_	1	14.3%
	S. Saintpaul (n=3)	0	-	3	100.0%	0	_	0	-
	S. Schwarzengrund (n=3)	0	-	3	100.0%	0	_	0	-
NY	S. Agona (n=3)	0	-	2	66.7%	0	_	1	33.3%
	S. Heidelberg (n=2)	0	_	1	50.0%	0	_	1	50.0%
	S. Hadar (n=1)	0	_	1	100.0%	0	_	0	-
	S. III 18a: z4, z32: - (n=1)	0	-	1	100.0%	0	-	0	-
	Total (n=30)	16	53.3%	11	36.7%	0	-	3	10.0%
	S. Heidelberg (n=21)	15	71.4%	4	19.0%	0	-	2	9.5%
	S. Hadar (n=5)	5	100.0%	0	-	0	-	0	-
	S. Muenster (n=5)	0	-	0	-	5	100.0%	0	-
OR	S. Kentucky (n=3)	3	100.0%	0	-	0	-	0	-
UK	S. Saintpaul (n=2)	0	-	2	100.0%	0	-	0	-
	S. Schwarzengrund (n=2)	2	100.0%	0	-	0	-	0	-
	S. Newport (n=1)	0	-	0	-	1	100.0%	0	-
	Total (n=39)	25	64.1%	6	15.4%	6	15.4%	2	5.1%

Table 7_{(cont'd).} Salmonella Serotype by Site and Meat Type, 2004

Site	Serotype	_	nicken reast	_	round urkey	_	round Beef	Pork Chop		
		n	%	n	%	n	%	n	%	
	S. Typhimurium (n=9)	9	100.0%	0	-	0	-	0	-	
	S. Hadar (n=4)	0	-	4	100.0%	0	-	0	-	
	S. Saintpaul (n=4)	0	-	4	100.0%	0	-	0	-	
TN	S. I 4, 12 : i : - (n=4)	4	100.0%	0	-	0	-	0	-	
	S. Kentucky (n=1)	1	100.0%	0	-	0	-	0	-	
	S. Muenchen (n=1)	1	100.0%	0	-	0	-	0	-	
	Total (n=23)	15	65.2%	8	34.8%	0	-	0	-	
Grar	nd Total (N=324)	157	48.5%	142	43.8%	14	4.3%	11	3.4%	

Table 8. Salmonella Isolates by Month for All Sites, 2004

Month	n	%*
January	49	15.1%
February	18	5.6%
March	21	6.5%
April	28	8.6%
May	25	7.7%
June	23	7.1%
July	32	9.9%
August	34	10.5%
September	19	5.9%
October	24	7.4%
November	28	8.6%
December	23	7.1%
Total (N)	324	100.0%

^{*} Where % = (n/N).

Table 9. Antimicrobial Resistance among Salmonella Isolates (N=324), 2004

Antimicrobial Agent	n	%R*
Tetracycline	161	49.7%
Streptomycin	98	30.2%
Sulfisoxazole	89	27.5%
Ampicillin	81	25.0%
Amoxicillin/Clavulanic Acid	52	16.0%
Cefoxitin	48	14.8%
Ceftiofur	48	14.8%
Kanamycin	45	13.9%
Gentamicin	35	10.8%
Chloramphenicol	11	3.4%
Ceftriaxone	1	0.3%
Trimethoprim/Sulfamethoxazole	1	0.3%
Amikacin	0	0.0%
Ciprofloxacin	0	0.0%
Nalidixic Acid	0	0.0%

^{*} Where % R = (n/N).

Figure 4. Antimicrobial Resistance among Salmonella isolates (n =324), 2004

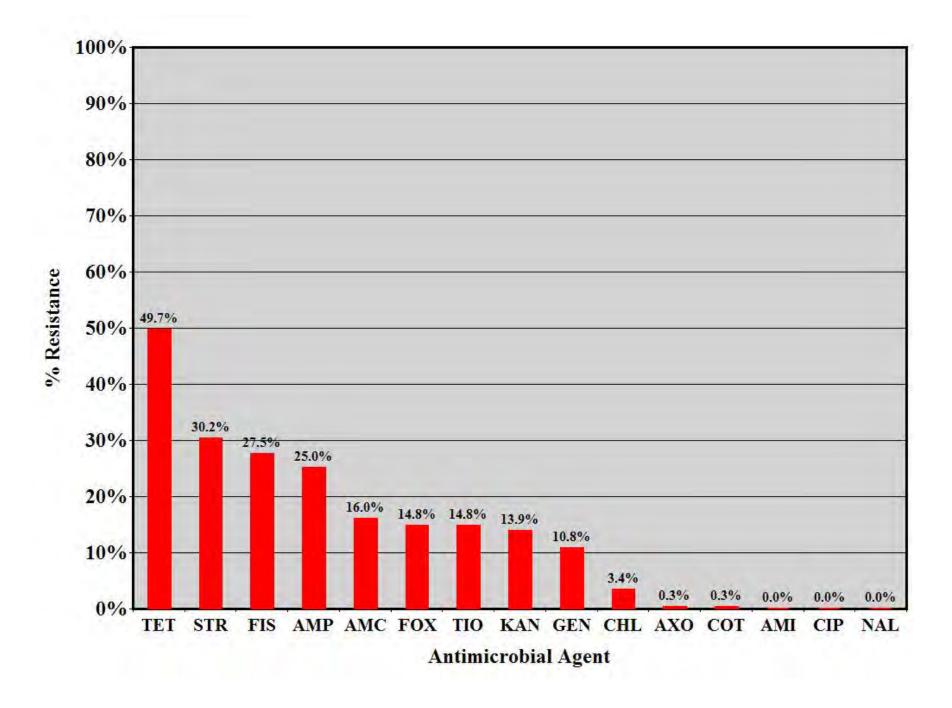


Figure 5. MIC Distribution among all Antimicrobial Agents, 2004

Salmonella from All Meats (N	[=324)					I	Distrib	ution (%) of 1	MICs (in μg/ı	ml)					
Antimicrobial Agent	%R [†]	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	25.0%							63.6	10.5	0.9				25.0			
Amoxicillin/Clavulanic Acid	16.0%							67.0	8.0		4.0	4.9	1.2	14.8			
Cefoxitin	14.8%							1.9	59.0	20.7	3.1	0.6	3.1	11.7			
Ceftiofur	14.8%					0.3	46.3	36.7	1.9			14.8					
Ceftriaxone	0.3%					84.9					0.9	9.9	4.0	0.3			
Nalidixic Acid	0.0%								8.0	84.9	6.8	0.3					
Ciprofloxacin	0.0%	95.4	4.0	0.6													
Sulfisoxazole	27.5%											8.3	15.4	48.1	0.6		27.5
Trimethoprim/Sulfamethoxazole	0.3%				93.5	4.3	1.9				0.3						
Amikacin	0.0%						4.6	49.4	41.0	4.9							
Gentamicin	10.8%					42.0	41.4	4.0	0.3		1.5	4.9	5.9				
Kanamycin	13.9%										82.7	2.5	0.9	3.1	10.8		
Streptomycin*	30.2%			, and the second	, and the second					, and the second			69.8	17.3	13.0		
Chloramphenicol	3.4%			, and the second	, and the second				1.2	13.0	80.2	2.2		3.4			
Tetracycline	49.7%			, and the second	, and the second					46.6	3.7	1.9	0.9	46.9			

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

NARMS

Figure 5a: Minimum Inhibitory Concentration of Amikacin for Salmonella (N=324 Isolates)

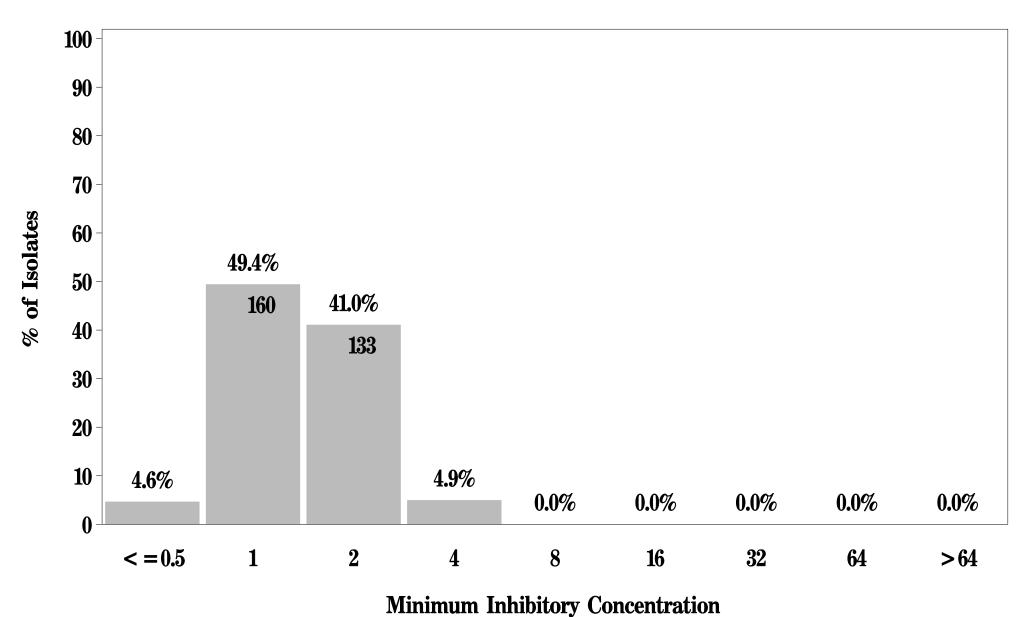
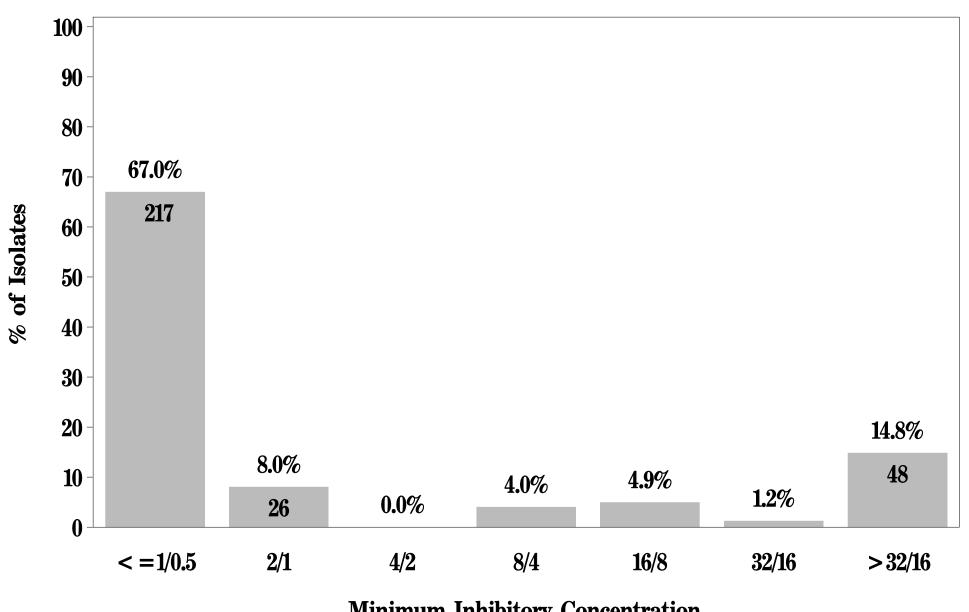
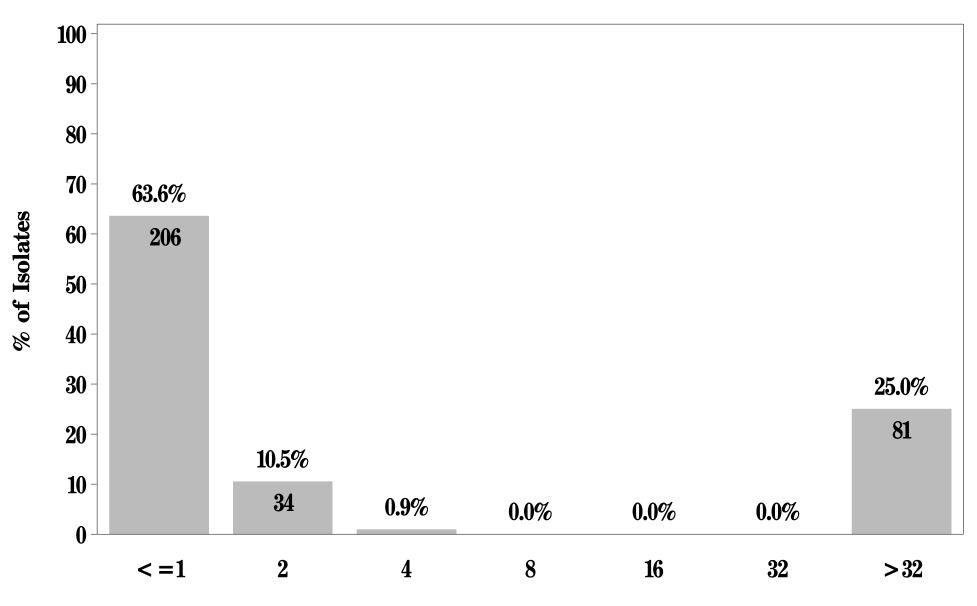




Figure 5b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for Salmonella (N=324 Isolates)

Minimum Inhibitory Concentration

Figure 5c: Minimum Inhibitory Concentration of Ampicillin for Salmonella (N=324 Isolates)

Minimum Inhibitory Concentration

Figure 5d: Minimum Inhibitory Concentration of Cefoxitin for Salmonella (N=324 Isolates)

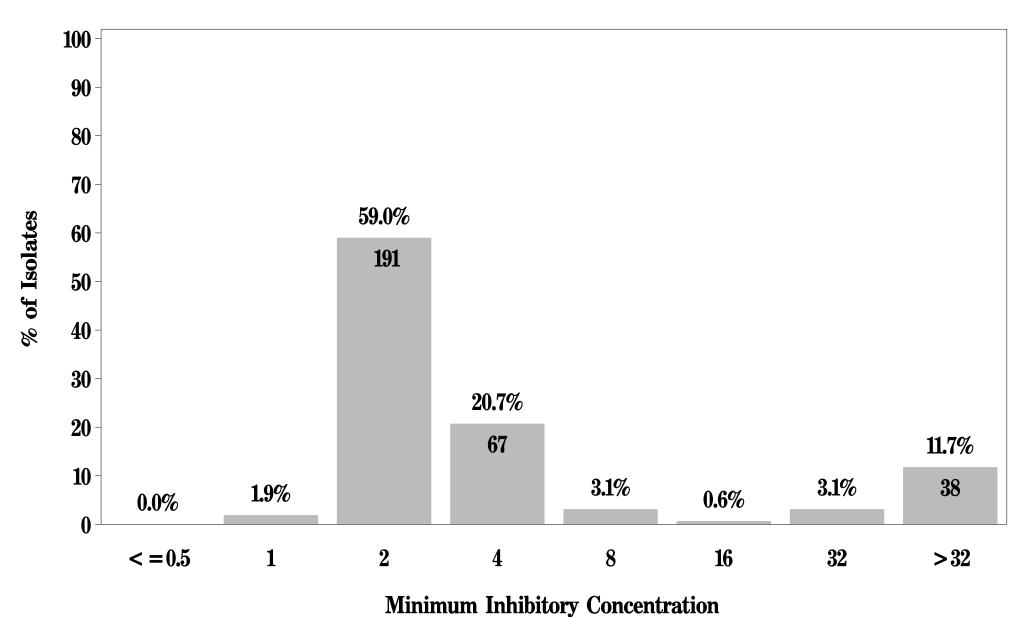
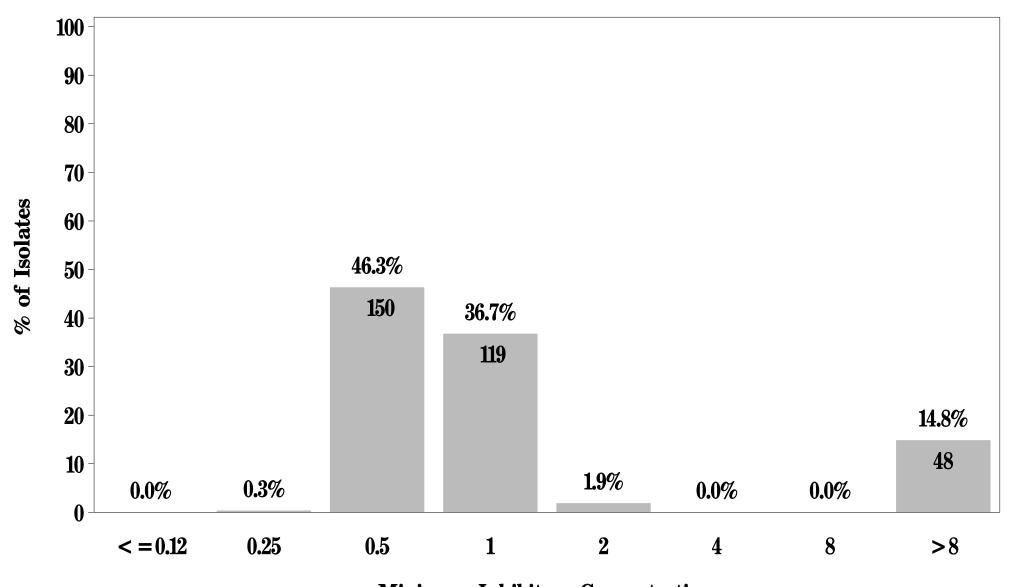



Figure 5e: Minimum Inhibitory Concentration of Ceftiofur for Salmonella (N=324 Isolates)

Minimum Inhibitory Concentration

Figure 5f: Minimum Inhibitory Concentration of Ceftriaxone for *Salmonella* (N=324 Isolates)

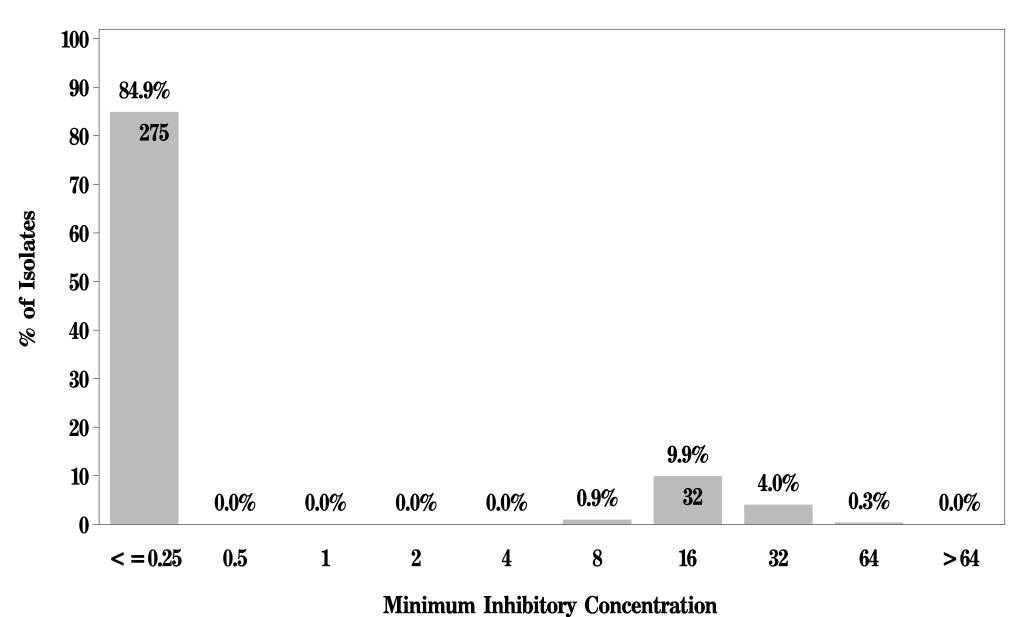


Figure 5g: Minimum Inhibitory Concentration of Chloramphenicol for Salmonella (N=324 Isolates)

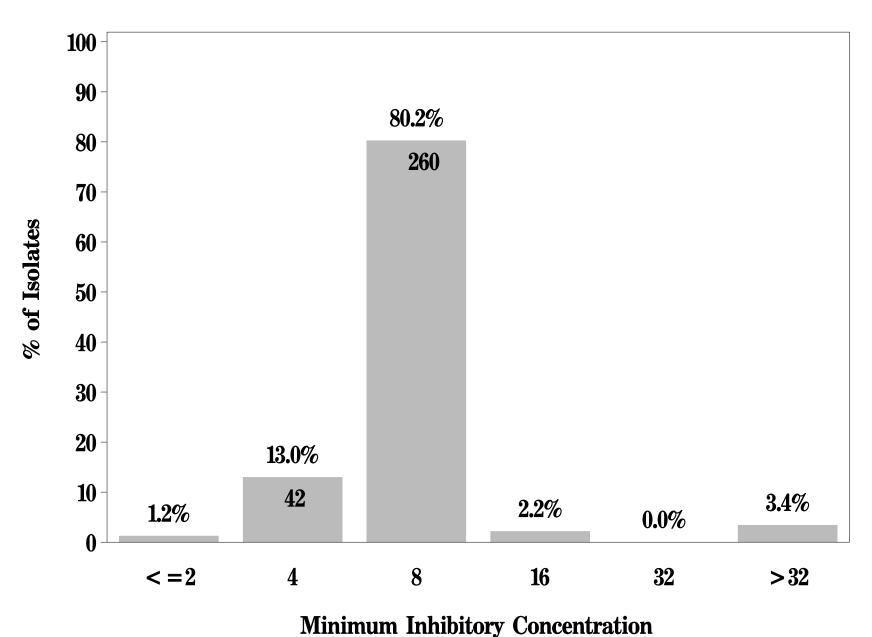


Figure 5h: Minimum Inhibitory Concentration of Ciprofloxacin for *Salmonella* (N=324 Isolates)

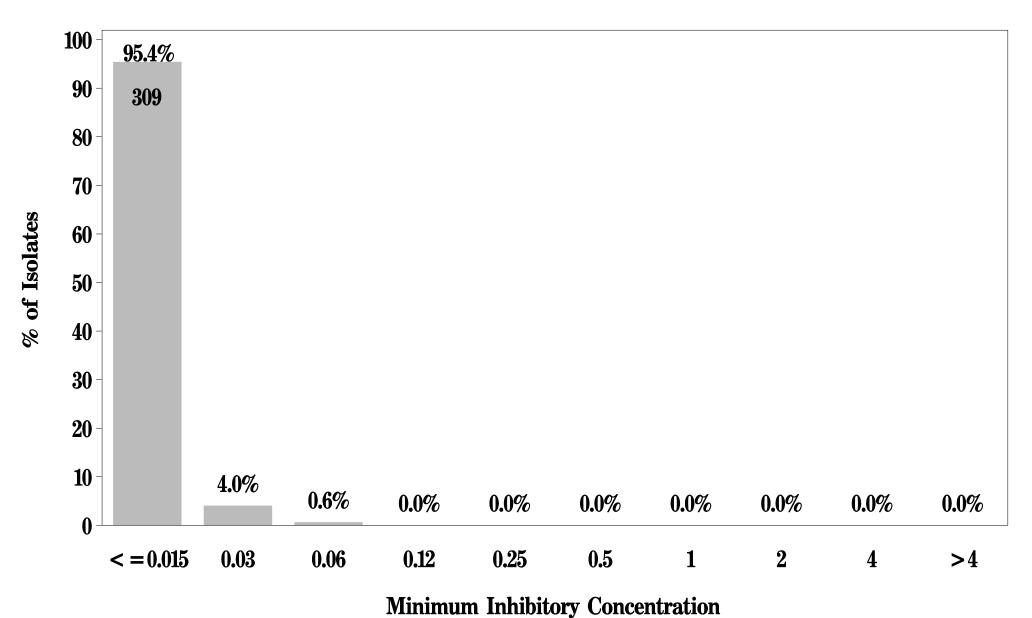


Figure 5i: Minimum Inhibitory Concentration of Gentamicin for *Salmonella* (N=324 Isolates)

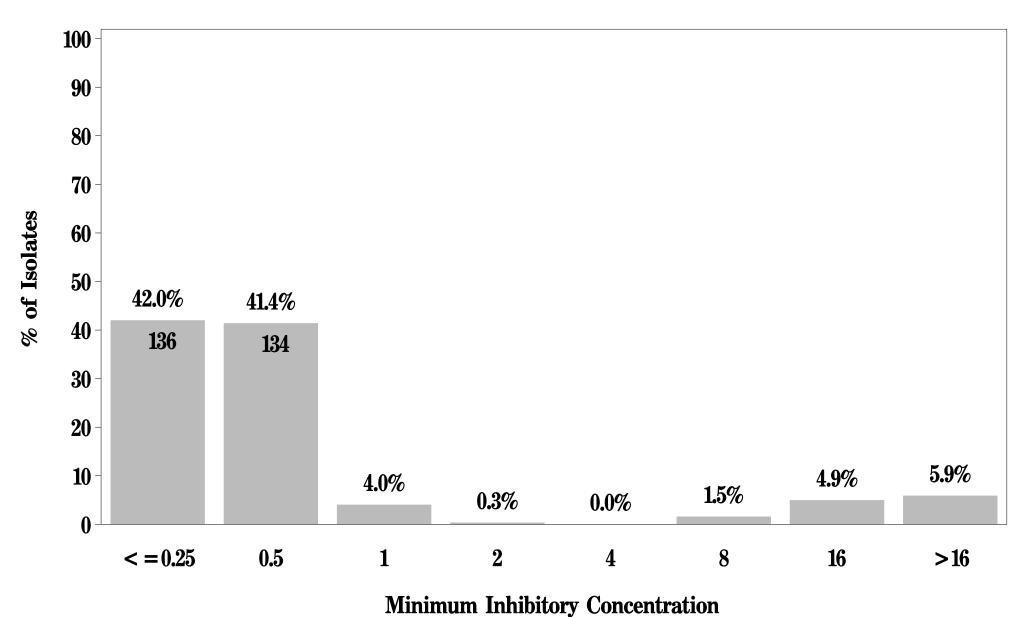


Figure 5j: Minimum Inhibitory Concentration of Kanamycin for *Salmonella* (N=324 Isolates)

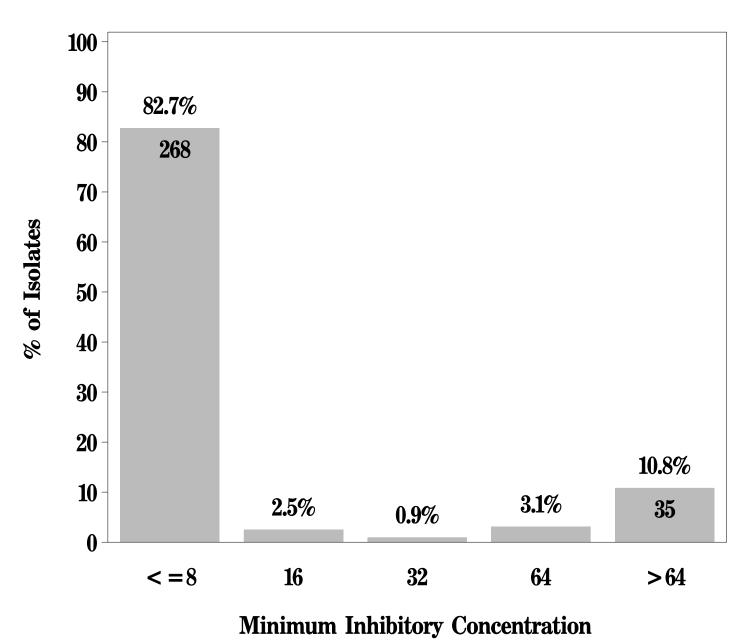
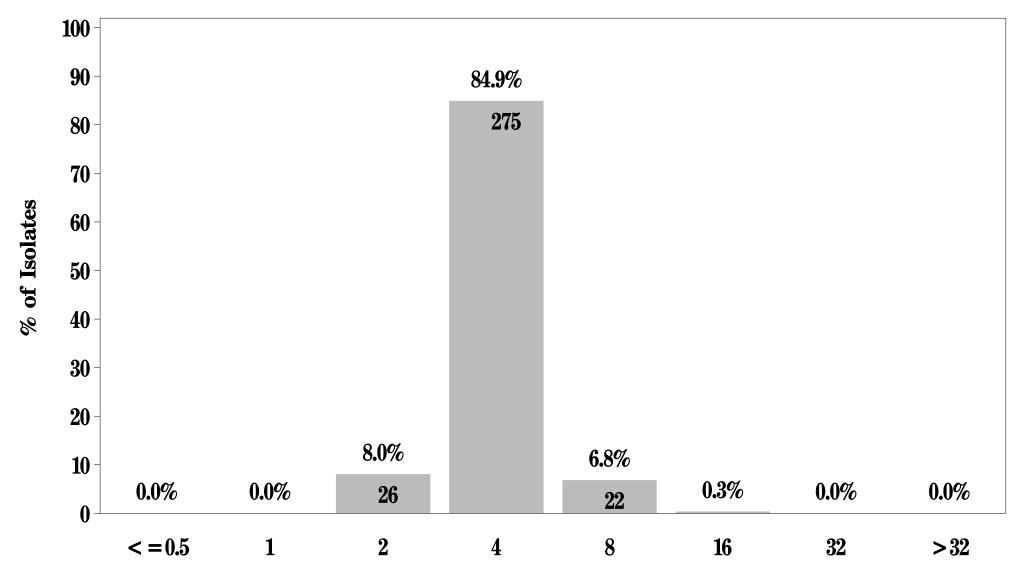
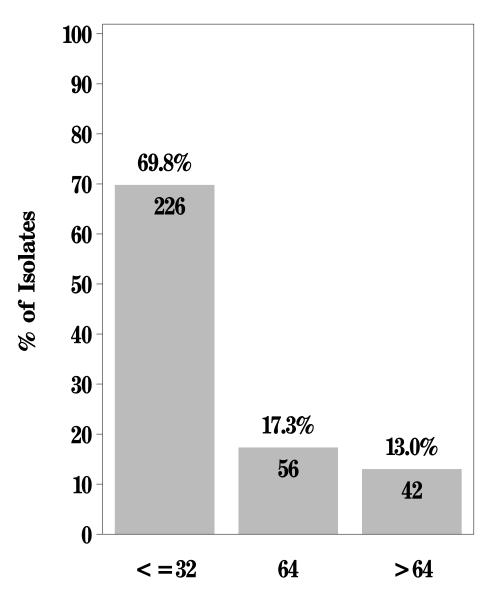




Figure 5k: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella (N=324 Isolates)

Minimum Inhibitory Concentration

Figure 5l: Minimum Inhibitory Concentration of Streptomycin for Salmonella (N=324 Isolates)

Minimum Inhibitory Concentration

Figure 5m: Minimum Inhibitory Concentration of Sulfisoxazole for Salmonella (N=324 Isolates)

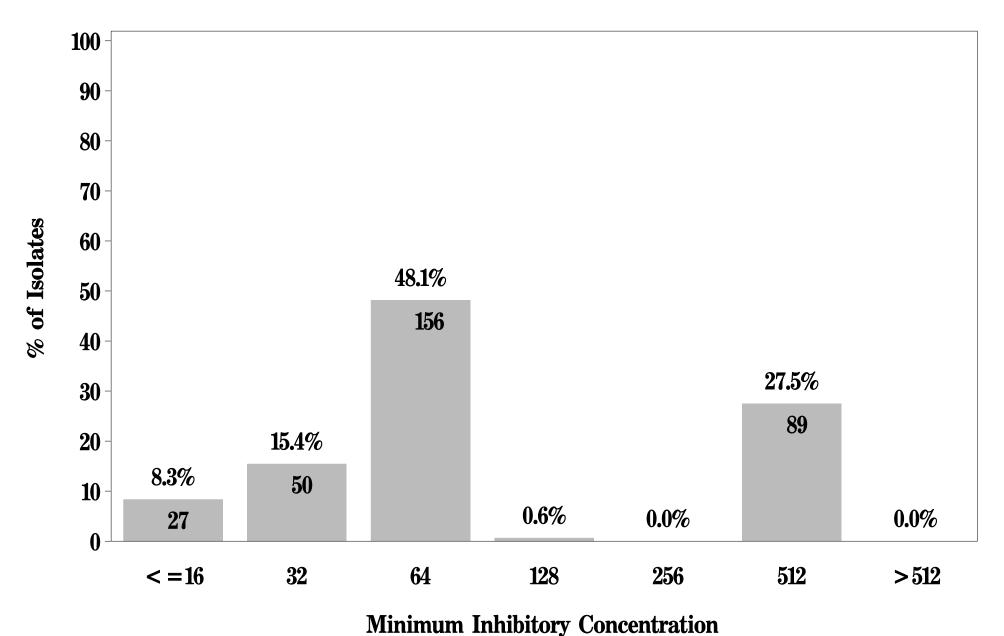


Figure 5n: Minimum Inhibitory Concentration of Tetracycline for *Salmonella* (N=324 Isolates)

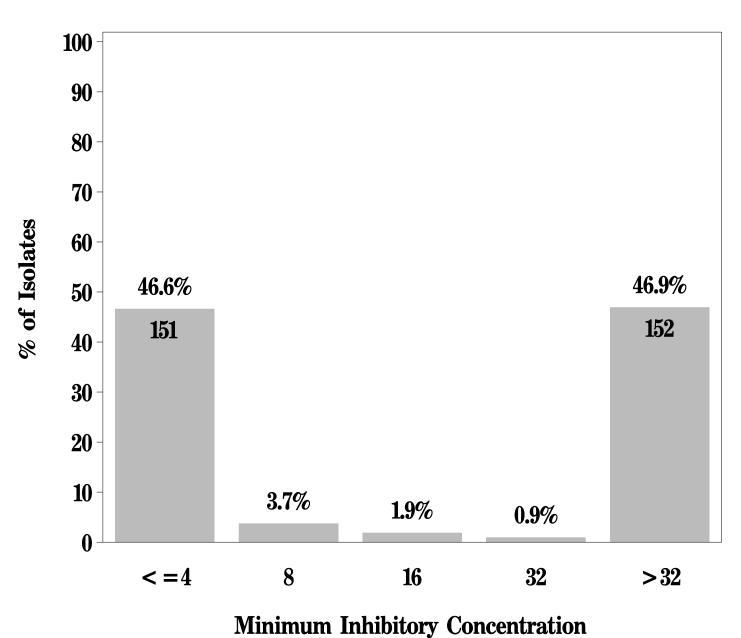


Figure 50: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for Salmonella (N=324 Isolates)

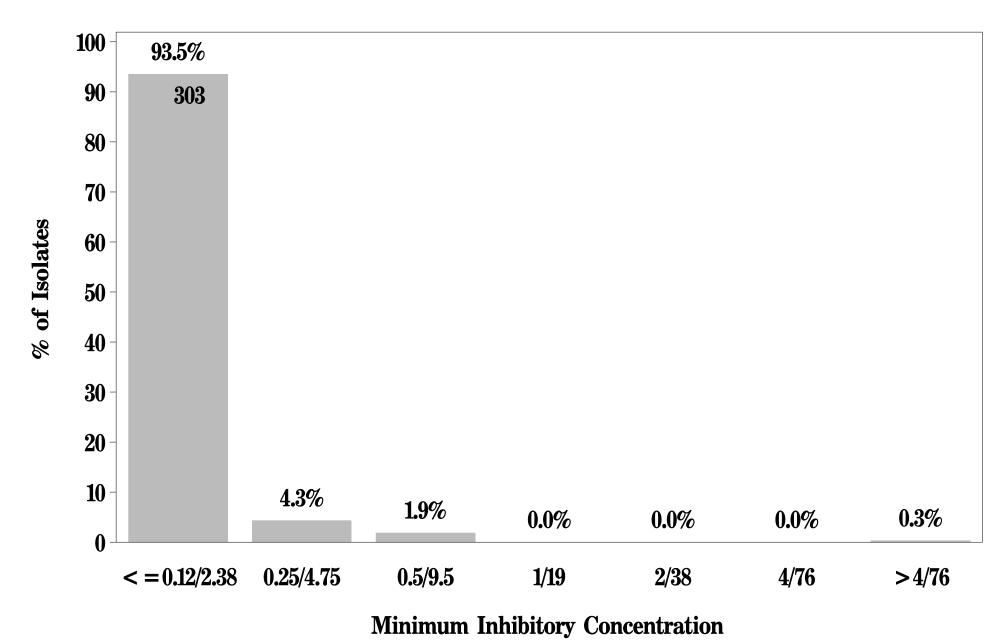


Table 10. Antimicrobial Resistance among Salmonella Isolates by Meat Type, 2004

	Chicken	Ground	Ground	Pork
Antimicrobial Agent	Breast	Turkey	Beef	Chop
	(n=157)	(n=142)	(n=14)	(n=11)
Tetracycline	46.5%*	56.3%	14.3%	54.5%
Streptomycin	28.0%	33.8%	14.3%	27.3%
Sulfisoxazole	28.7%	28.2%	14.3%	18.2%
Ampicillin	30.6%	20.4%	21.4%	9.1%
Amoxicillin/Clavulanic Acid	24.8%	7.7%	14.3%	_†
Cefoxitin	24.8%	4.9%	14.3%	-
Ceftiofur	24.8%	4.9%	14.3%	-
Kanamycin	11.5%	18.3%	-	9.1%
Gentamicin	3.8%	20.4%	-	-
Chloramphenicol	1.9%	2.8%	14.3%	18.2%
Ceftriaxone	-	-	7.1%	-
Trimethoprim/Sulfamethoxazole	-	-	7.1%	-
Amikacin	-	-	-	-
Ciprofloxacin	-	-	-	-
Nalidixic Acid	-	-	-	-

 $^{^{*}}$ Where % Resistance = (# isolates per meat type resistant to antimicrobial) / (total # isolates per meat type).

[†] Dashes indicate 0.0% resistance to antimicrobial.

Figure 6a. MIC Distribution among Salmonella from Chicken Breast, 2004

Salmonella from Chicken Breast	t (N=157)	•			•	I	Distrib	ution (%) of 1	MICs (in μg/ı	nl)	•	•		•	
Antimicrobial Agent	%R [†]	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	30.6%							60.5	8.9					30.6			
Amoxicillin/Clavulanic Acid	24.8%							61.8	7.6		4.5	1.3		24.8			
Cefoxitin	24.8%							2.5	56.7	14.6	1.3		5.7	19.1			
Ceftiofur	24.8%					0.6	47.1	27.4				24.8					
Ceftriaxone	0.0%					75.2					1.9	18.5	4.5				
Nalidixic Acid	0.0%								12.1	82.8	5.1						
Ciprofloxacin	0.0%	96.2	3.8														
Sulfisoxazole	28.7%											12.1	14.6	43.3	1.3		28.7
Trimethoprim/Sulfamethoxazole	0.0%				96.8	3.2											
Amikacin	0.0%						7.6	46.5	40.1	5.7							
Gentamicin	3.8%					46.5	45.2	3.8			0.6	1.9	1.9				
Kanamycin	11.5%										84.7	3.2	0.6		11.5		
Streptomycin*	28.0%												72.0	16.6	11.5		
Chloramphenicol	1.9%								2.5	14.6	80.3	0.6		1.9			
Tetracycline	46.5%									52.9	0.6			46.5			

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

 $Un shaded \ areas \ indicate \ the \ dilution \ ranges \ of \ the \ Sensiti tre \ plate \ used \ to \ test \ the \ 2004 \ isolates.$

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug.

Figure 6b. MIC Distribution among Salmonella from Ground Turkey, 2004

Salmonella from Ground Turke	y (N=142)					Ι	Distrib	ution (%) of N	IICs (i	n μg/n	ıl)					
Antimicrobial Agent	%R [†]	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	20.4%							64.1	14.1	1.4				20.4			
Amoxicillin/Clavulanic Acid	7.7%							71.8	8.5		3.5	8.5	2.8	4.9			
Cefoxitin	4.9%							1.4	60.6	28.2	3.5	1.4	0.7	4.2			
Ceftiofur	4.9%						43.0	47.9	4.2			4.9					
Ceftriaxone	0.0%					94.4						2.1	3.5				
Nalidixic Acid	0.0%								4.2	85.2	9.9	0.7					
Ciprofloxacin	0.0%	93.7	4.9	1.4													
Sulfisoxazole	28.2%											4.9	17.6	49.3			28.2
Trimethoprim/Sulfamethoxazole	0.0%				89.4	6.3	4.2										
Amikacin	0.0%						2.1	50.0	44.4	3.5							
Gentamicin	20.4%					33.8	37.3	4.9	0.7		2.8	9.2	11.3				
Kanamycin	18.3%										78.9	1.4	1.4	7.0	11.3		
Streptomycin*	33.8%		, and the second				, and the second						65.5	21.1	13.4		
Chloramphenicol	2.8%		, and the second				, and the second			12.7	80.3	4.2		2.8			
Tetracycline	56.3%		, and the second				, and the second			35.9	7.7	4.2	0.7	51.4			

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug.

Figure 6c. MIC Distribution among Salmonella from Ground Beef, 2004

Salmonella from Ground Beef	(N=14)	•		<u> </u>	<u> </u>		Distrib	ution (%) of	MICs (in μg/m	l)		<u> </u>			
Antimicrobial Agent	%R [†]	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	21.4%							78.6						21.4			
Amoxicillin/Clavulanic Acid	14.3%							71.4	7.1		7.1			14.3			
Cefoxitin	14.3%								50.0	14.3	21.4			14.3			
Ceftiofur	14.3%						50.0	35.7				14.3					
Ceftriaxone	7.1%					85.7							7.1	7.1			
Nalidixic Acid	0.0%								7.1	92.9							
Ciprofloxacin	0.0%	100.0															
Sulfisoxazole	14.3%											7.1	7.1	71.4			14.3
Trimethoprim/Sulfamethoxazole	7.1%				92.9						7.1						
Amikacin	0.0%							64.3	28.6	7.1							
Gentamicin	0.0%					57.1	42.9										
Kanamycin	0.0%										100.0						
Streptomycin*	14.3%												85.7		14.3		
Chloramphenicol	14.3%									7.1	78.6			14.3			
Tetracycline	14.3%									85.7				14.3			

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

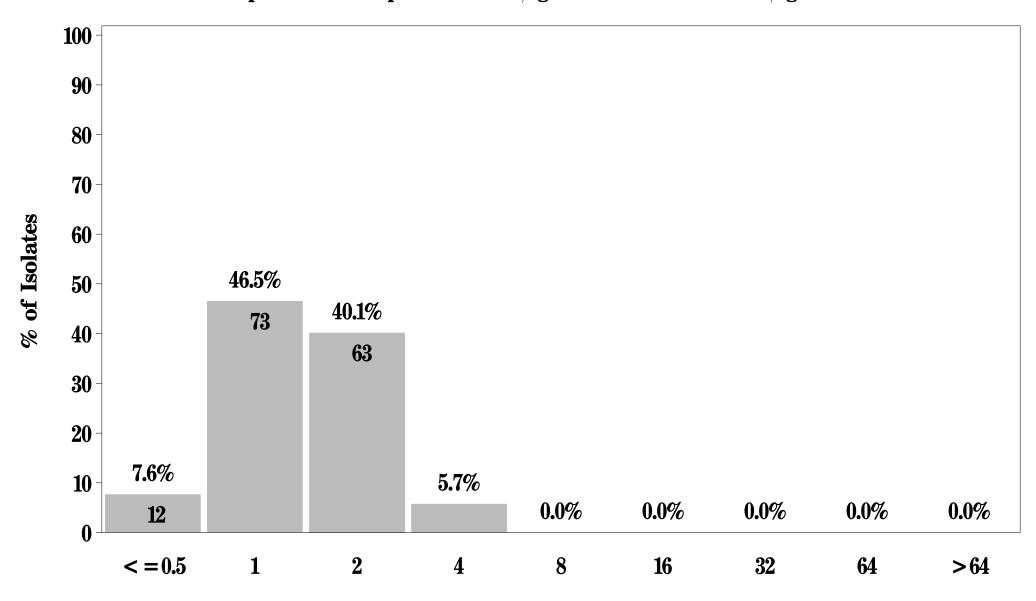
Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Figure 6d. MIC Distribution among Salmonella from Pork Chops, 2004

Salmonella from Pork Chops	Distribution (%) of MICs (in μg/ml)																
Antimicrobial Agent	%R [†]	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	>256
Ampicillin	9.1%							81.8		9.1				9.1			
Amoxicillin/Clavulanic Acid	0.0%							72.7	9.1			18.2					
Cefoxitin	0.0%								81.8	18.2							
Ceftiofur	0.0%						72.7	27.3									
Ceftriaxone	0.0%					100.0											
Nalidixic Acid	0.0%									100.0							
Ciprofloxacin	0.0%	100.0															
Sulfisoxazole	18.2%												9.1	72.7			18.2
Trimethoprim/Sulfamethoxazole	0.0%				100.0												
Amikacin	0.0%							63.6	27.3	9.1							
Gentamicin	0.0%					63.6	36.4										
Kanamycin	9.1%										81.8	9.1			9.1		
Streptomycin*	27.3%												72.7		27.3		
Chloramphenicol	18.2%										81.8			18.2			
Tetracycline	54.5%									45.5			18.2	36.4			

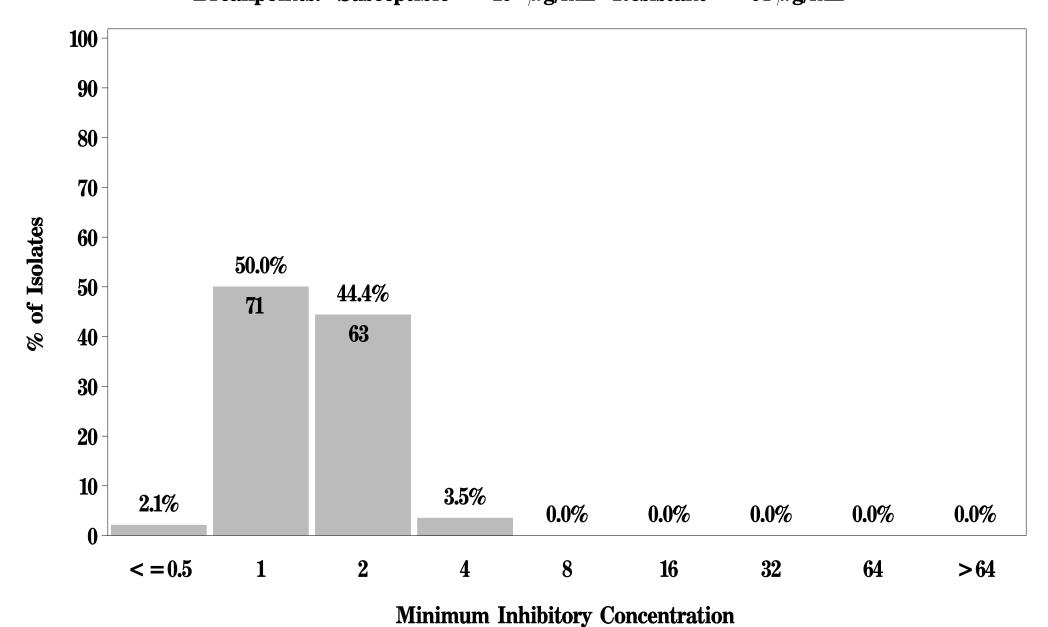
^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.


Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug.

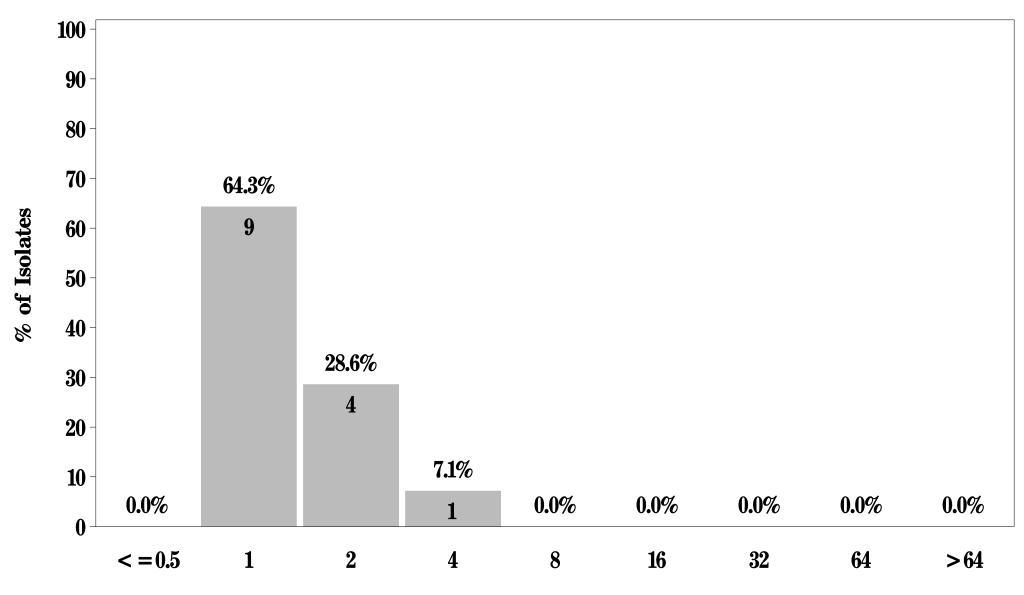
[†]Discrepancies between %R and sums of distribution %s are due to rounding.

NARMS

Figure 7a: Minimum Inhibitory Concentration of Amikacin for *Salmonella* in Chicken Breast (N=157 Isolates)

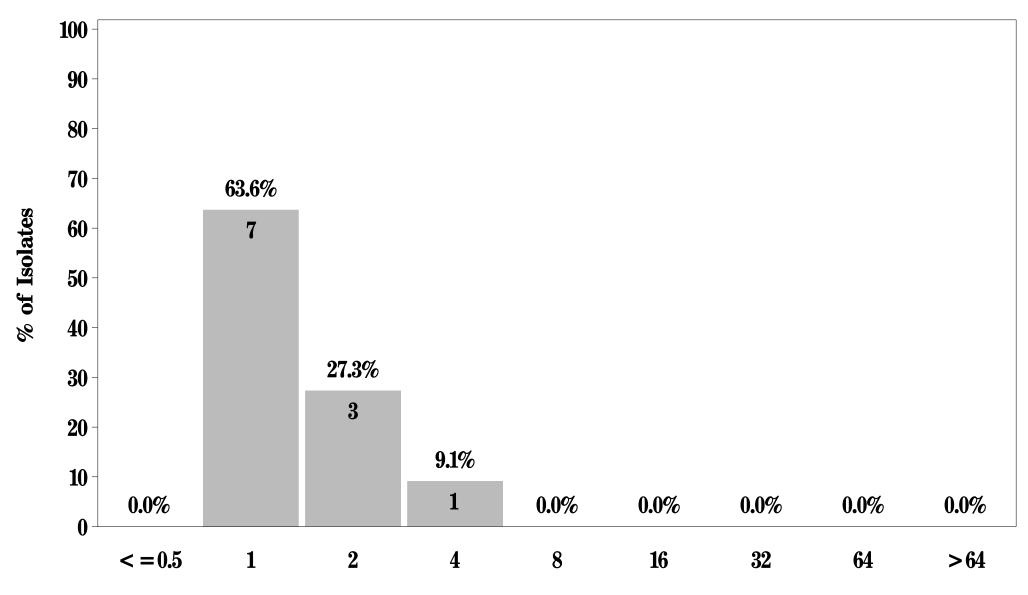

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration


Figure 7a: Minimum Inhibitory Concentration of Amikacin for *Salmonella* in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

NARMS


Figure 7a: Minimum Inhibitory Concentration of Amikacin for Salmonella in Ground Beef (N=14 Isolates)

Minimum Inhibitory Concentration

NARMS

Figure 7a: Minimum Inhibitory Concentration of Amikacin for Salmonella in Pork Chop (N=11 Isolates)

Minimum Inhibitory Concentration

Figure 7b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for Salmonella in Chicken Breast (N=157 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

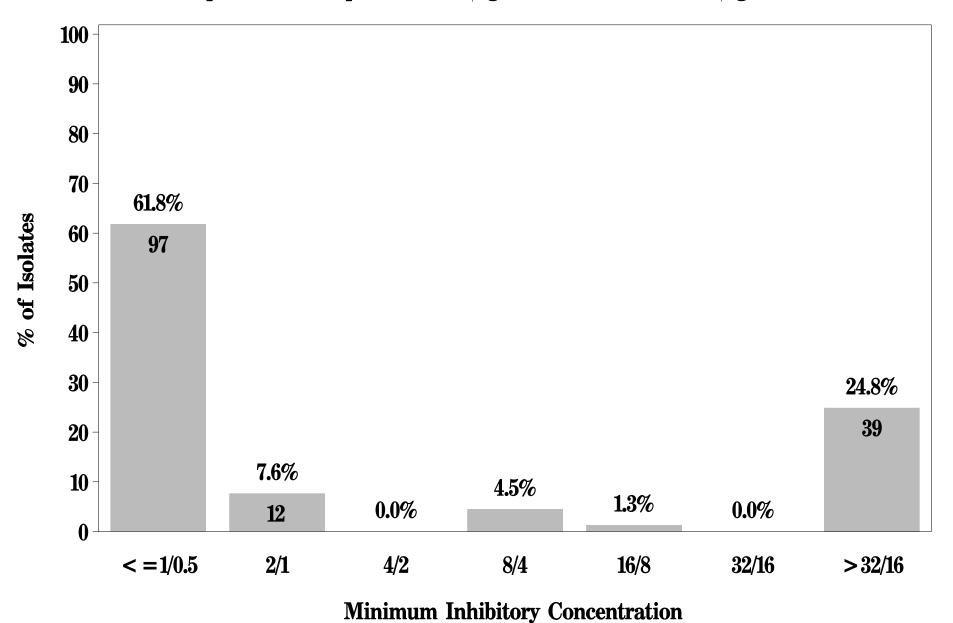


Figure 7b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for Salmonella in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

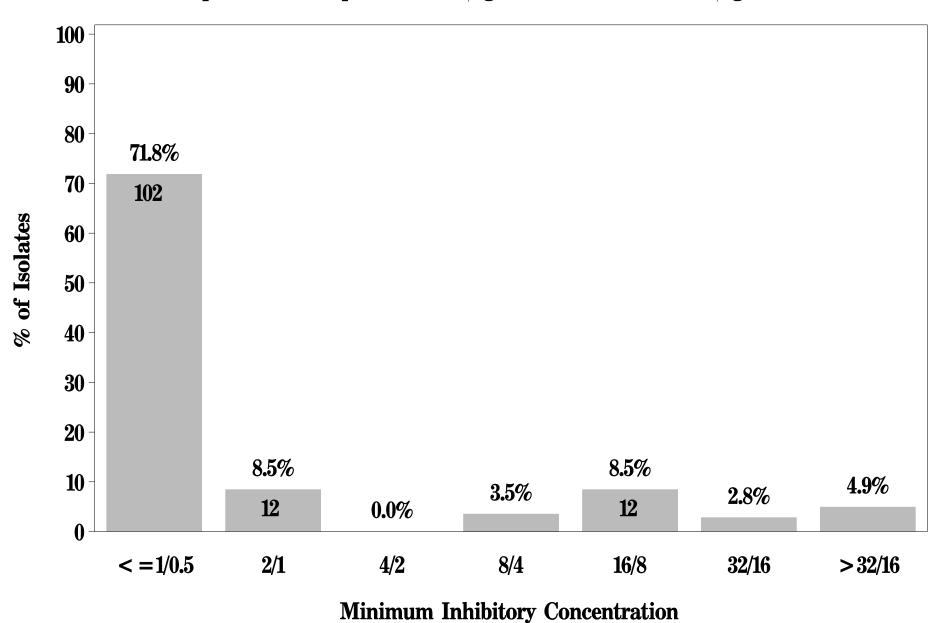


Figure 7b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for Salmonella in Ground Beef (N=14 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

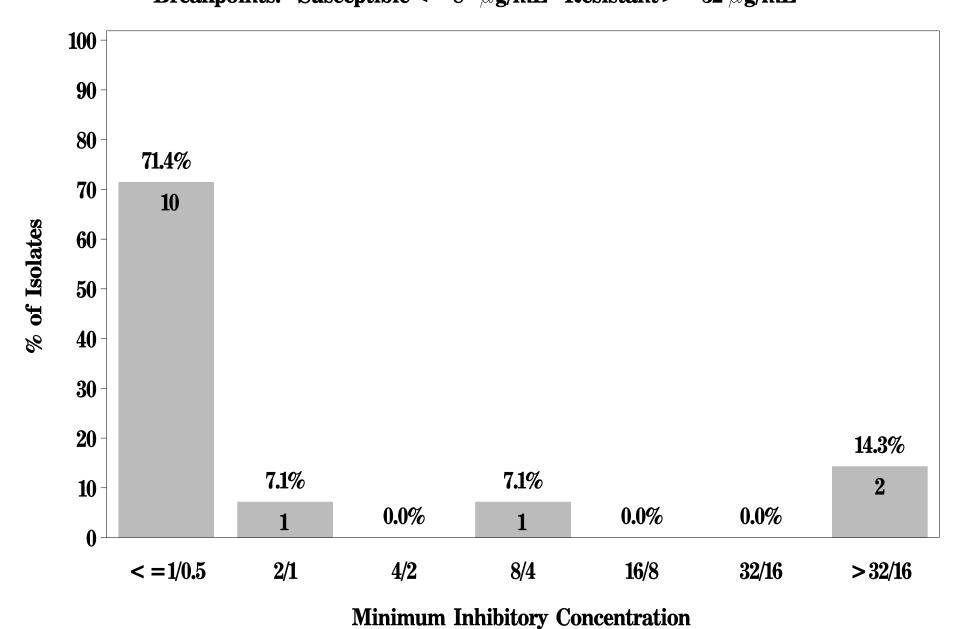
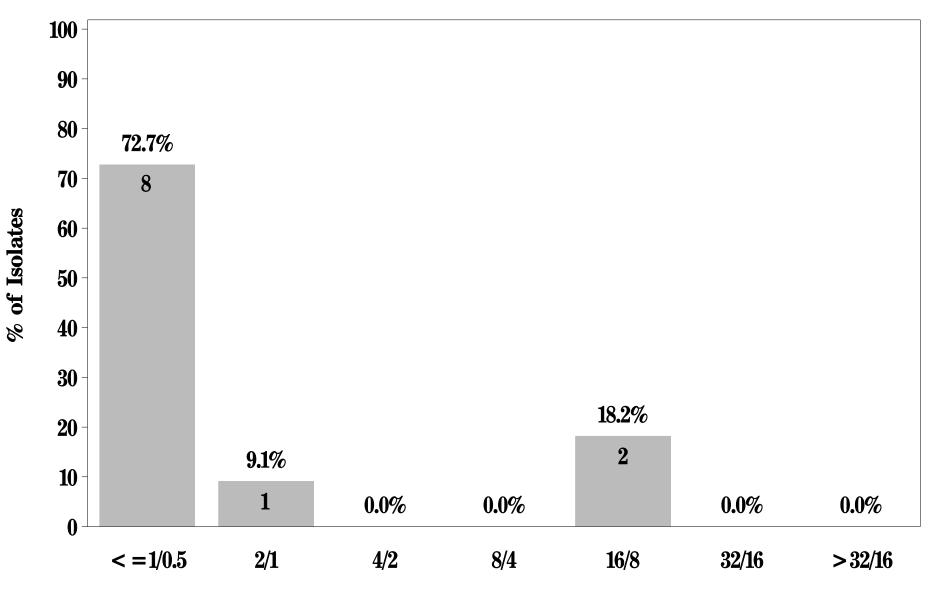



Figure 7b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for Salmonella in Pork Chop (N=11 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7c: Minimum Inhibitory Concentration of Ampicillin for *Salmonella* in Chicken Breast (N=157 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

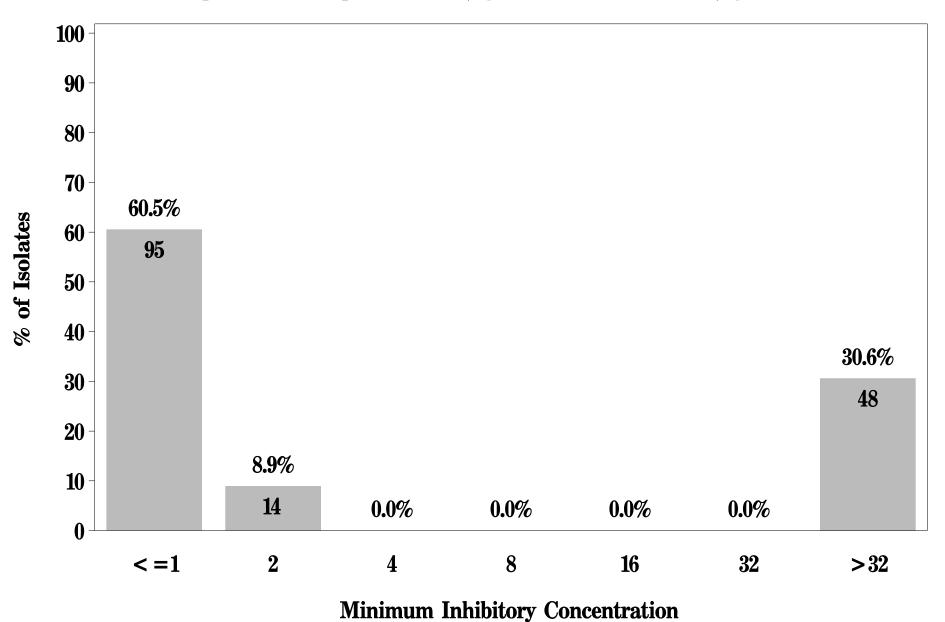


Figure 7c: Minimum Inhibitory Concentration of Ampicillin for *Salmonella* in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

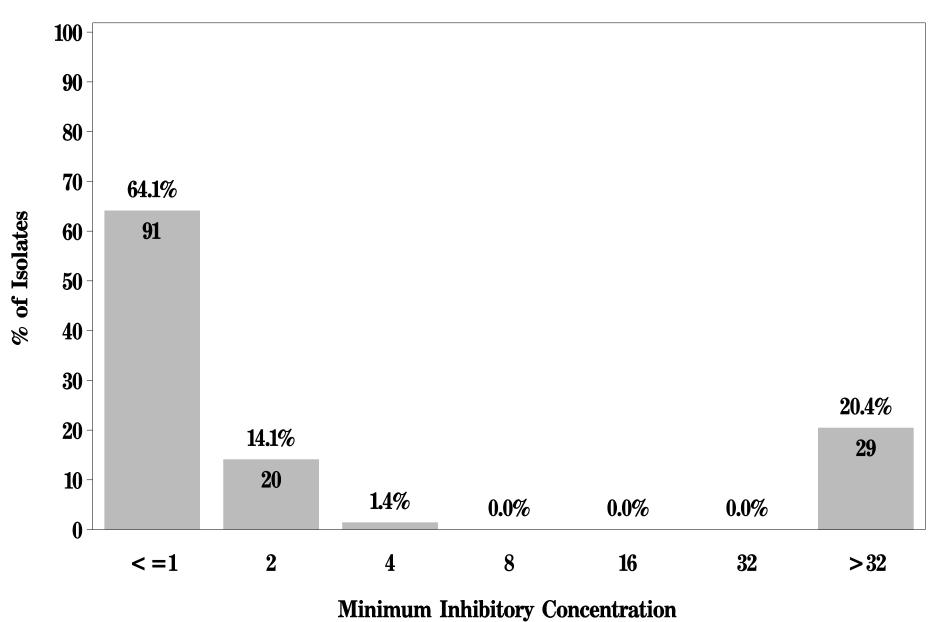
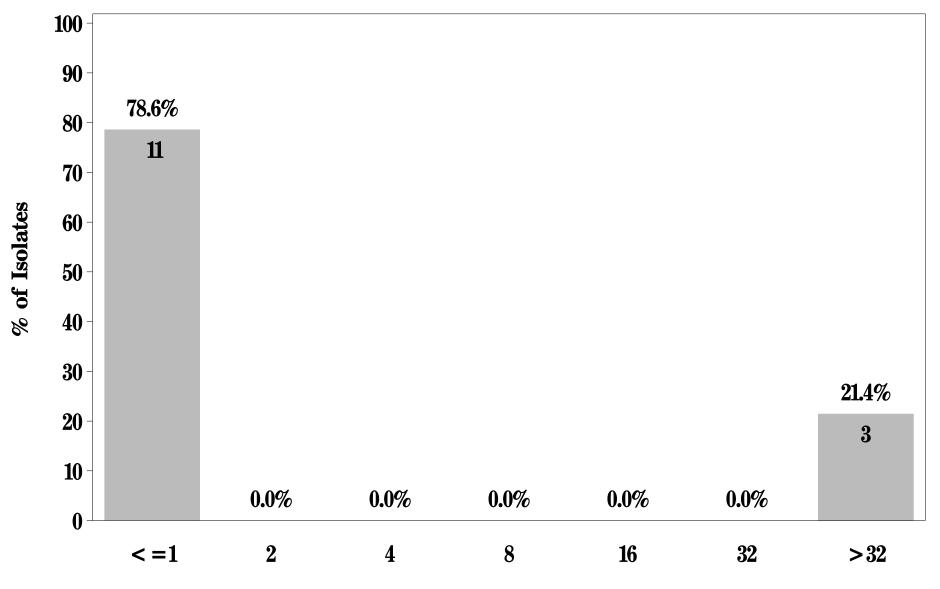
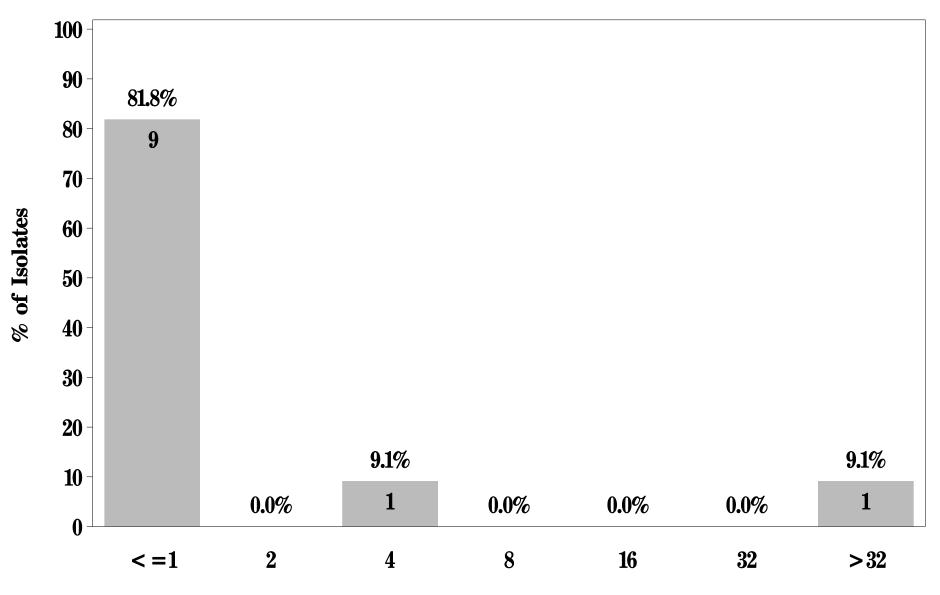



Figure 7c: Minimum Inhibitory Concentration of Ampicillin for Salmonella in Ground Beef (N=14 Isolates)


Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7c: Minimum Inhibitory Concentration of Ampicillin for Salmonella in Pork Chop (N=11 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7d: Minimum Inhibitory Concentration of Cefoxitin for *Salmonella* in Chicken Breast (N=157 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

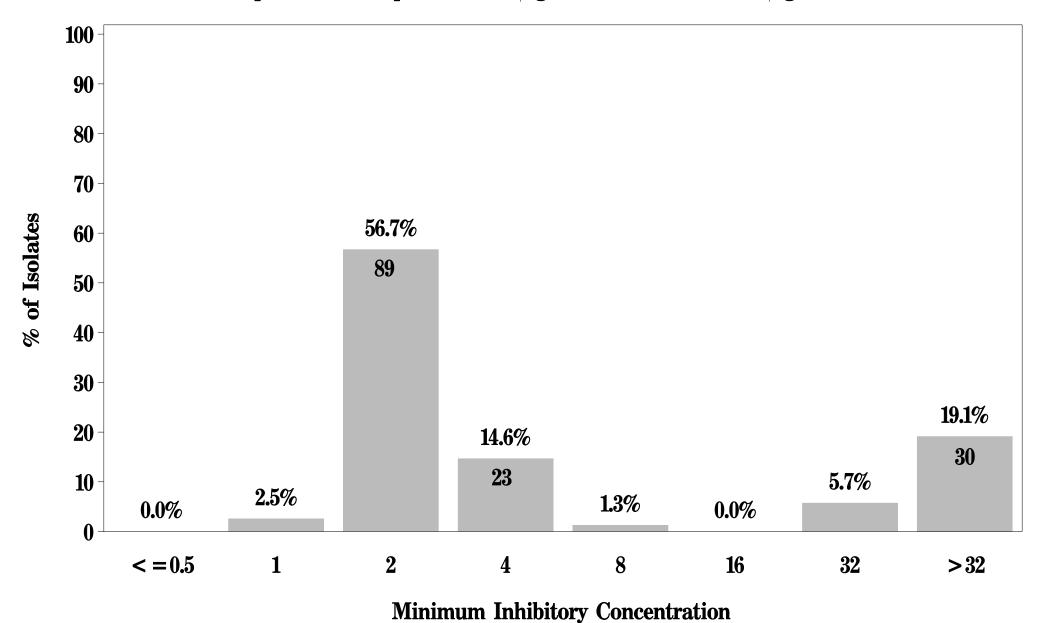


Figure 7d: Minimum Inhibitory Concentration of Cefoxitin for *Salmonella* in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

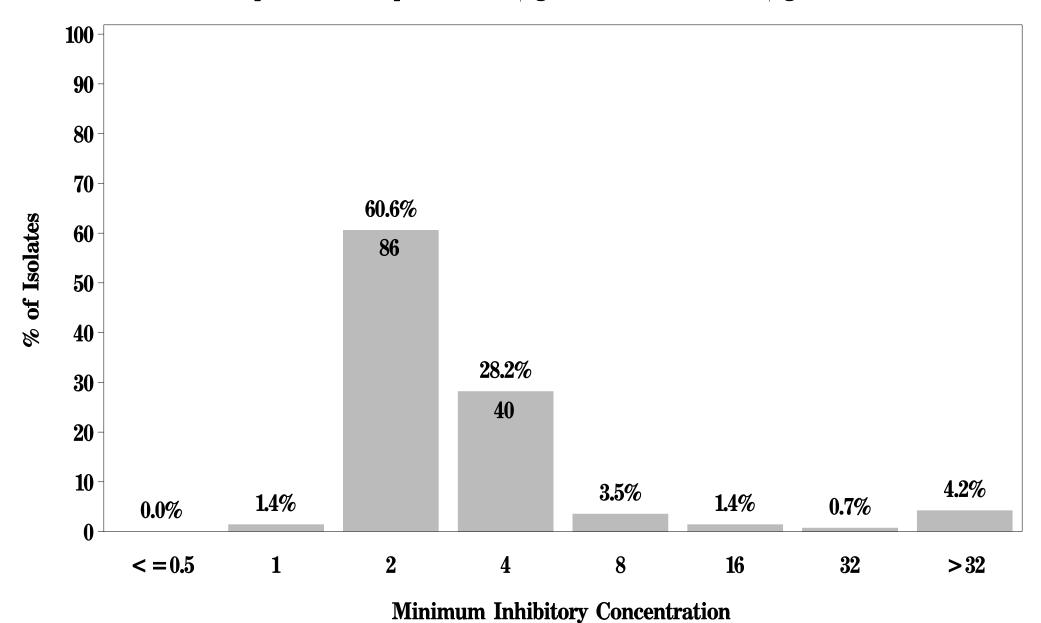


Figure 7d: Minimum Inhibitory Concentration of Cefoxitin for Salmonella in Ground Beef (N=14 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

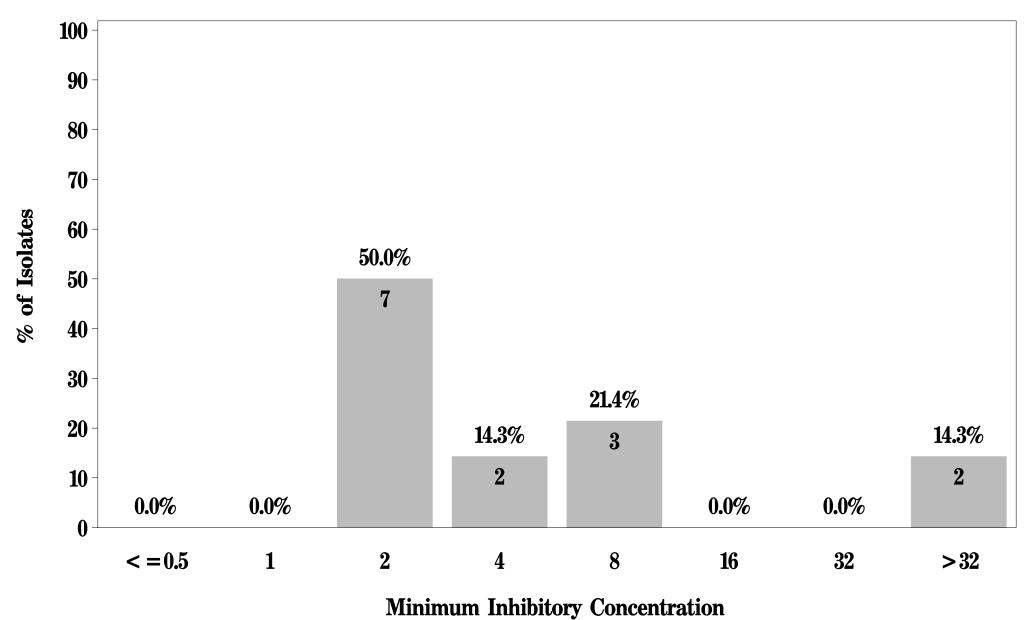
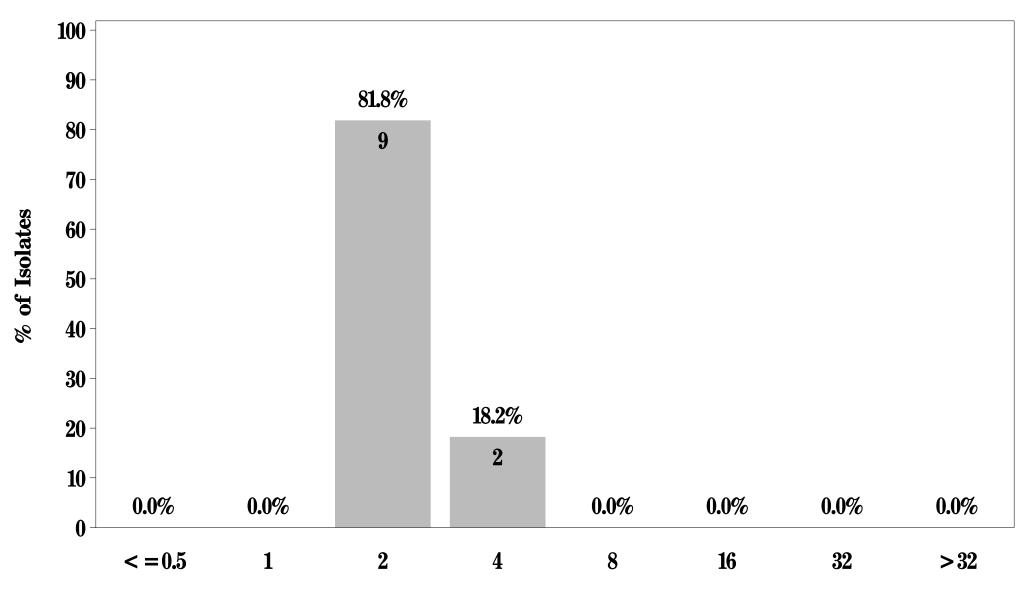



Figure 7d: Minimum Inhibitory Concentration of Cefoxitin for Salmonella in Pork Chop (N=11 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7e: Minimum Inhibitory Concentration of Ceftiofur for *Salmonella* in Chicken Breast (N=157 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

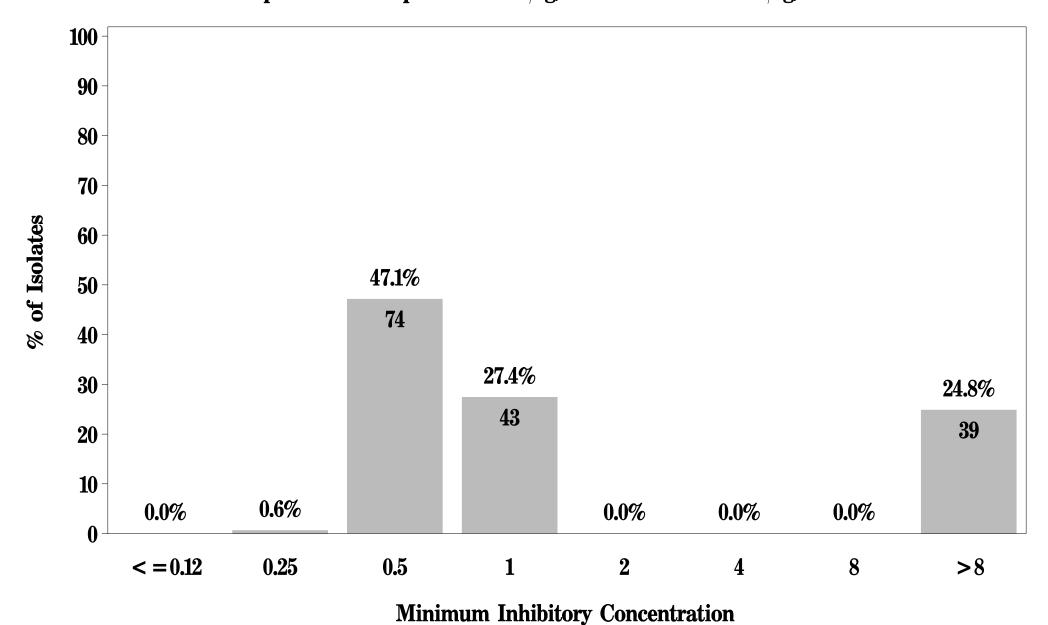


Figure 7e: Minimum Inhibitory Concentration of Ceftiofur for *Salmonella* in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

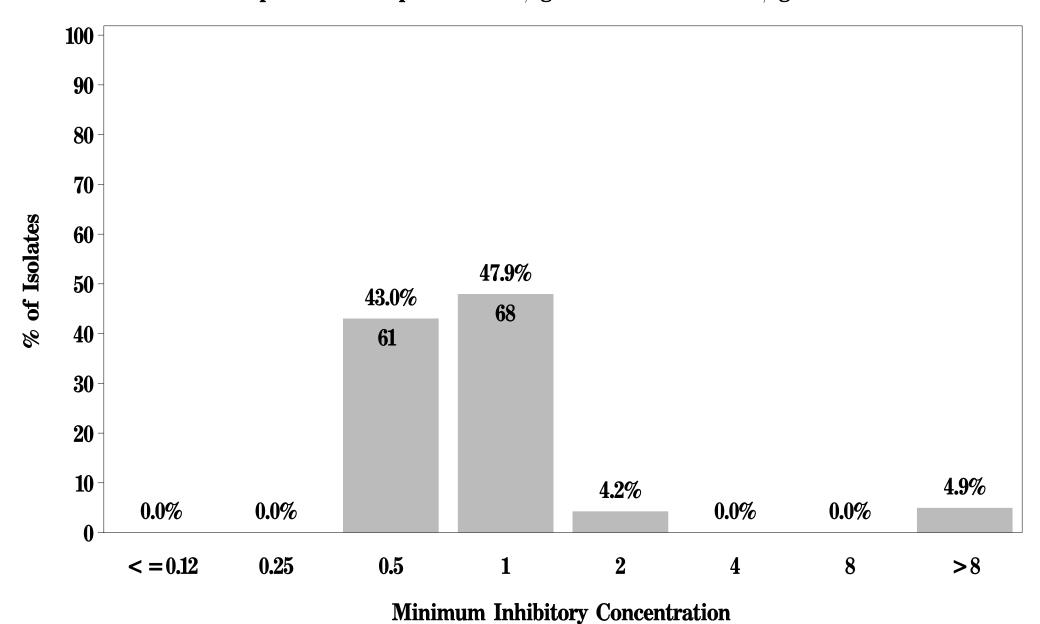
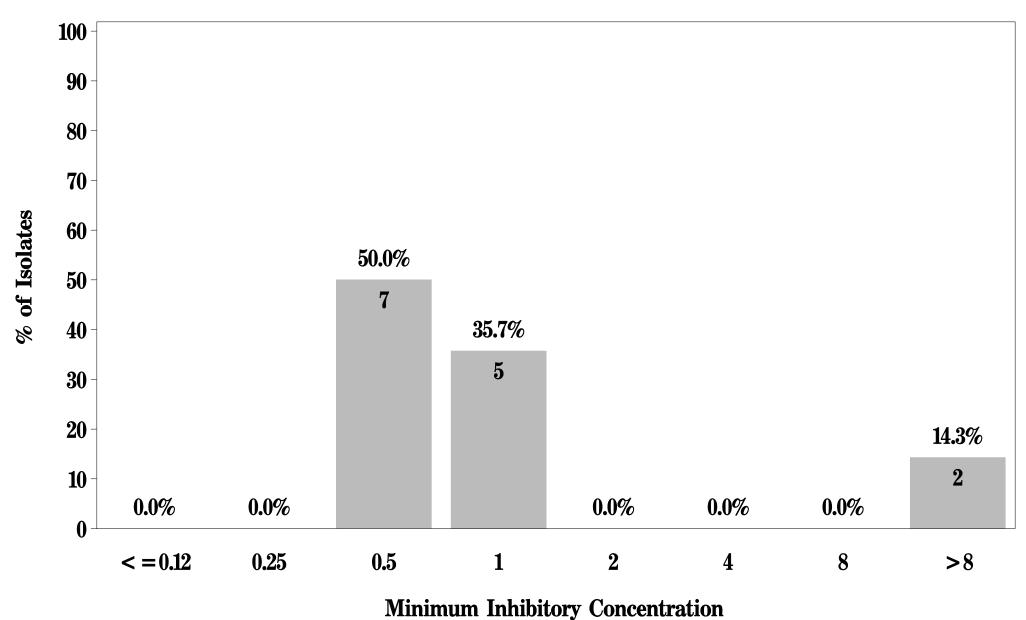
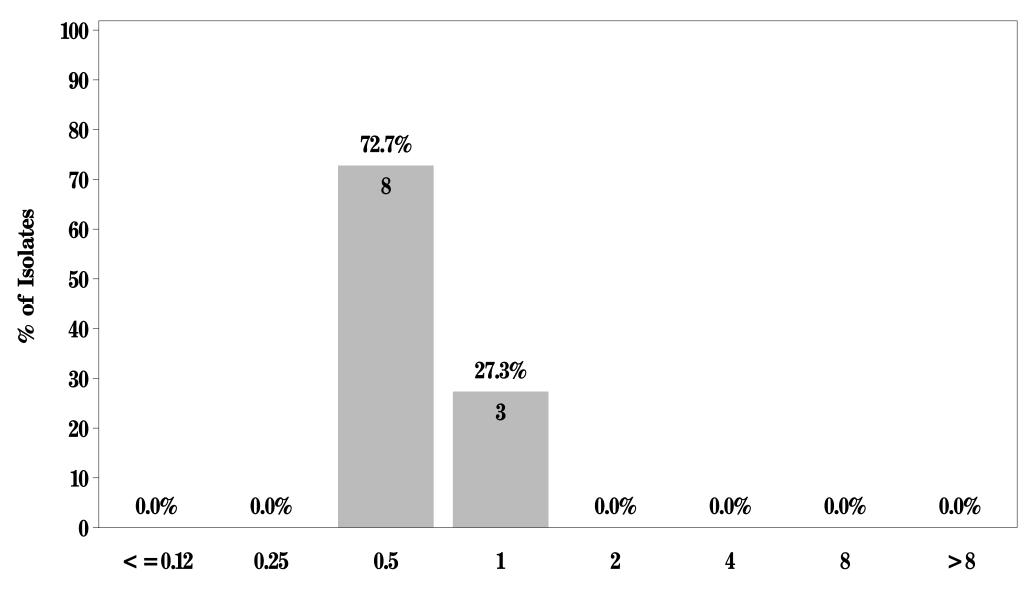



Figure 7e: Minimum Inhibitory Concentration of Ceftiofur for Salmonella in Ground Beef (N=14 Isolates)


Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

NARMS

Figure 7e: Minimum Inhibitory Concentration of Ceftiofur for Salmonella in Pork Chop (N=11 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7f: Minimum Inhibitory Concentration of Ceftriaxone for *Salmonella* in Chicken Breast (N=157 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 64 \mu \text{g/mL}$

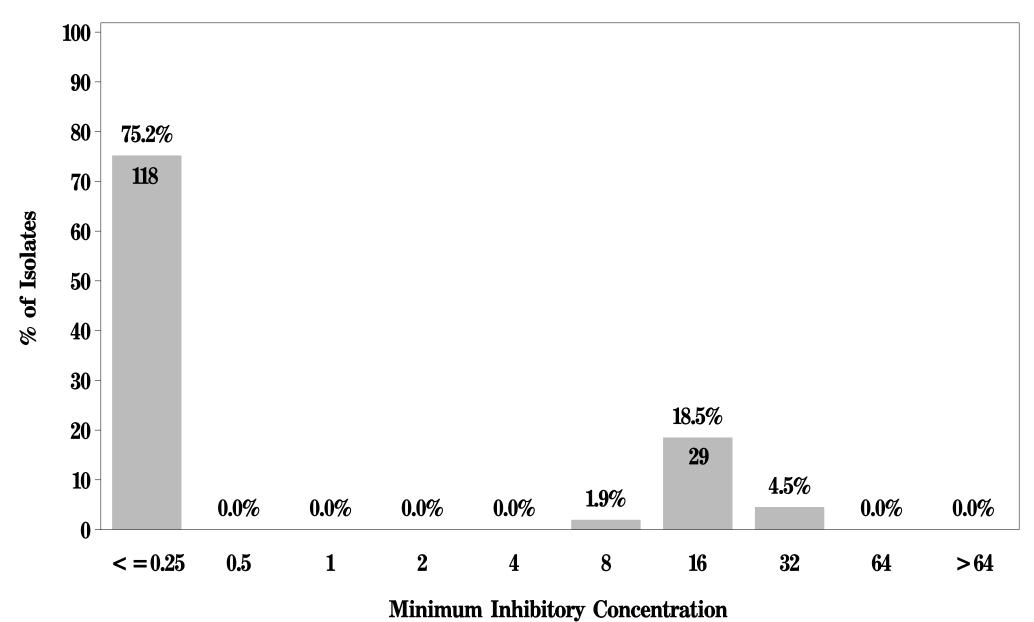


Figure 7f: Minimum Inhibitory Concentration of Ceftriaxone for *Salmonella* in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 64 \mu g/mL$

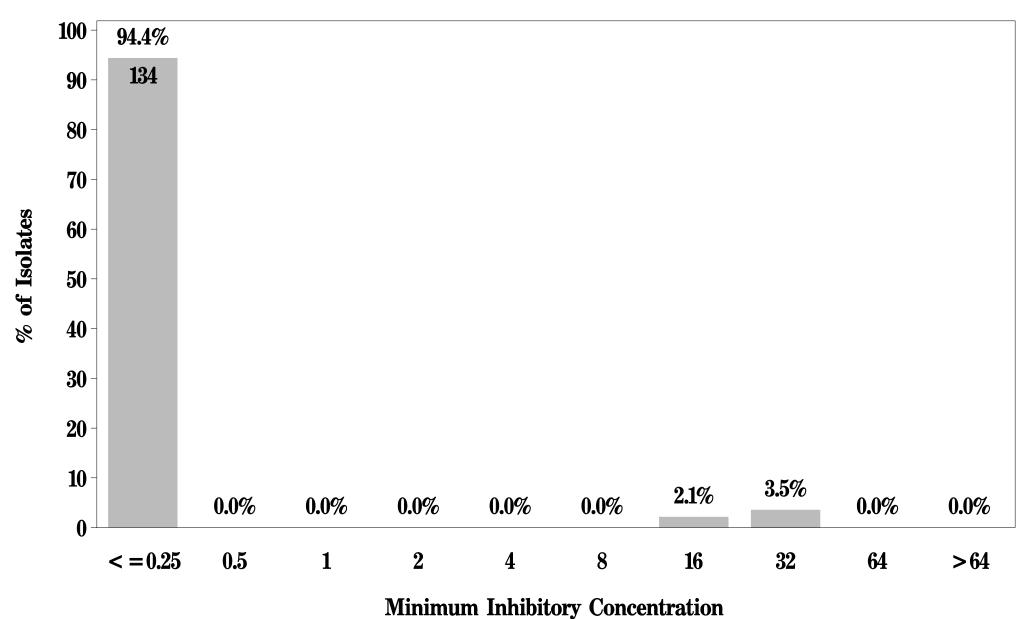


Figure 7f: Minimum Inhibitory Concentration of Ceftriaxone for *Salmonella* in Ground Beef (N=14 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 64 \mu \text{g/mL}$

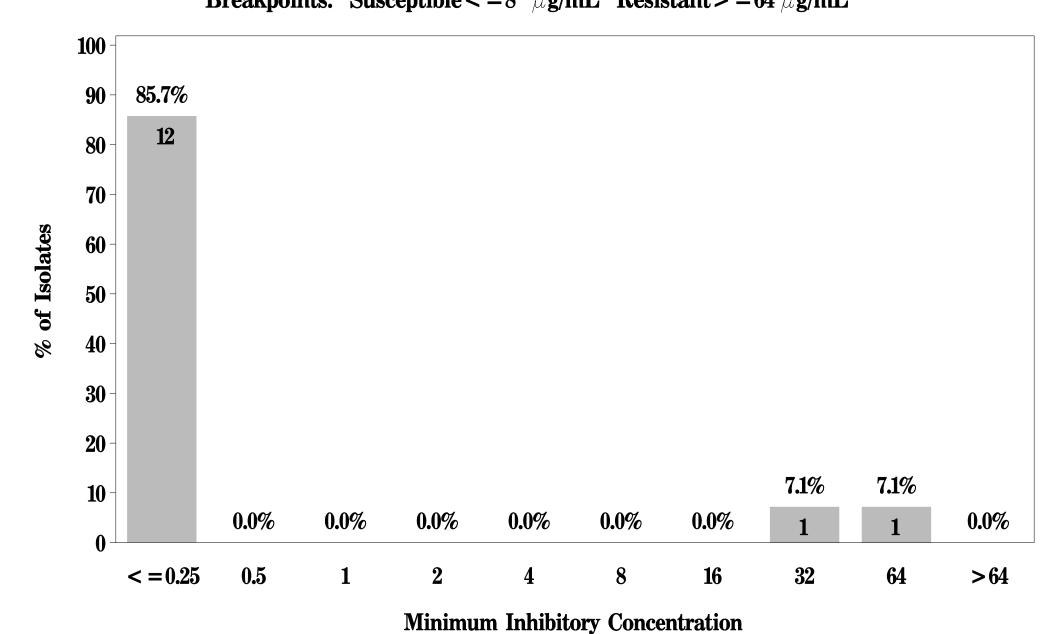
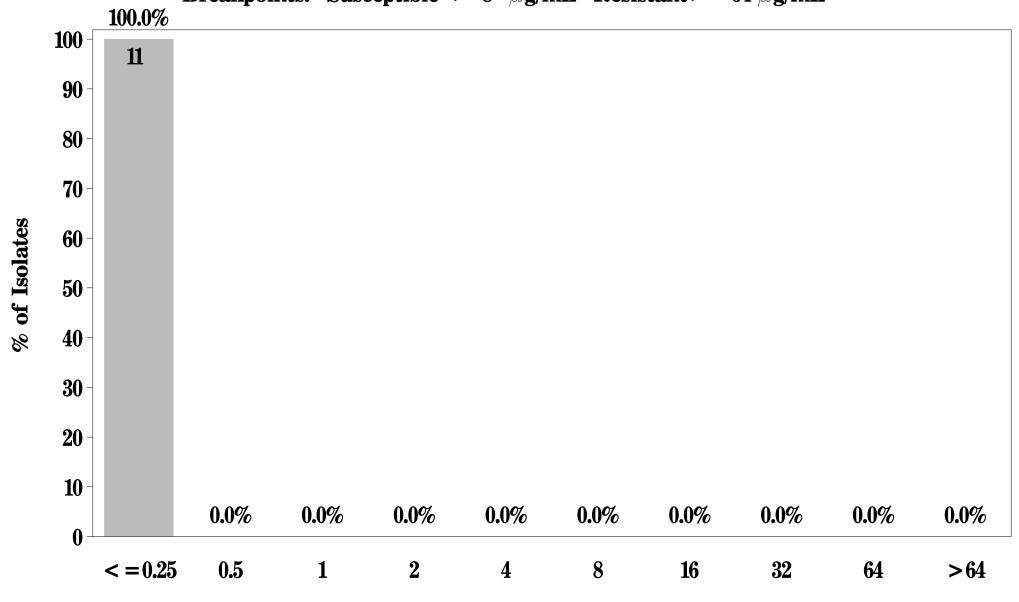
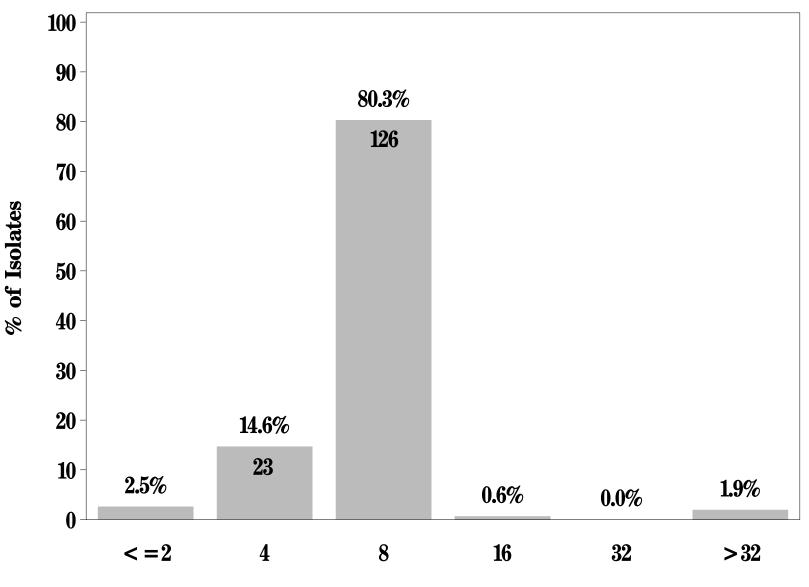
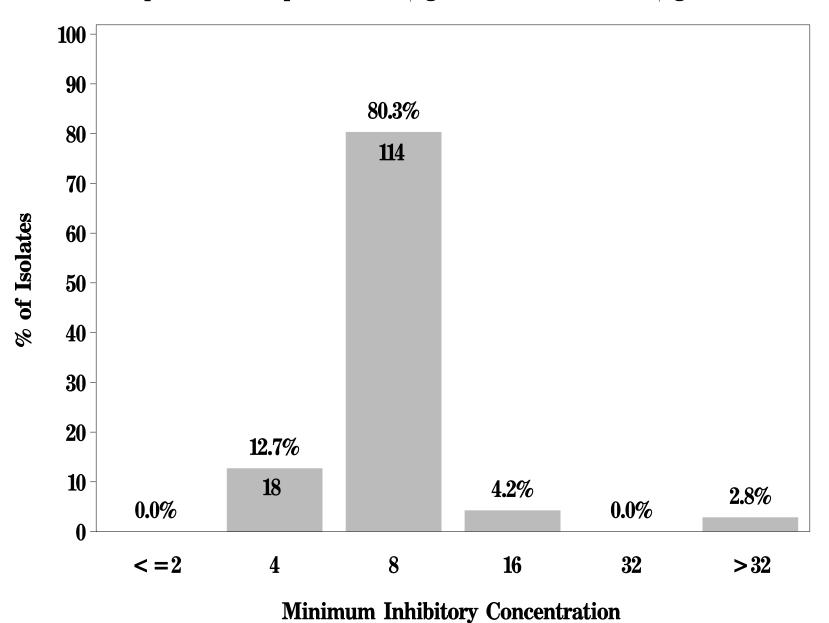



Figure 7f: Minimum Inhibitory Concentration of Ceftriaxone for Salmonella in Pork Chop (N=11 Isolates)


Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration

Figure 7g: Minimum Inhibitory Concentration of Chloramphenicol for *Salmonella* in Chicken Breast (N=157 Isolates)

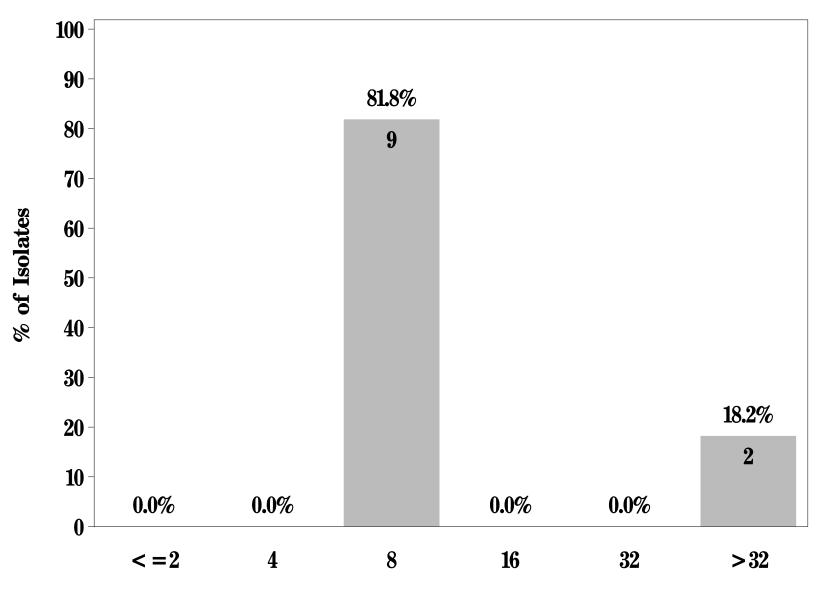

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 7g: Minimum Inhibitory Concentration of Chloramphenicol for *Salmonella* in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

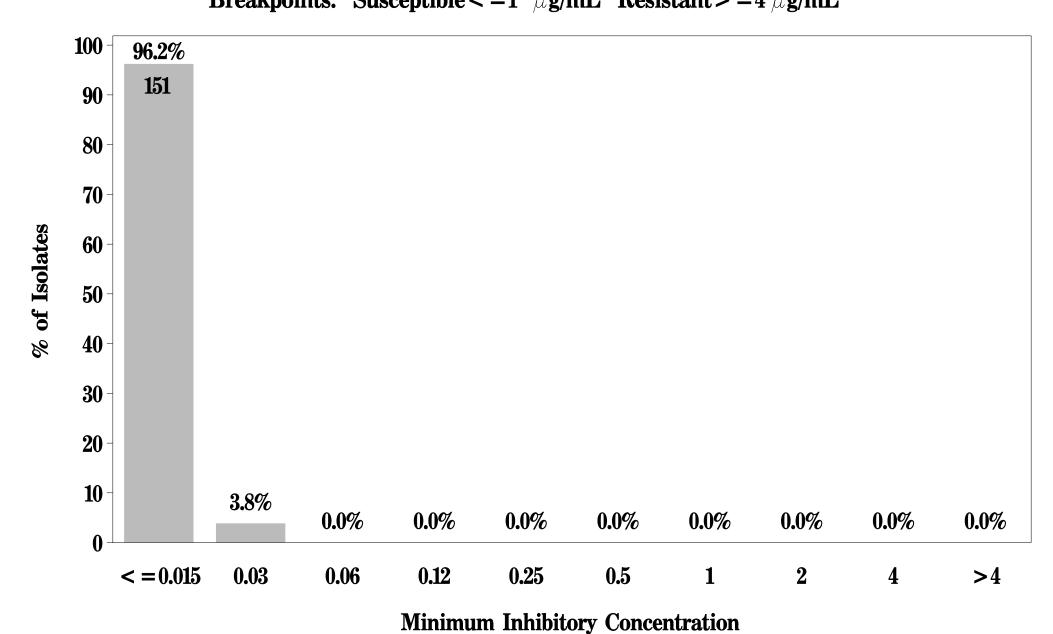
NARMS


Figure 7g: Minimum Inhibitory Concentration of Chloramphenicol for *Salmonella* in Ground Beef (N=14 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Figure 7g: Minimum Inhibitory Concentration of Chloramphenicol for Salmonella in Pork Chop (N=11 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$



Minimum Inhibitory Concentration

NARMS

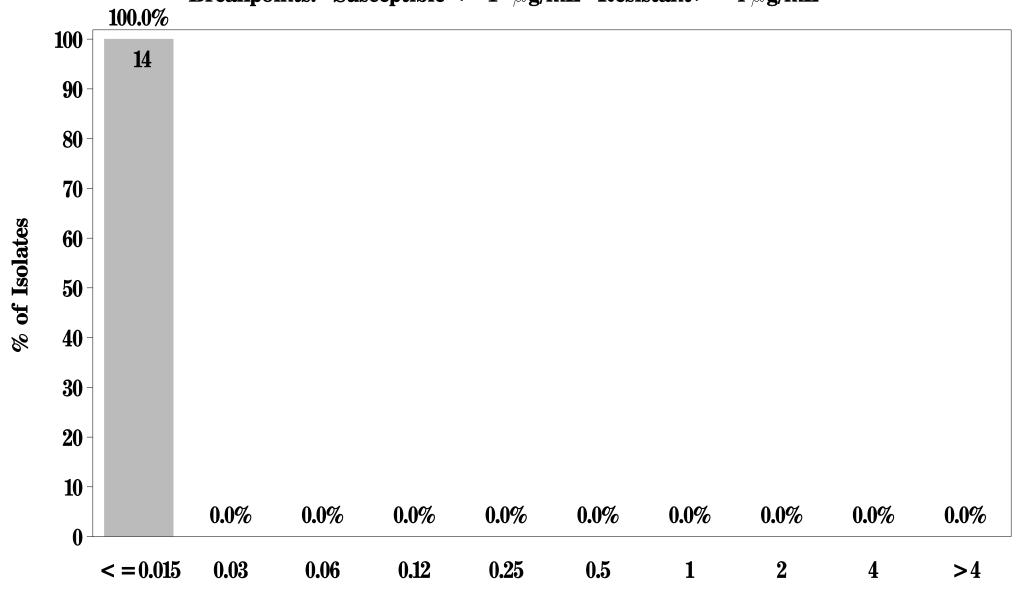
Figure 7h: Minimum Inhibitory Concentration of Ciprofloxacin for *Salmonella* in Chicken Breast (N=157 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

NARMS

Figure 7h: Minimum Inhibitory Concentration of Ciprofloxacin for *Salmonella* in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

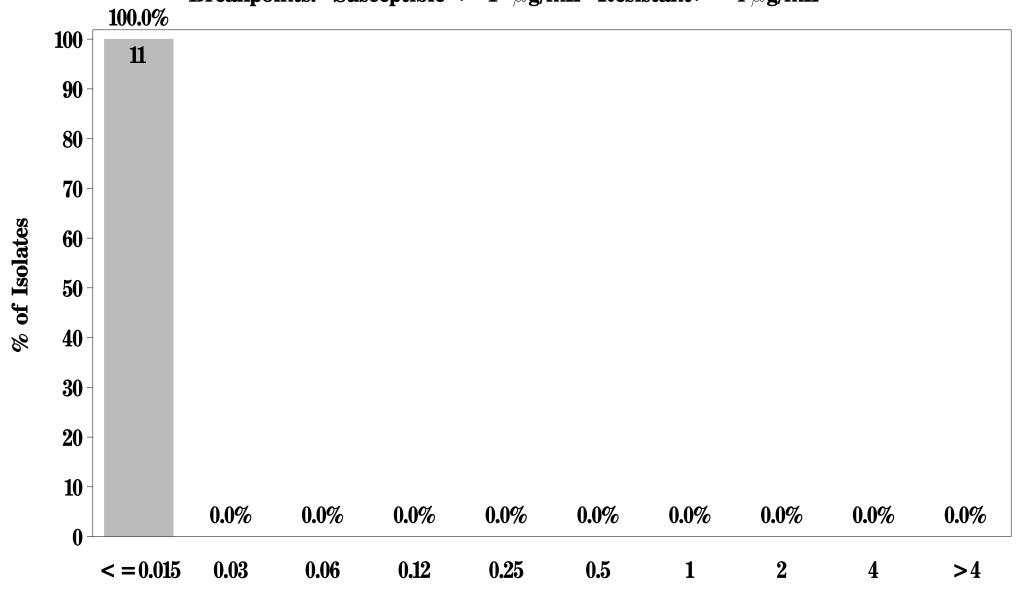

100 93.7% 90 133 80 70 % of Isolates **60 50 40 30** · **20** 10 4.9% 1.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0 2 < = 0.0150.12 0.25 0.5 4 0.03 0.06 1 >4

Minimum Inhibitory Concentration

NARMS

Figure 7h: Minimum Inhibitory Concentration of Ciprofloxacin for Salmonella in Ground Beef (N=14 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$



Minimum Inhibitory Concentration

NARMS

Figure 7h: Minimum Inhibitory Concentration of Ciprofloxacin for Salmonella in Pork Chop (N=11 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7i: Minimum Inhibitory Concentration of Gentamicin for *Salmonella* in Chicken Breast (N=157 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

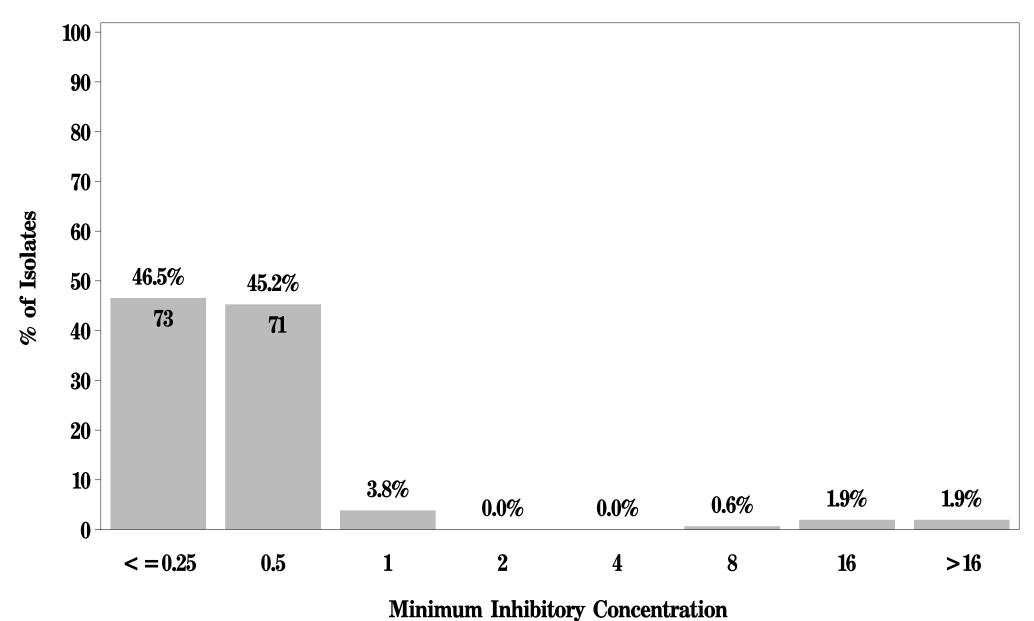


Figure 7i: Minimum Inhibitory Concentration of Gentamicin for *Salmonella* in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

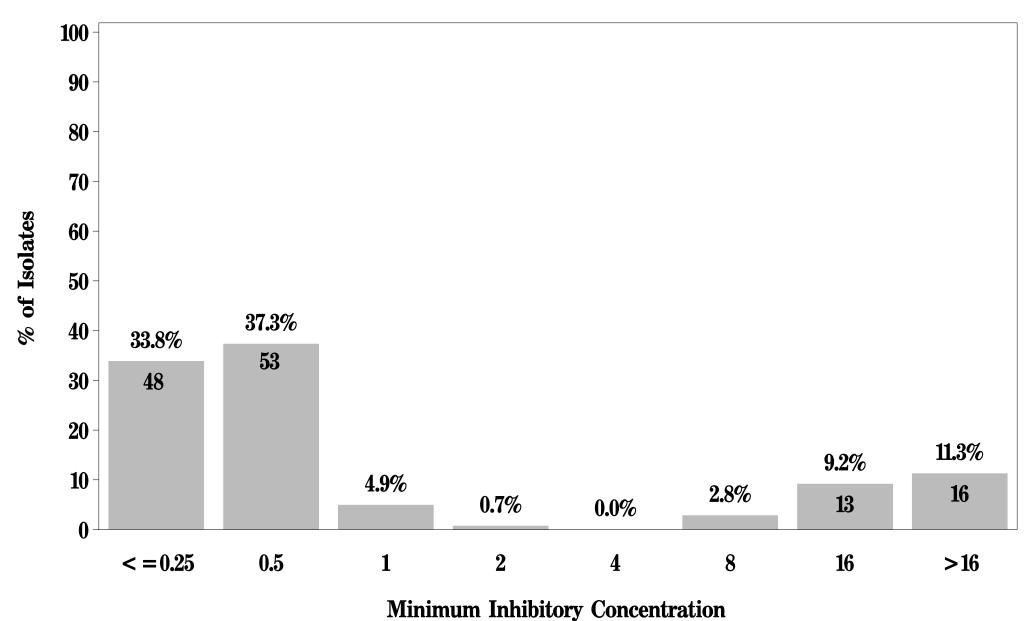


Figure 7i: Minimum Inhibitory Concentration of Gentamicin for *Salmonella* in Ground Beef (N=14 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

100 90 80 **70** % of Isolates 57.1% **60** 8 **50** 42.9% **40** 6 **30** 20 10 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0 1 2 4 8 < = 0.250.5 16 >16

Minimum Inhibitory Concentration

Figure 7i: Minimum Inhibitory Concentration of Gentamicin for Salmonella in Pork Chop (N=11 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

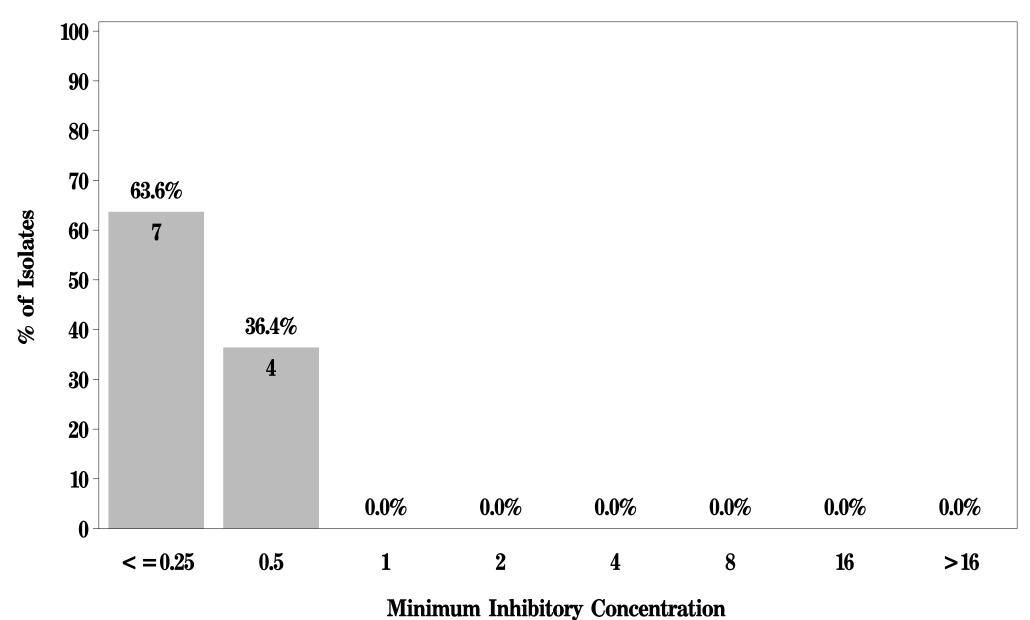
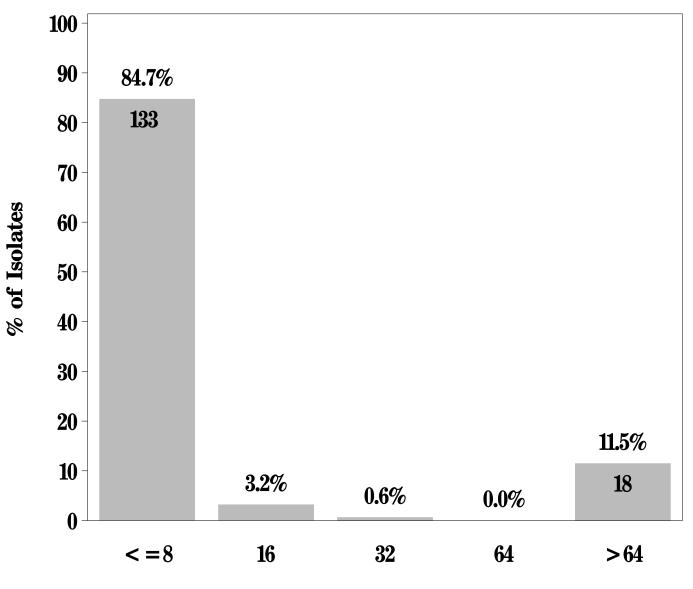
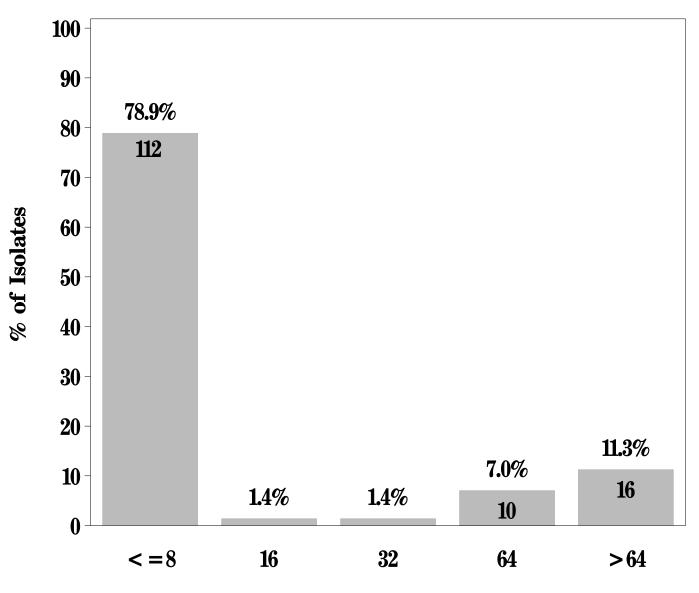
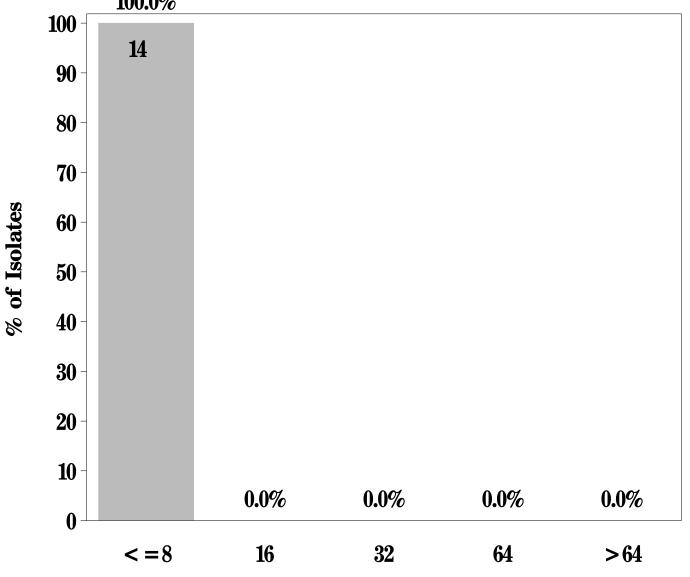




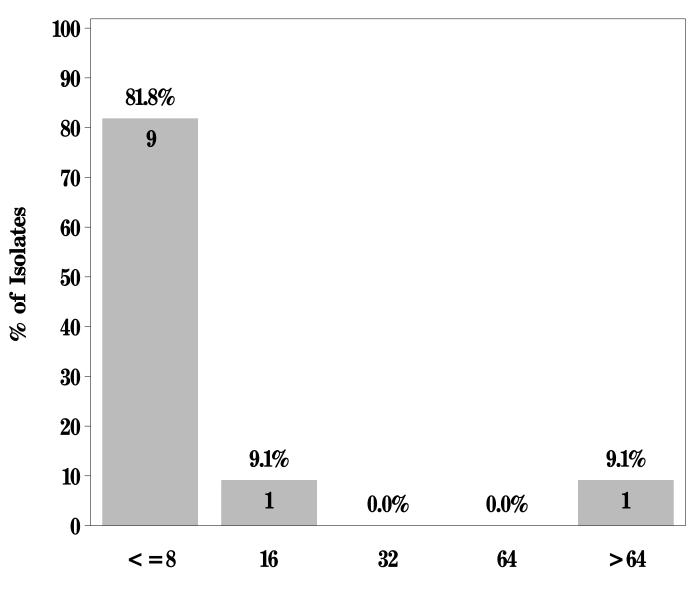
Figure 7j: Minimum Inhibitory Concentration of Kanamycin for *Salmonella* in Chicken Breast (N=157 Isolates)
Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration


Figure 7j: Minimum Inhibitory Concentration of Kanamycin for *Salmonella* in Ground Turkey (N=142 Isolates)
Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration

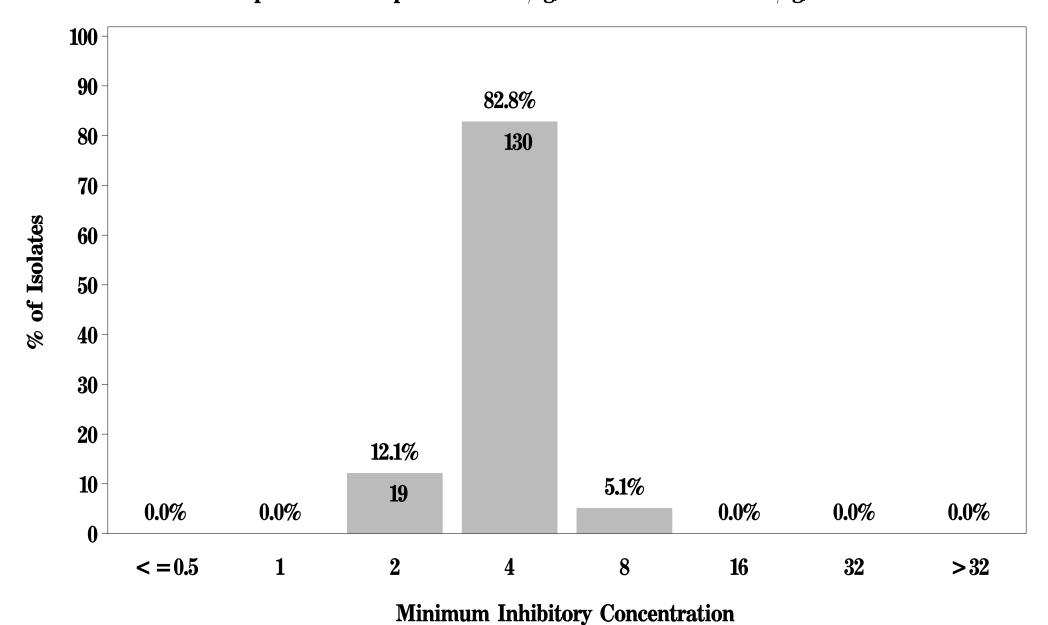
Figure 7j: Minimum Inhibitory Concentration of Kanamycin for Salmonella in Ground Beef (N=14 Isolates)


Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL 100.0%

Minimum Inhibitory Concentration

Figure 7j: Minimum Inhibitory Concentration of Kanamycin for *Salmonella* in Pork Chop (N=11 Isolates)

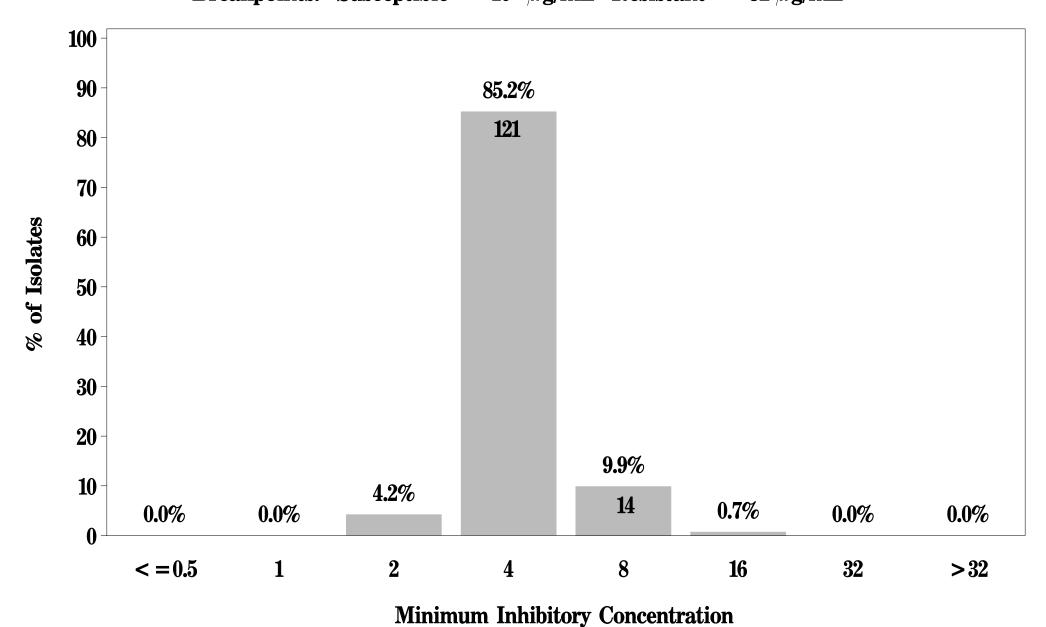
Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL



Minimum Inhibitory Concentration

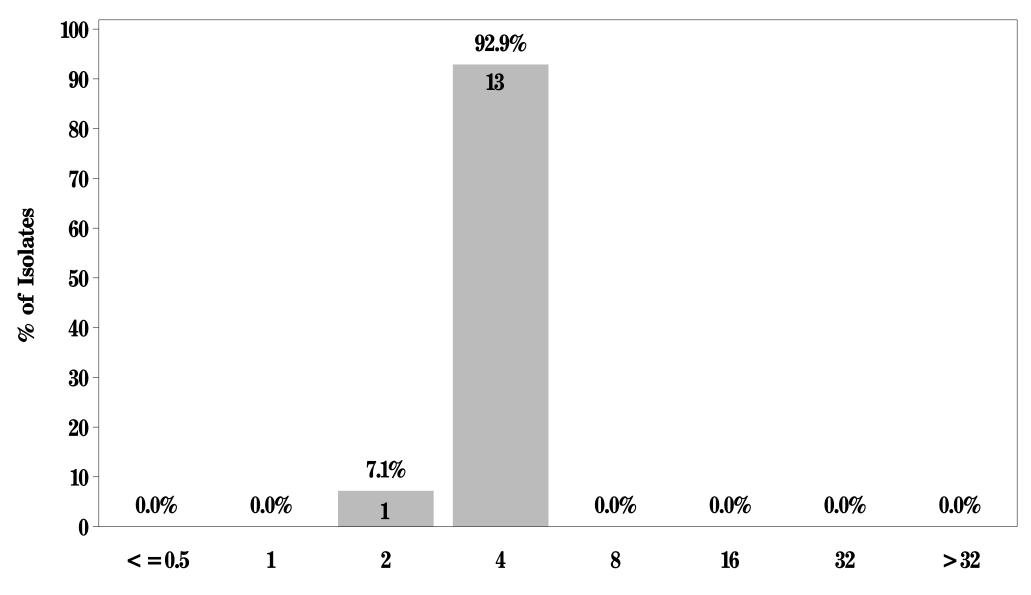
NARMS

Figure 7k: Minimum Inhibitory Concentration of Nalidixic acid for *Salmonella* in Chicken Breast (N=157 Isolates)


Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 32 μ g/mL

NARMS

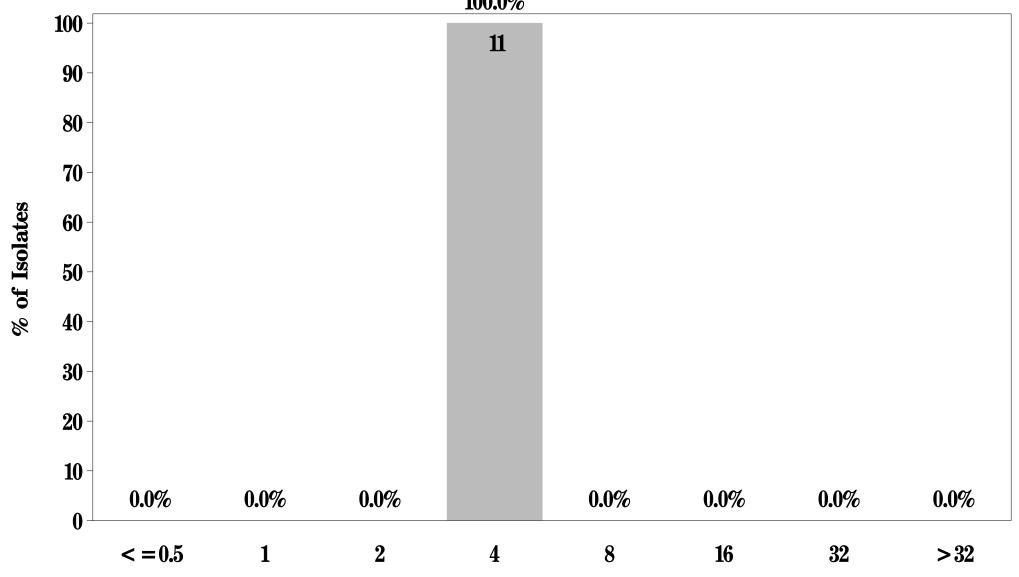
Figure 7k: Minimum Inhibitory Concentration of Nalidixic acid for *Salmonella* in Ground Turkey (N=142 Isolates)


Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 32 μ g/mL

NARMS

Figure 7k: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella in Ground Beef (N=14 Isolates)

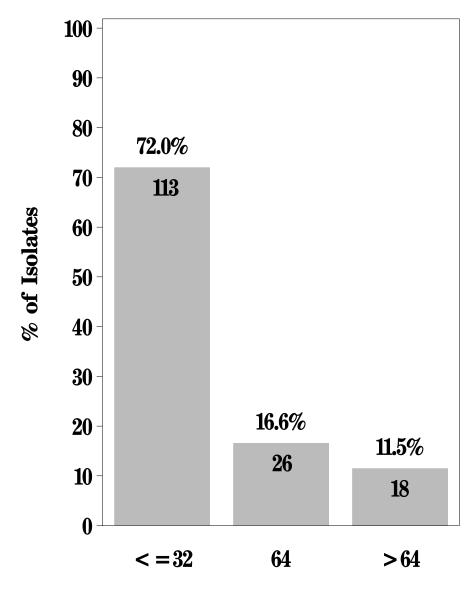
Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 32 \mu g/mL$



Minimum Inhibitory Concentration

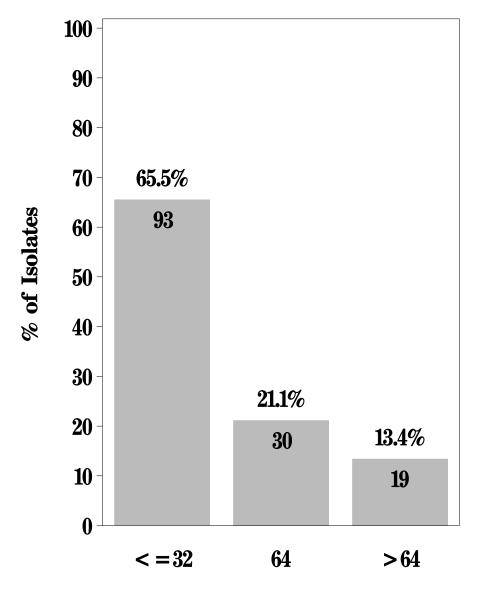
NARMS

Figure 7k: Minimum Inhibitory Concentration of Nalidixic acid for Salmonella in Pork Chop (N=11 Isolates)


Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 32 μ g/mL 100.0%

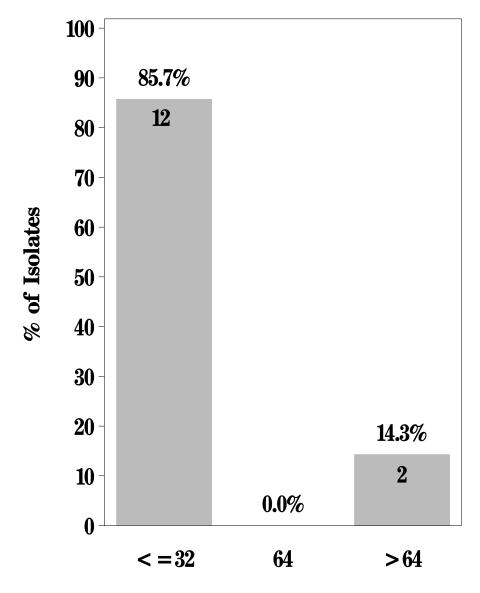
Minimum Inhibitory Concentration

Figure 71: Minimum Inhibitory Concentration of Streptomycin for *Salmonella* in Chicken Breast (N=157 Isolates)


Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 64 \mu g/mL$

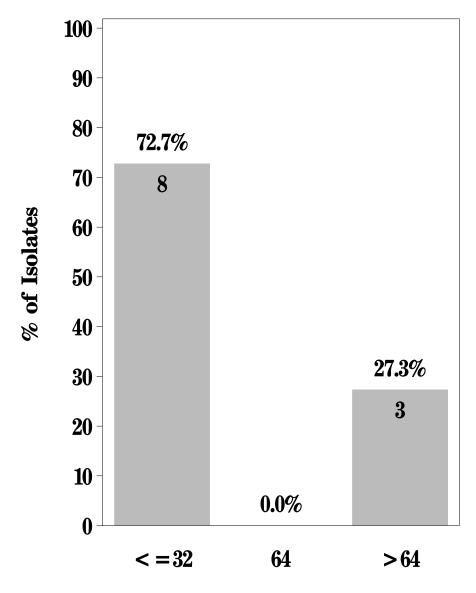
Minimum Inhibitory Concentration

Figure 7l: Minimum Inhibitory Concentration of Streptomycin for *Salmonella* in Ground Turkey (N=142 Isolates)


Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration

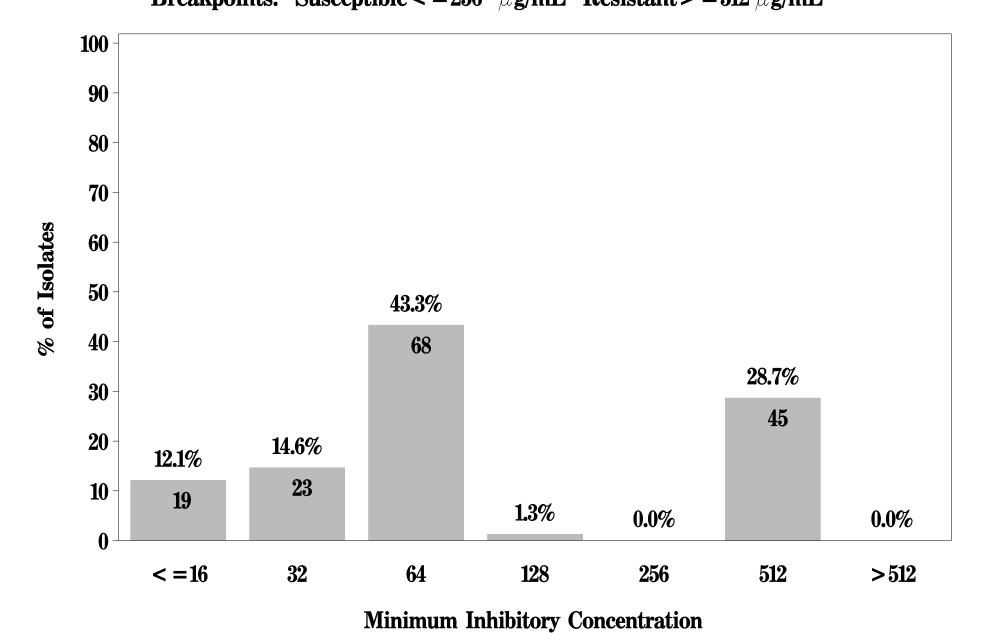
Figure 71: Minimum Inhibitory Concentration of Streptomycin for *Salmonella* in Ground Beef (N=14 Isolates)


Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 71: Minimum Inhibitory Concentration of Streptomycin for Salmonella in Pork Chop (N=11 Isolates)

Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 64 \mu g/mL$



Minimum Inhibitory Concentration

NARMS

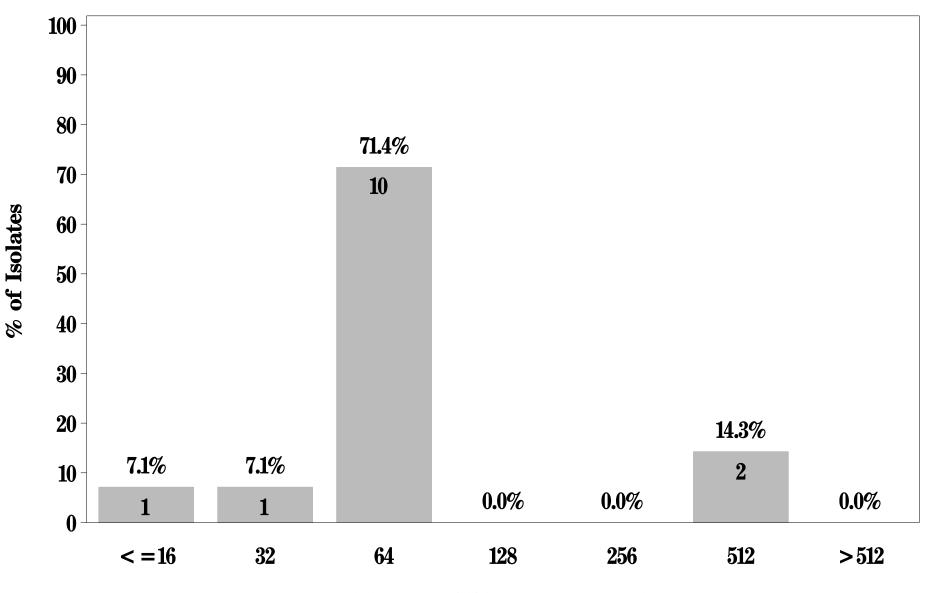
Figure 7m: Minimum Inhibitory Concentration of Sulfisoxazole for *Salmonella* in Chicken Breast (N=157 Isolates)

Breakpoints: Susceptible $< = 256 \mu \text{g/mL}$ Resistant $> = 512 \mu \text{g/mL}$

NARMS

Figure 7m: Minimum Inhibitory Concentration of Sulfisoxazole for *Salmonella* in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible < = 256 μ g/mL Resistant > = 512 μ g/mL

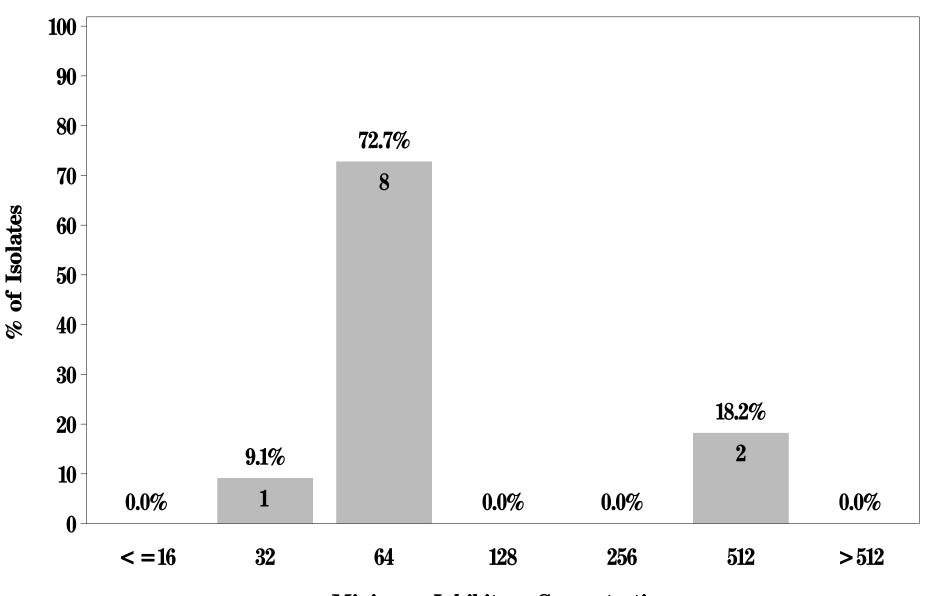

100 90 80 **70** % of Isolates 60 49.3% **50** -70 40 28.2% 30 40 17.6% **20** 25 10 4.9% 0.0% 0.0% 0.0% **32** 64 < = 16128 256 512 >512

Minimum Inhibitory Concentration

NARMS

Figure 7m: Minimum Inhibitory Concentration of Sulfisoxazole for Salmonella in Ground Beef (N=14 Isolates)

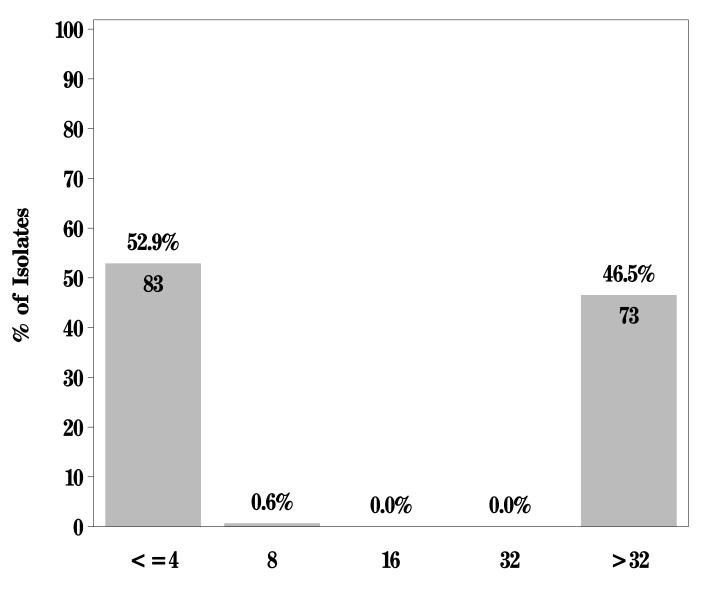
Breakpoints: Susceptible $< = 256 \mu g/mL$ Resistant $> = 512 \mu g/mL$



Minimum Inhibitory Concentration

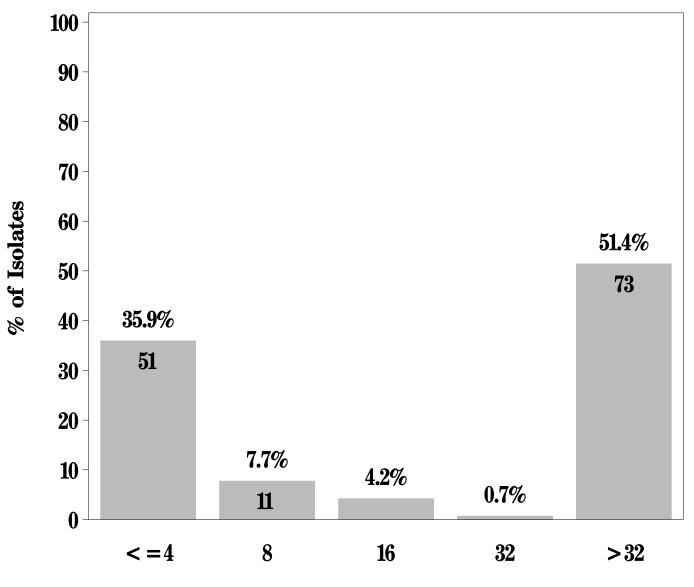
NARMS

Figure 7m: Minimum Inhibitory Concentration of Sulfisoxazole for Salmonella in Pork Chop (N=11 Isolates)


Breakpoints: Susceptible $< = 256 \mu g/mL$ Resistant $> = 512 \mu g/mL$

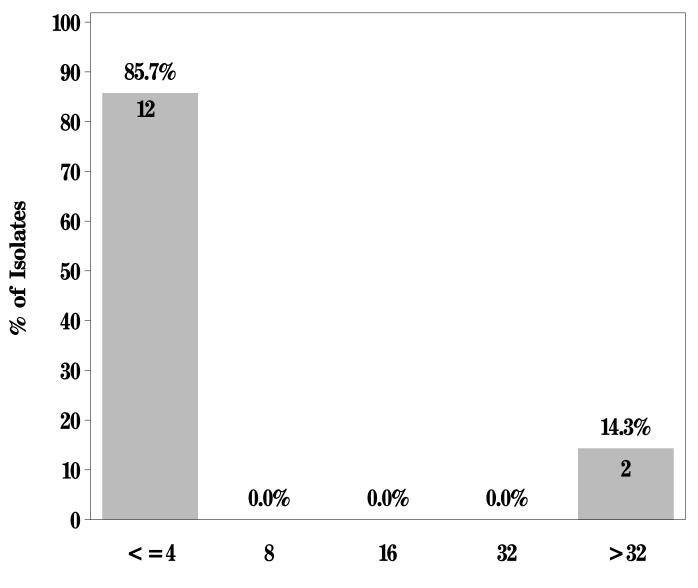
Minimum Inhibitory Concentration

Figure 7n: Minimum Inhibitory Concentration of Tetracycline for *Salmonella* in Chicken Breast (N=157 Isolates)


Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

Minimum Inhibitory Concentration

Figure 7n: Minimum Inhibitory Concentration of Tetracycline for *Salmonella* in Ground Turkey (N=142 Isolates)


Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Figure 7n: Minimum Inhibitory Concentration of Tetracycline for *Salmonella* in Ground Beef (N=14 Isolates)


Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Figure 7n: Minimum Inhibitory Concentration of Tetracycline for *Salmonella* in Pork Chop (N=11 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Figure 70: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Salmonella* in Chicken Breast (N=157 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 4 \mu g/mL$

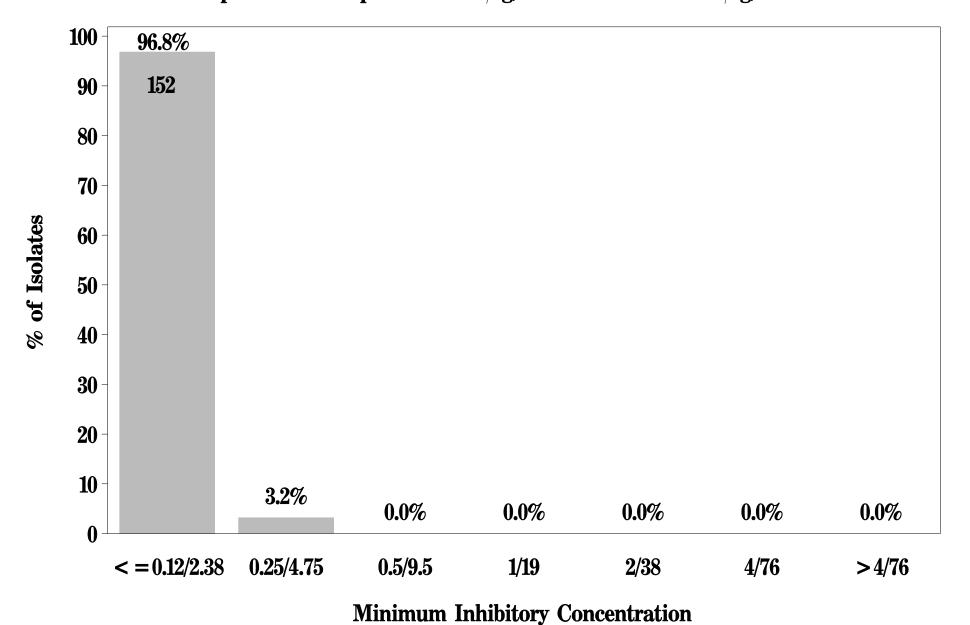


Figure 70: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Salmonella* in Ground Turkey (N=142 Isolates)

Breakpoints: Susceptible < = $2 \mu g/mL$ Resistant > = $4 \mu g/mL$

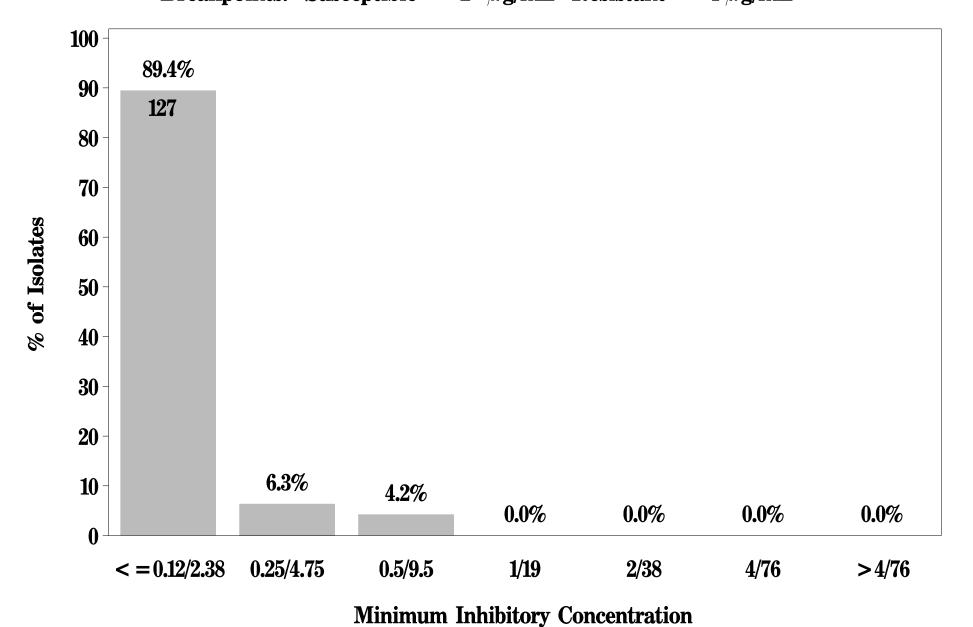
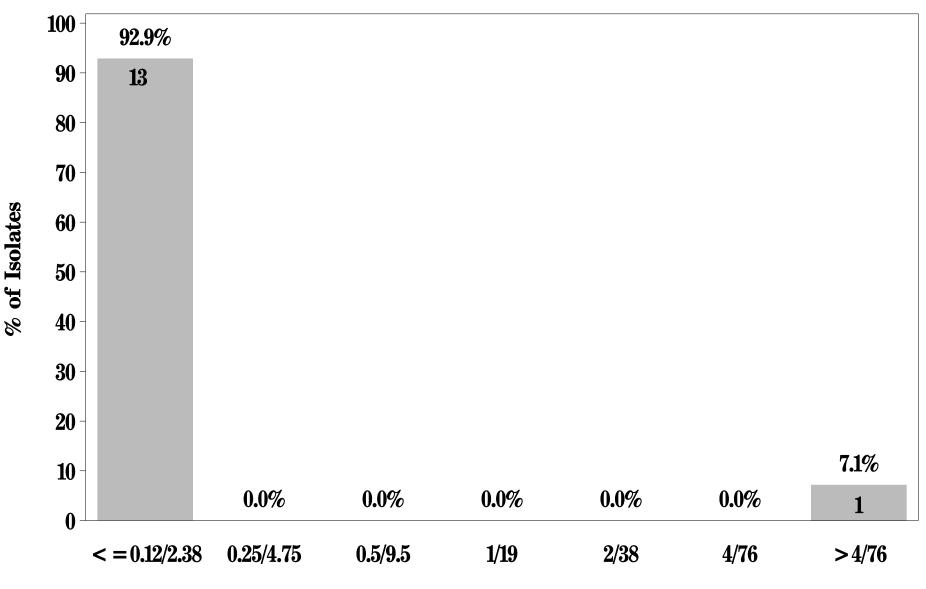
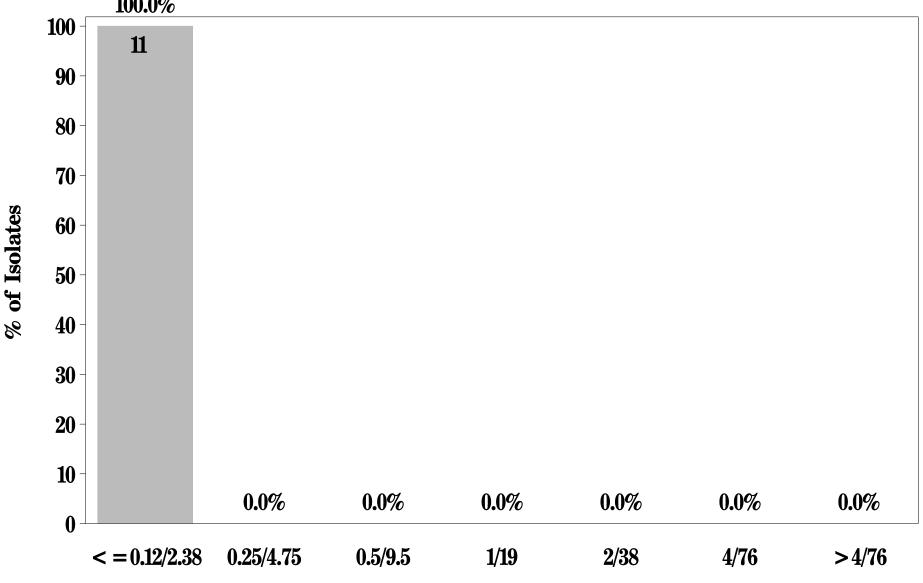



Figure 70: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for Salmonella in Ground Beef (N=14 Isolates)


Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 4 \mu g/mL$

Minimum Inhibitory Concentration

Figure 70: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for Salmonella in Pork Chop (N=11 Isolates)

Breakpoints: Susceptible < = 2 μ g/mL Resistant > = 4 μ g/mL 100.0%

Minimum Inhibitory Concentration

Table 11. Antimicrobial Resistance among Salmonella Isolates by Serotype, 2004

Compteme							Antimicro	bial Agen	t						
Serotype	TET	STR	FIS	AMP	AMC	FOX	TIO	KAN	GEN	CHL	AXO	COT	AMI	CIP	NAL
S. Heidelberg (n=71)	43.7%	33.8%	25.4%	18.3%	7.0%	7.0%	7.0%	15.5%	22.5%	4.2%	-	-	-	-	-
S. Typhimurium [†] (n=53)	73.6%	18.9%	75.5%	52.8%	45.3%	45.3%	45.3%	34.0%	1.9%	9.4%	-	-	-	-	-
S. Kentucky (n=43)	53.5%	51.2%	4.7%	27.9%	25.6%	25.6%	25.6%	2.3%	2.3%	-	-	-	-	-	-
S. Saintpaul (n=24)	58.3%	54.2%	54.2%	50.0%	16.7%	4.2%	4.2%	45.8%	37.5%	4.2%	-	-	-	-	-
S. Schwarzengrund (n=21)	28.6%	_‡	14.3%	4.8%	-	-	-	-	4.8%	-	-	-	-	-	-
S. Hadar (n=19)	94.7%	89.5%	-	5.3%	-	-	-	-	-	-	-	-	-	-	-
S. Reading (n=16)	6.3%	6.3%	6.3%	-	-	-	-	-	6.3%	-	-	-	-	-	-
S. Braenderup (n=11)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. Muenster (n=10)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. Agona (n=9)	88.9%	44.4%	55.6%	44.4%	22.2%	11.1%	11.1%	22.2%	11.1%	-	-	-	-	-	-
S. III 18a: z4, z32: - (n=6)	83.3%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. Berta (n=5)	-	-	-	60.0%	-	-	-	-	-	-	-	-	-	-	-
S. Montevideo (n=5)	-	40.0%	-	-	-	-	-	20.0%	60.0%	-	-	-	-	-	-
S. Mbandaka (n=4)	100.0%	-	25.0%	25.0%	-	-	-	-	-	-	-	-	-	-	-
S. Newport (n=4)	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	50.0%	-	-	50.0%	25.0%	25.0%	-	-	-
S. I 4, 12 : i : - (n=4)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. Derby (n=3)	100.0%	-	-	66.7%	66.7%	66.7%	66.7%	-	-	-	-	-	-	-	-
S. Enteritidis (n=3)	33.3%	-	33.3%	33.3%	33.3%	33.3%	33.3%	-	-	-	-	-	-	-	-
S. III 18a: z4, z23: - (n=2)	-	50.0%	50.0%	-	-	-	-	-	50.0%	-	-	-	-	-	-
S. I 4, 12 : r : - (n=2)	100.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. Senftenberg (n=2)	50.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. Bredeney (n=1)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	-	100.0%	-	-	-	-	-	-
S. Dublin (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. Livingstone (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. Minnesota (n=1)	100.0%	100.0%	100.0%	-	-	-	-	100.0%	-	-	-	-	-	-	-
S. Muenchen (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. I 4, 12 : d :- (n=1)	100.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
S. Urbana (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
• Total (N=324)	49.7%	30.2%	27.5%	25.0%	16.0%	14.8%	14.8%	13.9%	10.8%	3.4%	0.3%	0.3%	0.0%	0.0%	0.0%

^{*} Where % Resistance = (# isolates per serotype resistant to antimicrobial) / (total # isolates per serotype).
† Includes Typhimurium var. 5-.

[†] Where dashes indicate 0.0% resistance to antimicrobial.

Table 12. Antimicrobial Resistance among Salmonella by Meat Type in Overall Top 6 Serotypes, 2004

Meat	Canatama						A	ntimicro	bial Age	nt						
Type	Serotype	TET	STR	FIS	AMP	AMC	FOX	TIO	KAN	GEN	CHL	AXO	COT	AMI	CIP	NAL
	S. Heidelberg (n=31)	6.5%	22.6%	12.9%	25.8%	9.7%	9.7%	9.7%	-	9.7%	3.2%	-	-	-	-	-
	S. Typhimurium [†] (n=49)	71.4%	14.3%	73.5%	53.1%	49.0%	49.0%	49.0%	34.7%	2.0%	4.1%	-	-	-	-	-
Chicken	S. Kentucky (n=42)	54.8%	52.4%	4.8%	28.6%	26.2%	26.2%	26.2%	2.4%	2.4%	-	-	-	-	-	-
Breast	S. Saintpaul (n=0)	‡														
	S. Schwarzengrund (n=5)	-	-	20.0%	-	-	-	-	-	-	-	-	-	-	-	-
	S. Hadar (n=8)	87.5%	87.5%	-	-	-	-	-	-	-	-	-	-	-	-	-
	S. Heidelberg (n=37)	70.3%	43.2%	37.8%	13.5%	5.4%	5.4%	5.4%	27.0%	35.1%	5.4%	-	-	-	-	-
	S. Typhimurium (n=2)	100.0%	50.0%	100.0%	50.0%	-	-	-	50.0%	-	50.0%	-	-	-	-	-
Ground	S. Kentucky (n=1)	- §	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Turkey	S. Saintpaul (n=24)	58.3%	54.2%	54.2%	50.0%	16.7%	4.2%	4.2%	45.8%	37.5%	4.2%	-	-	-	-	-
	S. Schwarzengrund (n=16)	37.5%	-	12.5%	6.3%	-	-	-	-	6.3%	-	-	-	-	-	-
	S. Hadar (n=11)	100.0%	90.9	-	9.1%	-		-	-	-	-	-	-	-	-	
	S. Heidelberg (n=0)															
	S. Typhimurium (n=0)															
Ground	S. Kentucky (n=0)															
Beef	S. Saintpaul (n=0)															
	S. Schwarzengrund (n=0)															
	S. Hadar (n=0)															
	S. Heidelberg (n=3)	100.0%	33.3%	-	-	-	-	-	33.3%	-	-	-	-	-	-	-
	S. Typhimurium (n=2)	100.0%	100.0%	100.0%	50.0%	-	-	-	-	-	100.0%	-	-	-	-	-
Pork	S. Kentucky (n=0)															
Chop	S. Saintpaul (n=0)															
	S. Schwarzengrund (n=0)															
	S. Hadar (n=0)															

^{*} Where % Resistance= (# isolates per serotype resistant to antimicrobial) / (total # isolates per serotype).

† Includes Typhimurium var. 5-.

‡ Grey areas indicate serotype not isolated from that meat type.

[§] Where dashes indicate 0.0% resistance to antimicrobial.

Table 13. Antimicrobial Resistance among Salmonella by Top 6 Serotypes within Meat Type, 2004

Meat	Comotymo						A	ntimicrob	ial Agen	t						
Type	Serotype	TET	STR	FIS	AMP	AMC	FOX	TIO	KAN	GEN	CHL	AXO	COT	AMI	CIP	NAL
	S. Typhimurium* (n=49)	71.4% †	14.3%	73.5%	53.1%	49.0%	49.0%	49.0%	34.7%	2.0%	4.1%	-	-	-	-	-
	S. Kentucky (n=42)	54.8%	52.4%	4.8%	28.6%	26.2%	26.2%	26.2%	2.4%	2.4%	-	-	-	-	-	-
Chicken	S. Heidelberg (n=31)	6.5%	22.6%	12.9%	25.8%	9.7%	9.7%	9.7%	-	9.7%	3.2%	-	-	-	-	-
Breast	S. Hadar (n=8)	87.5%	87.5%	-	-	-	-	-	-	-	-	-	-	-	-	-
	S. Schwarzengrund (n=5)	_‡	-	20.0%	-	-	-	-	-	-	-	-	-	-	-	-
	S. I 4, 12 : i : - (n=4)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S. Heidelberg (n=37)	70.3%	43.2%	37.8%	13.5%	5.4%	5.4%	5.4%	27.0%	35.1%	5.4%	-	-	-	-	-
	S. Saintpaul (n=24)	58.3%	54.2%	54.2%	50.0%	16.7%	4.2%	4.2%	45.8%	37.5%	4.2%	-	-	-	-	-
Ground	S. Schwarzengrund (n=16)	37.5%	-	12.5%	6.3%	-	-	-	-	6.3%	-	-	-	-	-	-
Turkey	S. Reading (n=16)	6.3%	6.3%	6.3%	-	-	-	=	-	6.3%	-	-	-	-	-	-
	S. Hadar (n=11)	100.0%	90.9%	-	9.1%	-	-	-	-	-	-	-	-	-	-	-
	S. Agona (n=6)	100.0%	66.7%	83.3%	66.7%	33.3%	16.73%	16.7%	33.3%	16.7%	-	-	-	-	-	-
	S. Muenster (n=5)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S. Braenderup (n=5)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Ground	S. Newport (n=2)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	100.0%	50.0%	50.0%	-	-	-
Beef	S. Berta (n=1)	-	-	-	100.0%	-	-	-	-	-	-	-	-	-	-	-
	S. Dublin (n=1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	\$															
	S. Braenderup (n=5)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	S. Heidelberg (n=3)	100.0%	33.3%	-	-	-	-	-	33.3%	-	-	-	-	-	-	-
Pork	S. Typhimurium (n=2)	100.0%	100.0%	100.0%	50.0%	-	-	-	-	-	100.0%	-	-	-	-	-
Chop	S. Agona (n=1)	100.0%	-	-	-	-	-	-		-	-	-	-	-	-	-

^{*} Includes Typhimurium var. 5-.

† Where % Resistance= (# isolates per serotype resistant to antimicrobial) / (total # isolates per serotype).

* Where dashes indicate 0.0% resistance to antimicrobial.

[§] Grey areas indicate six serotypes not recovered from meat type.

Table 14. Antimicrobial Resistance among Salmonella by Site, Meat Type, and Antimicrobial Agent, 2004

Site	Meat Type						I	Antimicro	bial Age	nt						
Site	Meat Type	TET	STR	FIS	AMP	AMC	FOX	TIO	KAN	GEN	CHL	AXO	COT	AMI	CIP	NAL
	CB (n=17)	11.8%	11.8%	11.8%	5.9%	-	-	-	-	11.8%	-	-	-	-	-	-
	GT (n=9)	44.4%	55.6%	44.4%	22.2%	-	-	-	11.1%	22.2%	11.1%	-	-	-	-	-
CA	GB (n=1)	_†	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC (n=1)	100.0%	100.0%	100.0%	-	-	-	-	-	-	100.0%	-	-	-	-	-
	Total (n=28)	25.0%	28.6%	25.0%	10.7%	0.0%	0.0%	0.0%	3.6%	14.3%	7.1%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=0)	‡														
	GT (n=9)	55.6%	33.3%	33.3%	11.1%	-	-	-	11.1%	22.2%	-	-	-	-	-	-
CO	GB (n=0)															
	PC (n=0)															
	Total (n=28)	55.6%	33.3%	33.3%	11.1%	0.0%	0.0%	0.0%	11.1%	22.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=30)	83.3%	36.7%	70.0%	53.3%	46.7%	46.7%	46.7%	23.3%	3.3%	6.7%	-	-	-	-	-
	GT (n=26)	61.5%	15.4%	23.1%	15.4%	11.5%	3.8%	3.8%	15.4%	15.4%	-	-	-	-	-	-
CT	GB (n=5)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	PC (n=5)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total (n=66)	62.1%	22.7%	40.9%	30.3%	25.8%	22.7%	22.7%	16.7%	7.6%	3.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=6)	50.0%	33.3%	33.3%	33.3%	-	-	-	-	16.7%	-	-	-	-	-	-
	GT (n=38)	57.9%	42.1%	36.8%	18.4%	5.3%	-	-	31.6%	28.9%	-	-	-	-	-	-
GA	GB (n=1)	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	-	-	100.0%	100.0%	-	-	-	-
	PC (n=0)															
	Total (n=45)	57.8%	42.2%	37.8%	22.2%	6.7%	2.2%	2.2%	26.7%	26.7%	2.2%	2.2%	0.0%	0.0%	0.0%	0.0%
	CB (n=24)	62.5%	20.8%	50.0%	45.8%	45.8%	45.8%	45.8%	25.0%	4.2%	-	-	-	-	-	-
	GT (n=13)	23.1%	-	7.7%	38.5%	15.4%	15.4%	15.4%	-	7.7%	-	-	-	-	-	-
MD	GB (n=1)	-	-	-	100.0%	-	-	-	-	-	-	-	-	-	-	-
	PC (n=0)															
	Total (n=38)	47.4%	13.2%	34.2%	44.7%	34.2%	34.2%	34.2%	15.8%	5.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

^{*} Where % Resistance = (# isolates resistant to antimicrobial per meat type per site) / (total # isolates per meat type per site).

† Where dashes indicate 0.0% resistance to antimicrobial.

[‡] Grey areas indicate no isolates from meat type for that site.

Table 14_(cont'd). Percent Resistance among *Salmonella* Isolates by Site, Meat Type, and Antimicrobial Agent, 2004

Site	Meat Type							Antimica	obial Ag	ent						
Site	Meat Type	TET	STR	FIS	AMP	AMC	FOX	TIO	KAN	GEN	CHL	AXO	COT	AMI	CIP	NAL
	CB (n=20)	15.0%	5.0%	-	25.0%	5.0%	5.0%	5.0%	-	-	-	-	-	-	-	-
	GT (n=14)	50.0%	35.7%	14.3%	-	-	-	-	7.1%	14.3%	-	-	-	-	-	-
MN	GB (n=0)															
	PC (n=0)															
	Total (n=34)	29.4%	17.6%	5.9%	14.7%	2.9%	2.9%	2.9%	2.9%	5.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=3)	33.3%	66.7%	33.3%	-	-	-	-	-	-	-	-	-	-	-	-
	GT (n=9)	44.4%	33.3%	33.3%	33.3%	33.3%	33.3%	33.3%	22.2%	33.3%	33.3%	-	-	-	-	-
NM	GB (n=0)															
	PC (n=0)															
	Total (n=12)	41.7%	41.7%	33.3%	25.0%	25.0%	25.0%	25.0%	16.7%	25.0%	25.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=16)	93.8%	56.3%	31.3%	68.8%	68.8%	68.8%	68.8%	18.8%	-	-	-	-	-	-	-
	GT (n=11)	72.7%	54.5%	36.4%	45.5%	9.1%	9.1%	9.1%	36.4%	27.3%	-	-	-	-	-	-
NY	GB (n=0)															
	PC (n=3)	100.0%	66.7%	33.3%	33.3%	-	-	-	33.3%	-	33.3%	-	-	-	-	-
	Total (n=30)	86.7%	56.7%	33.3%	56.7%	40.0%	40.0%	40.0%	26.7%	10.0%	3.3%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=25)	28.0%	28.0%	8.0%	8.0%	8.0%	8.0%	8.0%	-	4.0%	4.0%	-	-	-	-	-
	GT (n=6)	66.7%	16.7%	33.3%	33.3%	-	-	-	16.7%	16.7%	-	-	-	-	-	-
OR	GB (n=6)	16.7%	16.7%	16.7%	16.7%	16.7%	16.7%	16.7%	-	-	16.7%	-	16.7%	-	-	-
	PC (n=2)	100.0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total (n=39)	35.9%	23.1%	12.8%	12.8%	7.7%	7.7%	7.7%	2.6%	5.1%	5.1%	0.0%	2.6%	0.0%	0.0%	0.0%
	CB (n=16)	12.5%	37.5%	-	-	-	-	-	12.5%	-	-	-	-	-	-	-
	GT (n=7)	100.0%	71.4%	14.3%	-	-	-	-	-		-	-	-	-	-	-
TN	GB (n=0)															
	PC (n=0)															
	Total (n=23)	39.1%	47.8%	4.3%	0.0%	0.0%	0.0%	0.0%	8.7%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Total %R (N=324)	49.7%	30.2%	27.5%	25.0%	16.0%	14.8%	14.8%	13.9%	10.8%	3.4%	0.3%	0.3%	0.0%	0.0%	0.0%

Table 15. Number of Salmonella (N=324) Resistant to Multiple Antimicrobial Agents, 2004

Meat Type	Numb	er of	Anti	microbials				
Weat Type	0	1	2-4	5-7	<u>≥</u> 8			
Chicken Breast	63	16	42	33	3			
Ground Turkey	41	43	35	19	4			
Ground Beef	11	1	0	0	2			
Pork Chop	5	3	2	1	0			
Total	120	63	79	53	9			

Table 16. Overall Campylobacter Species Identified, 2004

Species	N
C. coli	204
C. jejuni	517
Total	721

Table 17. Campylobacter Species by Meat Type, 2004

Species		icken reast		ound irkey		round Beef		Pork Chop
	n	% *	n	%	n	%	n	%
C. coli (n=204)	196	96.1%	5	2.5%	0	_ †	3	1.5%
<i>C. jejuni</i> (n=517)	510	98.6%	7	1.4%	0	-	0	-
Total (N=721)	706	97.9%	12	1.7%	0	0.0%	3	0.4%

^{*} Where % = (# of isolates per species per meat type) / (total # of isolates per species). † Dashes indicate no isolates from that species per meat type.

Table 18. Campylobacter Species by Site and Meat Type*, 2004

		Cl	nicken	G	round]	Pork
Site	Species	В	reast	T	urkey	(Chop
		n	% [†]	n	%	n	%
	C. coli (n=13)	12	92.3%	0	_‡	1	7.7%
$\mathbf{C}\mathbf{A}$	<i>C. jejuni</i> (n=84)	84	100.0%	0	-	0	-
	Total (n=97)	96	99.0%	0	-	1	1.0%
	C. coli (n=11)	11	100.0%	0	-	0	-
CO	<i>C. jejuni</i> (n=10)	10	100.0%	0	-	0	-
	Total (n=21)	21	100.0%	0	-	0	-
	C. coli (n=17)	16	94.1%	0	-	1	5.9%
\mathbf{CT}	<i>C. jejuni</i> (n=72)	70	97.2%	2	2.8%	0	-
	Total (n=89)	86	96.6%	2	2.2%	1	1.1%
	C. coli (n=25)	25	100.0%	0	-	0	-
GA	<i>C. jejuni</i> (n=37)	36	97.3%	1	2.7%	0	-
	Total (n=62)	61	98.4%	1	1.6%	0	-
	C. coli (n=26)	26	100.0%	0	-	0	-
MD	<i>C. jejuni</i> (n=52)	50	96.2%	2	3.8%	0	-
MID	Total (n=78)	76	97.4%	2	2.6%	0	-
	C. coli (n=18)	13	72.2%	5	27.8%	0	-
MN	<i>C. jejuni</i> (n=61)	60	98.4%	1	1.6%	0	-
10111	Total (n=79)	73	92.4%	6	7.6%	0	-
	C. coli (n=23)	22	95.7%	0	-	1	4.3%
NM	<i>C. jejuni</i> (n=31)	31	100.0%	0	-	0	-
	Total (n=54)	53	98.1%	0	-	1	1.9%
	C. coli (n=39)	39	100.0%	0	-	0	-
\mathbf{NY}	<i>C. jejuni</i> (n=57)	57	100.0%	0	-	0	-
	Total (n=96)	96	100.0%	0	-	0	-
	C. coli (n=5)	5	100.0%	0	-	0	-
OR	<i>C. jejuni</i> (n=68)	68	100.0%	0	-	0	-
	Total (n=73)	73	100.0%	0		0	
TN	C. coli (n=27)	27	100.0%	0	_	0	_
	<i>C. jejuni</i> (n=45)	44	97.8%	1	2.2%	0	-
	Total (n=72)	71	98.6%	1	1.4%	0	
Gran	nd Total (N=721)	706	97.9%	12	1.7%	3	0.4%

^{*} No *Campylobacter* recovered from ground beef.

† Where % = (# isolates per species per meat type per site) / (total # isolates per species per site).

‡ Dashes indicate no isolates from that species per meat type isolated from that site.

Table 19. Campylobacter Isolates by Month for All Sites, 2004

Month	n	% *
January	61	8.5%
February	59	8.2%
March	49	6.8%
April	35	4.9%
May	51	7.1%
June	62	8.6%
July	67	9.3%
August	62	8.6%
September	73	10.1%
October	74	10.3%
November	64	8.9%
December	64	8.9%
Total (N)	721	100.0%

^{*} Where % = (n/N).

Table 20. Antimicrobial Resistance among Campylobacter Isolates (N=721), 2004

Antimicrobial Agent	n	%R*
Tetracycline	352	48.8%
Nalidixic Acid	111	15.4%
Ciprofloxacin	111	15.4%
Azithromycin	23	3.2%
Erythromycin	23	3.2%
Telithromycin	18	2.5%
Clindamycin	17	2.4%
Florfenicol	0	0.0%
Gentamicin	0	0.0%

* Where %R = (n/N).

Figure 8. Antimicrobial Resistance among *Campylobacter* isolates (n =721), 2004

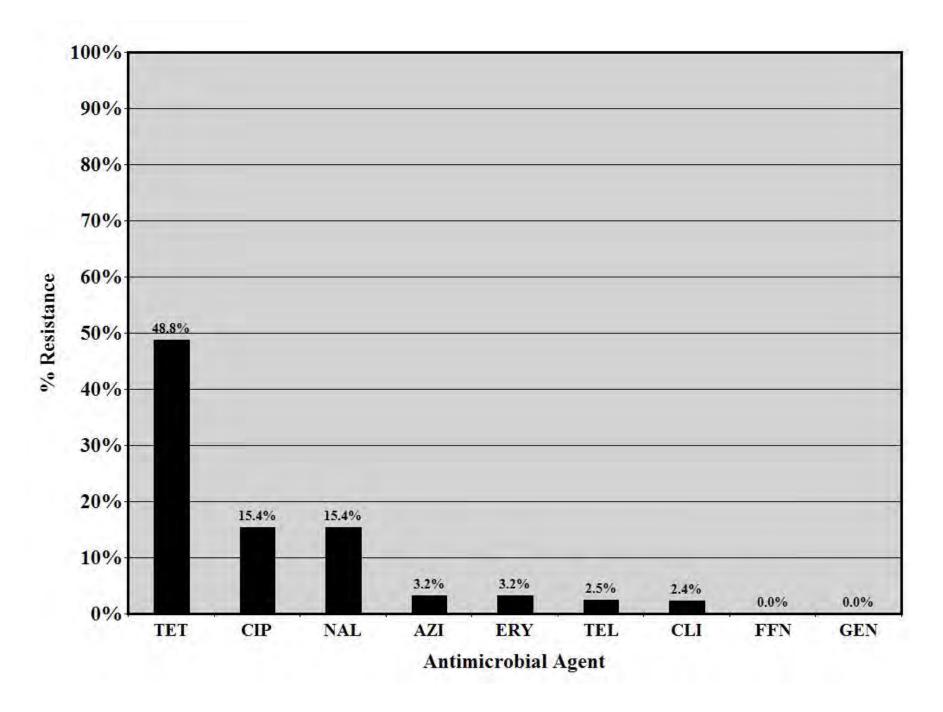


Figure 9. MIC Distribution among all Antimicriobial Agents, 2004

ampylobacter from All Meat	ts (N=721)					Dis	tributio	n (%)	of MIC	ե (in µք	g/ml)				
Antimicrobial Agent	%R [↑]	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	>64
Nalidixic Acid*	15.5%									58.9	25.0	0.6	0.1	1.2	14.1
Ciprofloxacin	15.4%		0.1	34.8	37.7	11.8		0.1		0.3	6.9	6.7	1.5		
Azithromycin*	3.2%	3.7	39.1	39.4	12.6	1.0	0.3	0.6	0.1						3.2
Clindamycin*	2.4%		0.4	7.6	44.9	35.5	5.4	2.8	0.4	0.6	0.8	1.5			
Erythromycin	3.2%			0.3	2.2	43.8	30.0	17.6	2.4	0.4	0.1				3.2
Telithromycin*	2.5%	0.3		0.3	0.4	15.1	41.7	23.3	13.2	2.1	1.1	2.5			
Gentamicin*	0.0%				1.4	4.9	84.6	9.2							
Florfenicol*	§				0.4		4.3	78.8	16.0	0.6					
Tetracycline	48.8%			0.4	19.1	16.9	8.3	4.3	1.8	0.1	0.1	1.5	3.7	19.1	24.4

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug.

Unshaded areas indicate the dilution ranges used to test the 2004 isolates.

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS. \$Absence of resistant strains precludes defining any results category other than "susceptible."

Figure 9a: Minimum Inhibitory Concentration of Azithromycin for Campylobacter (N=721 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

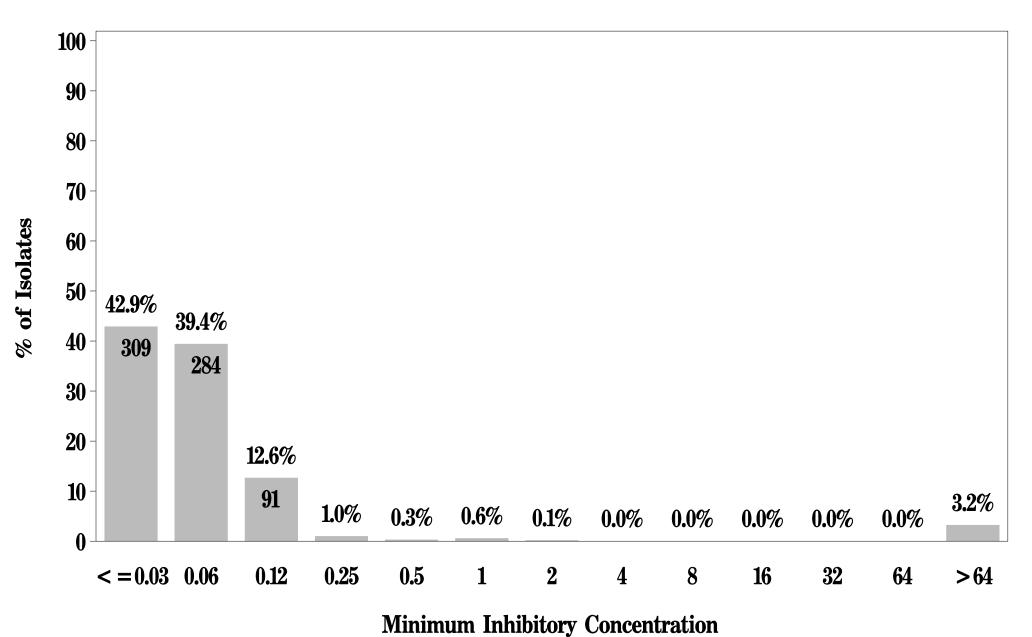
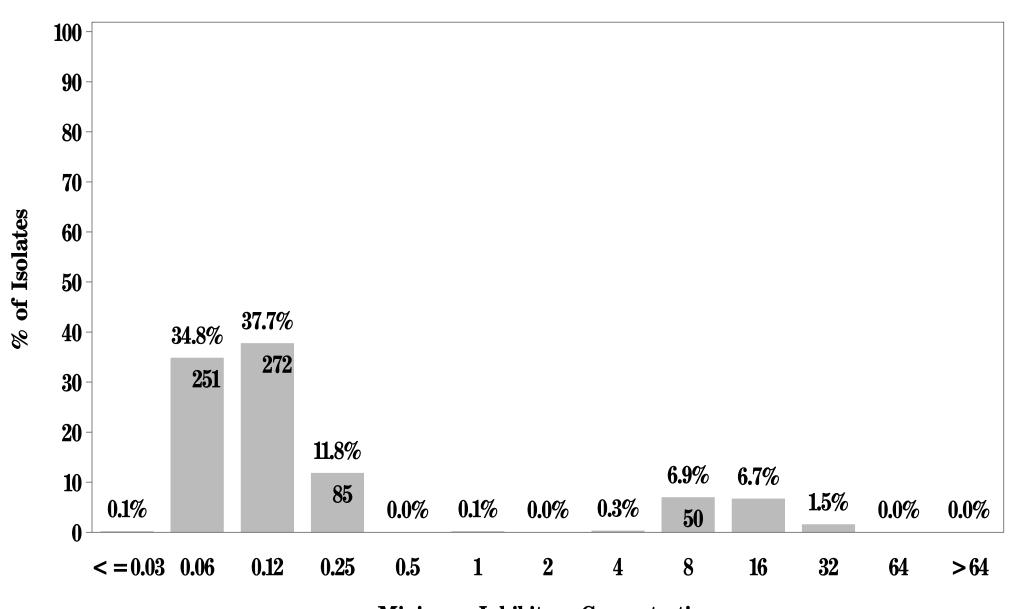
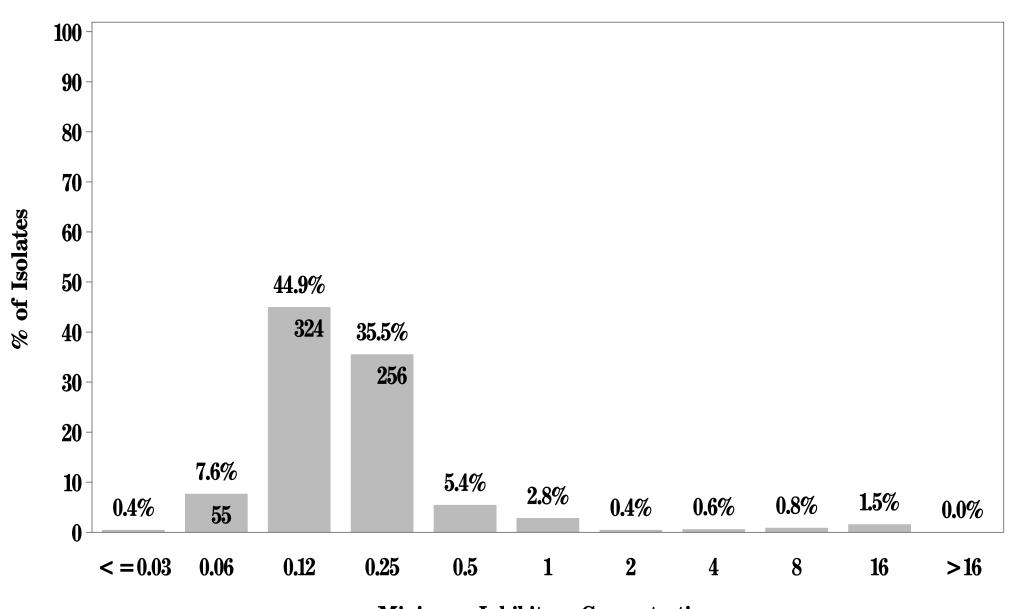



Figure 9b: Minimum Inhibitory Concentration of Ciprofloxacin for Campylobacter (N=721 Isolates)


Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

Minimum Inhibitory Concentration

Figure 9c: Minimum Inhibitory Concentration of Clindamycin for Campylobacter (N=721 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

Minimum Inhibitory Concentration

Figure 9d: Minimum Inhibitory Concentration of Erythromycin for Campylobacter (N=721 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

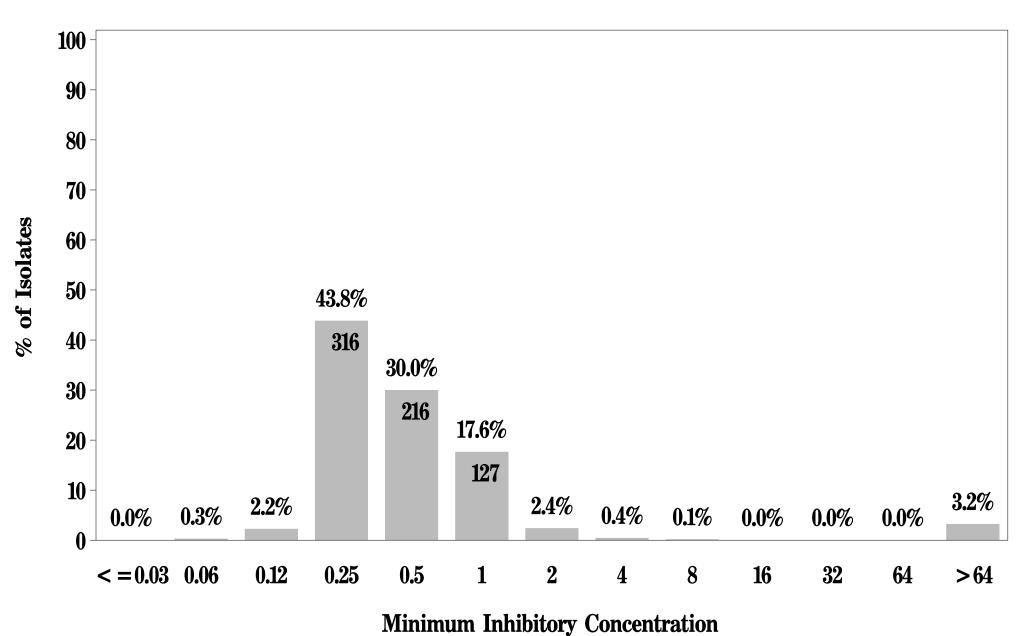
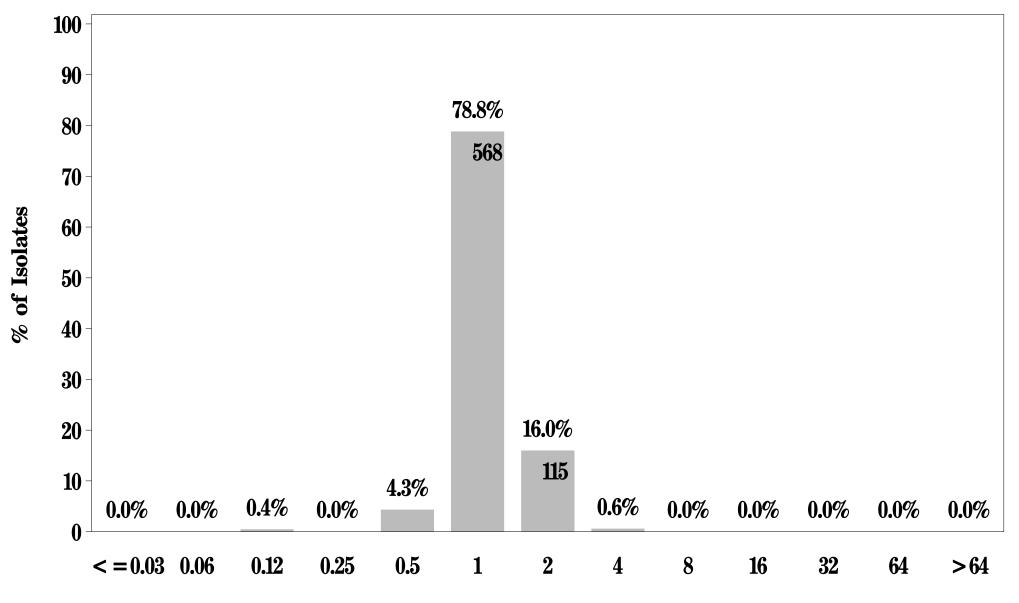
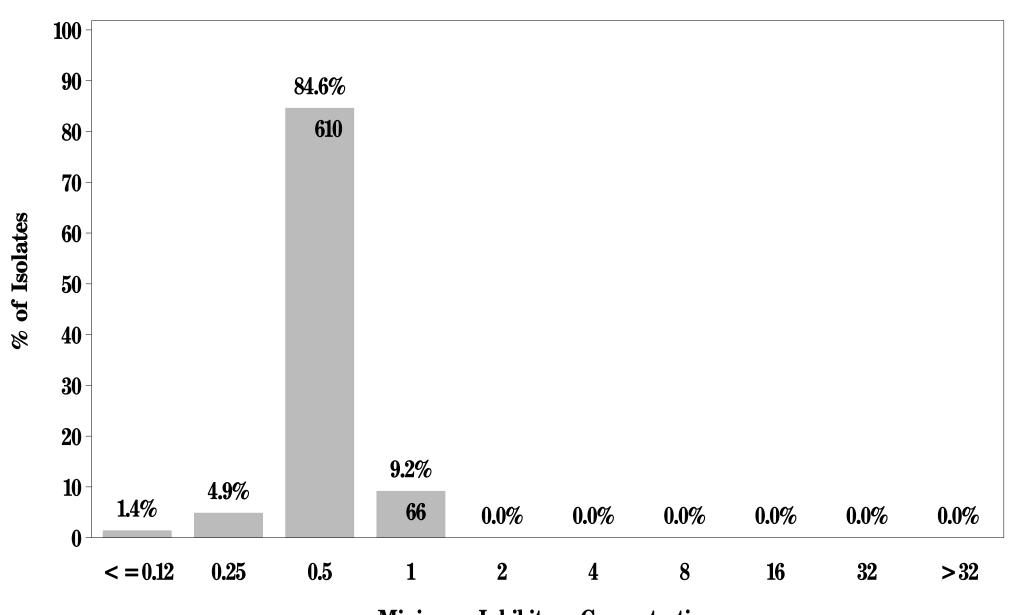



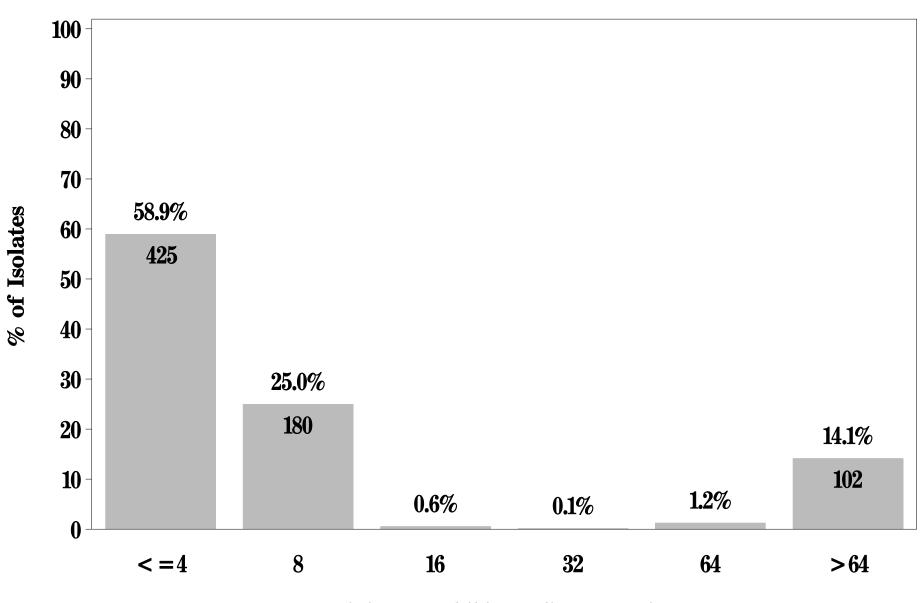
Figure 9e: Minimum Inhibitory Concentration of Florfenicol

for Campylobacter (N=721 Isolates)


Breakpoint: Susceptible $< = 4 \mu g/mL$

Minimum Inhibitory Concentration

Figure 9f: Minimum Inhibitory Concentration of Gentamicin for Campylobacter (N=721 Isolates)


Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

Minimum Inhibitory Concentration

Figure 9g: Minimum Inhibitory Concentration of Nalidixic acid for Campylobacter (N=721 Isolates)

Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

NARMS

Figure 9h: Minimum Inhibitory Concentration of Telithromycin for Campylobacter (N=721 Isolates)

Breakpoints: Susceptible < =4 μ g/mL Resistant > =16 μ g/mL

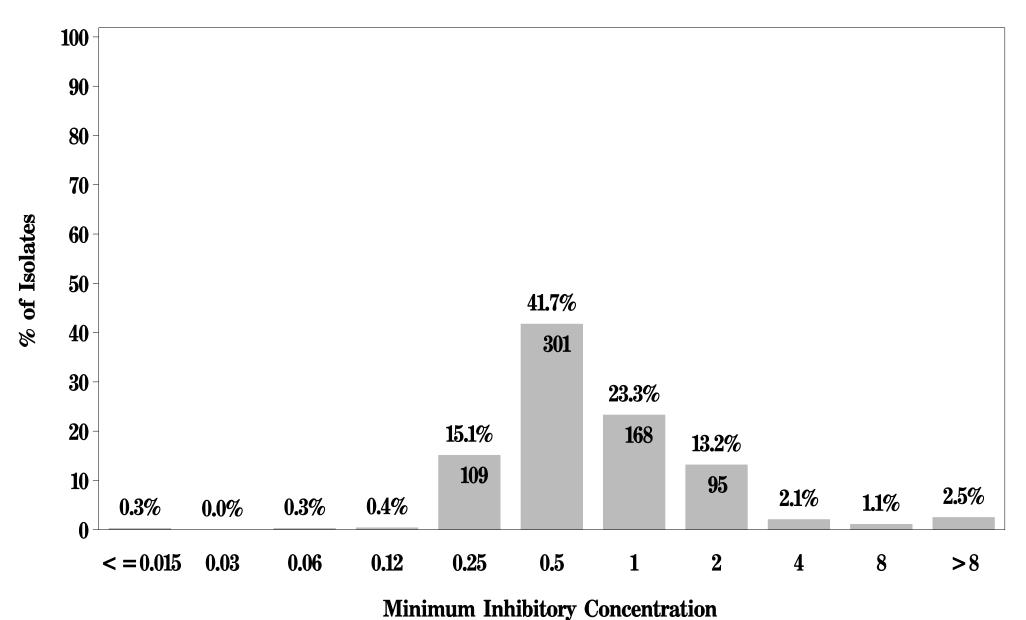
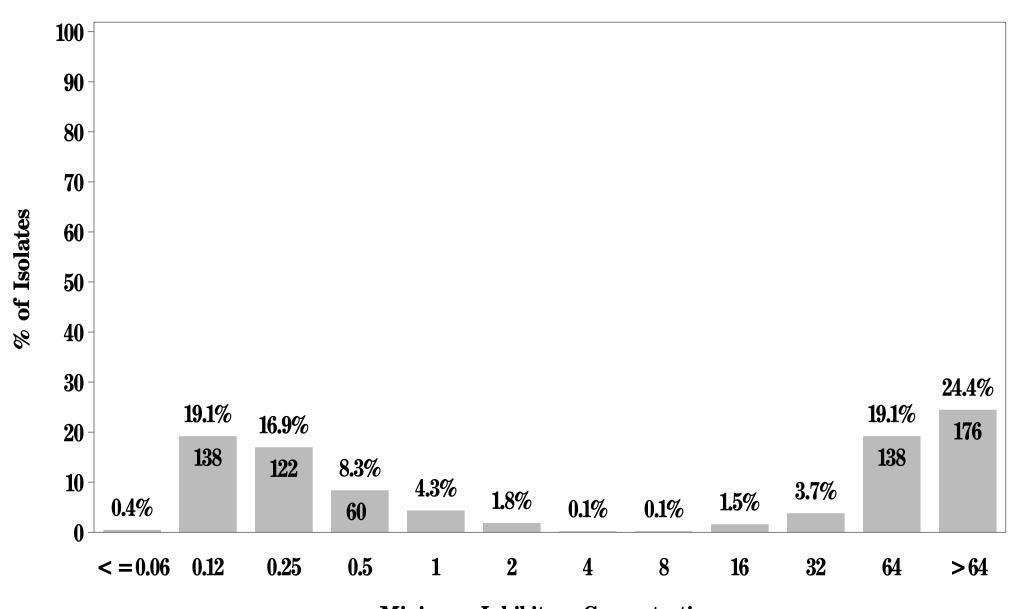



Figure 9i: Minimum Inhibitory Concentration of Tetracycline for *Campylobacter* (N=721 Isolates)

Breakpoints: Susceptible < =4 μ g/mL Resistant > =16 μ g/mL

Minimum Inhibitory Concentration

Table 21. Antimicrobial Resistance among Campylobacter by Meat Type*, 2004

Antimicrobial Agent	Chicken Breast (n=706)	Ground Turkey (n=12)	Pork Chop (n=3)
Tetracycline	49.2% [†]	25.0%	66.7%
Nalidixic Acid	15.4%	16.7%	_‡
Ciprofloxacin	15.4%	16.7%	-
Telithromycin	2.5%	-	-
Azithromycin	3.1%	-	33.3%
Erythromycin	3.1%	-	33.3%
Clindamycin	2.3%	-	33.3%
Florfenicol	-	-	-
Gentamicin	-	-	

^{*} No *Campylobacter* recovered from ground beef.

† Where % Resistance = (# isolates per meat type resistant to antimicrobial) / (total # isolates per meat type).

[‡] Dashes indicate 0.0% resistance to antimicrobial.

Figure 10a. MIC Distribution among Campylobacter Isolates from Chicken Breast, 2004

ampylobacter from Chicken Breas	Distribution (%) of MICs (in μg/ml)														
Antimicrobial Agent	%R [↑]	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	>64
Nalidixic Acid	15.6%									59.6	24.4	0.4	0.1	1.3	14.2
Ciprofloxacin	15.4%		0.1	35.1	37.1	12.0		0.1		0.3	7.1	6.8	1.3		
Azithromycin	3.1%	3.5	39.8	39.5	12	1.0	0.3	0.6	0.1						3.1
Clindamycin	2.3%		0.4	7.8	45.5	35.6	5.4	2.1	0.4	0.6	0.8	1.4			
Erythromycin	3.1%			0.3	2.1	44.5	30.3	16.7	2.4	0.4	0.1				3.1
Telithromycin	3.5%	0.3		0.3	0.4	15.2	42.4	22.4	13.5	2.1	1.0	2.5			
Gentamicin*	0.0%				1.4	4.8	85.3	8.5							
Florfenicol*	§				0.4		4.1	79.9	15.2	0.4					
Tetracycline	49.2%			0.4	19.4	17.0	8.2	4.0	1.6	0.1	0.1	1.6	3.8	19.4	24.4

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug.

Unshaded areas indicate the dilution ranges used to test the 2004 isolates.

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS. \$Absence of resistant strains precludes defining any results category other than "susceptible."

Figure 10b. MIC Distribution among Campylobacter Isolates from Ground Turkey, 2004

Campylobacter from Ground Turk	Distribution (%) of MICs (in μg/ml)														
Antimicrobial Agent	$%\mathbf{R}^{T}$	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	>64
Nalidixic Acid	16.7%									33.3	50.0				16.7
Ciprofloxacin	16.7%			25.0	58.3								16.7		
Azithromycin	0.0%	8.3	8.3	33.3	50.0										
Clindamycin	0.0%				25.0	25.0	8.3	41.7							
Erythromycin	0.0%				8.3	8.3	16.7	66.7							
Telithromycin	0.0%					8.3	16.7	75.0							
Gentamicin*	0.0%					8.3	66.7	25.0							
Florfenicol*	§						16.7	16.7	66.7						
Tetracycline	25.0%				8.3	16.7	8.3	25.0	16.7					8.3	16.7

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug.

Unshaded areas indicate the dilution ranges used to test the 2004 isolates.

 $[*] Currently \ no \ CLSI \ breakpoints \ have \ been \ established \ for \ this \ organism/antimic robial \ combination. \ Indicated \ breakpoints \ were \ established \ by \ NARMS.$

[§]Absence of resistant strains precludes defining any results category other than "susceptible."

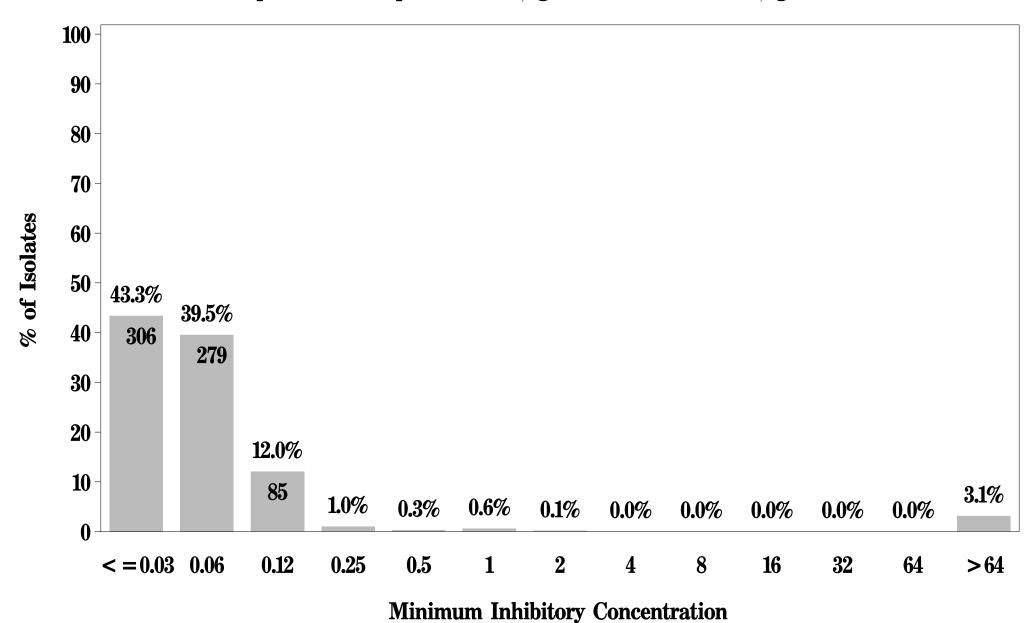
Figure 10c. MIC Distribution among Campylobacter Isolates from Pork Chops, 2004

Campylobacter from Pork Chop	s (N=3)	Distribution (%) of MICs (in μg/ml)													
Antimicrobial Agent	%R [™]	0.015	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	>64
Nalidixic Acid	0.0%										66.7	33.3			
Ciprofloxacin	0.0%				100.0										
Azithromycin	33.3%	33.3		33.3											33.3
Clindamycin	33.3%					66.7						33.3			
Erythromycin	33.3%					33.3		33.3							33.3
Telithromycin	33.3%					33.3		33.3			33.3				
Gentamicin*	0.0%							100.0							
Florfenicol®	§							66.7		33.3					
Tetracycline	66.7%						33.3								66.7

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

 $\label{lem:clsi} Vertical\ bars\ show\ the\ CLSI\ Susceptible/Resistant\ breakpoints\ for\ each\ drug.$

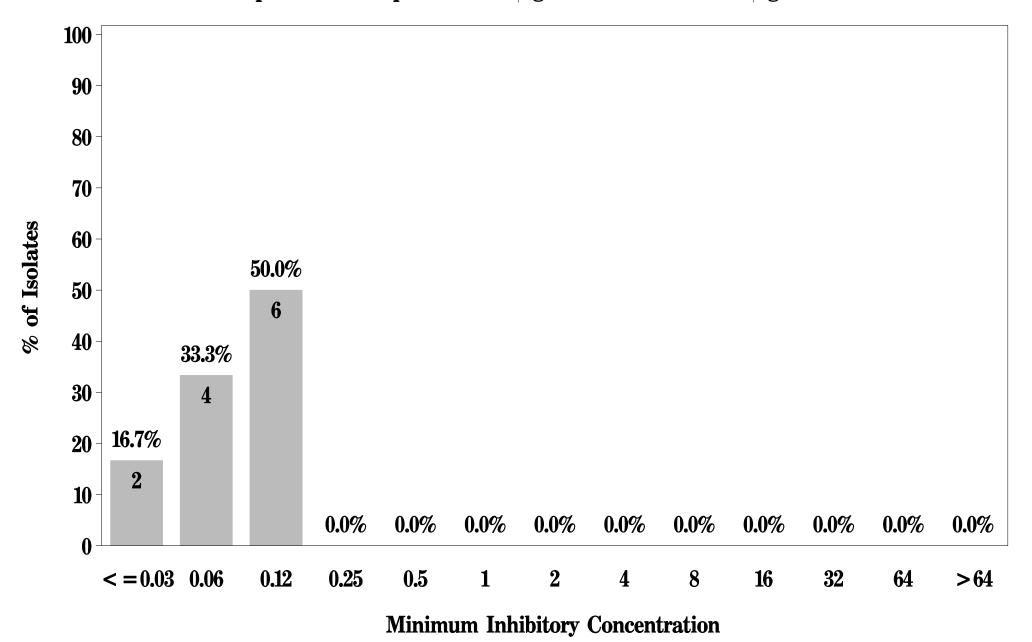
Unshaded areas indicate the dilution ranges used to test the 2004 isolates.


^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[§]Absence of resistant strains precludes defining any results category other than "susceptible."

NARMS

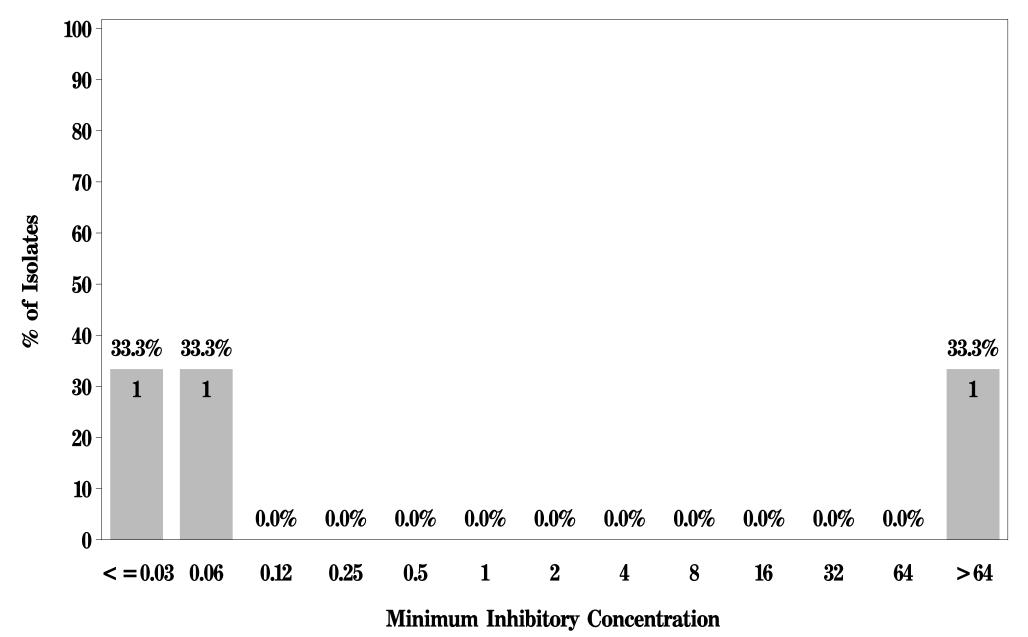
Figure 11a: Minimum Inhibitory Concentration of Azithromycin for *Campylobacter* in Chicken Breast (N=706 Isolates)


Breakpoints: Susceptible <= $2 \mu g/mL$ Resistant >= $8 \mu g/mL$

NARMS

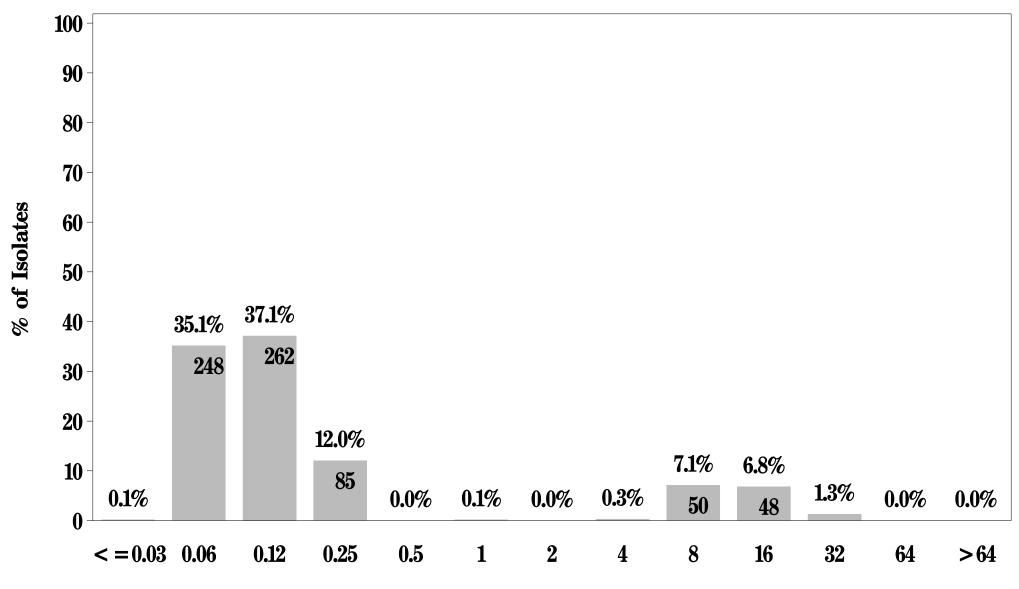
Figure 11a: Minimum Inhibitory Concentration of Azithromycin for *Campylobacter* in Ground Turkey (N=12 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$



NARMS

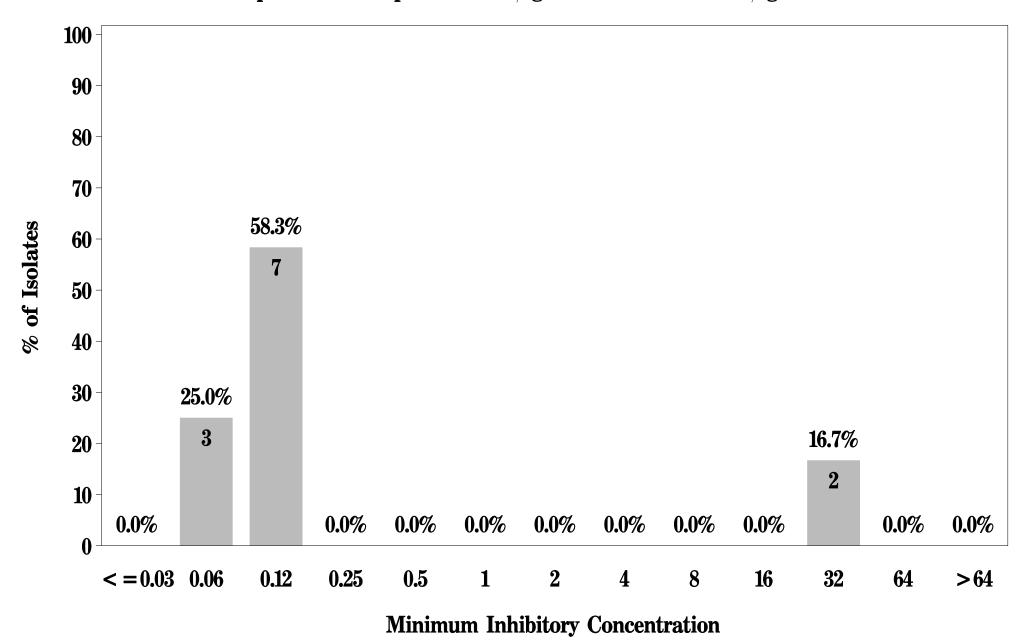
Figure 11a: Minimum Inhibitory Concentration of Azithromycin for Campylobacter in Pork Chop (N=3 Isolates)


Prophysical Suggestible = 2 and N=1 Prophysical Prophy

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

NARMS

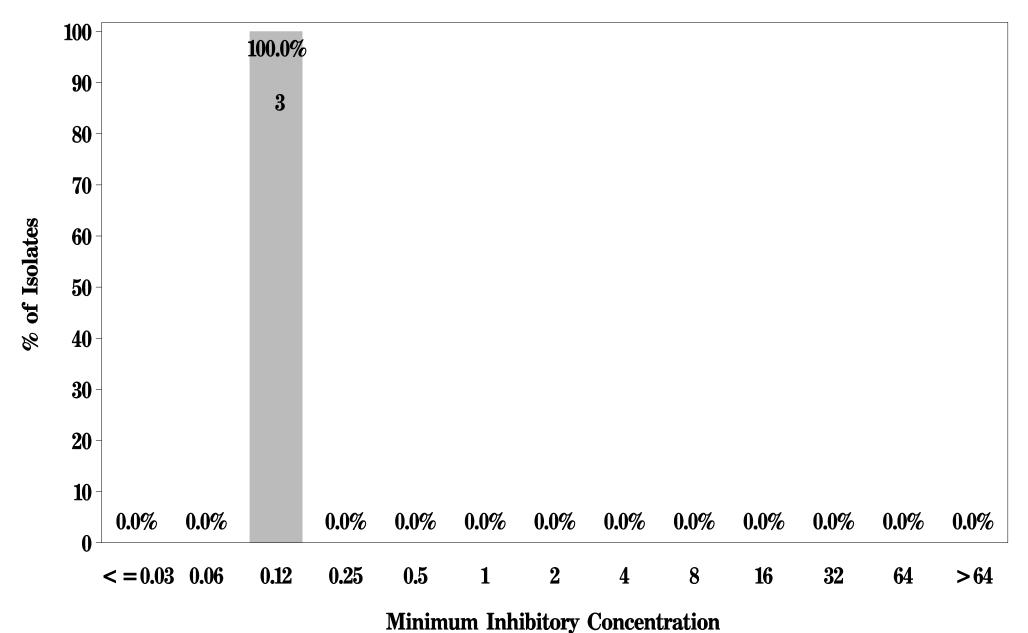
Figure 11b: Minimum Inhibitory Concentration of Ciprofloxacin for *Campylobacter* in Chicken Breast (N=706 Isolates) Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$



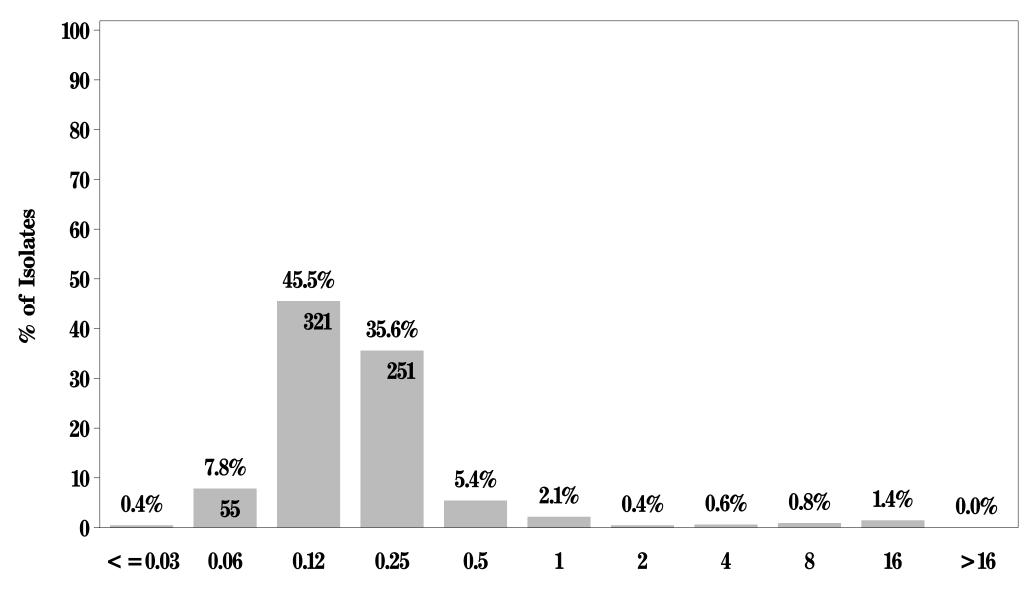
Minimum Inhibitory Concentration

NARMS

Figure 11b: Minimum Inhibitory Concentration of Ciprofloxacin for *Campylobacter* in Ground Turkey (N=12 Isolates)


Breakpoints: Susceptible < = 1 μ g/mL Resistant > = 4 μ g/mL

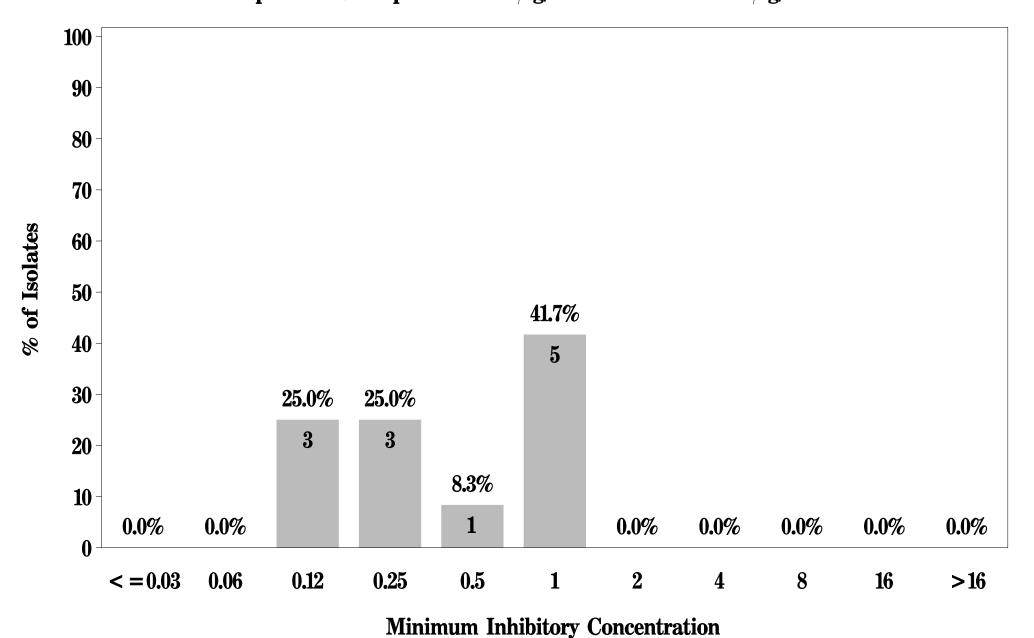
NARMS


Figure 11b: Minimum Inhibitory Concentration of Ciprofloxacin for Campylobacter in Pork Chop (N=3 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

NARMS

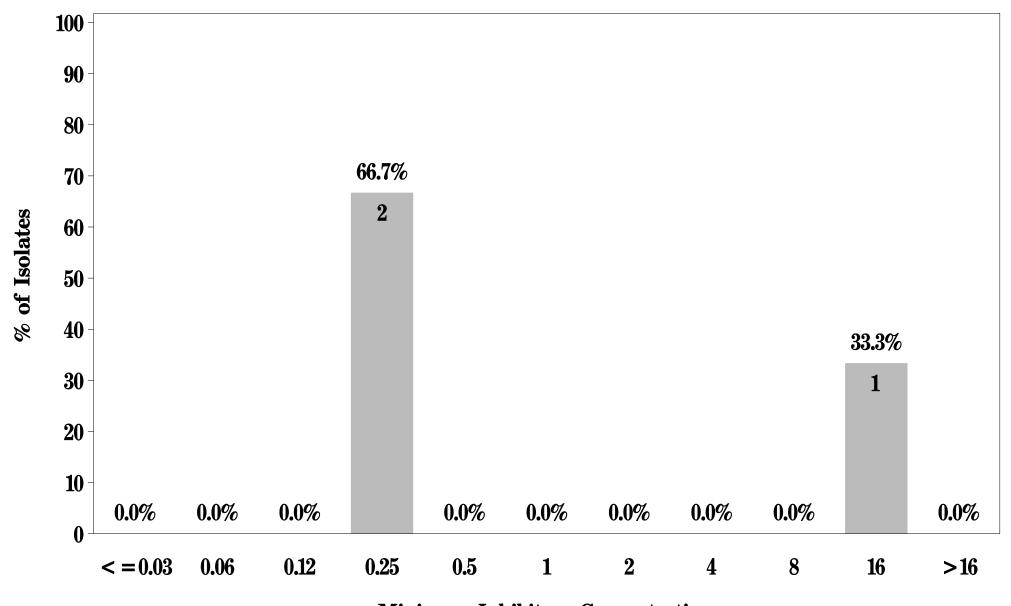
Figure 11c: Minimum Inhibitory Concentration of Clindamycin for *Campylobacter* in Chicken Breast (N=706 Isolates) Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$



Minimum Inhibitory Concentration

NARMS

Figure 11c: Minimum Inhibitory Concentration of Clindamycin for *Campylobacter* in Ground Turkey (N=12 Isolates)


Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

NARMS

Figure 11c: Minimum Inhibitory Concentration of Clindamycin for Campylobacter in Pork Chop (N=3 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

Minimum Inhibitory Concentration

Figure 11d: Minimum Inhibitory Concentration of Erythromycin for *Campylobacter* in Chicken Breast (N=706 Isolates)

Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 32 μ g/mL

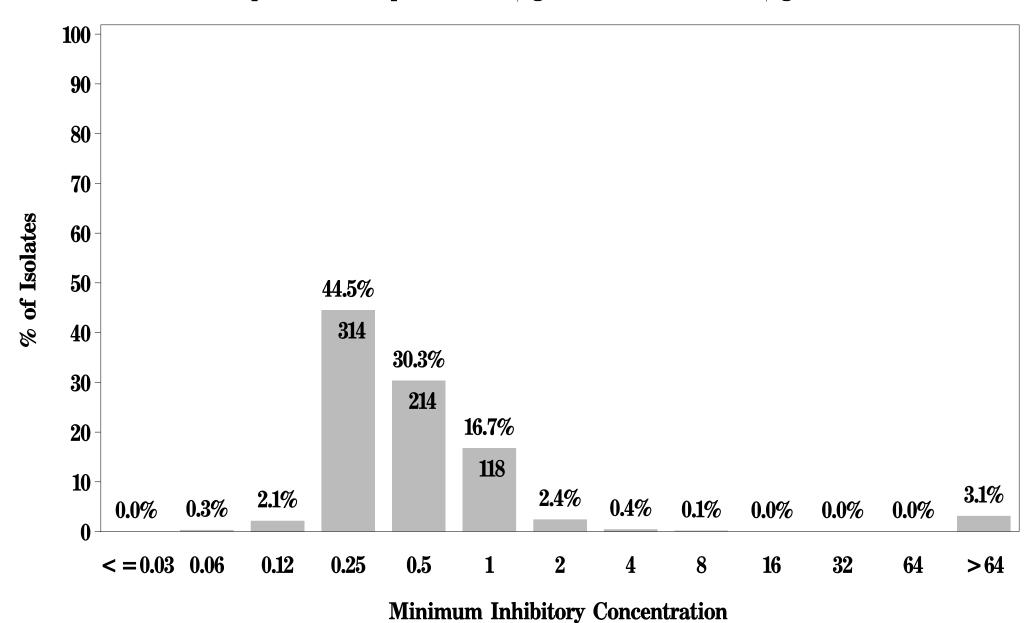
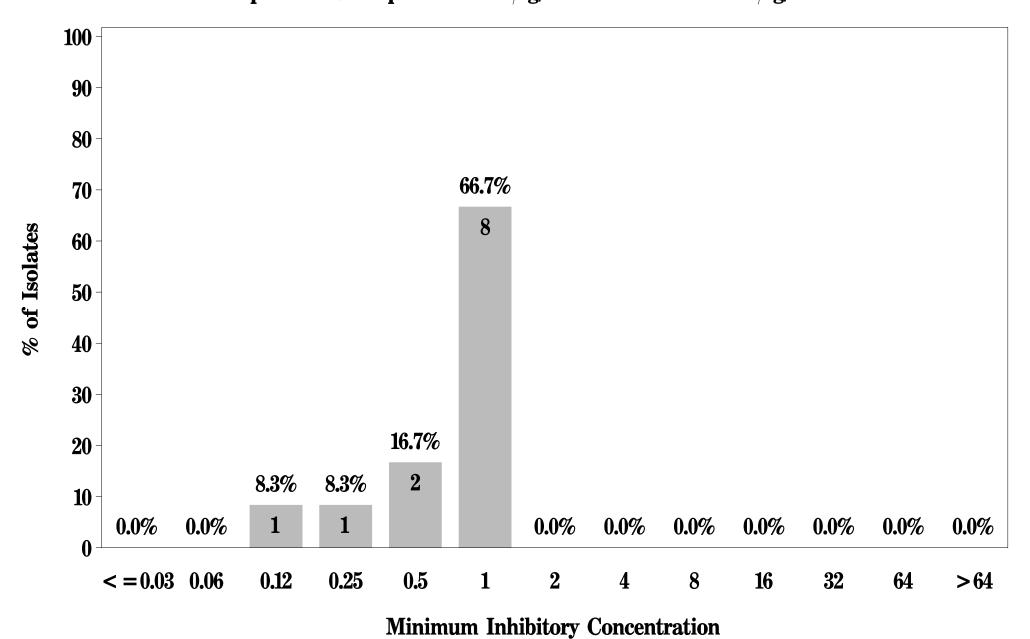
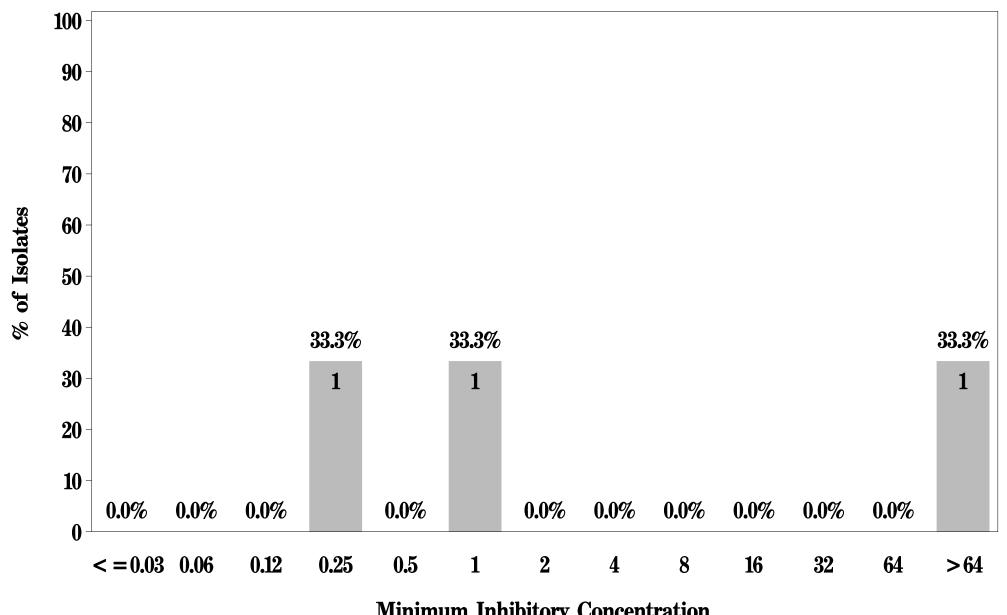



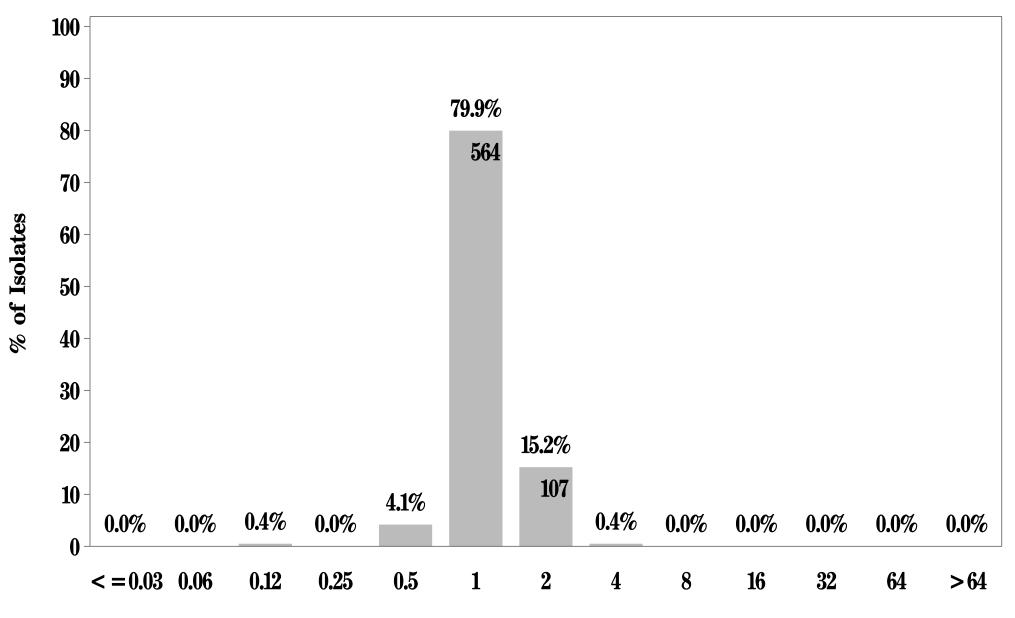
Figure 11d: Minimum Inhibitory Concentration of Erythromycin for *Campylobacter* in Ground Turkey (N=12 Isolates)


Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

NARMS

Figure 11d: Minimum Inhibitory Concentration of Erythromycin for Campylobacter in Pork Chop (N=3 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

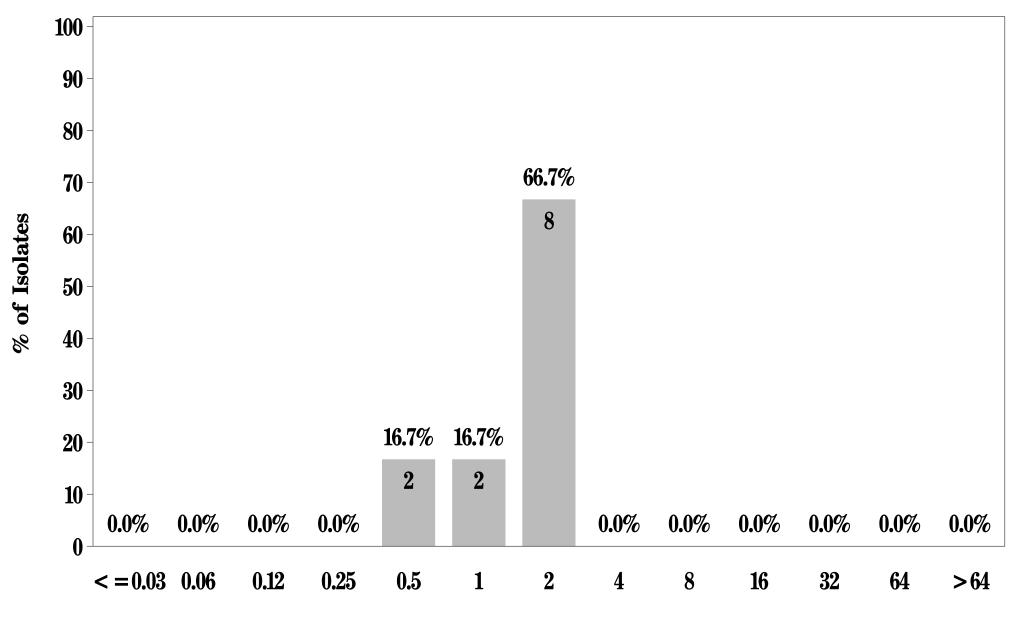


Minimum Inhibitory Concentration

NARMS

Figure 11e: Minimum Inhibitory Concentration of Florfenicol for *Campylobacter* in Chicken Breast (N=706 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$

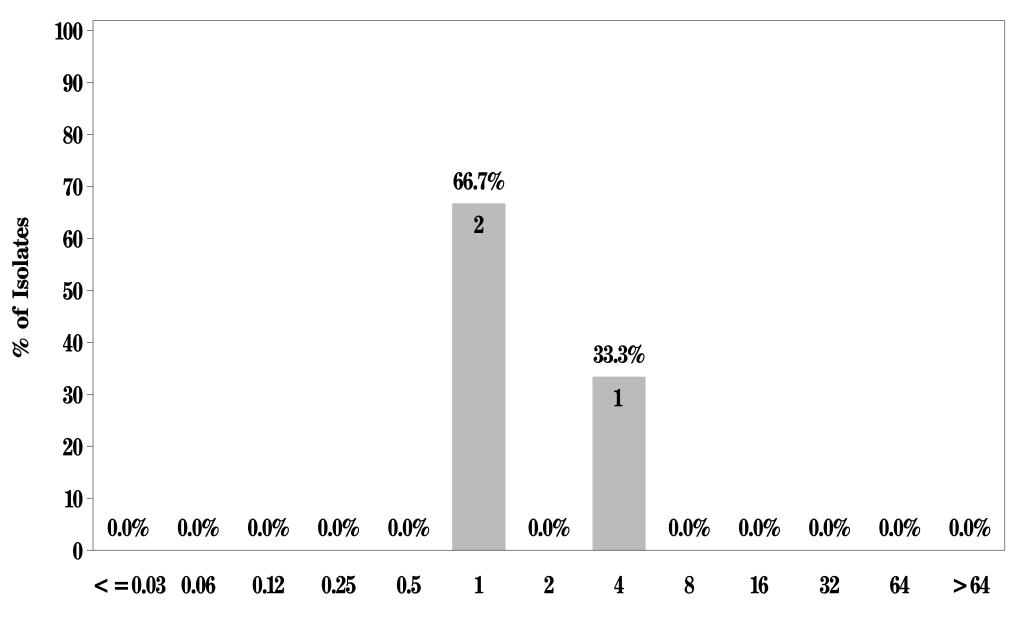


Minimum Inhibitory Concentration

NARMS

Figure 11e: Minimum Inhibitory Concentration of Florfenicol for *Campylobacter* in Ground Turkey (N=12 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$



Minimum Inhibitory Concentration

NARMS

Figure 11e: Minimum Inhibitory Concentration of Florfenicol for Campylobacter in Pork Chop (N=3 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$

Minimum Inhibitory Concentration

Figure 11f: Minimum Inhibitory Concentration of Gentamicin for *Campylobacter* in Chicken Breast (N=706 Isolates) Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

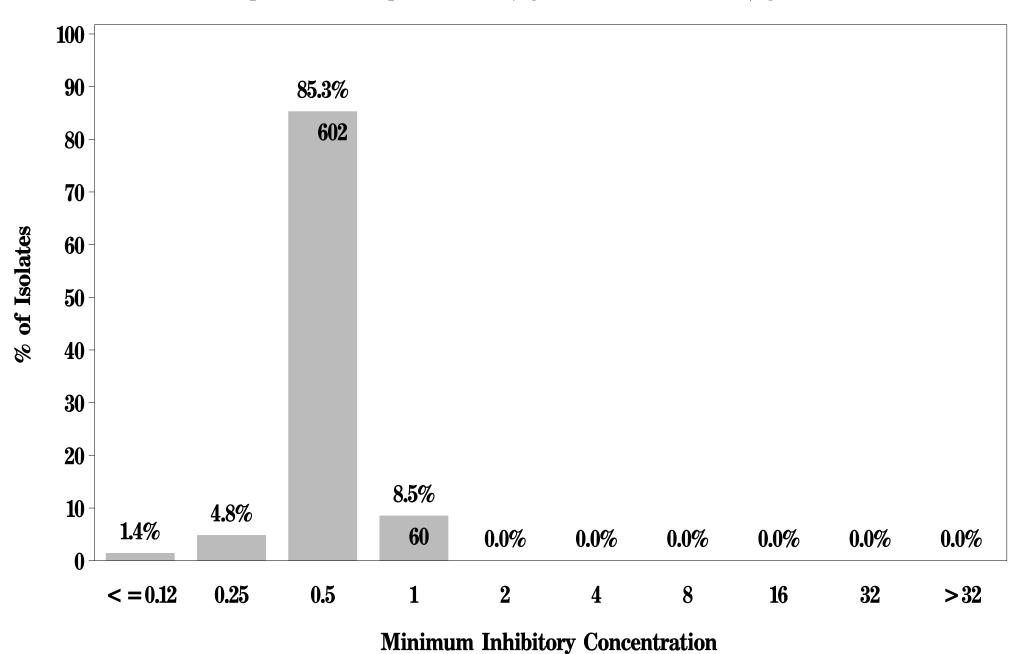
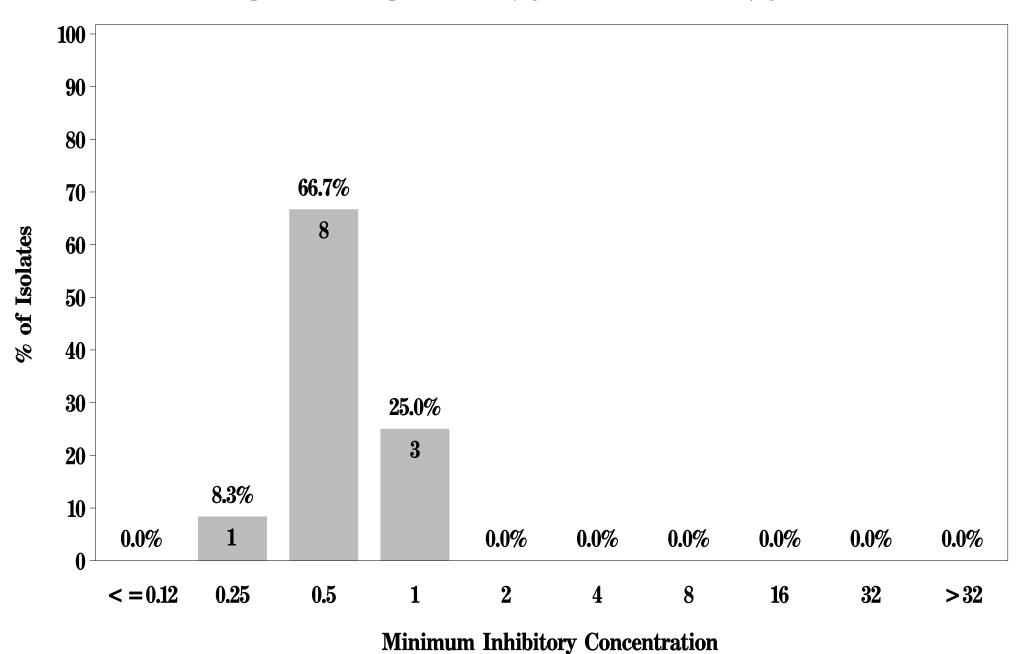
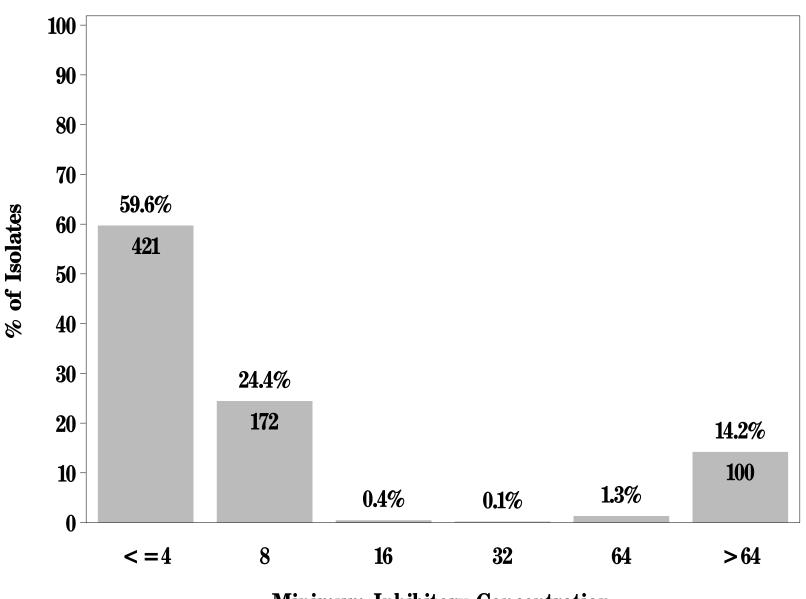



Figure 11f: Minimum Inhibitory Concentration of Gentamicin for *Campylobacter* in Ground Turkey (N=12 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

NARMS


Figure 11f: Minimum Inhibitory Concentration of Gentamicin for Campylobacter in Pork Chop (N=3 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

Minimum Inhibitory Concentration

Figure 11g: Minimum Inhibitory Concentration of Nalidixic acid for *Campylobacter* in Chicken Breast (N=706 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration

Figure 11g: Minimum Inhibitory Concentration of Nalidixic acid for *Campylobacter* in Ground Turkey (N=12 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

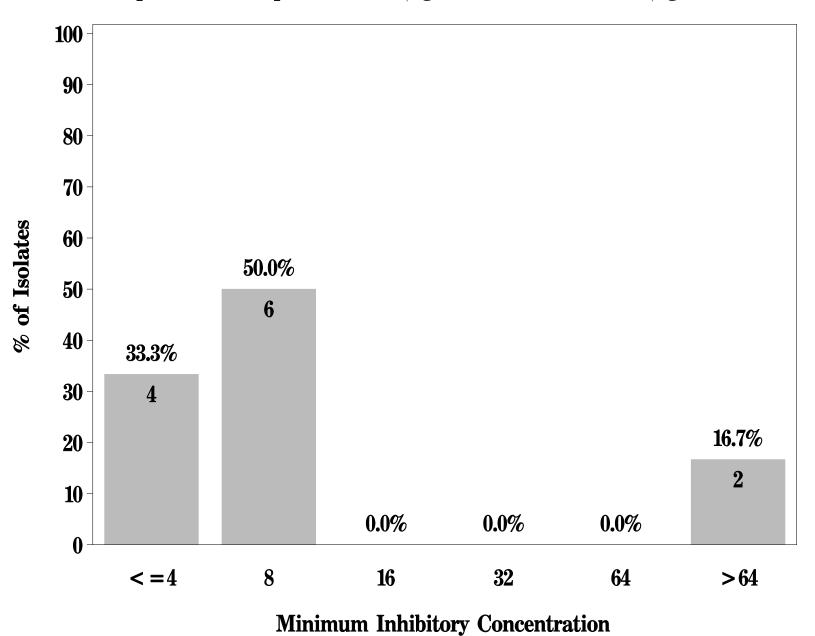
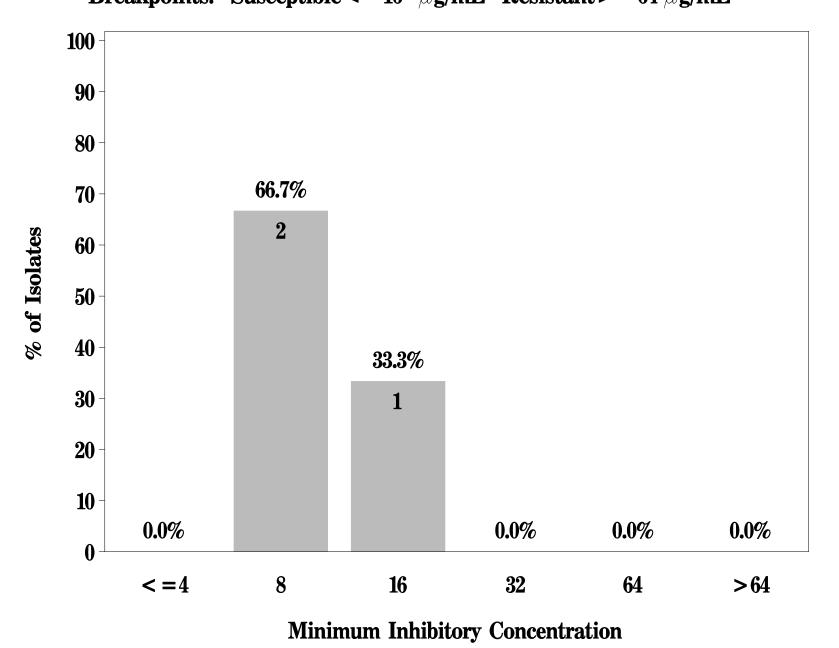
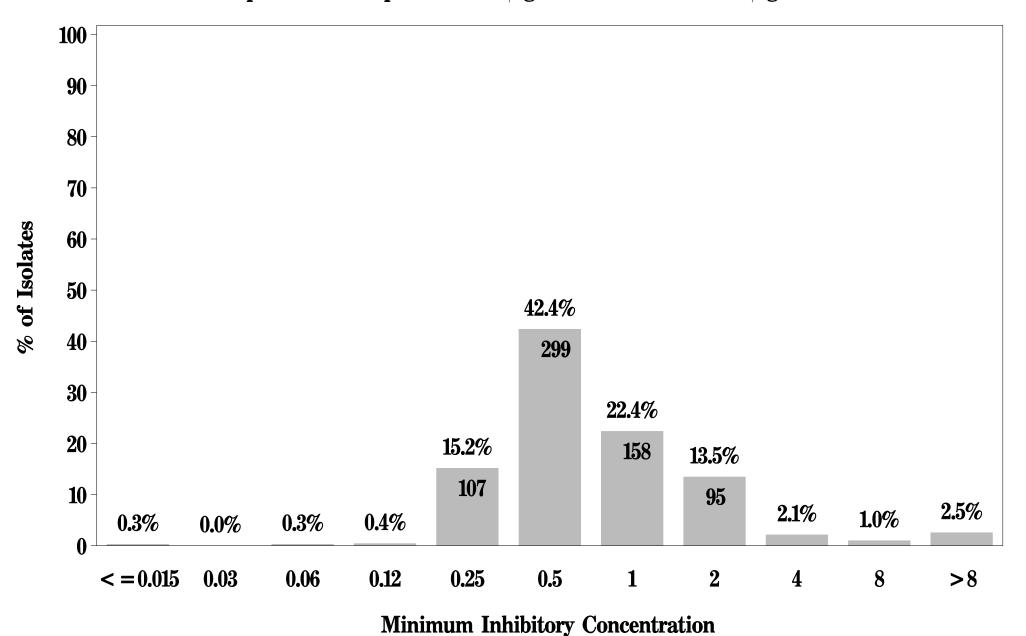
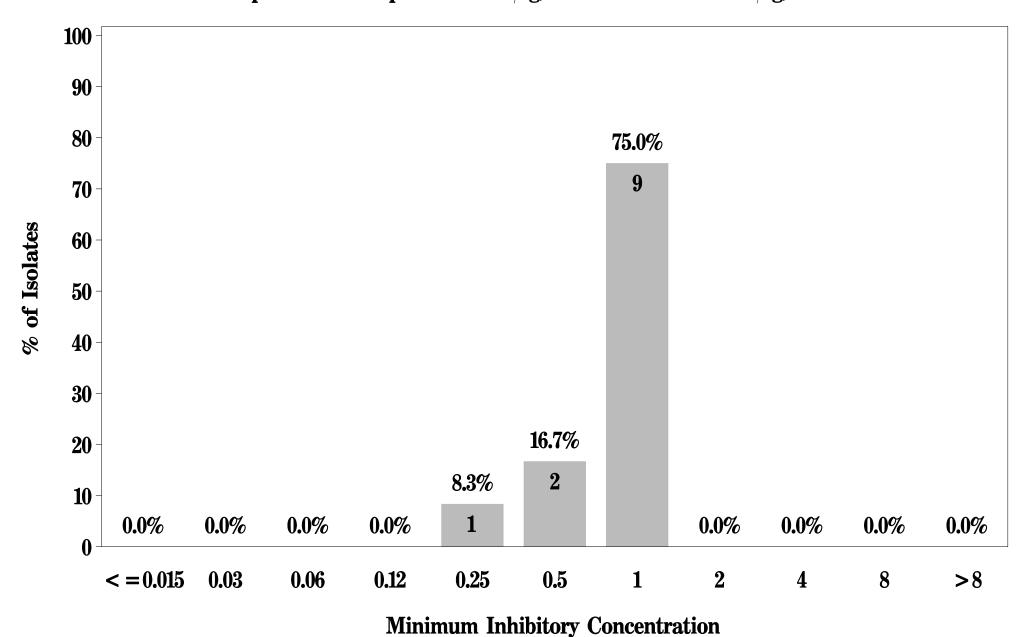



Figure 11g: Minimum Inhibitory Concentration of Nalidixic acid for *Campylobacter* in Pork Chop (N=3 Isolates)


Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

NARMS

Figure 11h: Minimum Inhibitory Concentration of Telithromycin for *Campylobacter* in Chicken Breast (N=706 Isolates)


Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

NARMS

Figure 11h: Minimum Inhibitory Concentration of Telithromycin for *Campylobacter* in Ground Turkey (N=12 Isolates)

Breakpoints: Susceptible < = $4 \mu g/mL$ Resistant > = $16 \mu g/mL$

NARMS

Figure 11h: Minimum Inhibitory Concentration of Telithromycin for Campylobacter in Pork Chop (N=3 Isolates)

Breakpoints: Susceptible < =4 μ g/mL Resistant > =16 μ g/mL

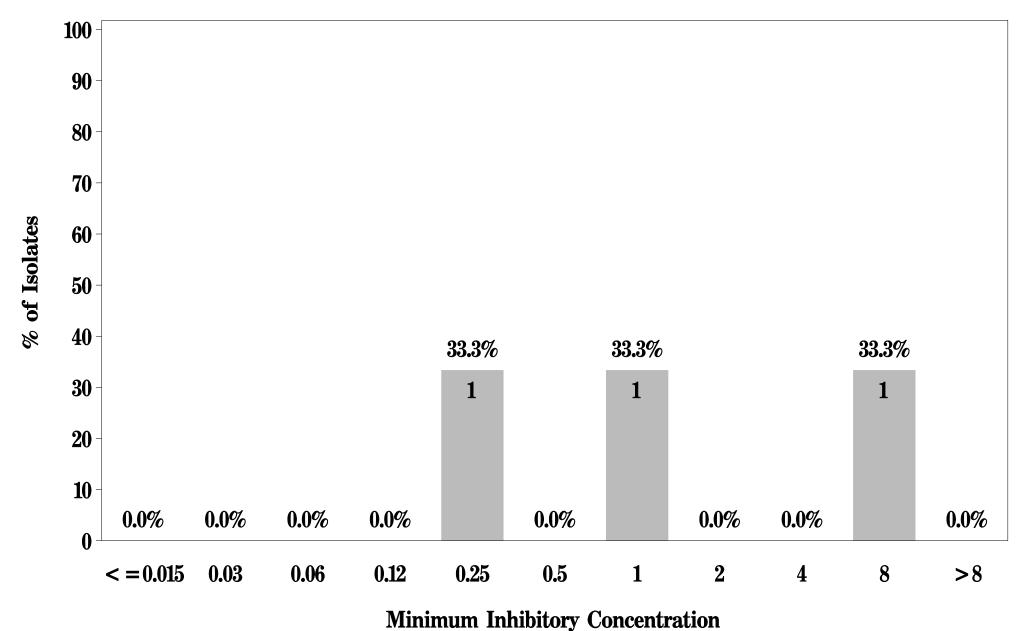


Figure 11i: Minimum Inhibitory Concentration of Tetracycline for *Campylobacter* in Chicken Breast (N=706 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

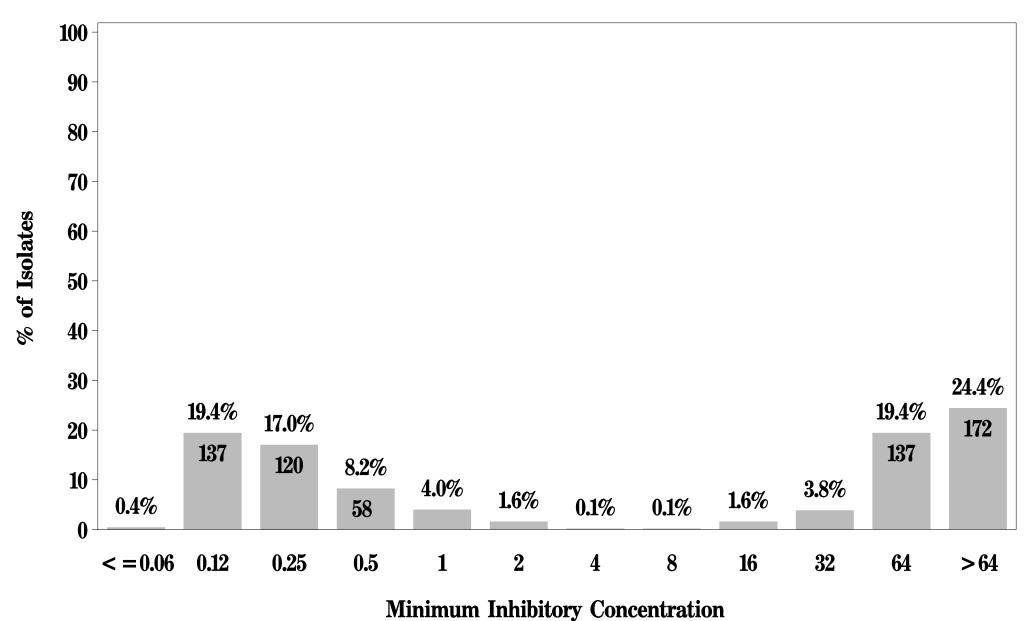


Figure 11i: Minimum Inhibitory Concentration of Tetracycline for *Campylobacter* in Ground Turkey (N=12 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

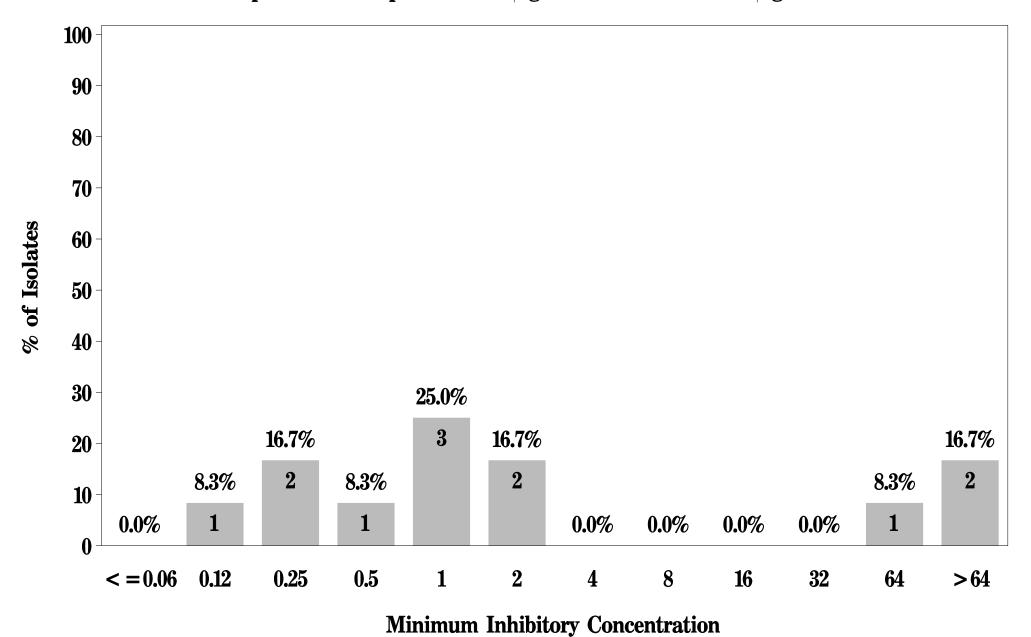


Figure 11i: Minimum Inhibitory Concentration of Tetracycline for *Campylobacter* in Pork Chop (N=3 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL



Table 22. Antimicrobial Resistance among Campylobacter by Species, 2004

Species	Antimicrobial Agent											
•	TET	NAL	CIP	TEL	AZI	ERY	CLI	FFN	GEN			
C. coli (n=204)	45.6%*	15.7%	15.7%	7.8%	9.3%	9.3%	7.4%	-	_†			
<i>C. jejuni</i> (n=517)	50.1%	15.3%	15.3%	0.4%	0.8%	0.8%	0.4%	-	-			
Total %R (N=721)	48.8%	15.4%	15.4%	2.5%	3.2%	3.2%	2.4%	0.0%	0.0%			

*Where % Resistance = (# isolates per species resistant to antimicrobial) / (total # isolates per species).
† Dashes indicate 0.0% resistance to antimicrobial.

Table 23. Antimicrobial Resistance among Campylobacter Species by Meat Type, 2004

Meat	Species	Antimicrobial Agent										
Type*	species	TET	NAL	CIP	TEL	AZI	ERY	CLI	FFN	GEN		
Chicken	C. coli (n=196)	46.4% [†]	16.3%	16.3%	8.2%	9.2%	9.2%	7.1%	-	-		
Breast	<i>C. jejuni</i> (n=510)	50.2%	15.1%	15.1%	0.4%	0.8%	0.8%	0.4%	-	-		
Ground	<i>C.coli</i> (n=5)	- ‡	-	-	-	-	-	-	-	-		
Turkey	<i>C. jejuni</i> (n=7)	42.9%	28.6%	28.6%	-	1	1	-	-	-		
Pork	<i>C.coli</i> (n=3)	66.7%	-	-	-	33.3%	33.3%	33.3%	_	_		
Chop	<i>C. jejuni</i> (n=0)	§										

^{*} No Campylobacter recovered from ground beef.

[†] Where % Resistance = (# isolates per species resistant to antimicrobial within meat type) / (total # isolates per species within meat type).

[‡] Where dashes indicate 0.0% resistance to antimicrobial.

[§] Grey areas indicate species not isolated from that meat type.

Table 24. Antimicrobial Resistance among Campylobacter by Site, Meat Type, and Antimicrobial Agent, 2004

G!4	N				Antim	icrobial A	Agent			
Site	Meat Type*	TET	NAL	CIP	TEL	AZI	ERY	CLI	FFN	GEN
	CB (n=96)	54.2% [†]	6.3%	6.3%	-	-	-	-	-	-
CA	GT (n=0)	‡								
CA	PC (n=1)	100.0%	_§	-	-	-	-	-	-	-
	Total (n=97)	54.6%	6.2%	6.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=21)	38.1%	19.0%	19.0 %	4.8%	4.8%	4.8%	4.8%	-	-
CO	GT (n=0)									
CO	PC (n=0)									
	Total (n=21)	38.1%	19.0%	19.0%	4.8%	4.8%	4.8%	4.8%	0.0%	0.0%
	CB (n=86)	65.1%	27.9%	27.9%	2.3%	2.3%	2.3%	2.3%	-	-
CT	GT (n=2)	100.0%	50.0%	50.0%	-	-	-	-	-	-
CI	PC (n=1)	100.0%	-	-	-	100.0%	100.0%	100.0%	-	-
	Total (n=89)	66.3%	28.1%	28.1%	2.3%	3.4%	3.4%	3.4%	0.0%	0.0%
	CB (n=61)	39.3%	13.1%	13.1%	6.6%	8.2%	8.2%	6.6%	-	-
GA	GT (n=0)									
GA	PC (n=0)									
	Total (n=62)	38.7%	12.9%	12.9%	6.6%	8.1%	8.1%	6.5%	0.0%	0.0%
	CB (n=76)	43.4%	27.6%	27.6%	-	1.3%	1.3%	-	-	-
MD	GT (n=2)	-	50.0%	50.0%	-	-	-	-	-	-
14117	PC (n=0)									
	Total (n=78)	42.3%	28.2%	28.2%	0.0%	1.3%	1.3%	0.0%	0.0%	0.0%

^{*} No *Campylobacter* recovered from ground beef.

† Where % Resistance = (# isolates resistant to antimicrobial per meat type per site) / (total # isolates per meat type per site).

[‡] Grey areas indicate species not isolated from that meat type.

[§] Where dashes indicate 0.0% resistance to antimicrobial.

Table 24_(cont'd). Antimicrobial Resistance among *Campylobacter* by Site, Meat Type, and Antimicrobial Agent, 2004

G'4	Mand Town				Antimi	crobial A	gent			
Site	Meat Type	TET	NAL	CIP	TEL	AZI	ERY	CLI	FFN	GEN
	CB (n=73)	68.5%	4.1%	4.1%	2.7%	2.7%	2.7%	2.7%	-	-
MN	GT (n=6)	16.7%	-	-	-	-	-	-	-	-
17117	PC (n=0)									
	Total (n=79)	64.6%	3.8%	3.8%	2.5%	2.5%	2.5%	2.5%	0.0%	0.0%
	CB (n=53)	35.8%	5.7%	5.7%	11.3%	11.3%	11.3%	9.4%	-	
NM	GT (n=0)									
1 4141	PC (n=1)	-	-	-	-	-	-	-	-	-
	Total (n=54)	35.2%	5.6%	5.6%	11.1%	11.1%	11.1%	9.4%	0.0%	0.0%
	CB (n=96)	40.6%	35.4%	35.4%	-	-	-	-	-	
NY	GT (n=0)									
111	PC (n=0)									
	Total (n=96)	40.6	35.4%	35.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	CB (n=73)	52.1%	-		-	1.4%	1.4%	-	-	-
OR	GT (n=0)									
O.K	PC (n=0)									
	Total (n=73)	52.1%	0.0%	0.0%	0.0%	1.4%	1.4%	0.0%	0.0%	0.0%
	CB (n=71)	39.4%	8.5%	8.5%	4.2%	5.6%	5.6%	2.8%	-	-
TN	GT (n=0)									
	PC (n=0)									
	Total (n=72)	38.9%	8.3%	8.3%	4.2%	5.6%	5.6%	2.8%	0.0%	0.0%
Total	l %R (N=721)	48.8%	15.5%	15.4%	3.6%	3.2%	3.2%	2.4%	0.0%	0.0%

Table 25. Number of Campylobacter (N=721) Resistant to Multiple Antimicrobial Agents, 2004

Meat Type	Number of Antimicrobials								
	0	1	2-4	≥5					
Chicken Breast	280	296	124	6					
Ground Turkey	8	2	2	0					
Pork Chop	1	1	0	1					
Total	289	299	126	7					

Table 26. Overall *Enterococcus* Species Identified, 2004

	Species	n
1.	E. faecalis	855
2.	E. faecium	757
3.	E. hirae	129
4.	E. gallinarum	7
5.	E. durans	3
6.	E. casseliflavus	3
7.	E. mundtii	1
	Total	1755

Table 27. Enterococcus Species by Meat Type, 2004

Species		icken reast		ound rkey		ound Beef	Pork Chop		
Species	n	%*	n	%	n	%	n	%	
E. faecalis (n=855)	88	10.3%	260	30.4%	194	22.7%	313	36.6%	
E. faecium (n=757	348	46.0%	172	22.7%	162	21.4%	75	9.9%	
E. hirae (n=129)	27	20.9%		-	88	68.2%	14	10.9%	
E. gallinarium (n=7)		_†	4	57.1%	2	28.6%	1	14.3%	
E. durans (n=3)	2	66.7%	1	33.3%		-		-	
E. casseliflavus (n=3)		-		-	2	66.7%	1	33.3%	
E. mundtii (n=1)	1	100.0%		-		_		_	
Total (N=1755)	466	26.6%	437	24.9%	448	25.5%	404	23.0%	

^{*} Where % = (# isolates per species per meat) / (total # isolates per species). † Dashes indicate no isolates of that species were isolated from that meat type.

Table 28. Enterococcus Species by Site and Meat Type, 2004

Site	Species		nicken reast		ound irkey		round Beef		Pork Chop
Site	Species	n	%*	n	%	n	%	n	<u> %</u>
	E. faecalis (n=346)	54	15.6%	108	31.2%	78	22.5%	106	30.6%
	E. faecium (n=100)	59	59.0%	11	11.0%	22	22.2%	8	8.0%
GA	E. hirae (n=23)	5	21.2%		_†	16	69.6%	2	8.7%
	E. durans (n=2)	1	50.0%	1	50.0%		-		-
	E. casseliflavus (n=1)		-		-	1	100.0%		-
	E. mundtii (n=1)	1	100.0%						
	Total (n=473)	120	25.1%	120	25.3%	117	24.7%	116	24.5%
	E. faecalis (n=110)	3	2.9%	30	29.4%	21	20.6%	48	47.1%
MD	E. faecium (n=233)	106	41.1%	75	29.1%	54	20.9%	23	8.9%
	E. hirae (n=43)	5	14.3%		-	24	68.6%	6	17.1%
	E. gallinarum (n=5)		-	1	50.0%	1	50.0%		-
	Total (n=397)	114	28.7%	106	26.7%	100	25.2%	77	19.4%
	E. faecalis (n=201)	18	9.0%	67	33.3%	37	18.4%	79	39.3%
OR	E. faecium (n=181)	85	47.0%	35	19.3%	37	20.4%	24	13.3%
OK	E. hirae (n=58)	15	25.9%		-	39	67.2%	4	6.9%
	E. gallinarum (n=4)		-	3	75.0%	1	25.0%		-
	E. casseliflavus (n=2)		-		-	1	50.0%	1	50.0%
	Total (n=446)	118	26.5%	105	23.5%	115	25.8%	108	24.2%
TN	E. faecalis (n=206)	13	6.3%	55	26.7%	58	28.2%	80	38.8%
	E. faecium (n=218)	98	45.0%	51	23.4%	49	22.5%	20	9.2%
	E. hirae (n=13)	2	15.4%		-	9	69.2%	2	15.4%
	E. gallinarum (n=1)		-		-		-	1	100.0%
	E. durans (n=1)	1	100.0%		-		-		-
	Total (n=439)	114	26.0%	106	24.1%	116	26.4%	103	23.5%

 $^{^*}$ Where % = (# isolates per species per meat type per site) / (total # isolates per species per site).

[†] Dashes indicate no isolates for that species were isolated from that meat type.

Table 29. Enterococcus Isolates by Month for All Sites, 2004

Month	n	°/0*
January	148	8.4%
February	144	8.2%
March	140	8.0%
April	156	8.9%
May	153	8.7%
June	136	7.7%
July	135	7.7%
August	148	8.4%
September	154	8.8%
October	141	8.0%
November	148	8.4%
December	152	8.7%
Total (N)	1755	100.0%

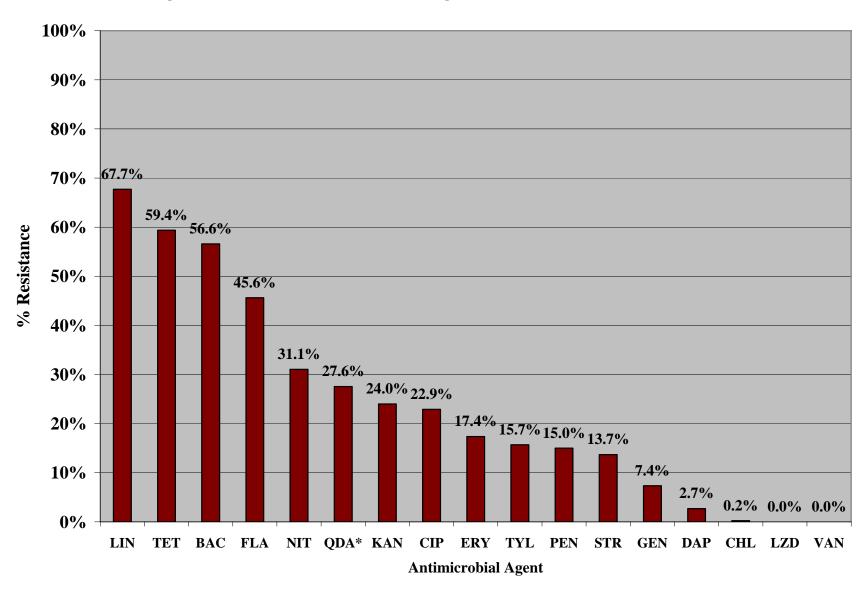

* Where % = (n / N).

Table 30. Antimicrobial Resistance among Enterococcus Isolates (N=1755), 2004

Antimicrobial Agent	n	%R*
Lincomycin	1188	67.7%
Tetracycline	1042	59.4%
Bacitracin	993	56.6%
Flavomycin	801	45.6%
Quinupristin-Dalfopristin [†]	248	27.6%
Nitrofurantoin	545	31.1%
Kanamycin	421	24.0%
Ciprofloxacin	402	22.9%
Erythromycin	305	17.4%
Tylosin	275	15.7%
Penicillin	263	15.0%
Streptomycin	240	13.7%
Gentamicin	129	7.4%
Daptomycin	48	2.7
Chloramphenicol	4	0.2%
Linezolid	0	0.0%
Vancomycin	0	0.0%

 $^{^{\}ast}$ Where % R = (n / N). † Presented for all species except E. faecalis (n = 855).

Figure 12. Antimicrobial Resistance among Enterococcus Isolates (N=1755), 2004

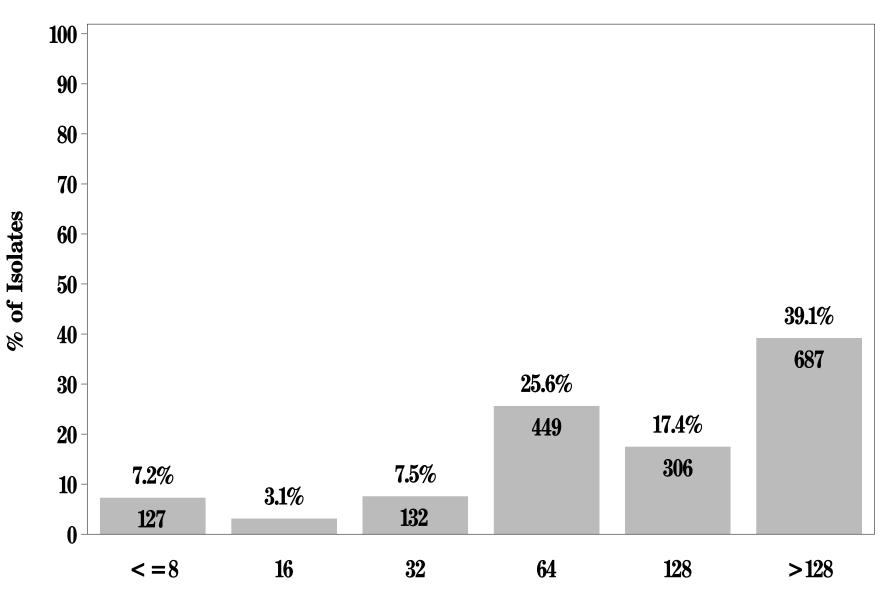
^{*} Presented for all species except E. faecalis in QDA (N=1755-855=900 non-faecalis)

Figure 13. MIC Distribution among all Antimicrobial Agents

coccus from All Meats (N=1755)	•		•	•		•	•	Distrib	ution (%) of	MICs (in μg/	ml)				•	•		•
Antimicrobial Agent	% R †	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>2048
Bacitracin*	56.6										7.3	3.1	7.5	25.6	17.4	39.1				
Chloramphenicol	0.2								0.1	4.6	88.4	6.8	0.2	0.1						
Ciprofloxacin	22.9				0.1	0.3	5.3	30.3	41.1	18.3	4.6									
Daptomycin*	§						4.1	37.8	24.2	31.2	2.1	0.6								
Erythromycin	17.4						40.2	23.7	12.0	6.8	1.2	16.2								
Tylosin*	15.7						0.2	4.2	29.1	41.7	8.9	0.3	0.1	15.6						
Gentamicin	7.4														92.2	0.5	0.6	0.5	6.4	
Kanamycin*	24.0														64.2	11.8	11.2	1.1	11.7	
Streptomycin*	13.7																86.4	3.5	3.8	6.5
Lincomycin*	67.7							9.5	0.5	0.7	5.7	16.0	34.5	33.2						
Linezolid	0.0						0.2	1.5	88.5	9.9										
Nitrofurantoin	31.1									0.1	18.6	29.1	4.3	17.0	31.0					
Flavomycin*	45.6							45.5	2.8	1.0	2.3	2.7	1.5	44.2						
Penicillin	15.0						7.0	3.7	26.4	43.8	4.2	7.8	7.2							
Tetracycline	59.4									38.8	1.8	1.2	4.4	53.8						
Quinupristin/Dalfopristin↑	27.4							24.7	47.7	7.4	13.1	5.9	1.1							
Vancomycin	0.0						32.7	44.3	21.2	1.4	0.5									

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2004 isolates.

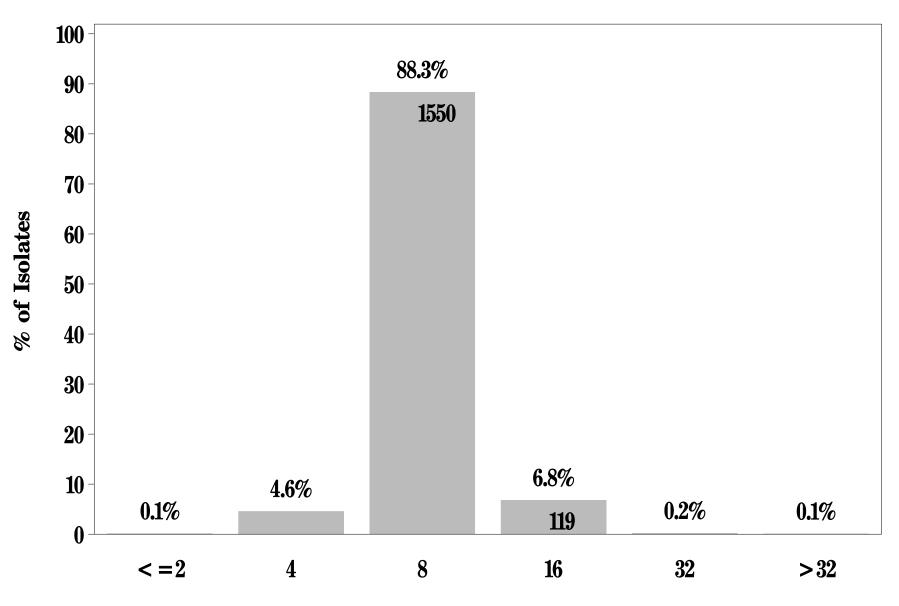
^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.


[†]Discrepancies between %R and sums of distribution %s are due to rounding.

[↑] Presented for all species except *E. faecalis* in QDA (n=1755-855= 900 non *E. faecalis*)

[§]Absence of resistant strains precludes defining any results category other than "susceptible."

Figure 13a: Minimum Inhibitory Concentration of Bacitracin for *Enterococcus* (N=1755 Isolates)


Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 128 \mu g/mL$

Minimum Inhibitory Concentration

Figure 13b: Minimum Inhibitory Concentration of Chloramphenicol for Enterococcus (N=1755 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 13c: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

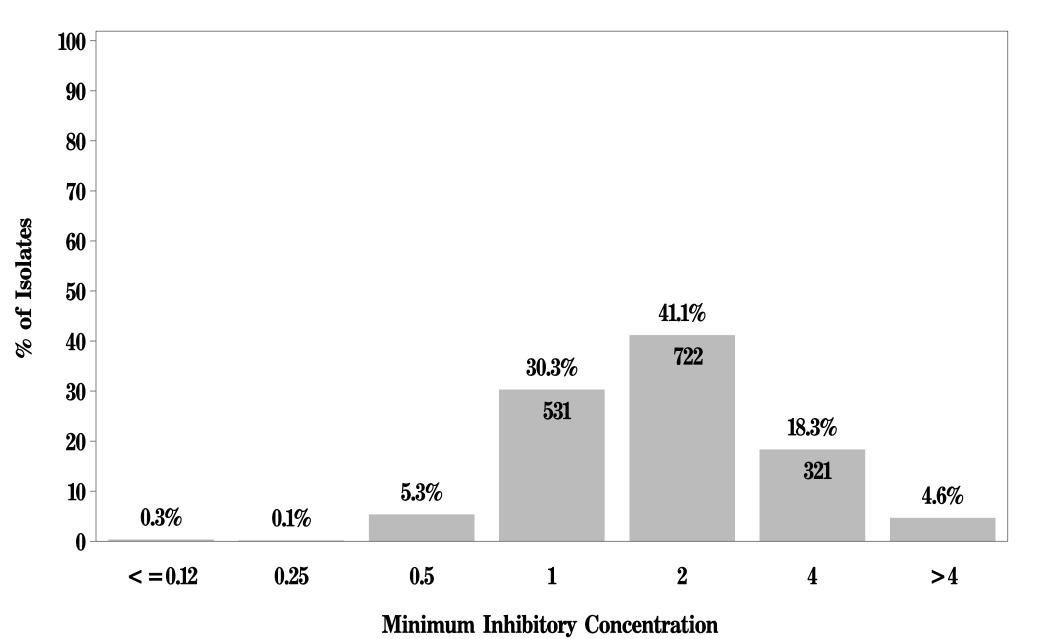


Figure 13d: Minimum Inhibitory Concentration of Daptomycin for *Enterococcus* (N=1755 Isolates)

Breakpoint: Susceptible $< = 4 \mu g/mL$

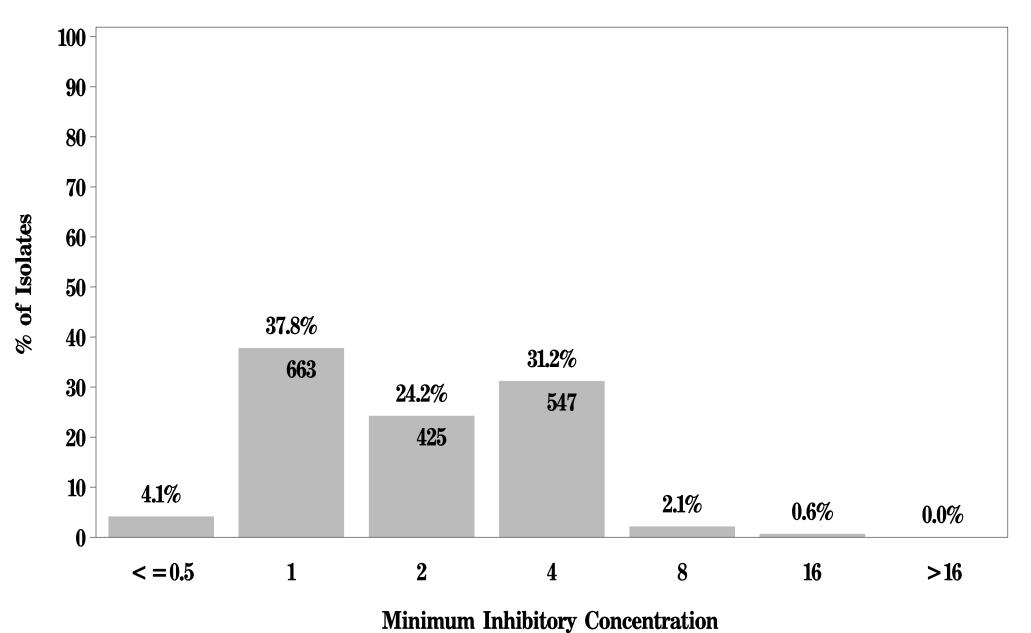


Figure 13e: Minimum Inhibitory Concentration of Erythromycin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 0.5 \mu g/mL$ Resistant $> = 8 \mu g/mL$

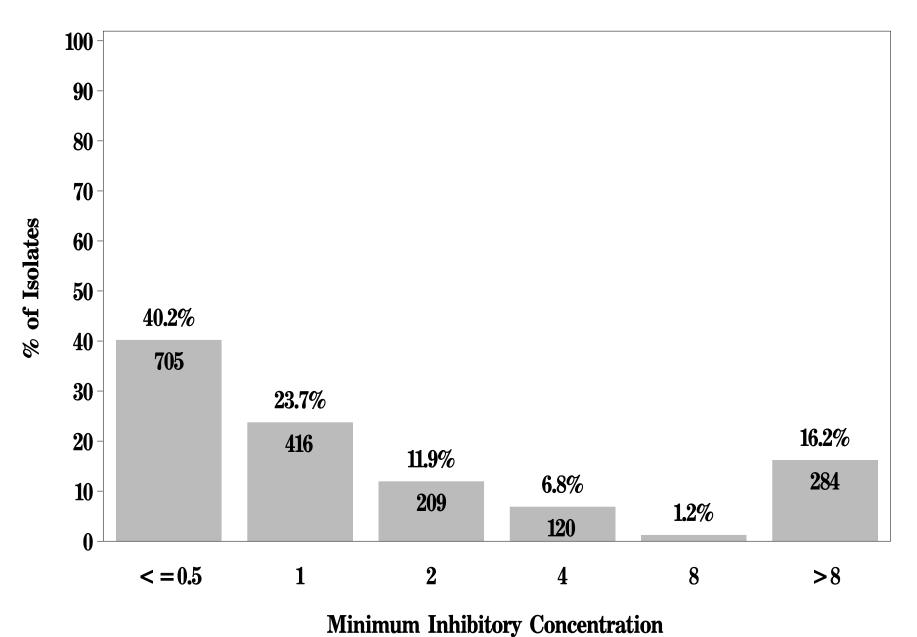


Figure 13f: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

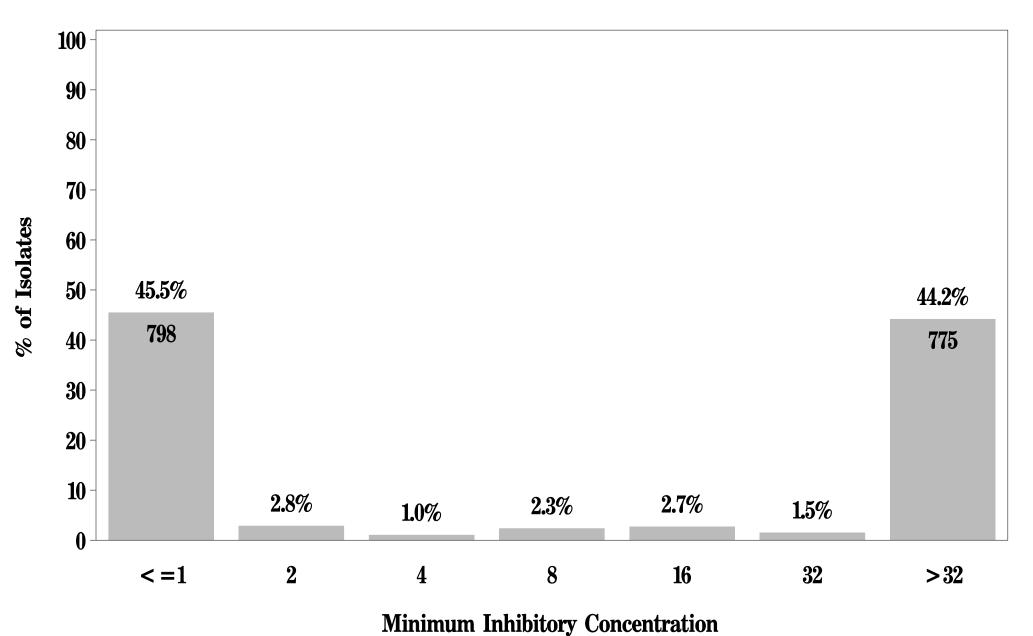


Figure 13g: Minimum Inhibitory Concentration of Gentamicin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 500 \mu g/mL$ Resistant $> = 500 \mu g/mL$

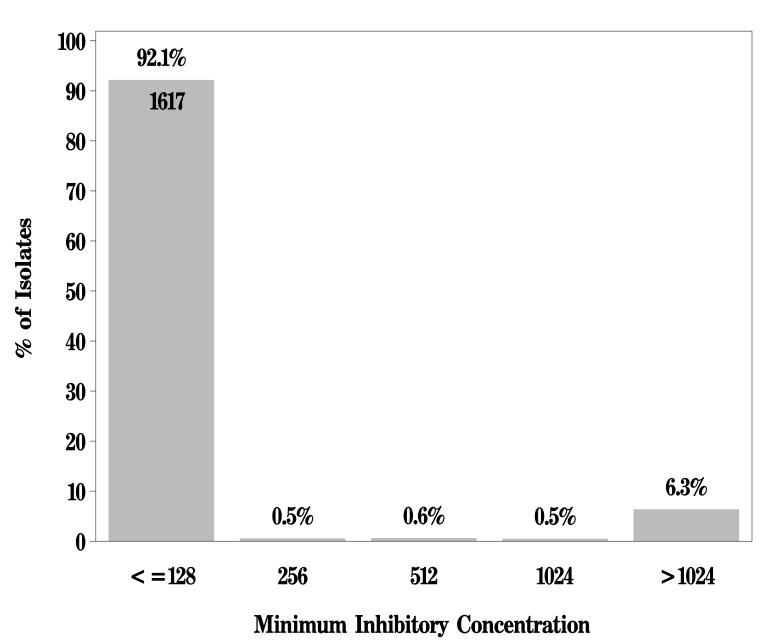
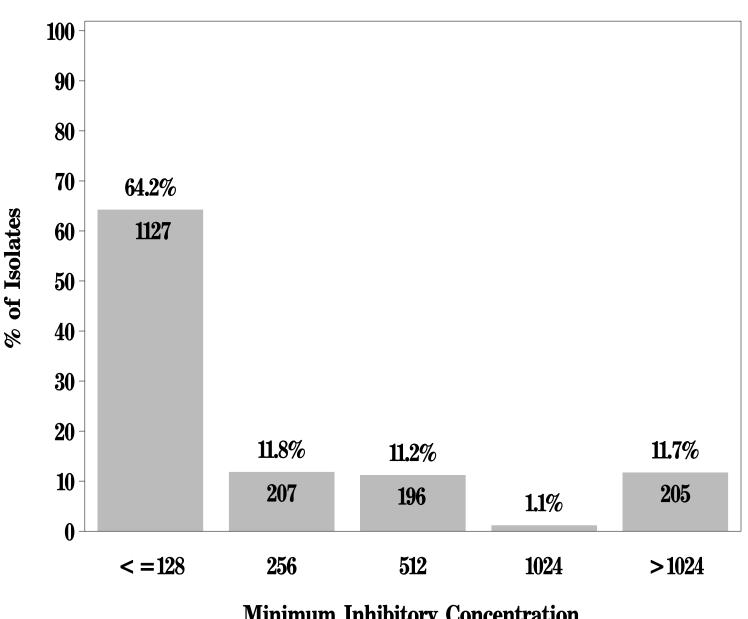



Figure 13h: Minimum Inhibitory Concentration of Kanamycin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 128 \mu g/mL$ Resistant $> = 512 \mu g/mL$

Minimum Inhibitory Concentration

Figure 13i: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

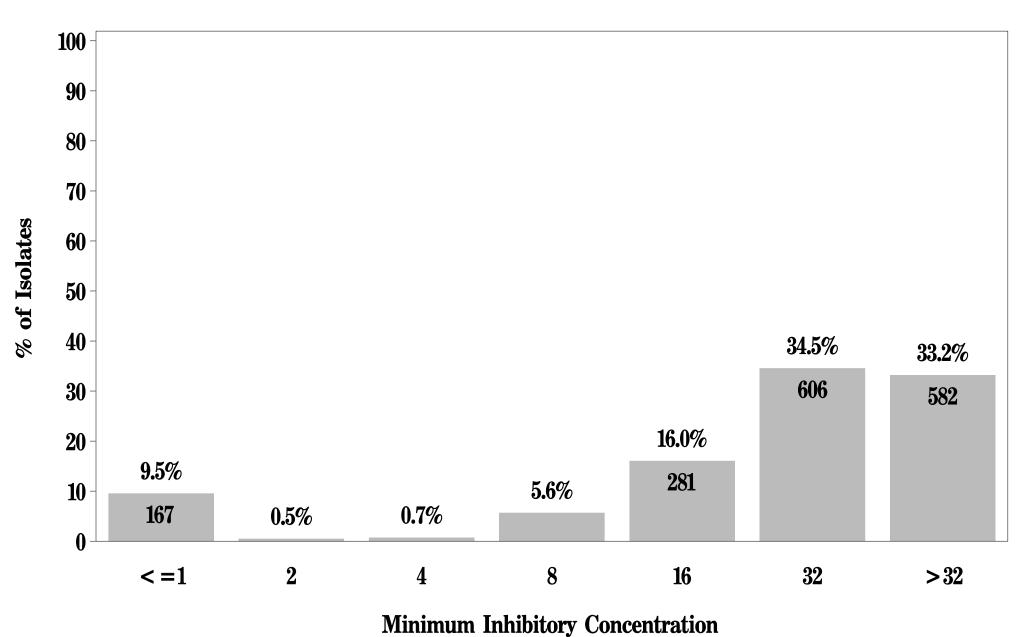


Figure 13j: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

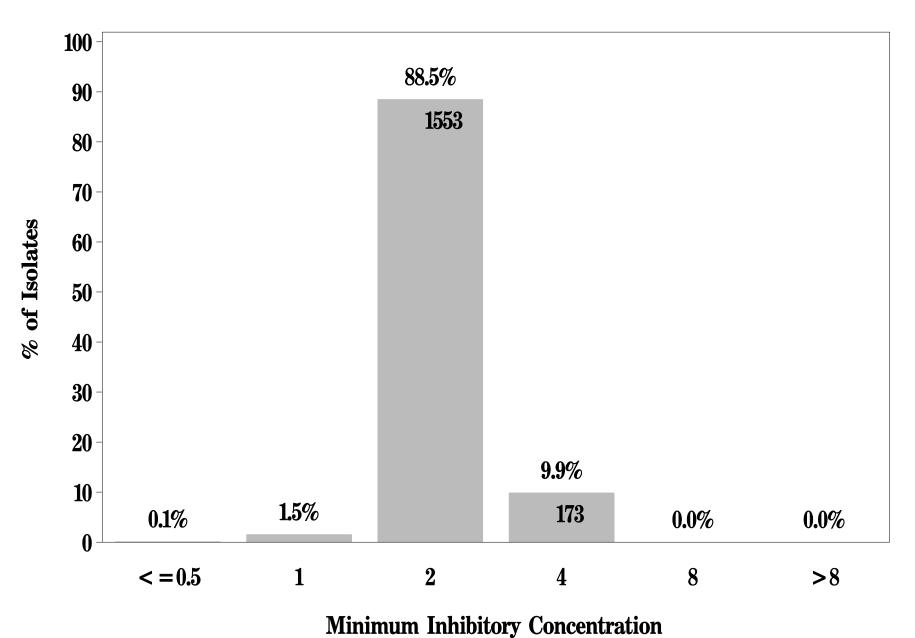


Figure 13k: Minimum Inhibitory Concentration of Nitrofurantoin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 128 \mu g/mL$

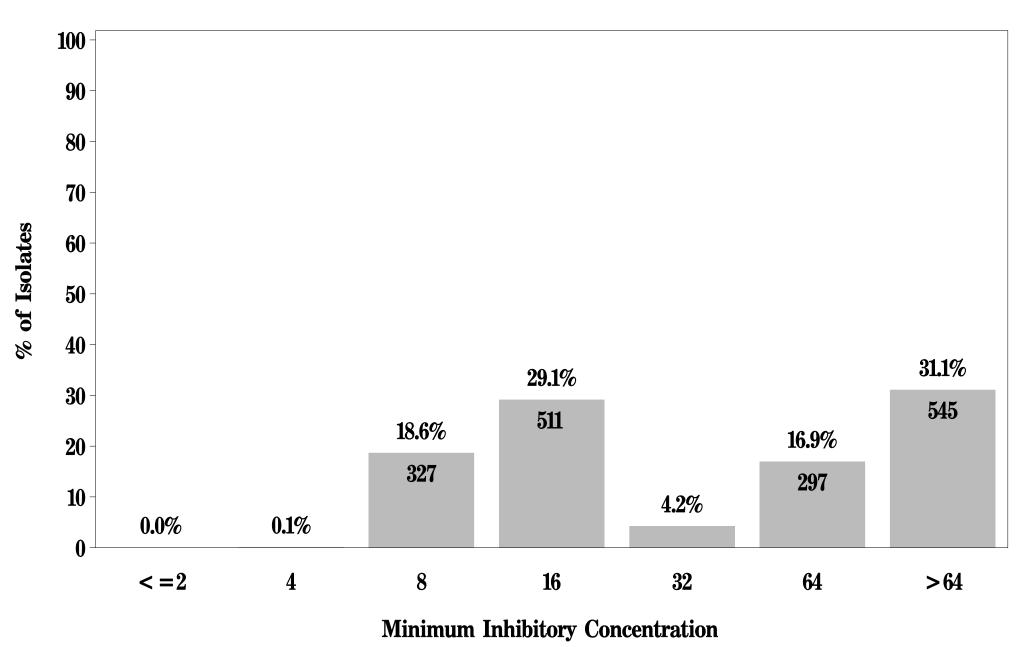


Figure 13l: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 16 \mu g/mL$

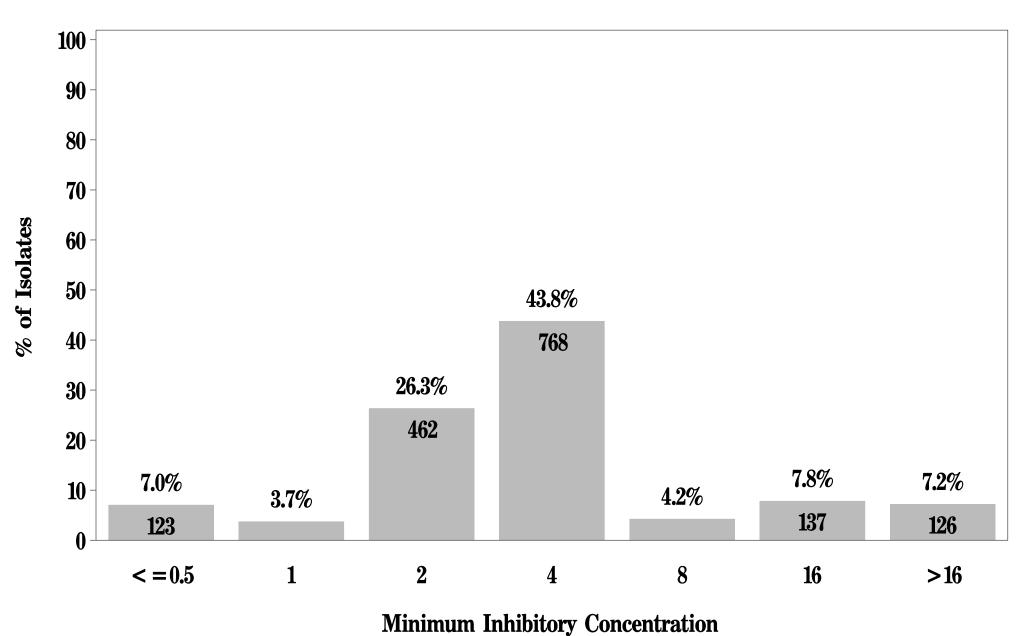
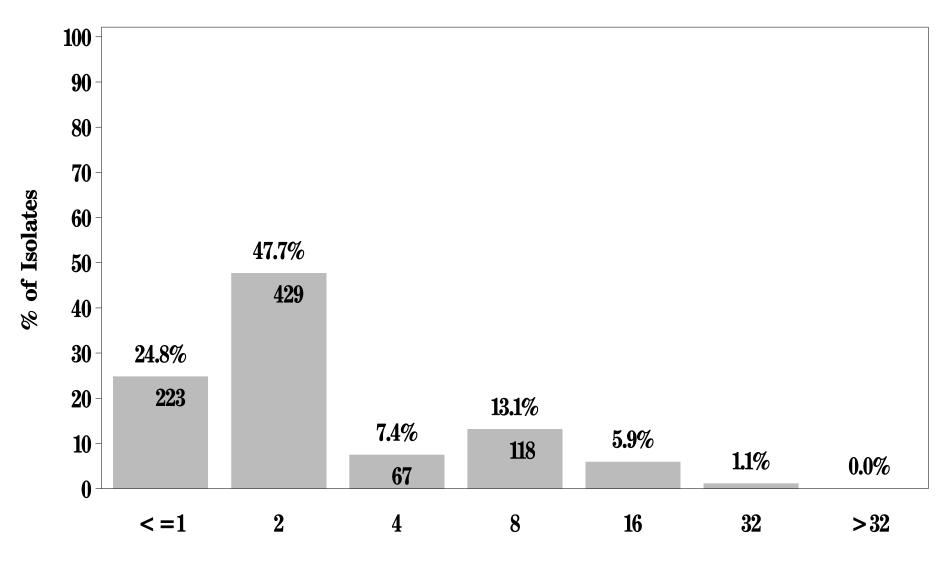



Figure 13m: Minimum Inhibitory Concentration of Quinupristin – dalfopristin* for *Enterococcus* (N = 900 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

Minimum Inhibitory Concentration

*Presented for all species except E. faecalis (N=1755-855=900)

Figure 13n: Minimum Inhibitory Concentration of Streptomycin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 1000 \mu g/mL$ Resistant $> = 1000 \mu g/mL$

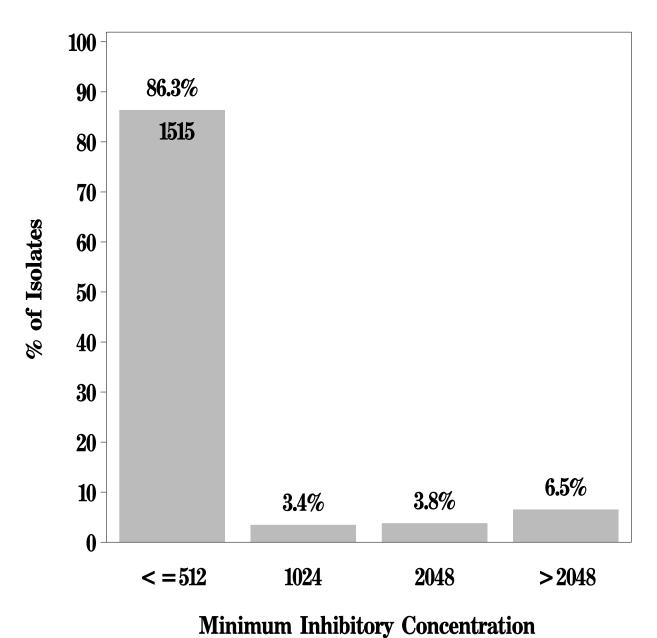


Figure 13o: Minimum Inhibitory Concentration of Tetracycline for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

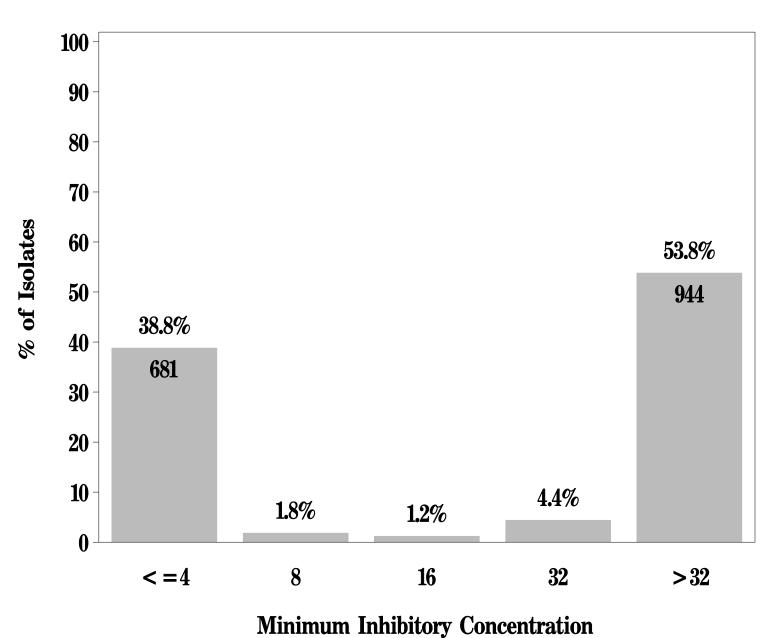
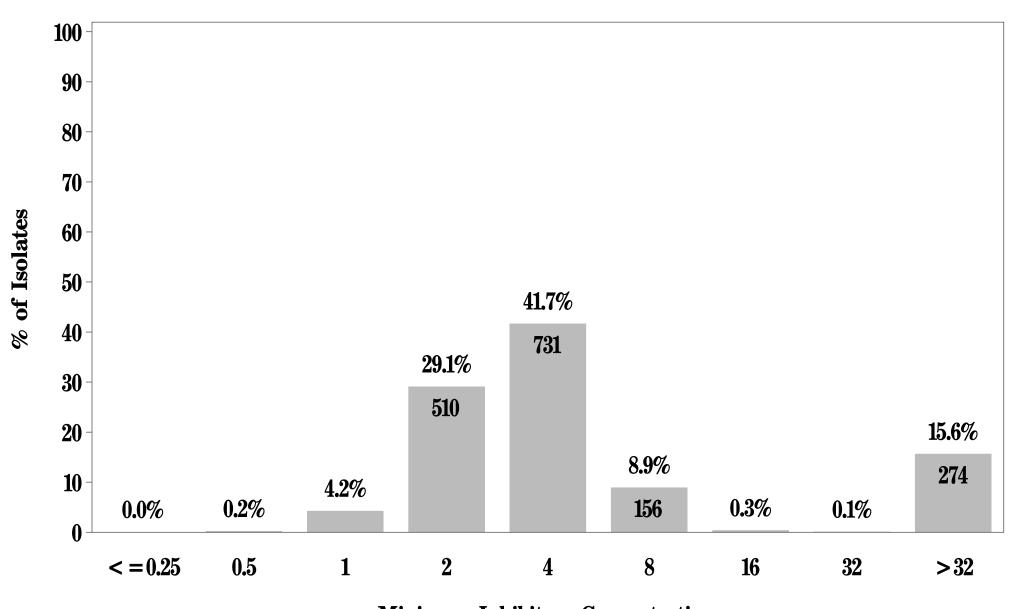



Figure 13p: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 13q: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* (N=1755 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 32 \mu g/mL$

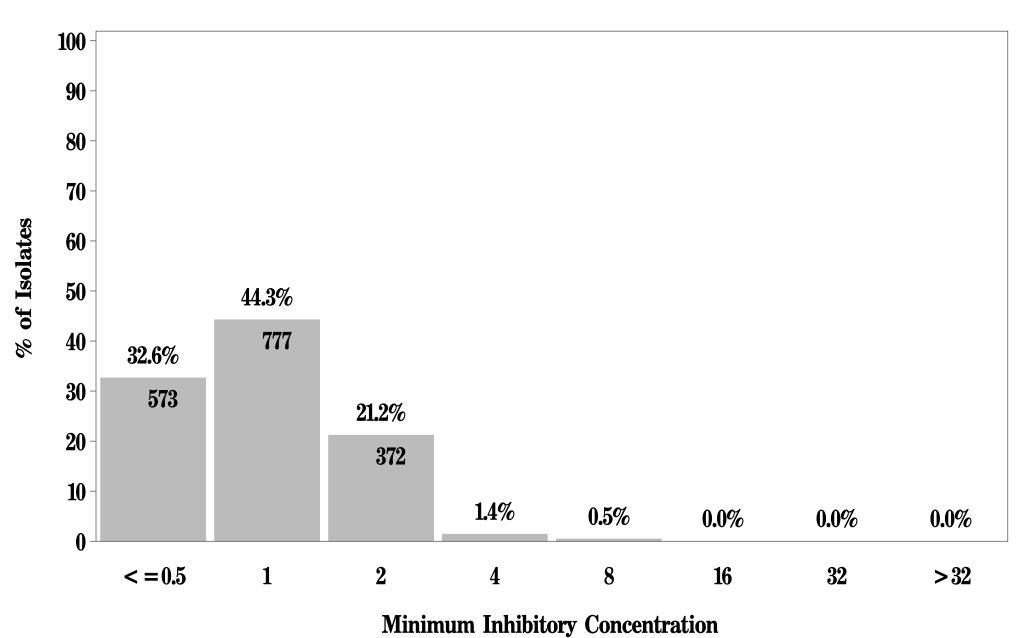


Table 31. Antimicrobial Resistance among *Enterococcus* by Meat Type for all Sites, 2004

Antimicrobial Agent	Chicl Brea (N=4	ast	Grou Turk (N=4	key	Groun Bee (N=43	f	Cł	ork 10p (426)
	n	%	n	%	n	%	n	%
Lincomycin	313	67.2%*	376	86.0%	234	52.2%	265	65.6%
Quinupristin-Dalfopristin ^{†‡}	113	29.9%	111	62.7%	19	7.5%	5	5.5%
Tetracycline	229	49.1%	380	87.0%	136	30.4%	297	73.5%
Bacitracin	376	80.7%	350	80.1%	149	33.3%	118	29.2%
Flavomycin	319	68.5%	156	35.7%	239	53.3%	87	21.5%
Nitrofurantoin	305	65.5%	118	27.0%	90	20.1%	32	7.9%
Kanamycin	162	34.8%	179	41.0%	61	13.6%	19	4.7%
Ciprofloxacin	190	40.8%	108	24.7%	71	15.8%	33	8.2%
Erythromycin	79	17.0%	162	37.1%	29	6.5%	35	8.7%
Tylosin	70	15.0%	151	34.6%	23	5.1%	31	7.7%
Penicillin	144	30.9%	106	24.3%	6	1.3%	7	1.7%
Streptomycin	53	11.4%	129	29.5%	24	5.4%	34	8.4%
Gentamicin	33	7.1%	88	20.1%	2	0.4%	6	1.5%
Daptomycin	14	3.0%	13	3.0%	21	4.7%	0	0.0%
Chloramphenicol	0	_§	0	-	2	0.4%	2	0.5%
Linezolid,	0	-	0	-	0	-	0	-
Vancomycin	0	-	0	-	0	-	0	-

^{*} Where % Resistance = (# isolates per meat type resistant to antimicrobial) / (total # isolates per meat type).

[†] Data presented for all species except *E. faecalis*, which is considered intrinsically resistant to Quinupristin-Dalfopristin.

[‡] Number of *E. faecalis* in CB = 88, GT = 260, GB = 194, PC = 313.

[§] Dashes indicate 0.0% resistance to antimicrobial.

Figure 14a. MIC Distribution among Enterococcus from Chicken Breast

Enterococcus from Chicken Breast (N=466)								Distrib	ution ((%) of 1	MICs (in μg/i	ml)							
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>2048
Bacitracin*	80.7										2.8	1.5	1.7	13.3	16.5	64.2				
Chloramphenicol	0.0									4.7	88.4	6.9								
Ciprofloxacin	40.8				0.2	0.4	4.9	13.1	40.6	32.6	8.2									
Daptomycin*	§						0.4	14.8	24.7	57.1	2.1	0.9								
Erythromycin	17.0						38.0	18.9	18.9	7.3	1.7	15.2								
Tylosin*	15.0																			
Gentamicin	7.1														92.3	0.6	1.1	0.6	5.4	
Kanamycin*	34.8														41.0	24.2	23.0	2.6	9.2	
Streptomycin*	11.4																88.6	3.4	4.1	3.9
Lincomycin*	67.2							13.1		0.2	1.9	17.6	12.9	54.3						
Linezolid	0.0							1.1	87.8	11.2										
Nitrofurantoin	65.5										4.7	13.1	2.8	13.9	65.5					
Flavomycin*	68.5							18.2	0.6	1.5	5.6	5.6	3.4	65.0						
Penicillin	30.9						1.1	3.0	20.4	35.6	9.0	16.5	14.4							
Tetracycline	49.1									45.3	5.6	2.1	3.2	43.8						
Quinupristin/Dalfopristin↑	29.9							27.5	42.6	6.3	18.5	5.0								
Vancomycin	0.0						47.6	36.1	15.7	0.6										

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2004 isolates.

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

[↑] Presented for all species except *E. faecalis* in QDA (n=466-88= 378 non *E. faecalis*)

[§]Absence of resistant strains precludes defining any results category other than "susceptible."

Figure 14b. MIC Distribution among Enterococcus from Ground Turkey

Enterococcus from Ground Turkey (N=437)								Distrib	ution (%) of I	MICs (in μg/ı	nl)							
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>2048
Bacitracin*	80.1										0.5	0.9	2.7	15.8	12.8	67.3				
Chloramphenicol	0.0								0.5	3.7	85.1	10.8								
Ciprofloxacin	24.7					0.2	3.7	25.4	46.0	19.5	5.3									
Daptomycin*	§						5.9	47.1	16.9	27.0	2.7	0.2								
Erythromycin	37.1						34.6	21.3	5.7	1.4	1.1	35.9								
Tylosin*	34.6						0.2	3.9	21.7	34.8	4.8		0.2	34.3						
Gentamicin	20.1														79.4	0.5	0.7	0.5	18.9	
Kanamycin*	41.0														49.4	9.6	9.2	0.9	30.9	
Streptomycin*	29.5																70.5	6.6	5.7	17.1
Lincomycin*	86.0							4.3	0.5	0.5	0.7	8.0	30.0	56.1						
Linezolid	0.0						0.2	2.3	90.8	6.6										
Nitrofurantoin	27.0										29.3	28.8	1.1	13.7	27.0					
Flavomycin*	35.7							55.8	2.1	1.1	2.7	2.5	0.9	34.8						
Penicillin	24.3						1.1	0.9	26.1	43.5	4.1	11.9	12.4							
Tetracycline	87.0									12.8	0.2	0.9	3.2	82.8						
Quinupristin/Dalfopristin↑	62.7							14.7	22.6	11.3	26.6	19.2	5.6							
Vancomycin	0.0						22.7	46.0	28.6	1.8	0.9									

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2004 isolates.

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

[↑] Presented for all species except *E. faecalis* in QDA (n=437-260= 177 non *E. faecalis*)

[§]Absence of resistant strains precludes defining any results category other than "susceptible."

Figure 14c. MIC Distribution among Enterococcus from Ground Beef

Enterococcus from Ground Beef (N=448)]	Distrib	oution ((%) of	MICs	(in μg/	/ml)							
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>2048
Bacitracin*	33.3										20.1	4.2	13.4	29.0	21.2	12.1				
Chloramphenicol	0.4									6.5	88.6	4.5	0.4							
Ciprofloxacin	15.8					0.2	7.8	37.9	38.2	13.2	2.7									
Daptomycin*	§						2.9	34.6	33.3	24.6	3.3	1.3								
Erythromycin	6.5						46.7	23.0	13.2	10.7	0.9	5.6								
Tylosin*	5.1							6.7	39.1	38.6	9.4	1.1		5.1						
Gentamicin	0.4														99.1	0.4		0.2	0.2	
Kanamycin*	13.6														78.1	8.3	9.2	0.4	4.0	
Streptomycin*	5.4																94.6	2.0	1.1	2.2
Lincomycin*	52.2							13.6	0.9	1.1	8.3	23.9	44.9	7.4						
Linezolid	0.0						0.2	0.4	87.7	11.6										
Nitrofurantoin	20.1									0.2	15.4	27.9	8.7	27.7	20.0					
Flavomycin*	53.3							39.5	3.6	1.1	0.4	2.0	1.1	52.2						
Penicillin	1.3						14.1	8.5	27.7	45.8	2.7	0.4	0.9							
Tetracycline	30.4									69.4	0.2	0.9	5.8	23.7						
Quinupristin/Dalfopristin↑	7.5							29.1	63.4	7.5										
Vancomycin	0.0						43.1	38.8	16.1	1.3	0.7									

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2004 isolates.

§Absence of resistant strains precludes defining any results category other than "susceptible."

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

[↑] Presented for all species except *E. faecalis* in QDA (n=448-194= 254 non *E. faecalis*)

Figure 14d. MIC Distribution among Enterococcus from Pork Chops

Enterococcus from Pork Chops (N=404)								Distrib	ution (%) of	MICs (in μg	ml)							
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>2048
Bacitracin*	29.2										5.4	5.9	12.9	46.5	19.3	9.9				
Chloramphenicol	0.5									3.2	91.3	5.0	0.2	0.2						
Ciprofloxacin	8.2					0.5	4.7	46.8	39.9	6.2	2.0									
Daptomycin*	§						7.7	57.7	21.5	13.1										
Erythromycin	8.7						41.6	32.7	9.1	7.9	1.0	7.7								
Tylosin*	7.7						0.5	4.0	30.2	49.2	7.4	0.2	7.7							
Gentamicin	1.5														98.0	0.5	0.5	0.5	0.5	
Kanamycin*	4.7														91.6	3.7	1.9	0.5	2.2	
Streptomycin*	8.4																91.5	1.5	4.2	2.7
Lincomycin*	65.6							6.4	0.5	1.0	12.3	14.1	53.0	12.6						
Linezolid	0.0							2.5	87.6	9.9										
Nitrofurantoin	7.9										26.7	49.3	4.2	11.6	7.9					
Flavomycin*	21.5							72.3	5.4	0.2	0.2	0.2	0.2	21.2						
Penicillin	1.7						12.4	2.2	31.9	51.2	0.5	1.5	0.2							
Tetracycline	73.5									25.4	1.0	0.7	5.4	67.3						
Quinupristin/Dalfopristin↑	5.5							20.9	73.6	4.4	1.1									
Vancomycin	0.0						14.6	57.9	25.2	2.0	0.2									

Unshaded areas indicate the dilution ranges of the Sensititre plate used to test the 2003 isolates.

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

[↑] Presented for all species except E. faecalis in QDA (n=404-313=91 non E. faecalis)

[§]Absence of resistant strains precludes defining any results category other than "susceptible."

Figure 15a: Minimum Inhibitory Concentration of Bacitracin for *Enterococcus* in Chicken Breast (N=466 Isolates)

Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 128 \mu g/mL$

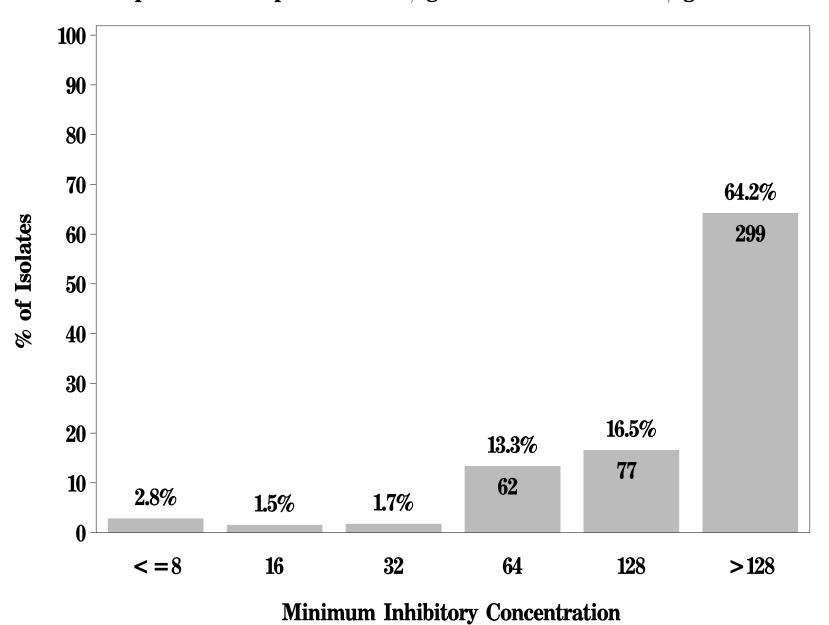
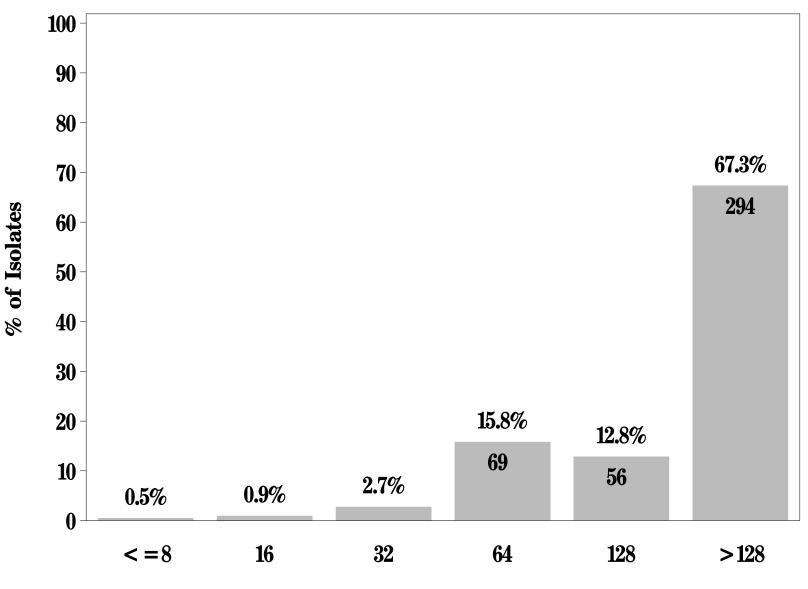
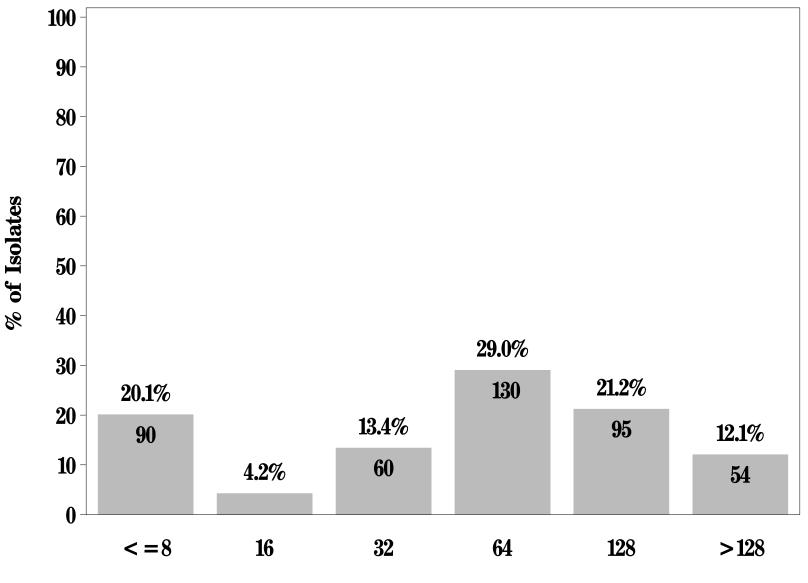



Figure 15a: Minimum Inhibitory Concentration of Bacitracin for *Enterococcus* in Ground Turkey (N=437 Isolates)


Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 128 \mu g/mL$

Minimum Inhibitory Concentration

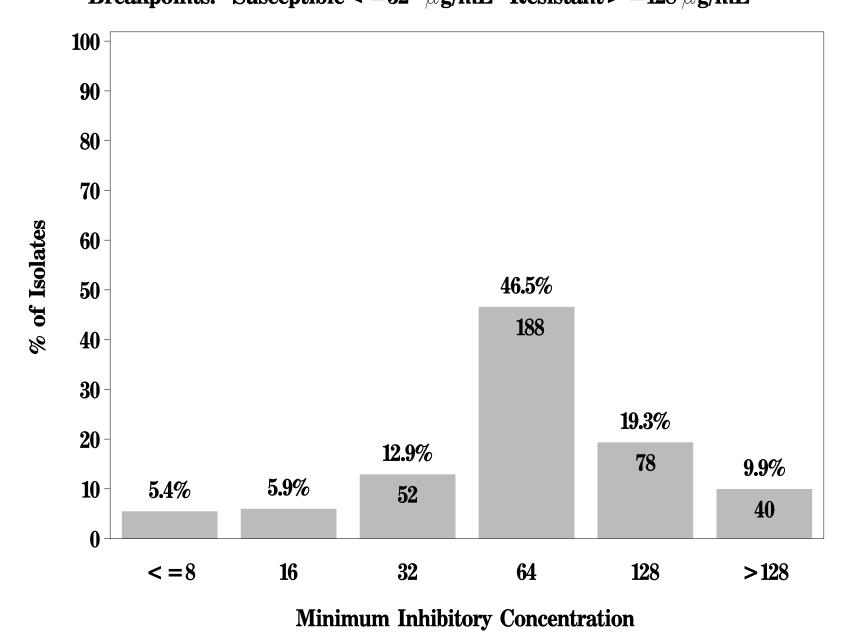
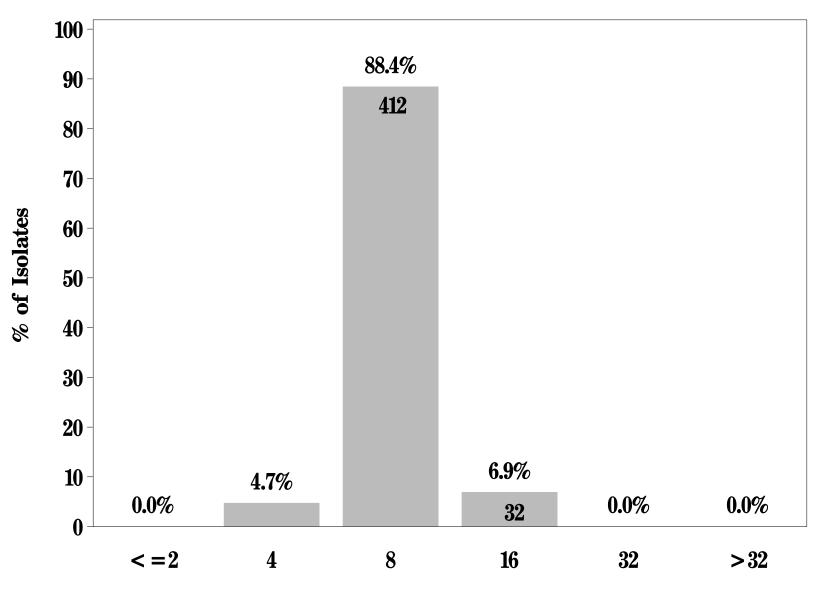
Figure 15a: Minimum Inhibitory Concentration of Bacitracin for *Enterococcus* in Ground Beef (N=448 Isolates)

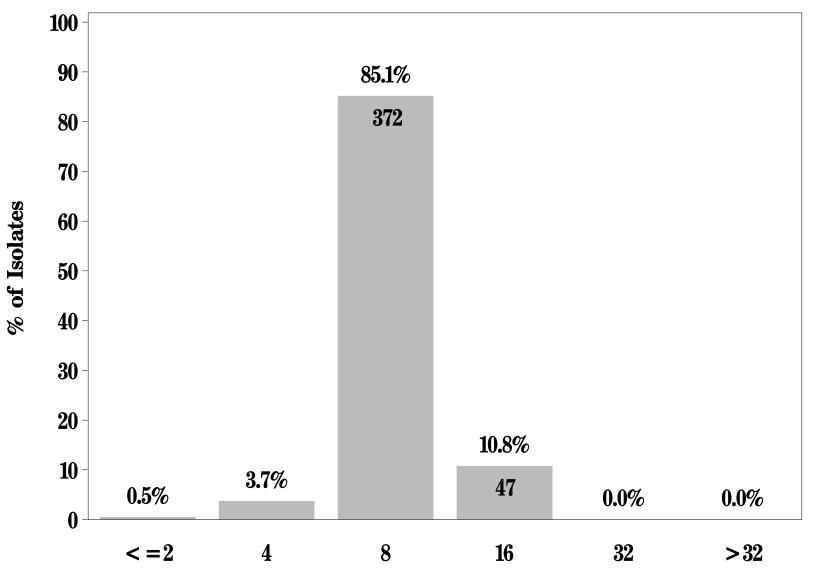
Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 128 \mu g/mL$

Minimum Inhibitory Concentration

Figure 15a: Minimum Inhibitory Concentration of Bacitracin for *Enterococcus* in Pork Chop (N=404 Isolates)

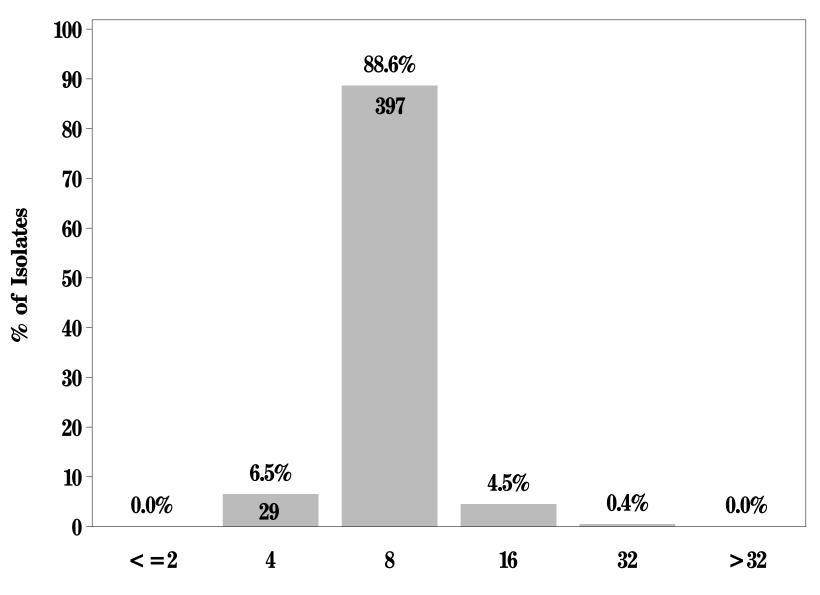
Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 128 \mu g/mL$


Figure 15b: Minimum Inhibitory Concentration of Chloramphenicol for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < =8 μ g/mL Resistant > =32 μ g/mL

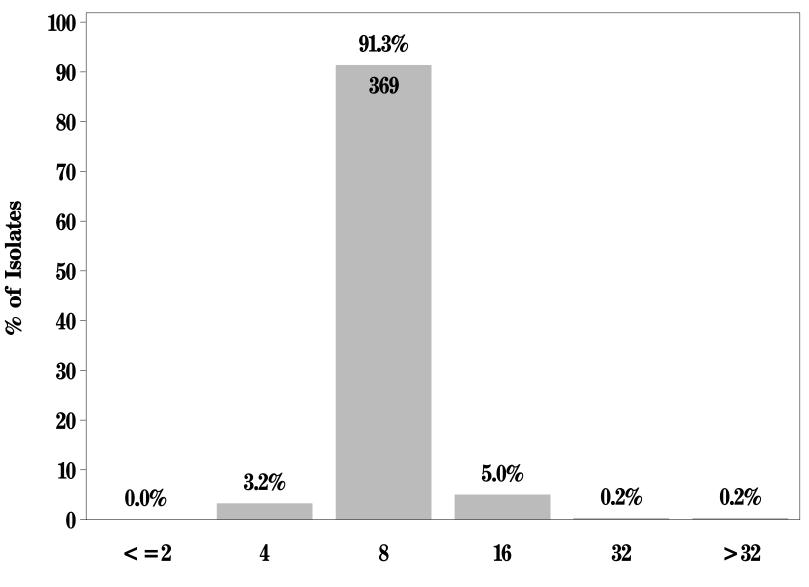
Minimum Inhibitory Concentration

Figure 15b: Minimum Inhibitory Concentration of Chloramphenicol for *Enterococcus* in Ground Turkey (N=437 Isolates)


Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 15b: Minimum Inhibitory Concentration of Chloramphenicol for *Enterococcus* in Ground Beef (N=448 Isolates)


Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 15b: Minimum Inhibitory Concentration of Chloramphenicol for *Enterococcus* in Pork Chop (N=404 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 15c: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Chicken Breast (N=466 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

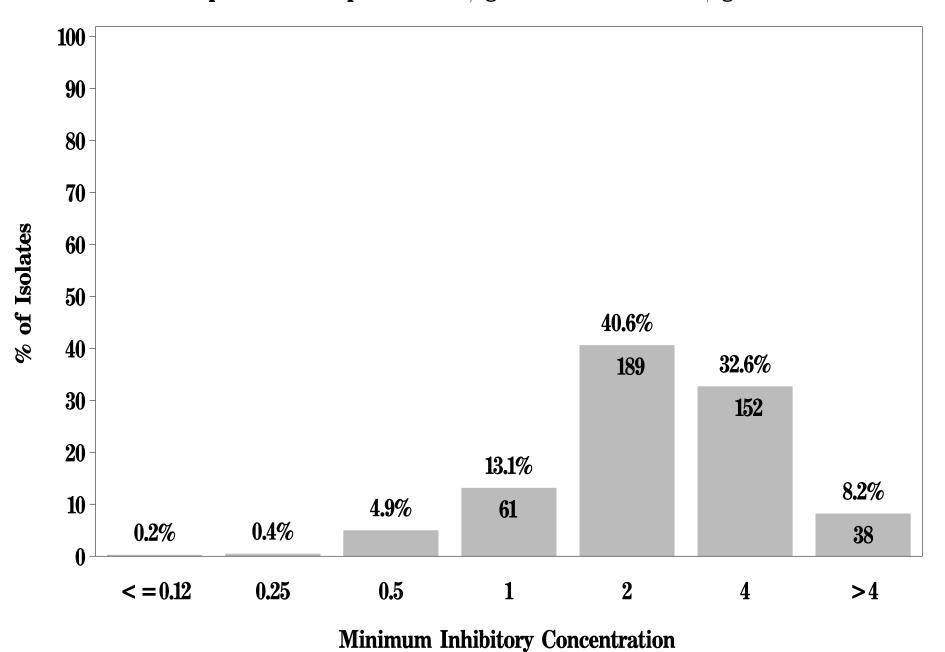
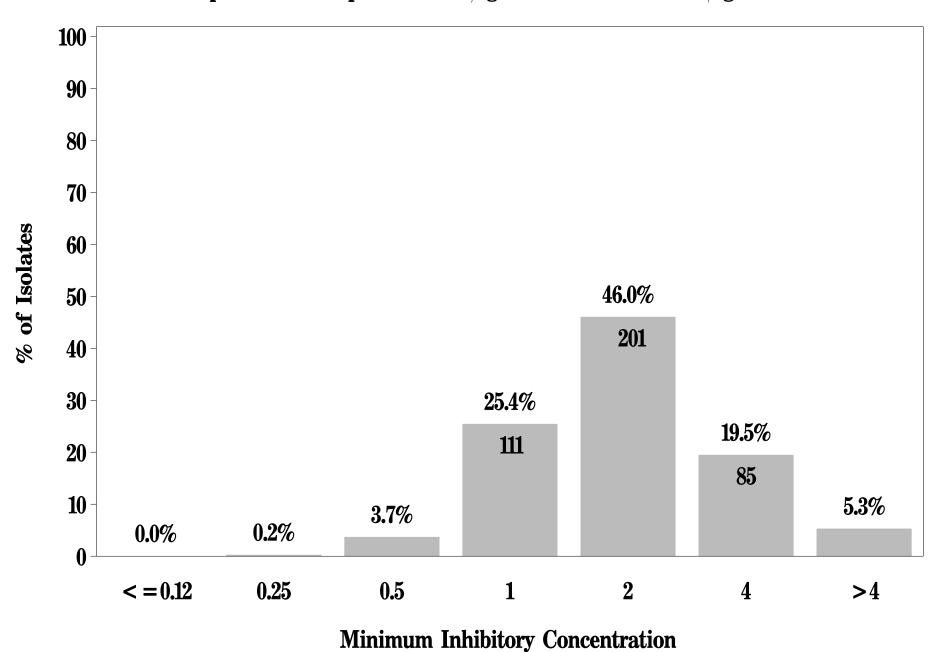



Figure 15c: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Ground Turkey (N=437 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

NARMS

Figure 15c: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Ground Beef (N=448 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

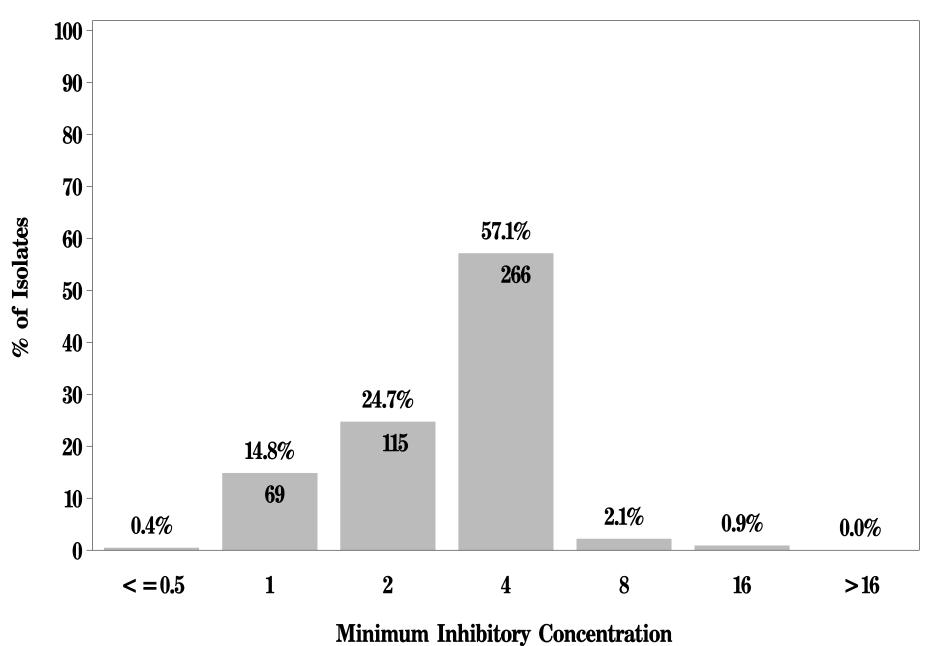
100 90 80 **70** % of Isolates **60 50** 37.9% 38.2% **40** 171 170 **30** 20 13.2% 7.8% **10 59** 2.7% 0.0% 0.2% 35 0 2 0.25 0.5 < = 0.124 >4

Minimum Inhibitory Concentration

NARMS

Figure 15c: Minimum Inhibitory Concentration of Ciprofloxacin for *Enterococcus* in Pork Chop (N=404 Isolates)

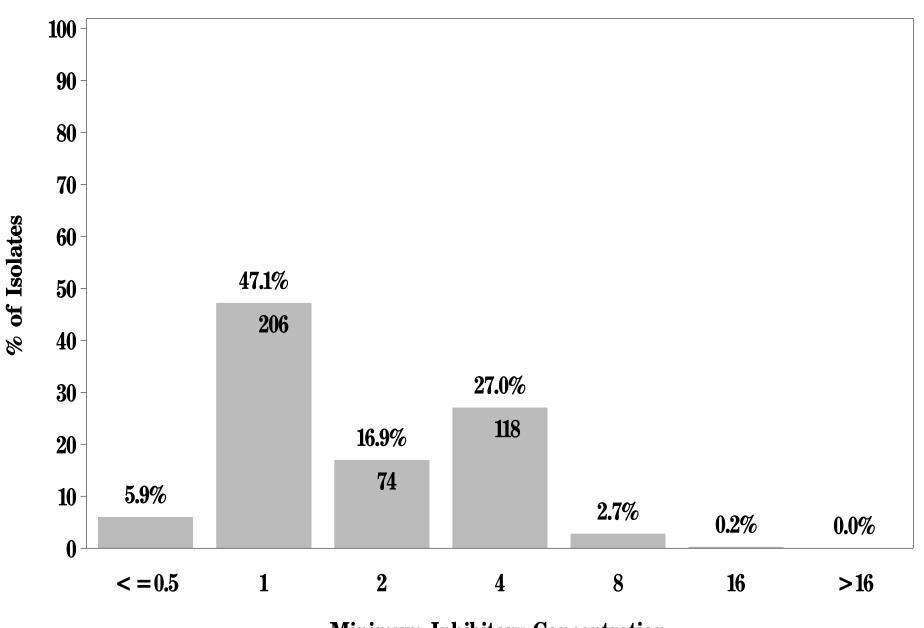
Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$


100 90 80 **70** % of Isolates 60 46.8% **50** -39.9% 189 40 161 30 **20** 6.2% 10 4.7% 2.0% 0.5% 0.0% 0 1 2 0.5 4 < = 0.120.25 >4

Minimum Inhibitory Concentration

NARMS

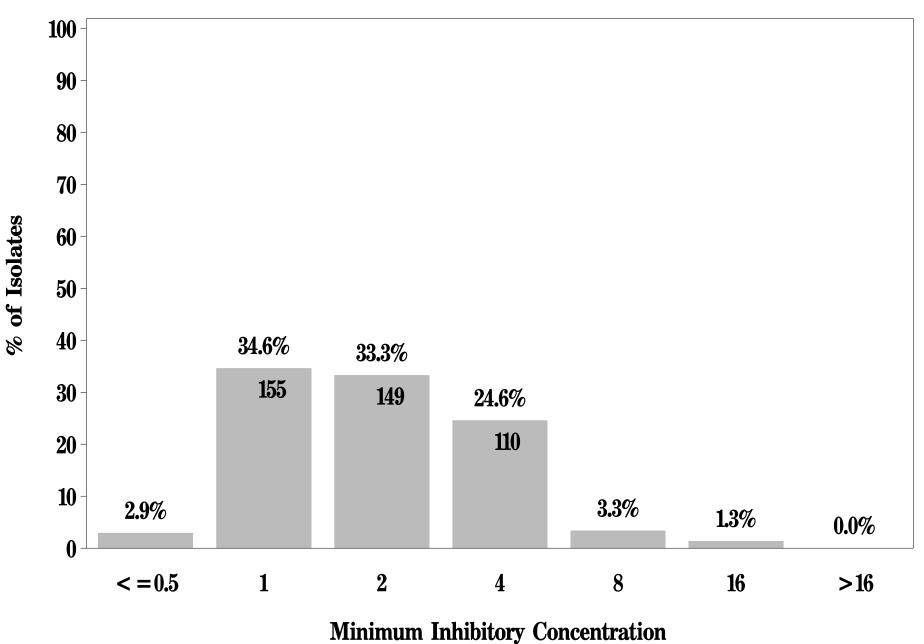
Figure 15d: Minimum Inhibitory Concentration of Daptomycin for *Enterococcus* in Chicken Breast (N=466 Isolates)


Breakpoint: Susceptible $< = 4 \mu g/mL$

NARMS

Figure 15d: Minimum Inhibitory Concentration of Daptomycin for *Enterococcus* in Ground Turkey (N=437 Isolates)

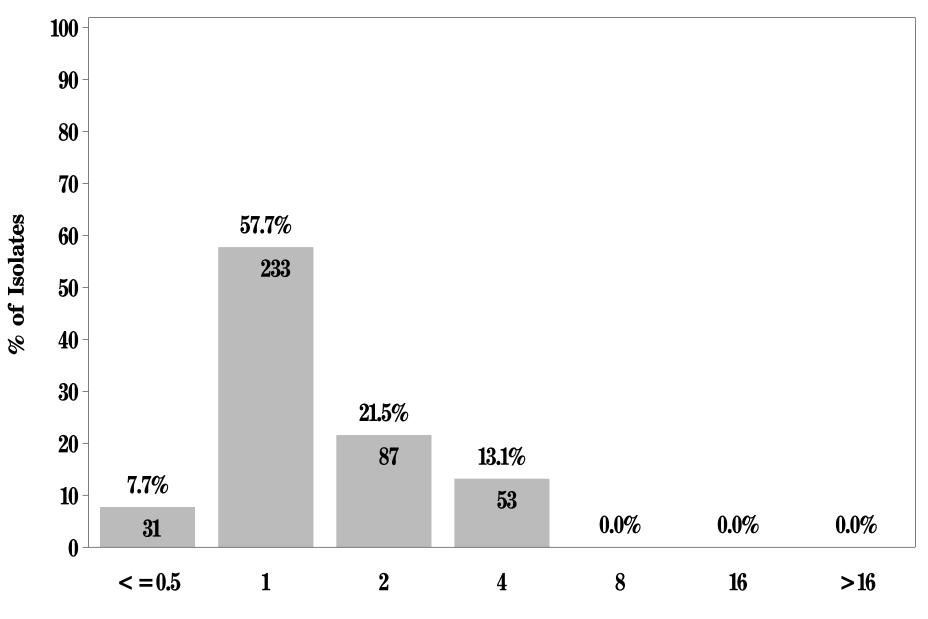
Breakpoint: Susceptible $< = 4 \mu g/mL$



Minimum Inhibitory Concentration

NARMS

Figure 15d: Minimum Inhibitory Concentration of Daptomycin for *Enterococcus* in Ground Beef (N=448 Isolates)


Breakpoint: Susceptible $< = 4 \mu g/mL$

NARMS

Figure 15d: Minimum Inhibitory Concentration of Daptomycin for *Enterococcus* in Pork Chop (N=404 Isolates)

Breakpoint: Susceptible $< =4 \mu \text{ g/mL}$

Minimum Inhibitory Concentration

Figure 15e: Minimum Inhibitory Concentration of Erythromycin for *Enterococcus* in Chicken Breast (N=466 Isolates)

Breakpoints: Susceptible $< = 0.5 \mu \text{g/mL}$ Resistant $> = 8 \mu \text{g/mL}$

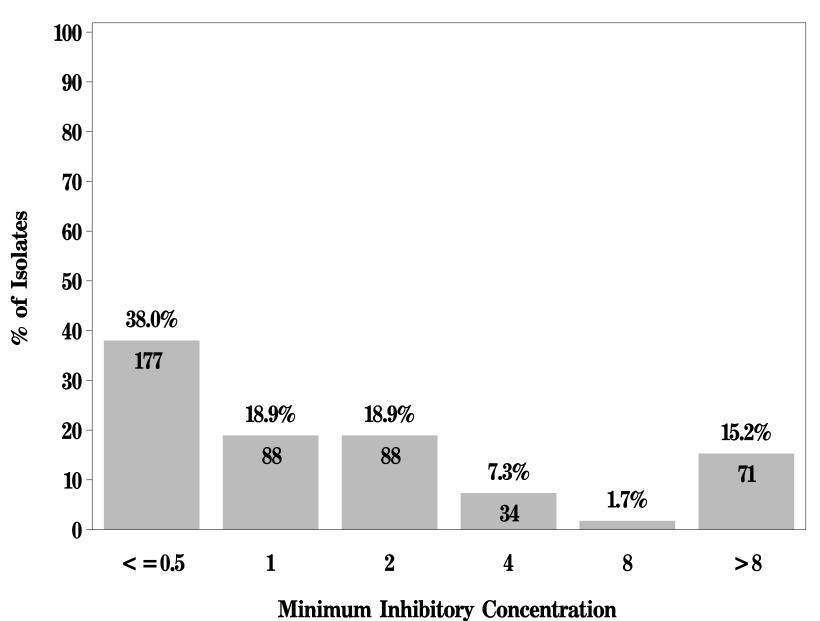


Figure 15e: Minimum Inhibitory Concentration of Erythromycin for *Enterococcus* in Ground Turkey (N=437 Isolates)

Breakpoints: Susceptible $< = 0.5 \mu \text{g/mL}$ Resistant $> = 8 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 15e: Minimum Inhibitory Concentration of Erythromycin for *Enterococcus* in Ground Beef (N=448 Isolates)

Breakpoints: Susceptible $< = 0.5 \mu \text{g/mL}$ Resistant $> = 8 \mu \text{g/mL}$

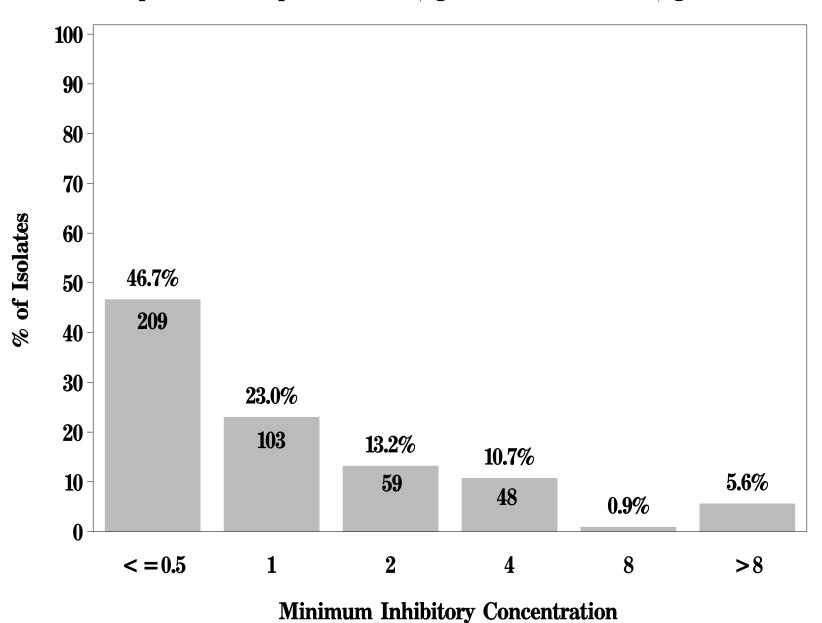
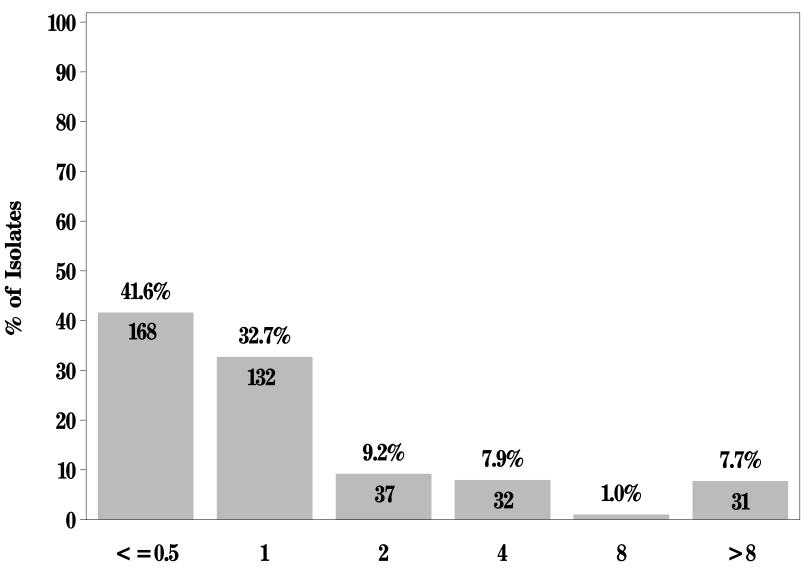



Figure 15e: Minimum Inhibitory Concentration of Erythromycin for *Enterococcus* in Pork Chop (N=404 Isolates)

Breakpoints: Susceptible $< = 0.5 \mu \text{g/mL}$ Resistant $> = 8 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 15f: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

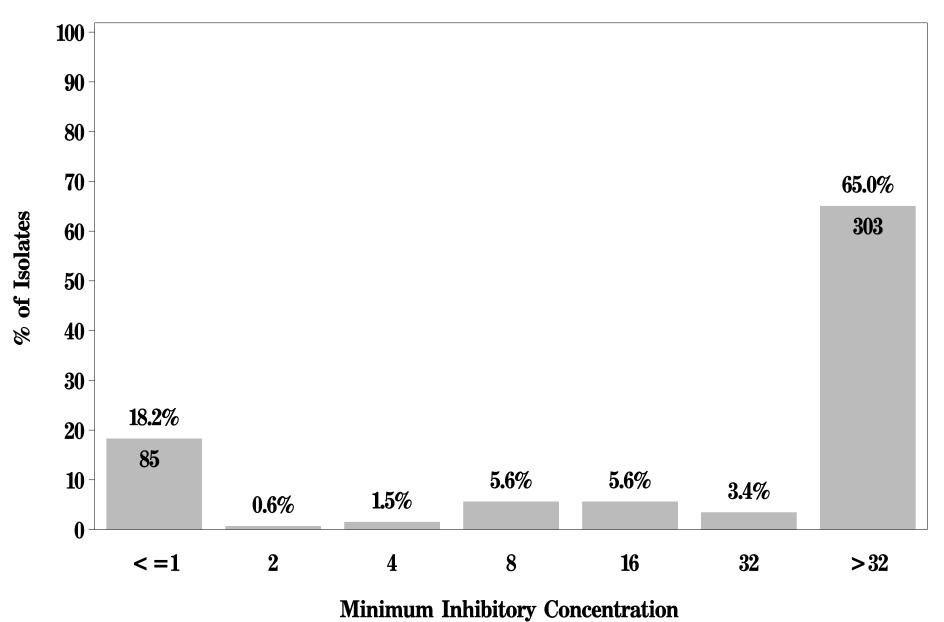


Figure 15f: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* in Ground Turkey (N=437 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

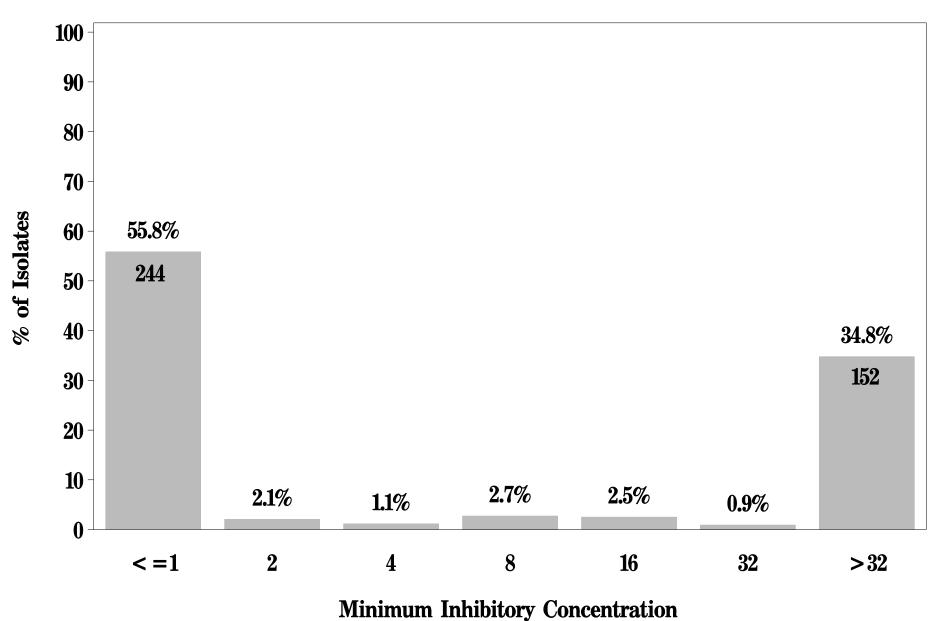


Figure 15f: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* in Ground Beef (N=448 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

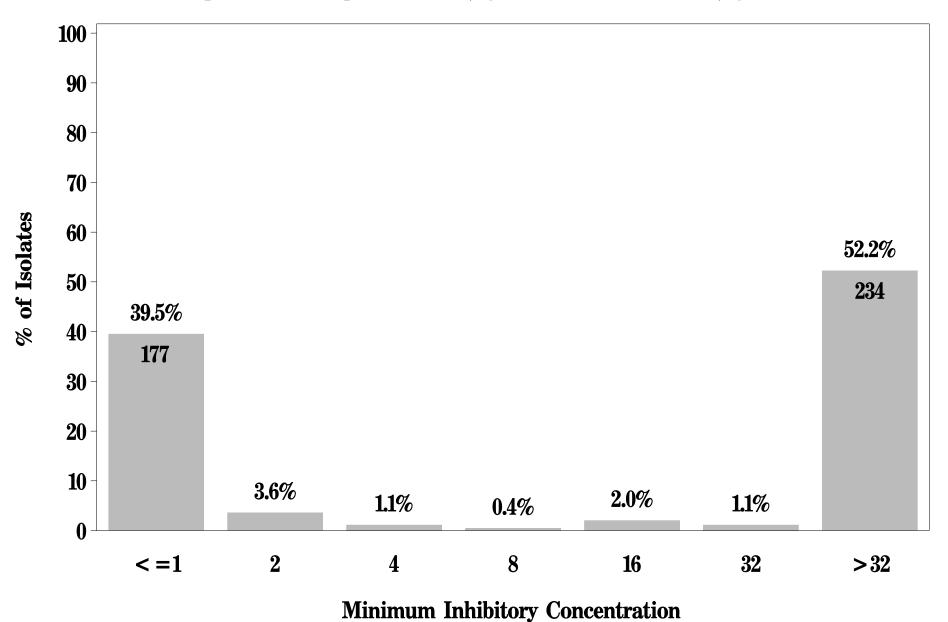
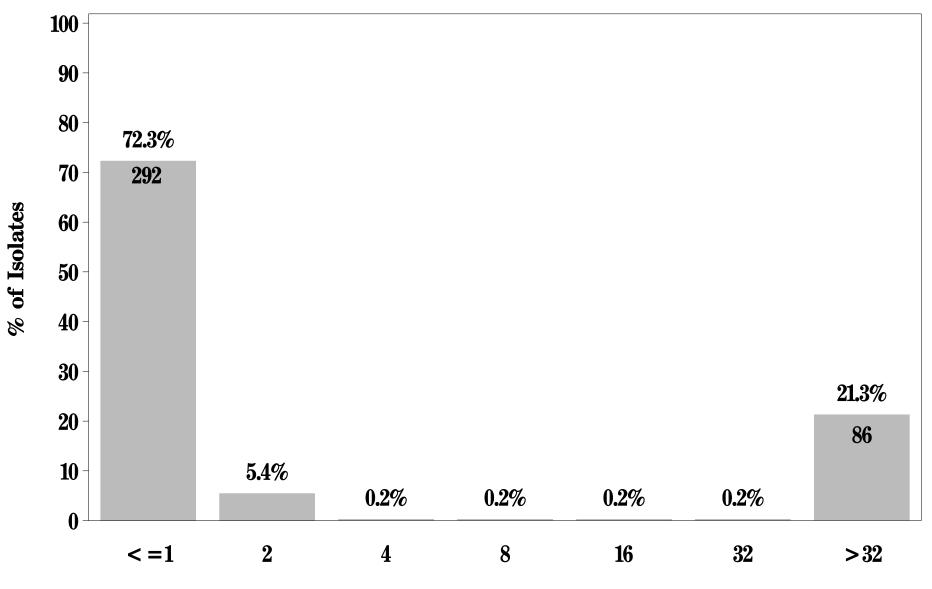



Figure 15f: Minimum Inhibitory Concentration of Flavomycin for *Enterococcus* in Pork Chop (N=404 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 15g: Minimum Inhibitory Concentration of Gentamicin for *Enterococcus* in Chicken Breast (N=466 Isolates)

Breakpoints: Susceptible < = 500 μ g/mL Resistant > = 500 μ g/mL

Minimum Inhibitory Concentration

Figure 15g: Minimum Inhibitory Concentration of Gentamicin for *Enterococcus* in Ground Turkey (N=437 Isolates)
Breakpoints: Susceptible $< = 500 \mu \text{g/mL}$ Resistant $> = 500 \mu \text{g/mL}$

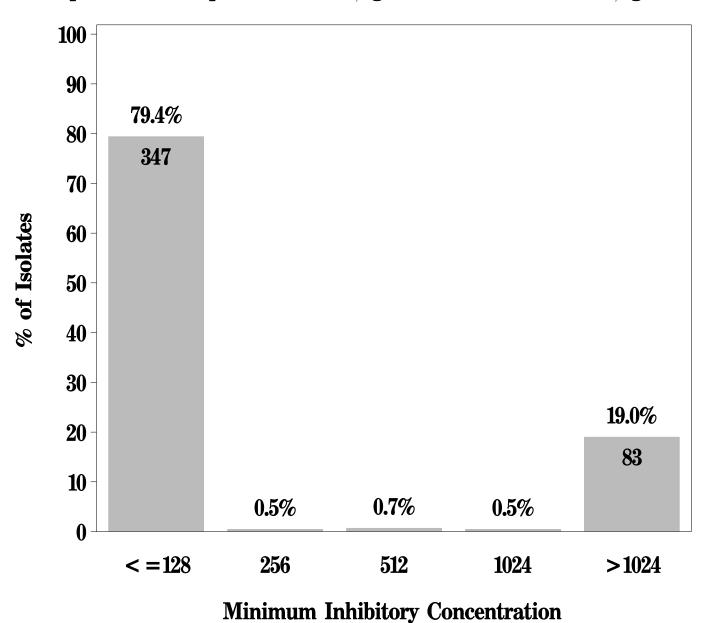
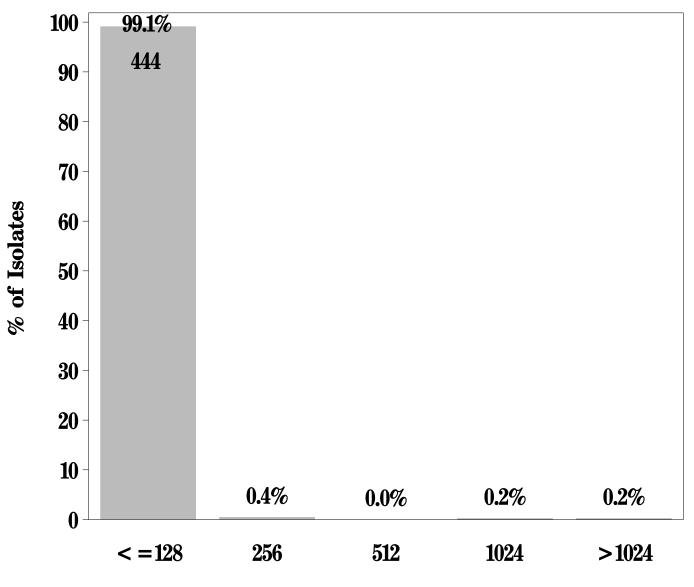
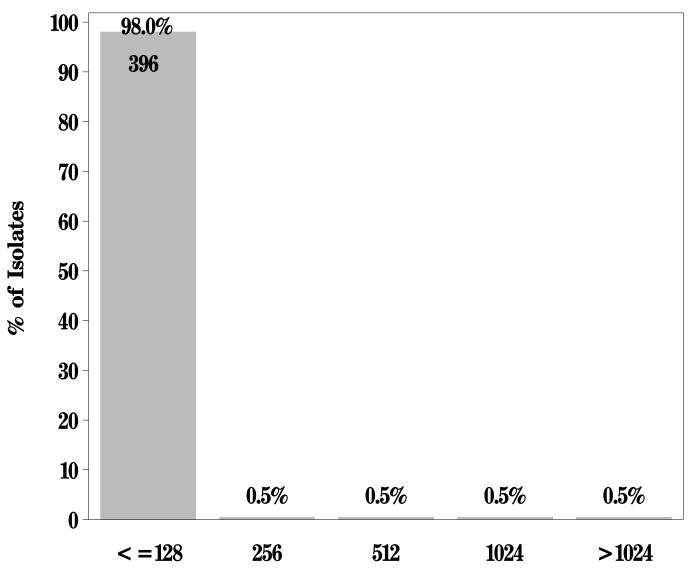
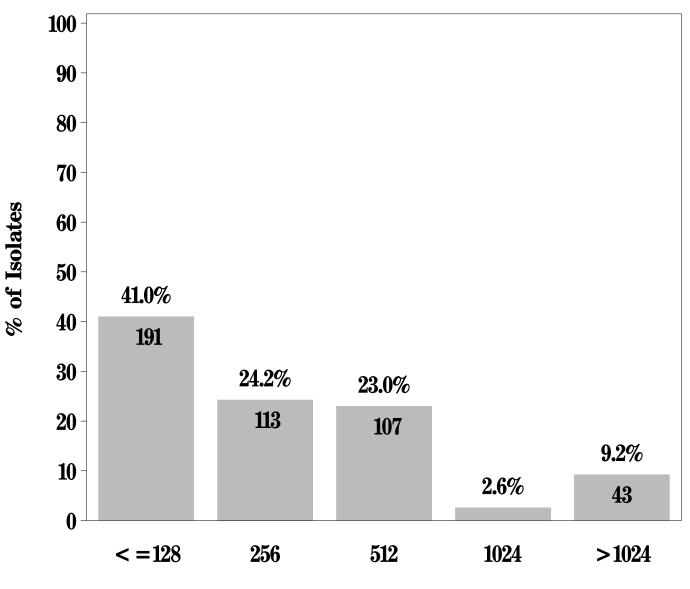



Figure 15g: Minimum Inhibitory Concentration of Gentamicin for *Enterococcus* in Ground Beef (N=448 Isolates)


Breakpoints: Susceptible < = 500 μ g/mL Resistant > = 500 μ g/mL

Minimum Inhibitory Concentration

Figure 15g: Minimum Inhibitory Concentration of Gentamicin for *Enterococcus* in Pork Chop (N=404 Isolates)


Breakpoints: Susceptible $< = 500 \mu \text{g/mL}$ Resistant $> = 500 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 15h: Minimum Inhibitory Concentration of Kanamycin for *Enterococcus* in Chicken Breast (N=466 Isolates)

Breakpoints: Susceptible < = 128 μ g/mL Resistant > = 512 μ g/mL

Minimum Inhibitory Concentration

Figure 15h: Minimum Inhibitory Concentration of Kanamycin for *Enterococcus* in Ground Turkey (N=437 Isolates)
Breakpoints: Susceptible $< = 128 \mu g/mL$ Resistant $> = 512 \mu g/mL$

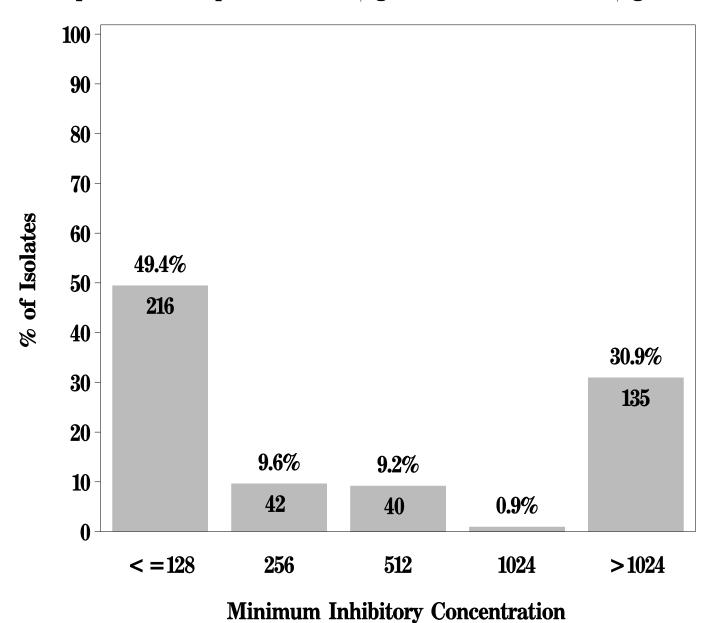


Figure 15h: Minimum Inhibitory Concentration of Kanamycin for *Enterococcus* in Ground Beef (N=448 Isolates)
Breakpoints: Susceptible < = 128 μ g/mL Resistant > = 512 μ g/mL

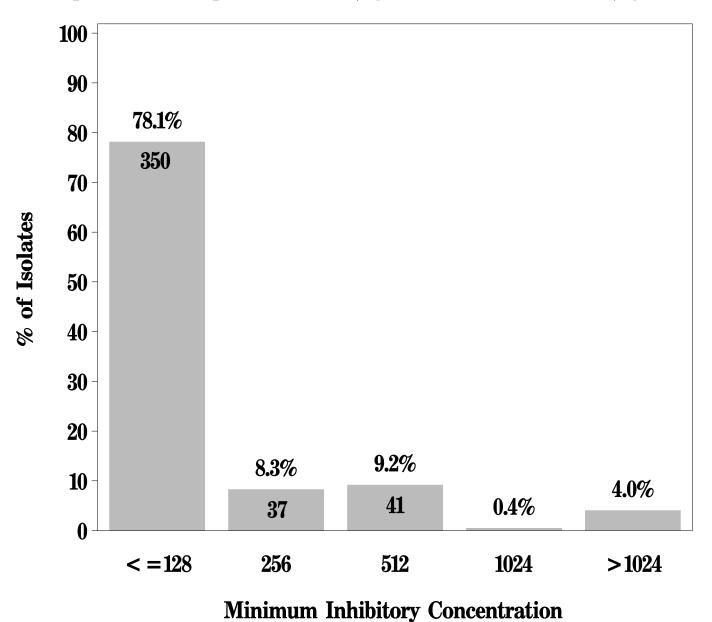


Figure 15h: Minimum Inhibitory Concentration of Kanamycin for *Enterococcus* in Pork Chop (N=404 Isolates)

Breakpoints: Susceptible $< = 128 \mu \text{g/mL}$ Resistant $> = 512 \mu \text{g/mL}$

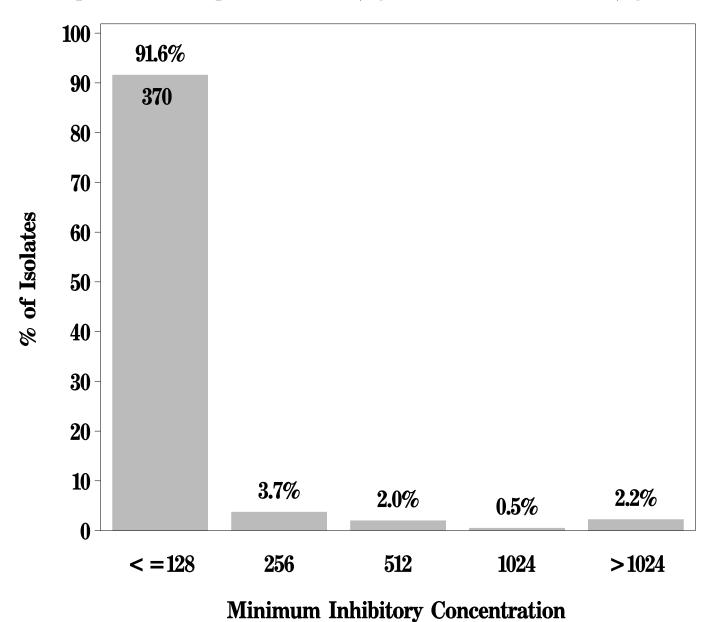
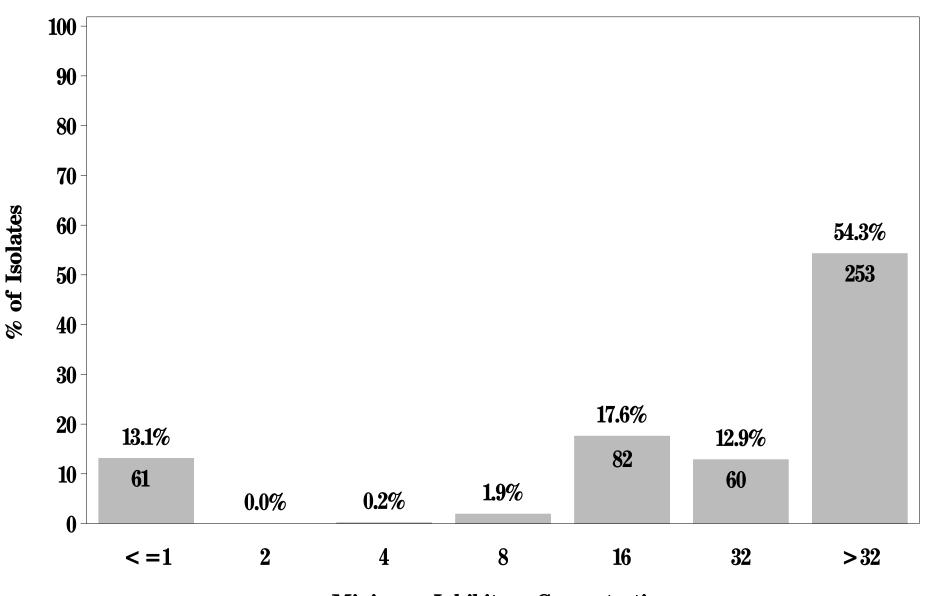
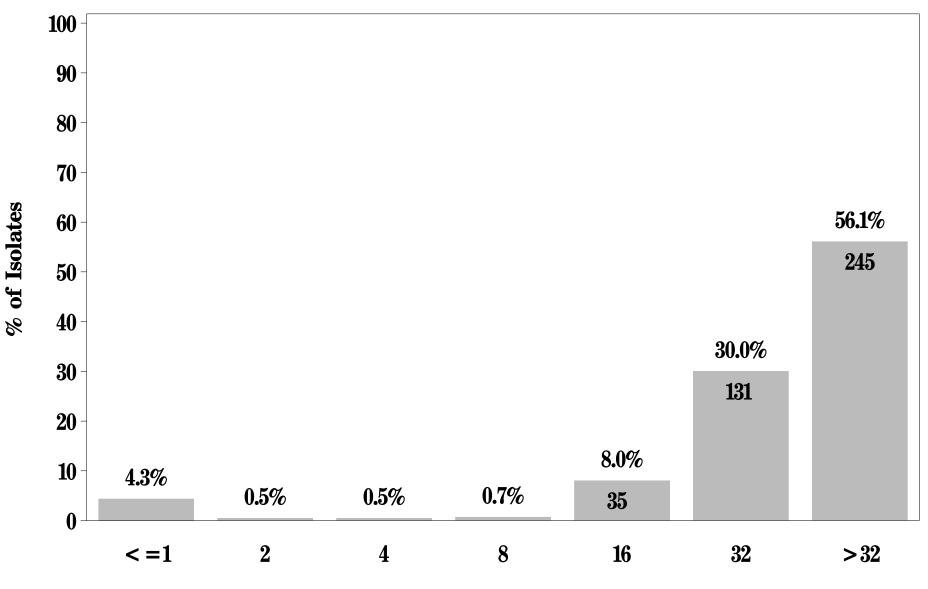
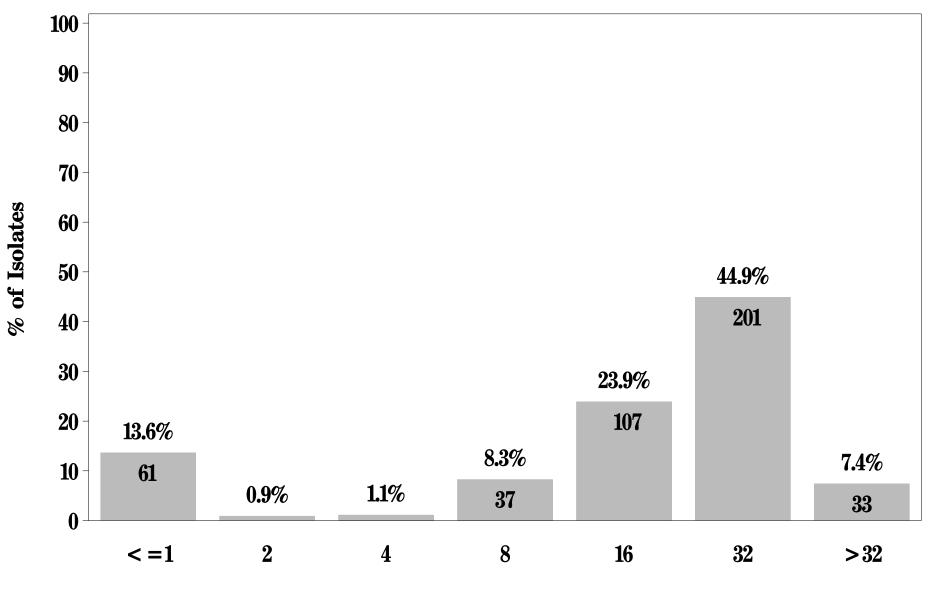



Figure 15i: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Chicken Breast (N=466 Isolates)


Breakpoints: Susceptible <= $8 \mu g/mL$ Resistant >= $32 \mu g/mL$

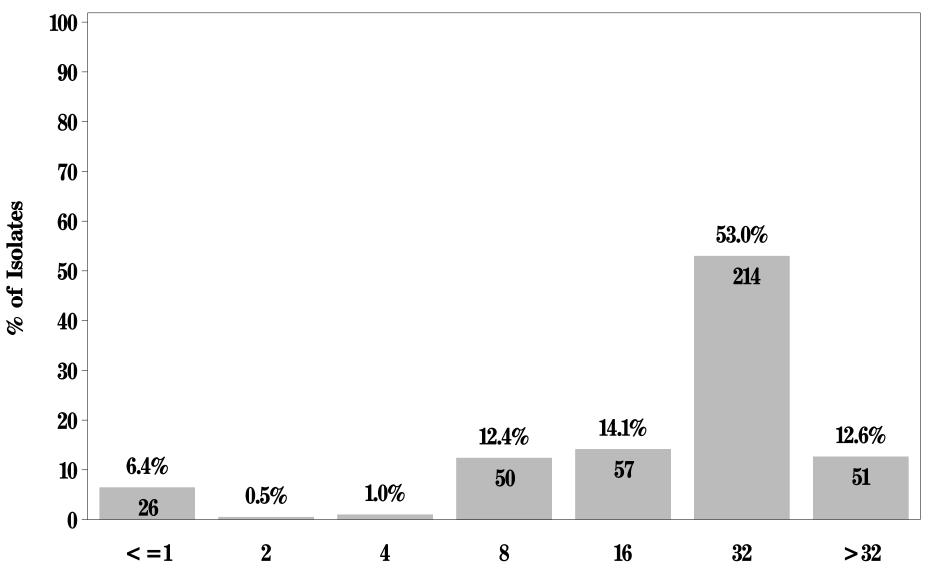
Minimum Inhibitory Concentration

Figure 15i: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Ground Turkey (N=437 Isolates)


Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 15i: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Ground Beef (N=448 Isolates)


Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 15i: Minimum Inhibitory Concentration of Lincomycin for *Enterococcus* in Pork Chop (N=404 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 15j: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* in Chicken Breast (N=466 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

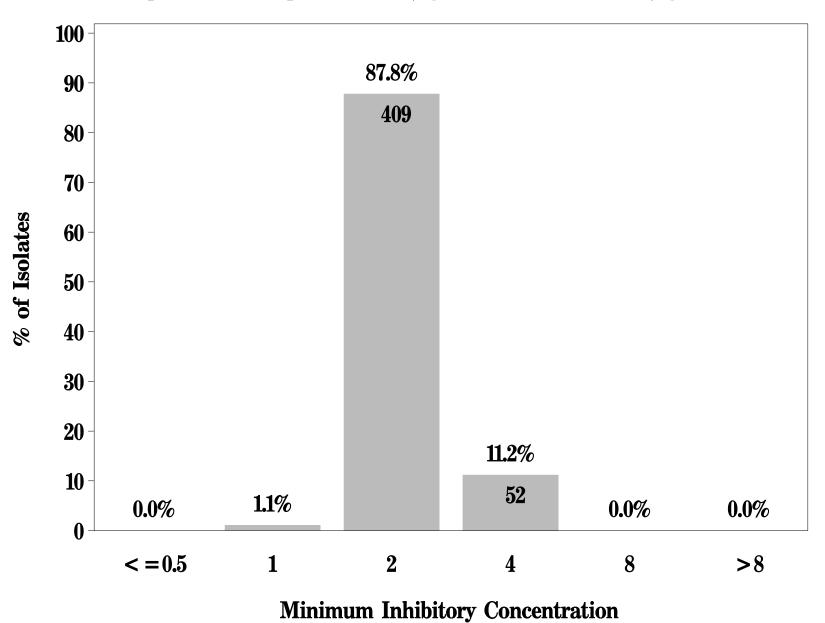


Figure 15j: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* in Ground Turkey (N=437 Isolates)
Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

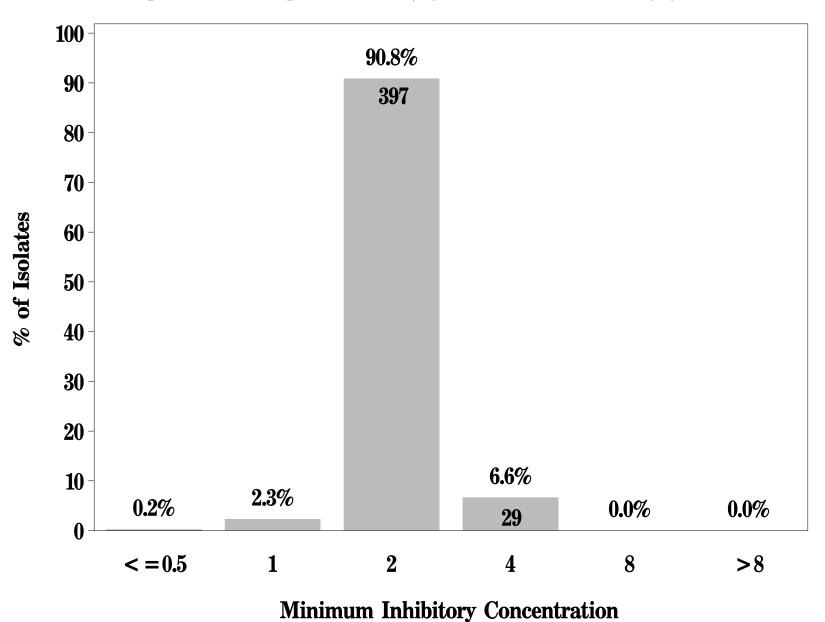


Figure 15j: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* in Ground Beef (N=448 Isolates)

Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

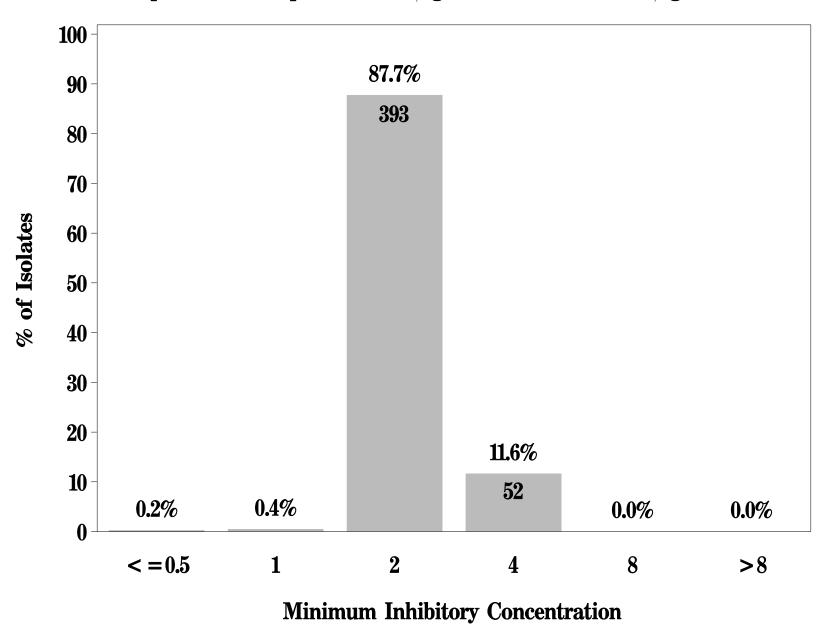
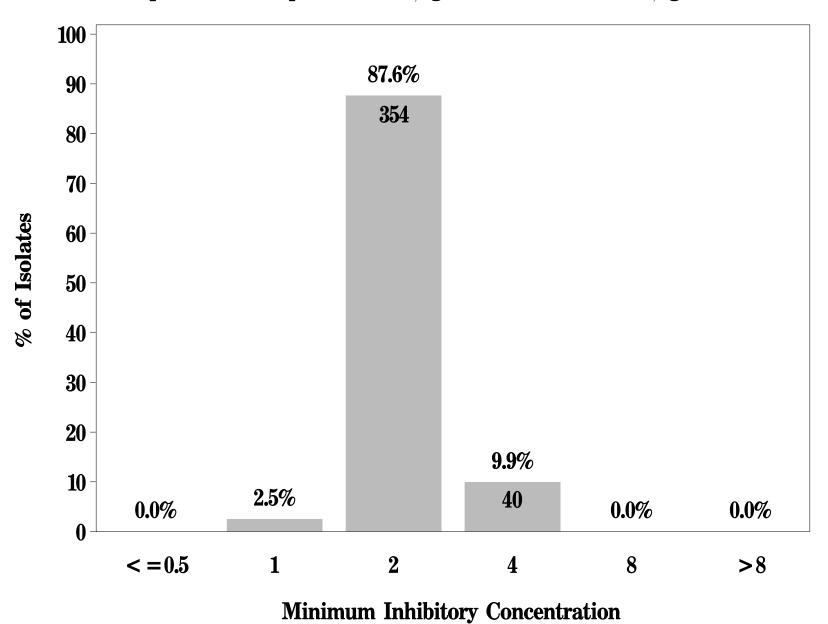



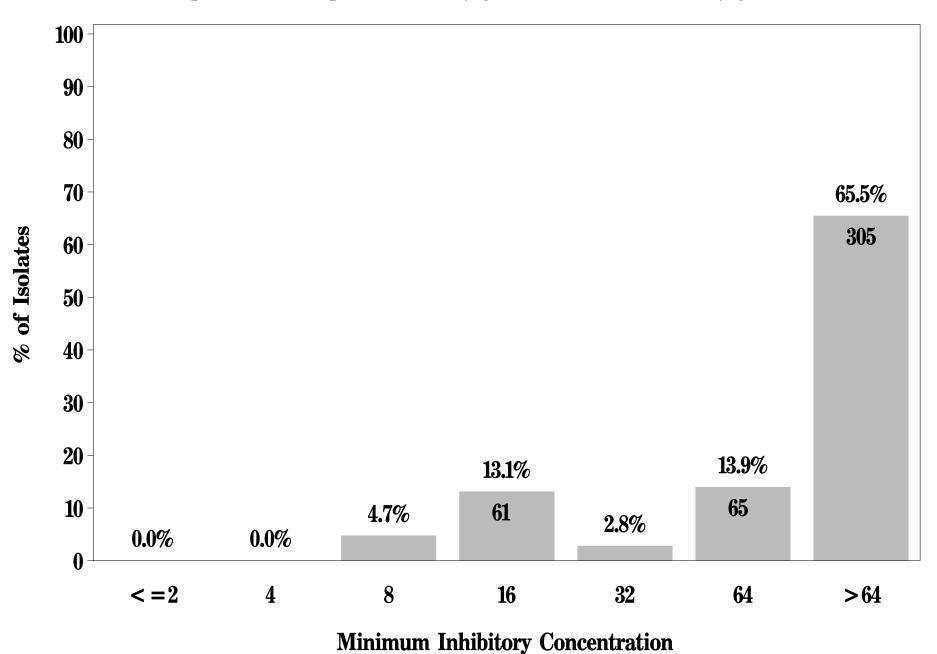
Figure 15j: Minimum Inhibitory Concentration of Linezolid for *Enterococcus* in Pork Chop (N=404 Isolates)

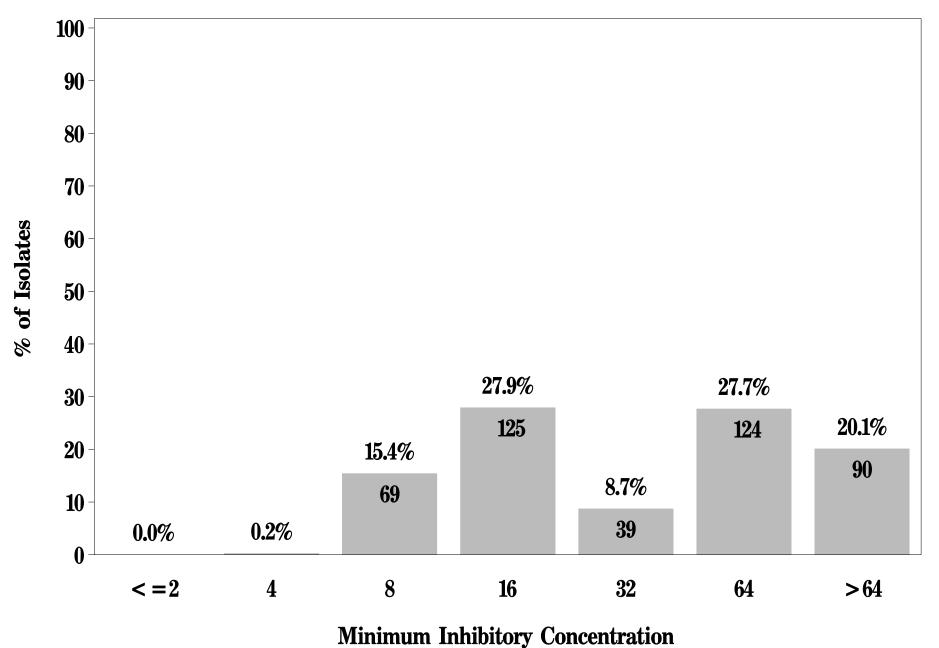
Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

NARMS

Figure 15k: Minimum Inhibitory Concentration of Nitrofurantoin for *Enterococcus* in Chicken Breast (N=466 Isolates)

Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

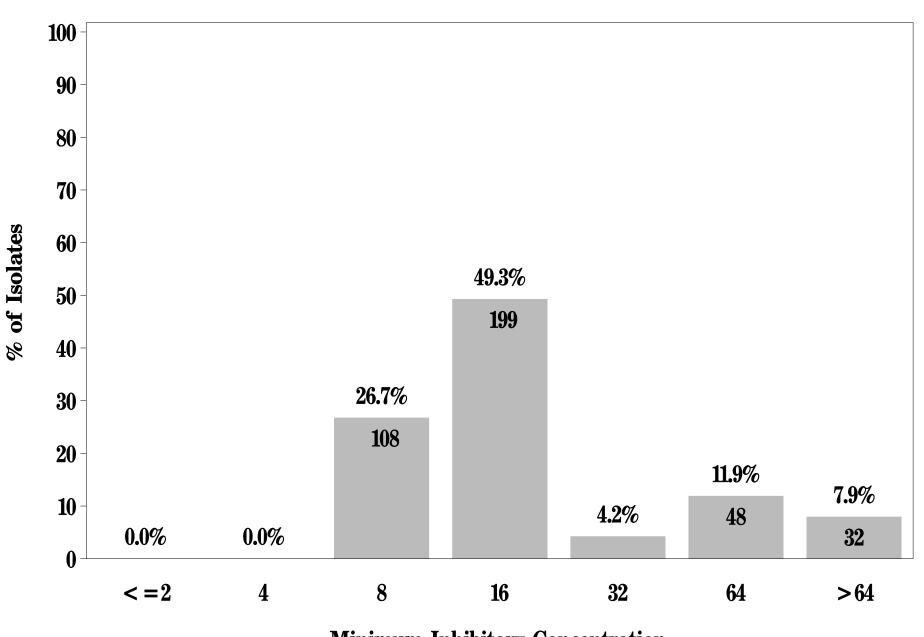



Figure 15k: Minimum Inhibitory Concentration of Nitrofurantoin for *Enterococcus* in Ground Turkey (N=437 Isolates)

Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

% of Isolates 29.3% 28.8% 27.0% 13.7% 1.1% 0.0% 0.0% <=2>64 **Minimum Inhibitory Concentration**

NARMS


Breakpoints: Susceptible < = 32 μ g/mL Resistant > = 128 μ g/mL

NARMS

Figure 15k: Minimum Inhibitory Concentration of Nitrofurantoin for *Enterococcus* in Pork Chop (N=404 Isolates)

Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 128 \mu g/mL$

Minimum Inhibitory Concentration

Figure 15l: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* in Chicken Breast (N=466 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 16 \mu \text{g/mL}$

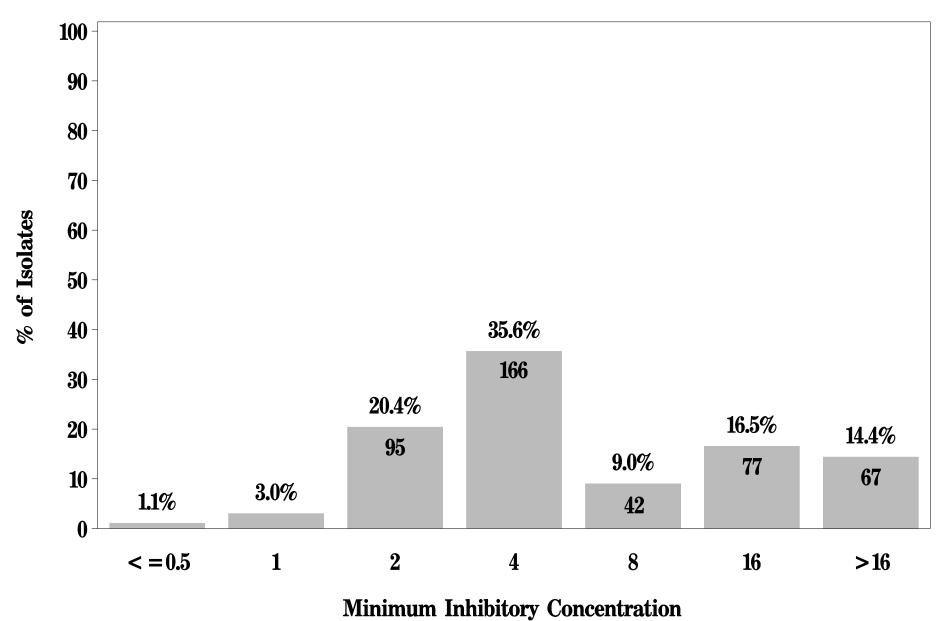


Figure 15l: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* in Ground Turkey (N=437 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 16 \mu \text{g/mL}$

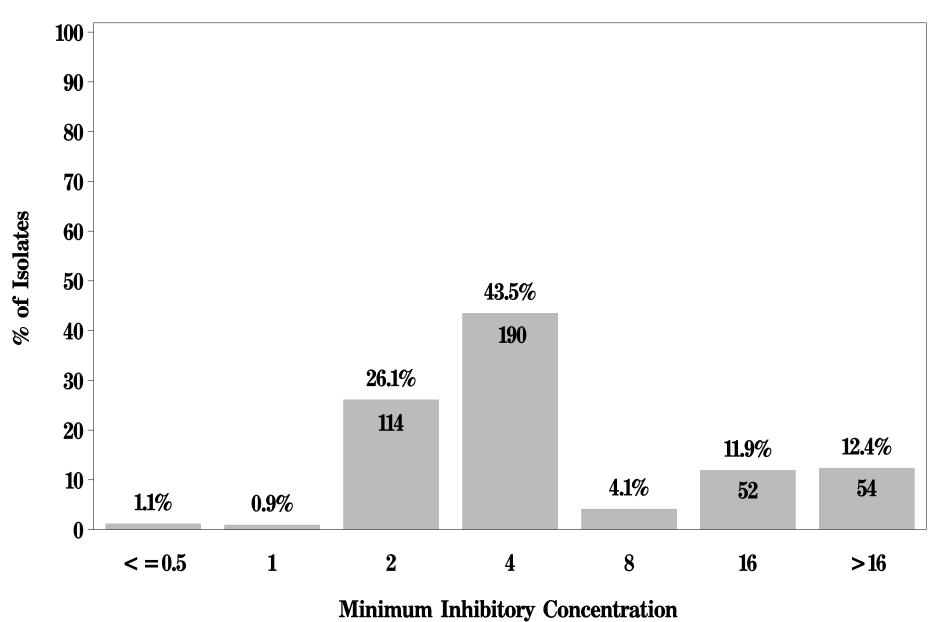


Figure 15l: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* in Ground Beef (N=448 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 16 μ g/mL

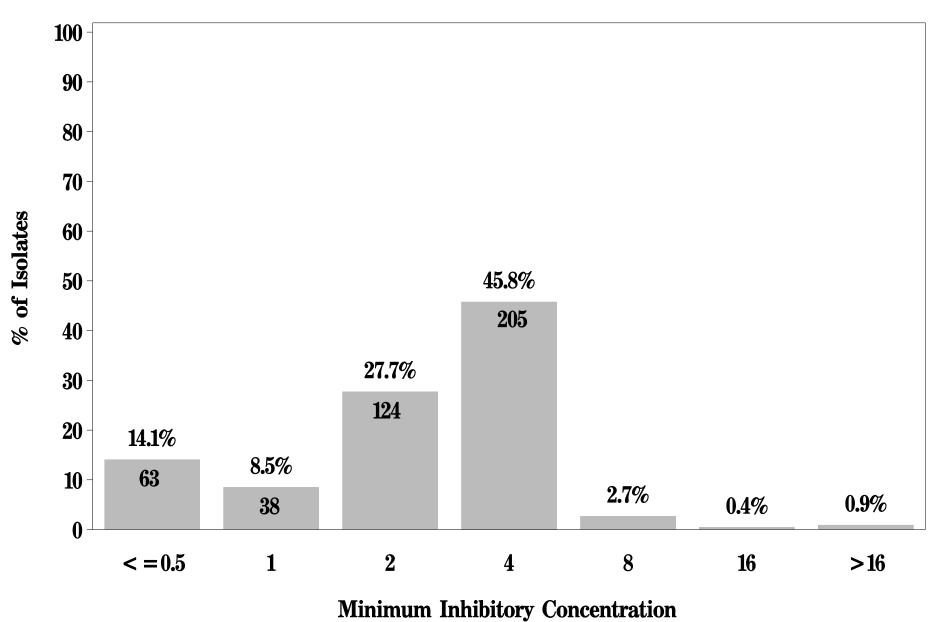


Figure 15l: Minimum Inhibitory Concentration of Penicillin for *Enterococcus* in Pork Chop (N=404 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 16 \mu \text{g/mL}$

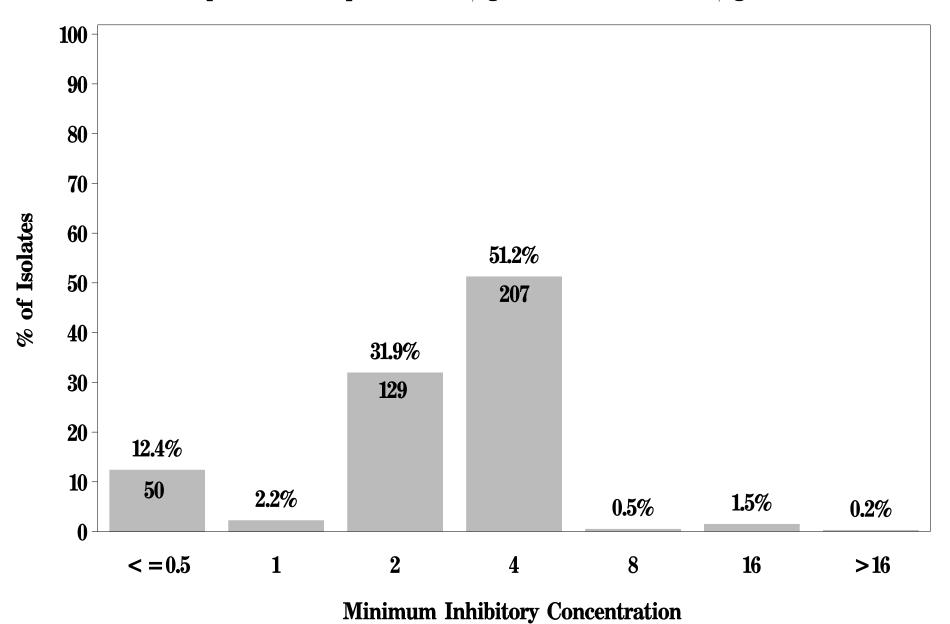
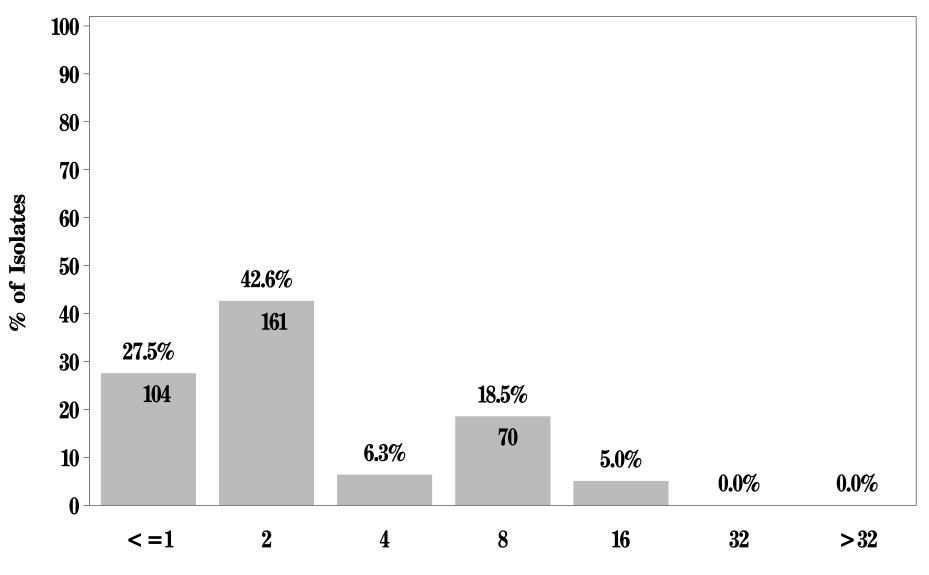
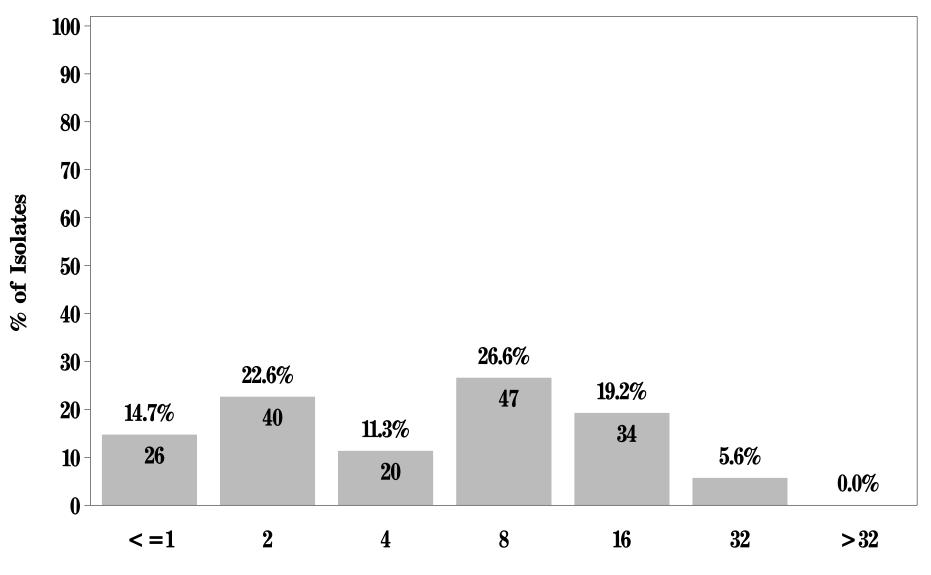



Figure 15m: Minimum Inhibitory Concentration of Quinupristin – dalfopristin for *Enterococcus* in Chicken Breast (N=378 Isolates)

Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

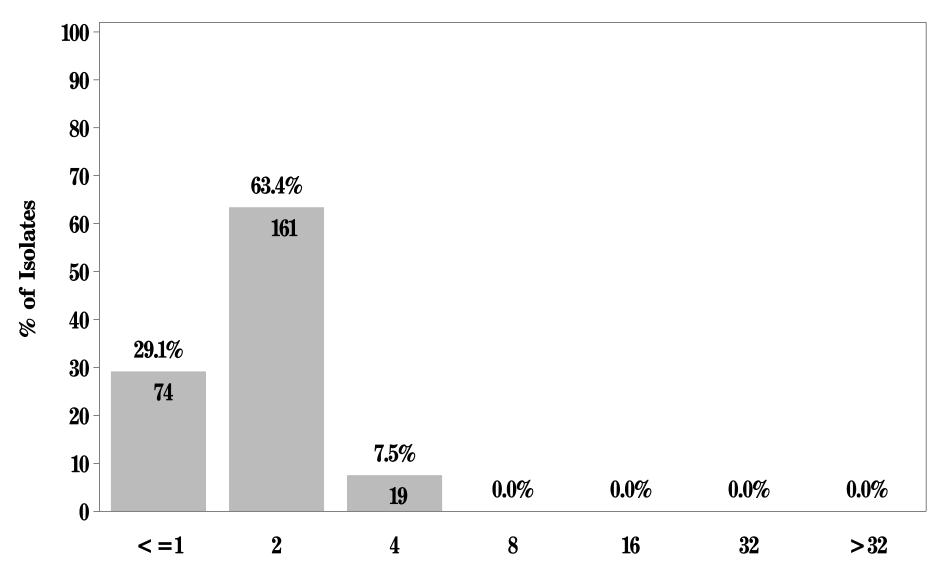


Minimum Inhibitory Concentration

*Presented for all species except E. faecalis (N=466-88=378)

Figure 15m: Minimum Inhibitory Concentration of Quinupristin – dalfopristin for *Enterococcus* in Ground Turkey (N=177 Isolates)

Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

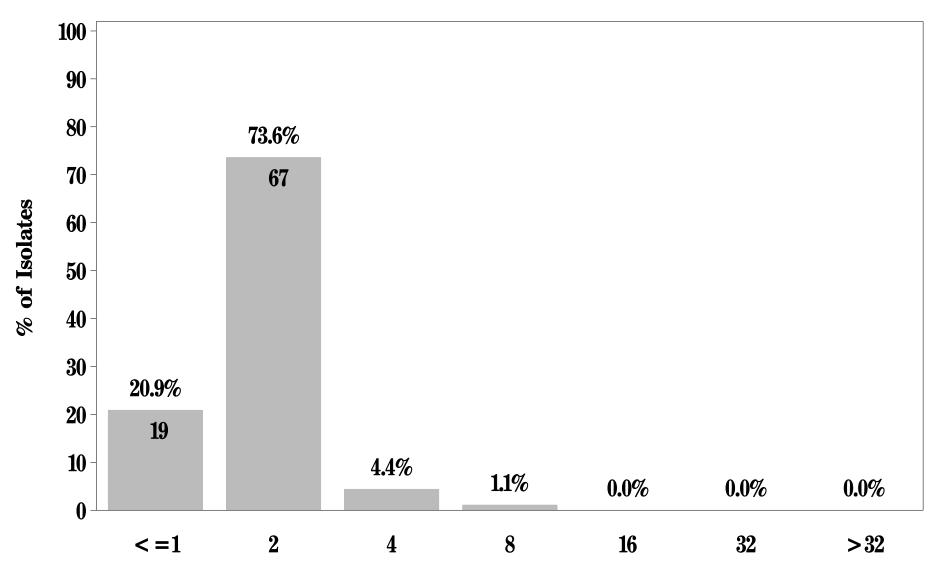


Minimum Inhibitory Concentration

*Presented for all species except E. faecalis (N=437-260=177)

Figure 15m: Minimum Inhibitory Concentration of Quinupristin – dalfopristin for *Enterococcus* in Ground Beef (N=254 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$



Minimum Inhibitory Concentration

*Presented for all species except E. faecalis (N=488-194=254)

Figure 15m: Minimum Inhibitory Concentration of Quinupristin – dalfopristin for *Enterococcus* in Pork Chop (N=91 Isolates)

Breakpoints: Susceptible $< = 1 \mu g/mL$ Resistant $> = 4 \mu g/mL$

Minimum Inhibitory Concentration

*Presented for all species except E. faecalis (N=404-313=91)

Figure 15n: Minimum Inhibitory Concentration of Streptomycin for *Enterococcus* in Chicken Breast (N=466 Isolates)

Breakpoints: Susceptible < = 1000 μ g/mL Resistant > = 1000 μ g/mL

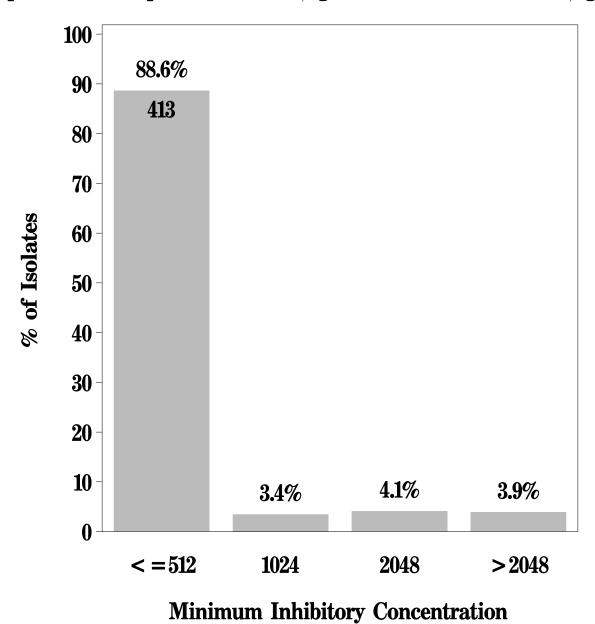
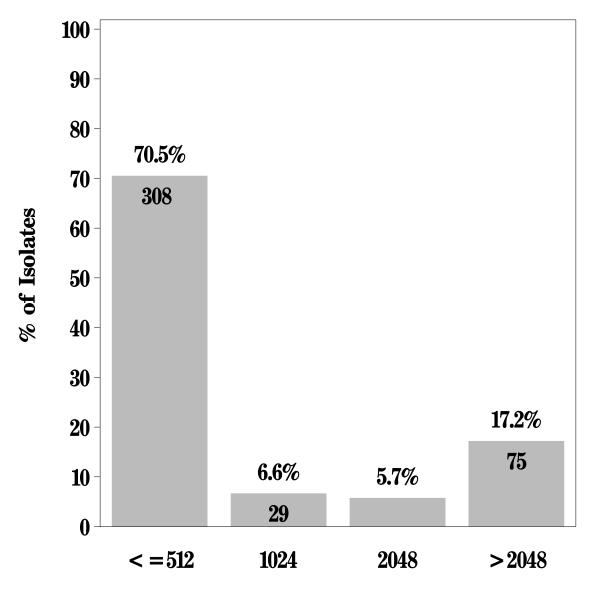
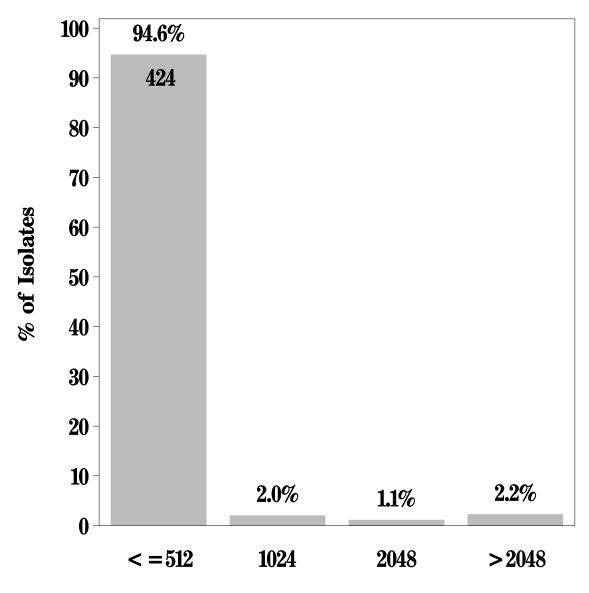
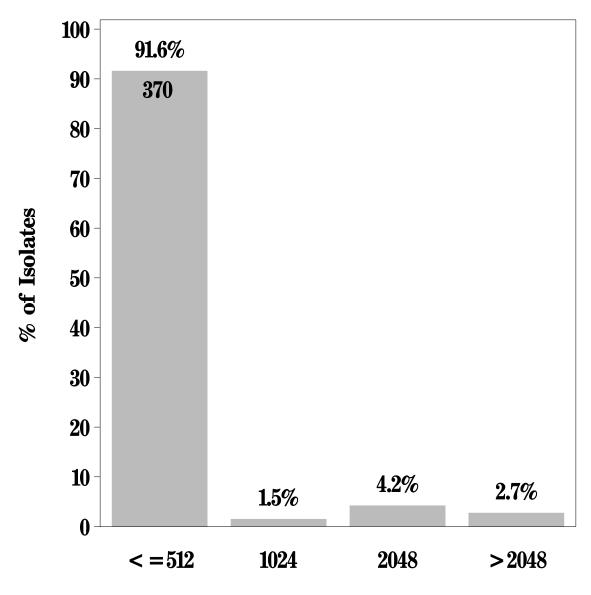



Figure 15n: Minimum Inhibitory Concentration of Streptomycin for *Enterococcus* in Ground Turkey (N=437 Isolates)


Breakpoints: Susceptible < = 1000 μ g/mL Resistant > = 1000 μ g/mL

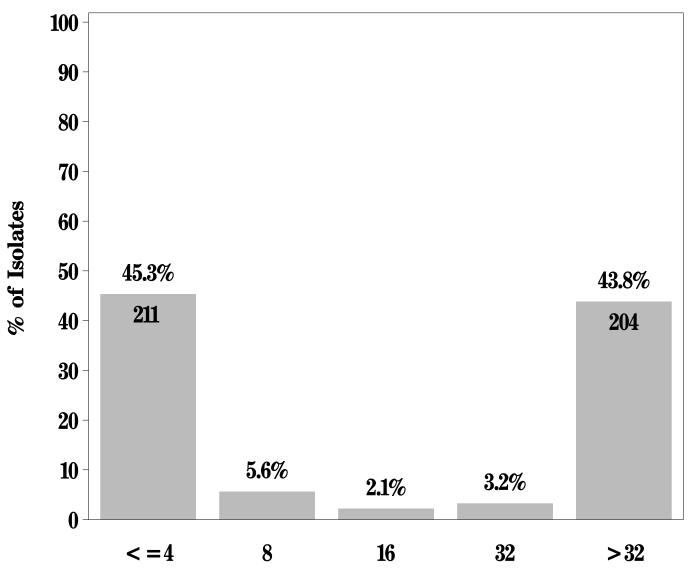
Minimum Inhibitory Concentration

Figure 15n: Minimum Inhibitory Concentration of Streptomycin for *Enterococcus* in Ground Beef (N=448 Isolates)


Breakpoints: Susceptible < = 1000 μ g/mL Resistant > = 1000 μ g/mL

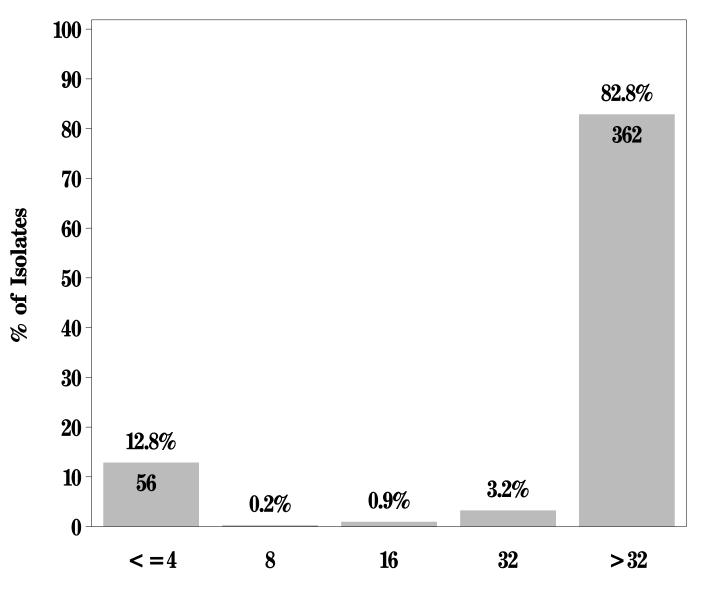
Minimum Inhibitory Concentration

Figure 15n: Minimum Inhibitory Concentration of Streptomycin for *Enterococcus* in Pork Chop (N=404 Isolates)


Breakpoints: Susceptible < = 1000 μ g/mL Resistant > = 1000 μ g/mL

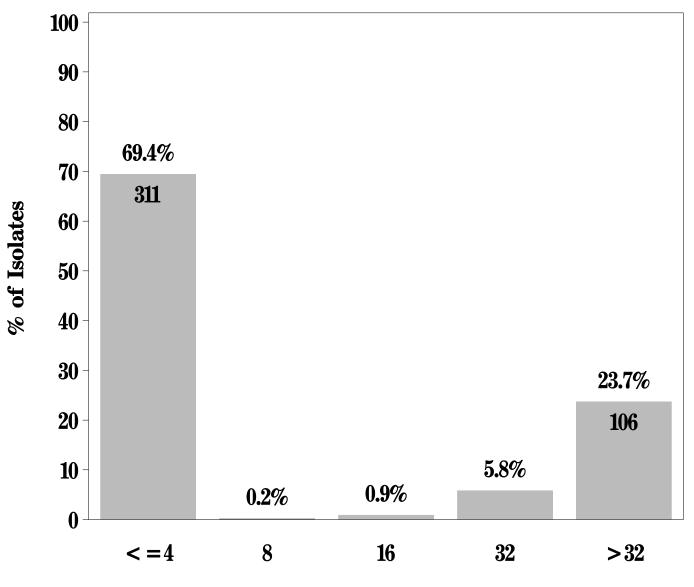
Minimum Inhibitory Concentration

Figure 150: Minimum Inhibitory Concentration of Tetracycline for *Enterococcus* in Chicken Breast (N=466 Isolates)


Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

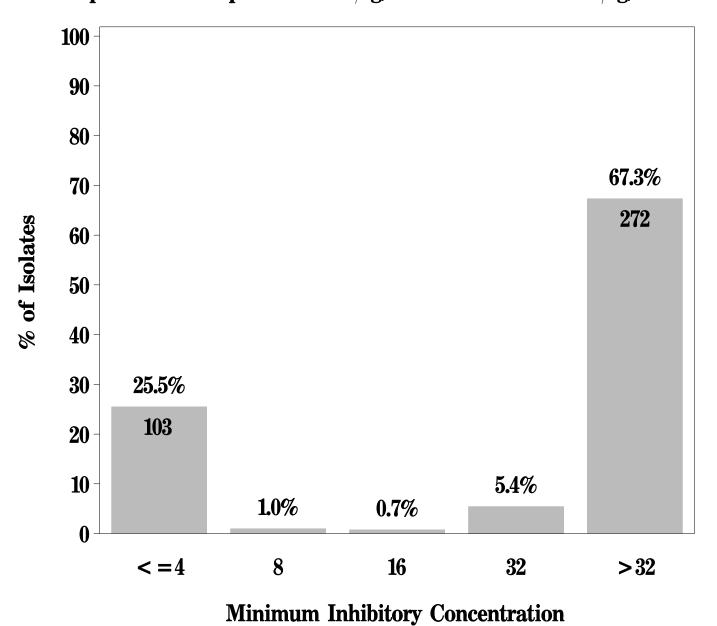
Minimum Inhibitory Concentration

Figure 150: Minimum Inhibitory Concentration of Tetracycline for *Enterococcus* in Ground Turkey (N=437 Isolates)

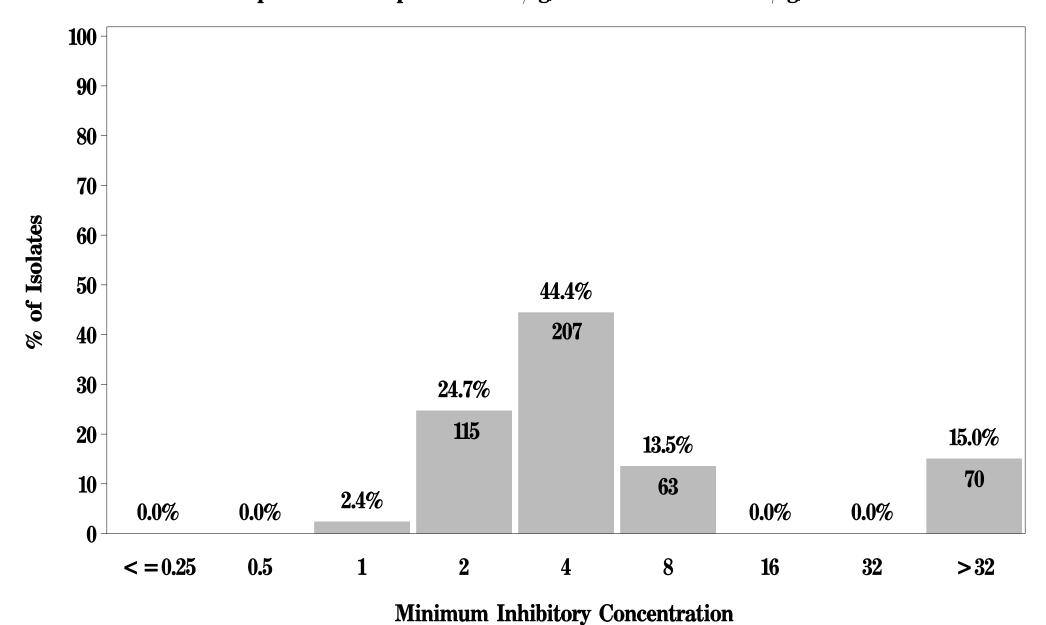

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Figure 150: Minimum Inhibitory Concentration of Tetracycline for *Enterococcus* in Ground Beef (N=448 Isolates)

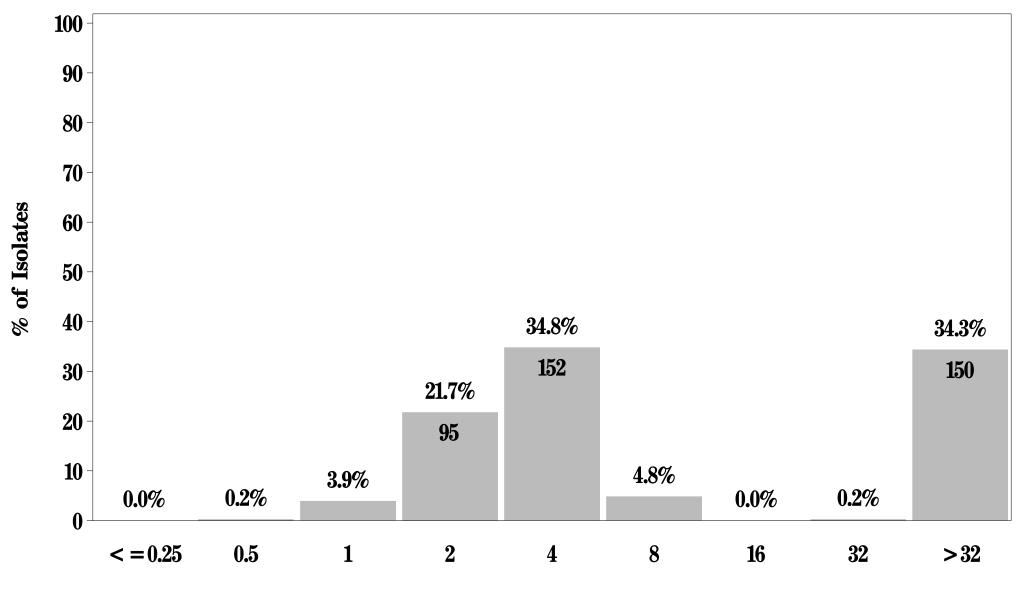

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration


Figure 150: Minimum Inhibitory Concentration of Tetracycline for *Enterococcus* in Pork Chop (N=404 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

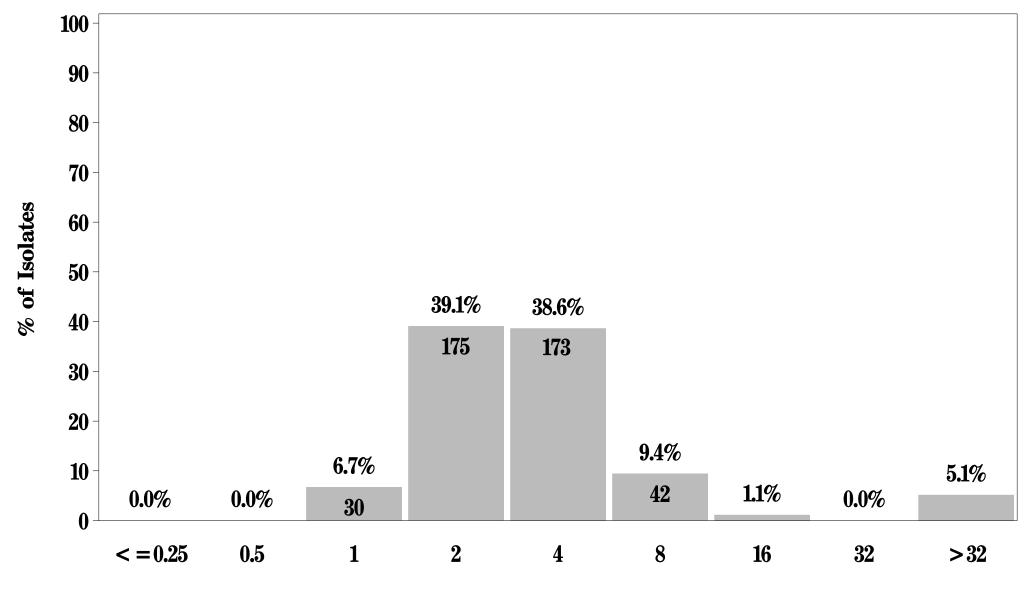
NARMS


Figure 15p: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Chicken Breast (N=466 Isolates)
Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

NARMS

Figure 15p: Minimum Inhibitory Concentration of Tylosin for Enterococcus in Ground Turkey (N=437 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

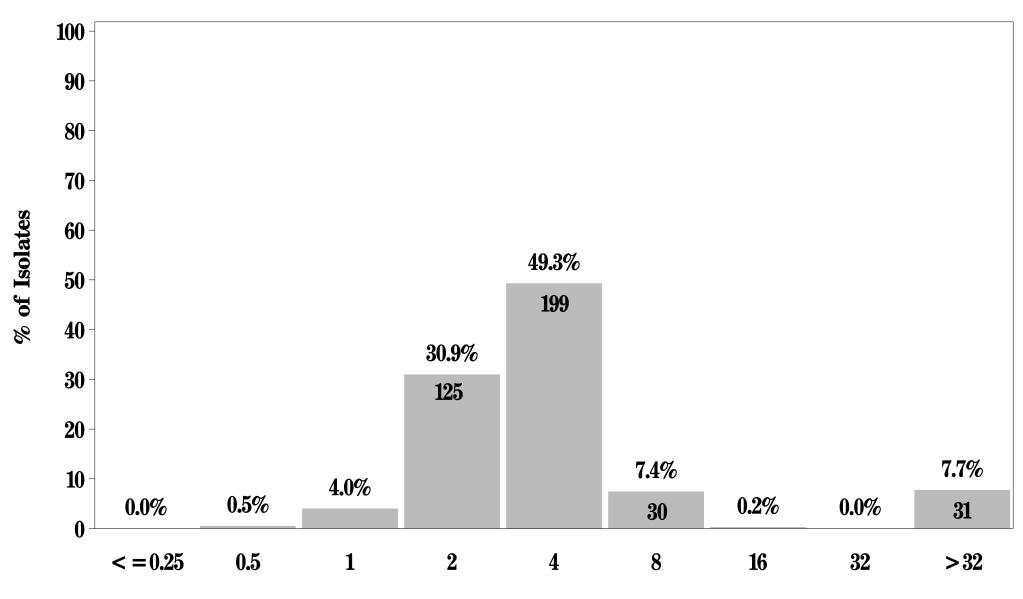


Minimum Inhibitory Concentration

NARMS

Figure 15p: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Ground Beef (N=448 Isolates)

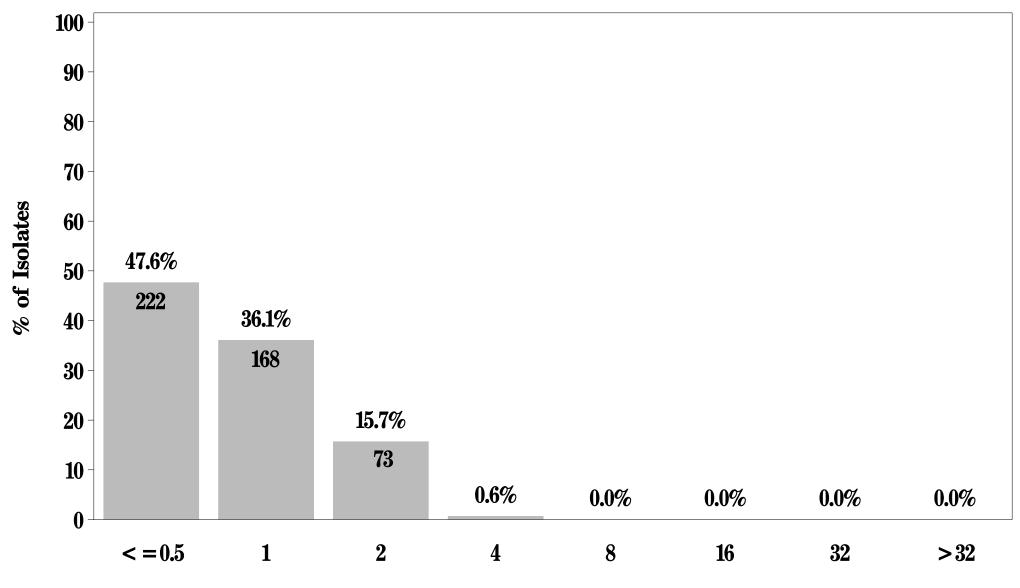
Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$



Minimum Inhibitory Concentration

NARMS

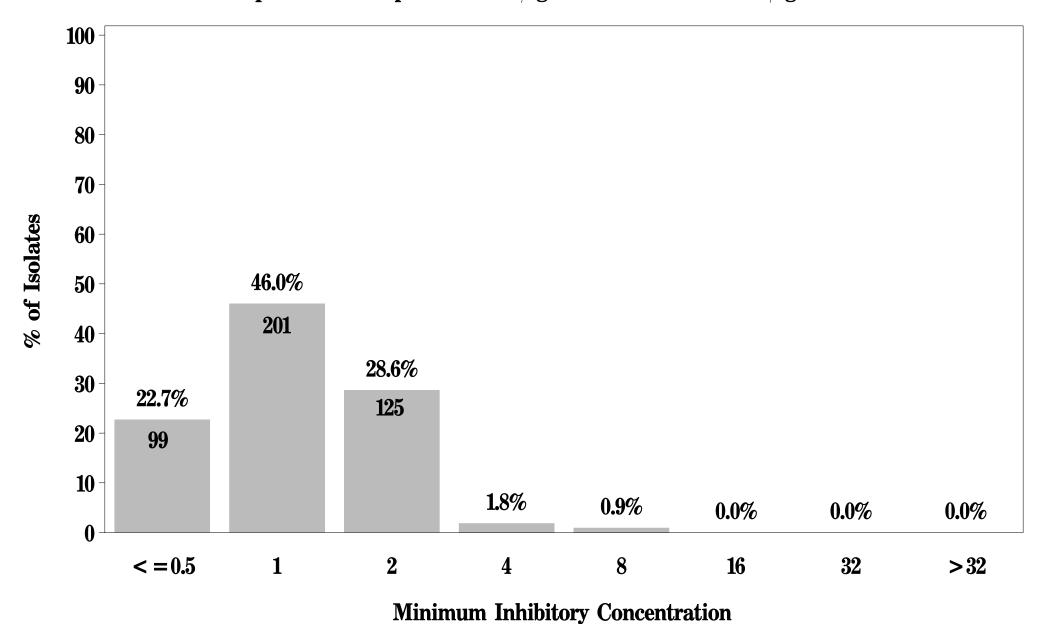
Figure 15p: Minimum Inhibitory Concentration of Tylosin for *Enterococcus* in Pork Chop (N=404 Isolates)


Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

Minimum Inhibitory Concentration

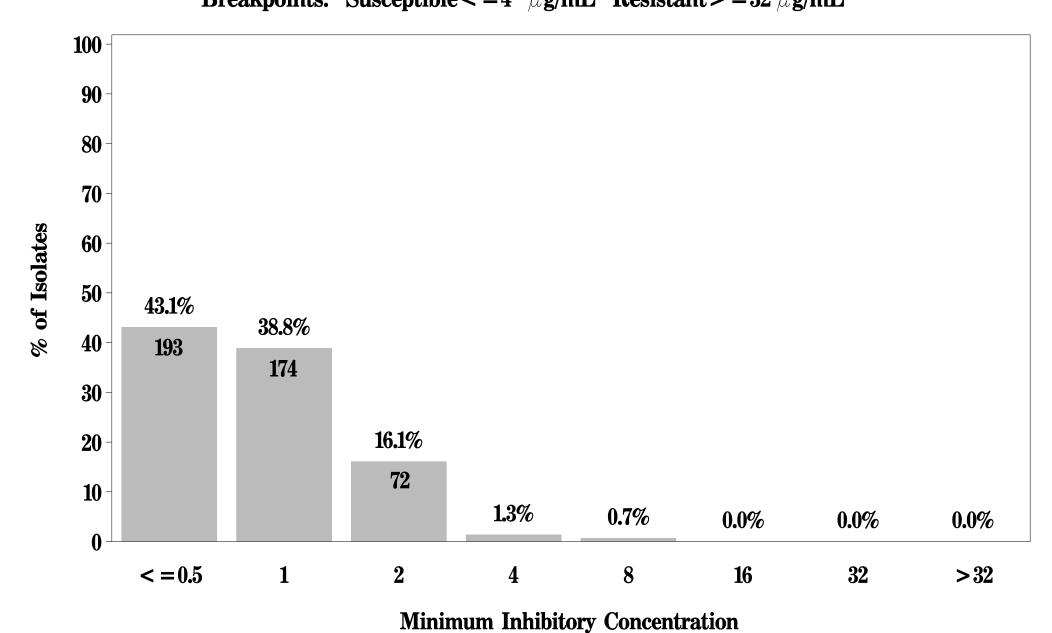
NARMS

Figure 15q: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* in Chicken Breast (N=466 Isolates) Breakpoints: Susceptible < =4 μ g/mL Resistant > =32 μ g/mL



Minimum Inhibitory Concentration

NARMS


Figure 15q: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* in Ground Turkey (N=437 Isolates)

Breakpoints: Susceptible < = $4 \mu g/mL$ Resistant > = $32 \mu g/mL$

NARMS

Figure 15q: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* in Ground Beef (N=448 Isolates) Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 32 \mu g/mL$

NARMS

Figure 15q: Minimum Inhibitory Concentration of Vancomycin for *Enterococcus* in Pork Chop (N=404 Isolates)

Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 32 \mu g/mL$

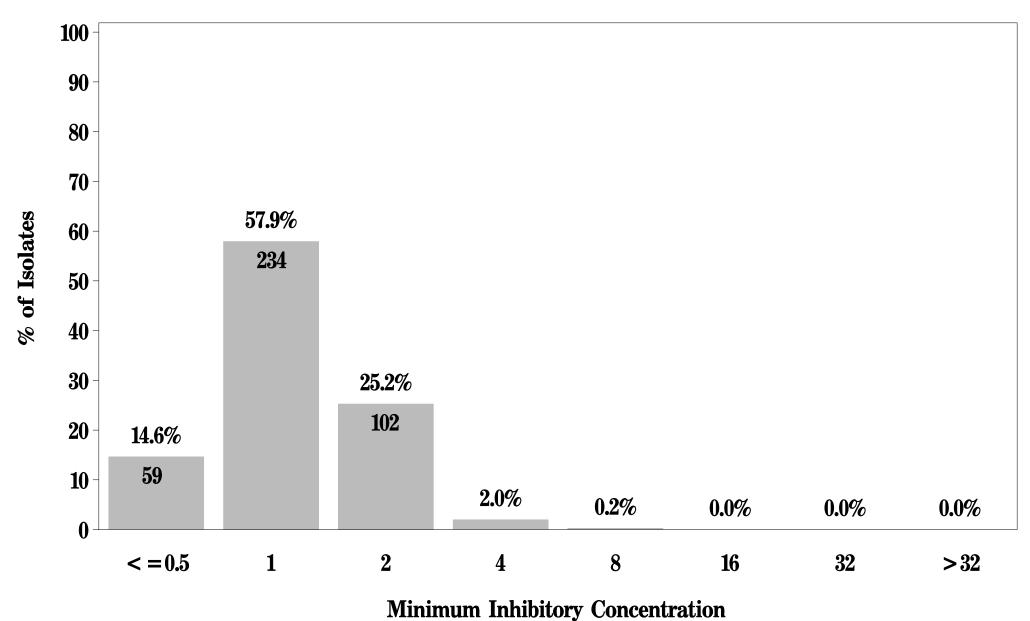


Table 32. Antimicrobial Resistance among Enterococcus by Species, 2004

Species	Antimicrobial Agent																
species	LIN	QDA	TET	BAC	FLA	DAP	NIT	KAN	CIP	ERY	TYL	PEN	STR	GEN	CHL	LZD	VAN
E. casseliflavus (n=3)	-	-*	-	33.3% [†]	100.0%	-	-	-	-	-	-	-	-	-	-	-	-
E. durans (n=3)	66.7%	-	33.3%	66.7%	100.0%	-	66.7%	66.7%	-	-	-	33.3%	33.3%	-	-	-	-
E. faecalis (n=855)	86.3%	‡	66.8%	52.6%	-	-	0.6%	13.2%	7.7%	18.4%	18.5%	-	15.2%	10.4%	0.2%	-	-
E. faecium (n=757)	51.3%	31.2%	52.8%	69.0%	87.3%	3.7.%	69.2%	39.1%	43.7%	18.1%	14.0%	33.4%	13.5%	5.0%	0.3%	-	-
E. gallinarum (n=7)	14.3%	-	42.9%	57.1%	100.0%	-	-	14.3%	28.6%	-	-	-	-	14.3%	-	-	-
E. hirae (n=129)	45.0%	8.5%	51.2%	10.1%	98.4%	15.5%	10.1%	6.2%	2.3%	7.8%	7.8%	7.0%	4.7%	-	-	-	-
E. mundtii (n=1)	100.0%	100.0%	100.0%	100.0%	-	-	100.0%	100.0%	-	100.0%	100.0%	-	100.0%	100.0%	-	-	-
Total (N=1755)	67.7%	27.6%	59.4%	56.6%	45.6%	2.7%	31.1%	24.0%	22.9%	17.4%	15.7%	15.0%	13.7%	7.4%	0.2%	-	-

^{*} Dashes indicate 0.0% resistance to antimicrobial.

† Where % Resistance = (# isolates per species resistant to antimicrobial) / (total # isolates per species).

† QDA resistance is not presented for *E. faecalis*.

Table 33. Antimicrobial Resistance among Enterococcus faecalis & E. faecium by Meat Type, 2004

	Antimicrobial Agent																	
Meat Type	Species	LIN	QDA	BAC	TET	FLA	DAP	NIT	KAN	CIP	ERY	TYL	PEN	STR	GEN	CHL	LZD	VAN
Chicken	E. faecalis (n=88)	98.9% *	_†	78.4%	63.6%	_‡	-	1.1%	22.7%	8.0%	35.2%	34.1%	-	18.2%	19.3%	-	-	-
Breast	E. faecium (n=348)	60.3%	31.6%	84.8%	45.1%	83.6%	4.0%	85.3%	39.7%	52.3%	12.6%	10.3%	39.1%	8.3%	4.3%	-	-	-
Ground	E. faecalis (n=260)	94.2%	_†	72.7%	88.1%	-	-	1.2%	30.0%	5.8%	33.8%	34.6%	-	26.9%	24.6%	-	-	-
Turkey	E. faecium (n=172	75.0%	64.5%	90.7%	86.6%	87.8%	7.6%	66.9%	57.6%	53.5%	43.0%	35.5%	61.6%	34.3%	13.4%	-	-	-
Ground	E. faecalis (n=194)	79.4%	_†	45.9%	25.3%	-	-	-	3.1%	12.9%	3.6%	3.6%	-	7.7%	1.0%	-	-	-
Beef	E. faecium (n=162)	24.7%	6.2%	35.2%	24.7%	91.4%	0.6%	51.9%	33.3%	27.2%	9.3%	5.6%	3.1%	5.6%	-	1.2%	-	-
Pork	E. faecalis (n=313)	80.5%	_†	32.9%	75.7%	-	-	0.3%	2.9%	6.1%	9.9%	9.9%	-	9.3%	1.9%	0.6%	-	-
Chop	E. faecium (n=75)	12.0%	6.7%	18.7%	72.0%	94.7%	-	37.3%	6.7%	17.3%	5.3%	-	8.0%	6.7%	-	-	-	-
То	otal (N=1612)	69.9%	31.2%	60.3%	60.2%	41.0%	8.3%	32.8%	25.4%	24.6%	18.2%	16.4%	15.7%	14.4%	7.9%	0.2%	-	-

^{*} Where % Resistance = (# isolates resistant to antimicrobial per meat type per site) / (total # isolates per meat type per site).

† QDA resistance is not presented for *E. faecalis*.

*

[†] Dashes indicate 0.0% resistance to antimicrobial.

Table 34. Antimicrobial Resistance among Enterococcus by Site, Meat Type, and Antimicrobial Agent, 2004

Site	Meat Type								Antimio	robial A	Agent							
Site		LIN	QDA*	TET	BAC	FLA	DAP	NIT	KAN	CIP	ERY	TYL	PEN	STR	GEN	CHL	LZD	VAN
	CB (n=120)	77.5% [†]	40.9%	58.3%	79.2%	48.3%	4.2%	40.8%	30.0%	29.2%	29.2%	25.8%	14.2%	14.2%	13.3%	_‡	-	-
	GT (n=120)	96.7%	58.3%	80.8%	73.3%	9.2%	0.8%	9.2%	25.8%	8.3%	29.2%	30.0%	4.2%	18.3%	16.7%	-	-	-
GA	GB (n=117)	71.8%	10.3%	29.1%	40.2%	33.3%	1.7%	13.7%	9.4%	10.3%	8.5%	6.8%	-	8.5%	0.9%	-	_	_
	PC (n=116)	79.3%	10.0%	74.1%	37.1%	7.8%	-	6.9%	1.7%	3.4%	5.2%	5.2%	0.9%	9.5%	0.9%	0.9%	-	-
	Total (N=473)	81.4%	30.7%	60.7%	57.7%	24.7%	1.7%	17.8%	16.9%	12.9%	18.2%	17.1%	4.9%	12.7%	8.0%	0.2%	-	-
	CB (n=114)	71.1%	36.0%	53.5%	80.7%	77.2%	5.3%	83.3%	50.9%	52.6%	18.4%	14.9%	54.4%	7.9%	3.5%	_	-	
	GT (n=106)	87.7%	69.7%	91.5%	78.3%	62.3%	6.6%	49.1%	60.4%	40.6%	46.2%	37.7%	52.8%	35.8%	25.5%	-	-	
MD	GB (n=100)	29.0%	7.6%	37.0%	21.0%	75.0%	6.0%	29.0%	23.0%	21.0%	7.0%	5.0%	5.0%	9.0%	-	1.0%	-	-
	PC (n=77)	48.1%	-	68.8%	27.3%	37.7%	-	19.5%	7.8%	11.7%	3.9%	-	6.5%	5.2%	-	-	-	-
	Total (N=397)	60.5%	33.6%	62.5%	54.7%	65.0%	4.8%	48.1%	38.0%	33.5%	20.2%	15.6%	32.2%	15.1%	7.8%	0.3%	-	-
	CB (n=118)	74.6%	17.0%	46.6%	90.7%	71.2%	0.8%	66.9%	34.7%	41.5%	14.4%	13.6%	38.1%	10.2%	5.9%	-	-	
ΩD	GT (n=105)	81.9%	60.5%	87.6%	88.6%	35.2%	1.0%	15.2%	39.0%	17.1%	41.9%	41.0%	15.2%	37.1%	25.7%	-	-	-
OR	GB (n=115)	47.8%	3.8%	28.7% 69.4%	35.7%	67.0%	9.6%	13.0%	11.3%	9.6%	5.2%	4.3%	0.9%	0.9%	1.00/	0.00/	_	
	PC (n=108) Total (N=446)	65.9%	13.8%	57.2%	29.6%	25.0%	2.9%	2.8%	2.8%	4.6%	7.4% 16.8%	7.4% 16.1%	13.9%	6.5%	1.9% 8.1%	0.9%	-	-
	CB (n=114)	44.7%	28.7%	37.2%	71.9%	78.1%	1.8%	71.9%	23.7%	40.4%	5.3%	5.3%	17.5%	13.2%	5.3%	0.270	_	-
	GT (n=106)	76.4%	54.9%	88.7%	81.1%	39.6%	3.8%	36.8%	40.6%	34.9%	32.1%	30.2%	27.4%	28.3%	13.2%		_	
TN	GB (n=116)	56.9%	10.3%	27.6%	34.5%	41.4%	1.7%	25.9%	12.1%	23.3%	5.2%	4.3%	0.9%	3.4%	0.9%	0.9%	_	_
	PC (n=103)	68.9%	-	80.6%	21.4%	21.4%	-	5.8%	7.8%	14.6%	17.5%	16.5%	-	11.7%	2.9%	-	-	_
	Total (N=439)	61.3%	27.0%	57.4%	52.4%	45.8%	1.8%	35.8%	21.0%	28.5%	14.6%	13.7%	11.4%	13.9%	5.5%	0.2%	_	-
Total	(N=1755)	67.7%	27.6%	59.4%	56.6%	45.6%	2.7%	31.1%	24.0%	22.9%	17.4%	15.7%	15.0%	13.7%	7.4%	0.2%	-	-

^{*} Data does not include E. faecalis in QDA, as it is considered intrinsically resistant.

[†] Where % Resistance = (# isolates resistant to antimicrobial per meat type per site) / (total # isolates per meat type per site).

[‡] Dashes indicate 0.0% resistance to antimicrobial.

Table 35. Number of *Enterococcus faecalis* (N=855) Resistant to Multiple Antimicrobial Agents,* 2004

Meat Type	Nun 0	nber o	f Anti 2-4		bials ≥8
Chicken Breast	0	9	50	28	1
Ground Turkey	3	13	153	91	0
Ground Beef	25	56	108	5	0
Pork Chop	19	72	209	11	2
Total	47	150	520	135	3

-

^{*} Data does not include QDA, as *E. faecalis* is considered intrinsically resistant.

Table 36. Number of *Enterococcus faecium* (N=757) Resistant to Multiple Antimicrobial Agents, 2004

Meat Type	Nu 0	mbei 1	of Ar 2-4	ntimicr 5-7	obials ≥8
Chicken Breast	1	12	152	152	31
Ground Turkey	0	1	29	70	72
Ground Beef	6	53	84	13	6
Pork Chop	0	10	58	7	0
Total	7	76	323	242	109

Table 37. Escherichia coli by Meat Type, 2004

Meat Type	\mathbf{N}^*	\mathbf{n}^{\dagger}	% [‡]
Chicken Breast	476	400	84.0%
Ground Turkey	466	376	80.7%
Ground Beef	480	338	70.4%
Pork Chop	478	232	48.5%
Total	1900	1346	70.8%

* Where N = Number of retail meat samples.

[†] Where n = number of *E. coli* positive samples. ‡ Where % = (n / N).

Table 38. Escherichia coli by Site and Meat Type, 2004

Site	_	hicken Breast		ound irkey	_	ound Beef	Pork Chop			
	n	%*	n	%	n	%	n	%		
Georgia (n=389)	115	29.6%	119	30.6%	91	23.4%	64	16.5%		
Maryland (n=364)	110	30.2%	109	29.9%	83	22.8%	62	17.0%		
Oregon (n=276)	73	26.4%	53	19.2%	99	35.9%	51	18.5%		
Tennessee (n=317)	102	32.1%	95	29.9%	65	20.4%	55	17.3%		
Total (N=1346)	400	29.7%	376	27.9%	338	25.1%	232	17.2%		

*Where % Positive = (# isolates per meat type per site) / (total # isolates for that site).

Table 39. Escherichia coli Isolates by Month for All Sites, 2004

Month	n	%*
January	117	8.7%
February	106	7.9%
March	107	7.9%
April	115	8.5%
May	127	9.4%
June	96	7.1%
July	107	7.9%
August	117	8.7%
September	111	8.2%
October	118	8.8%
November	113	8.4%
December	112	8.3%
Total	1346	100%

*Where % Positive = (# isolates per month) / (total # isolates).

Table 40. Antimicrobial Resistance among $E.\ coli$ Isolates (N=1346), 2004

Antimicrobial Agent	n	%R*
Tetracycline	678	50.4%
Streptomycin	501	37.2%
Sulfisoxazole	436	32.4%
Ampicillin	246	18.3%
Gentamicin	235	17.5%
Kanamycin	114	8.5%
Amoxicillin/Clavulanic Acid	86	6.4%
Nalidixic Acid	73	5.4%
Cefoxitin	59	4.4%
Trimethoprim/Sulfamethoxazole	42	3.1%
Chloramphenicol	32	2.4%
Ceftiofur	31	2.3%
Ciprofloxacin	3	0.2%
Amikacin	0	0.0%
Ceftriaxone	0	0.0%

*Where % R = (n / N).

Figure 16. Antimicrobial Resistance among $E.\ coli$ isolates (n =1346), 2004

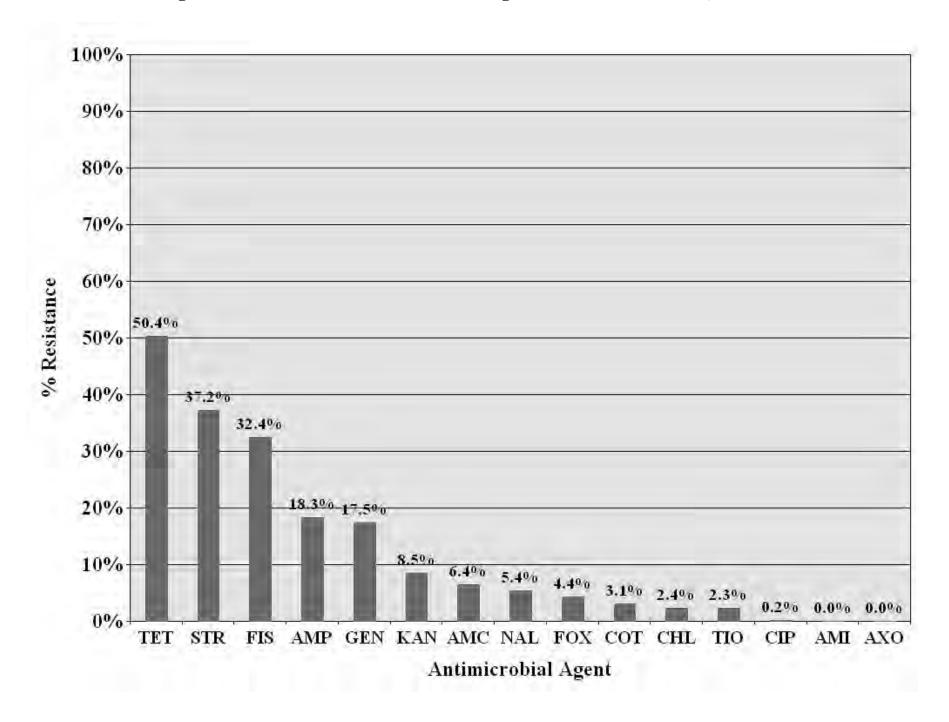
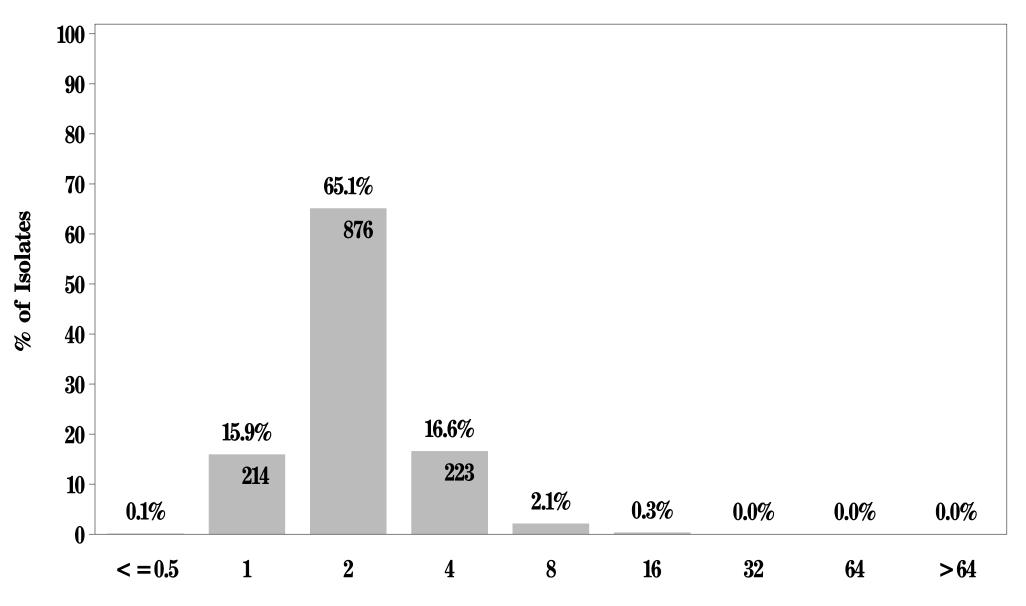


Figure 17. MIC Distribution among all Antimicrobial Agents


E. coli from All Meats Types (N=1346)						D	istribu	tion (%	6) of M	IICs (i	n μg/n	ıl)						
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	18.3							8.2	40.5	31.4	1.0	0.5	0.5	17.8				
Amoxicillin/Clavulanic Acid	6.4							2.7	22.7	50.2	16.7	1.3	5.1	1.3				
Cefoxitin	4.4						0.1	1.8	23.0	55.2	14.1	1.4	2.2	2.2				
Ceftiofur	2.3				4.5	49.7	40.4	2.2	0.4	0.5	1.5	0.8						
Ceftriaxone	0.0					94.2	1.5	1.4	0.1		1.3	0.9	0.5					
Nalidixic Acid	5.4							5.4	64.8	23.0	1.0	0.3	0.4	5.0				
Ciprofloxacin	0.2	90.9	2.7	0.4	1.6	3.6	0.5				0.2							
Sulfisoxazole	32.4											60.1	3.3	4.1	0.1	0.1	32.4	
Trimethoprim/Sulfamethoxazole	3.1				89.2	5.6	1.6	0.4	0.1		3.1							
Amikacin	0.0						0.1	15.9	65.1	16.6	2.1	0.3						
Gentamicin	17.5					7.1	51.7	19.5	2.4	0.3	1.5	6.5	11.0					
Kanamycin	8.5										84.6	6.0	0.9	0.1	8.4			
Streptomycin*	37.2												62.8	11.7	25.5			
Chloramphenicol	2.4								1.6	33.1	61.6	1.3	0.4	2.0				
Tetracycline	50.4									47.3	2.4	0.8	4.2	45.3				

Vertical bars show the CLSI/NCCLS Susceptible/Resistant breakpoints for each drug where appropriate.

^{*}Currently no CLSI/NCCLS breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Figure 17a: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* (N=1346 Isolates)

Minimum Inhibitory Concentration

Figure 17b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* (N=1346 Isolates)

Figure 17c: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* (N=1346 Isolates)

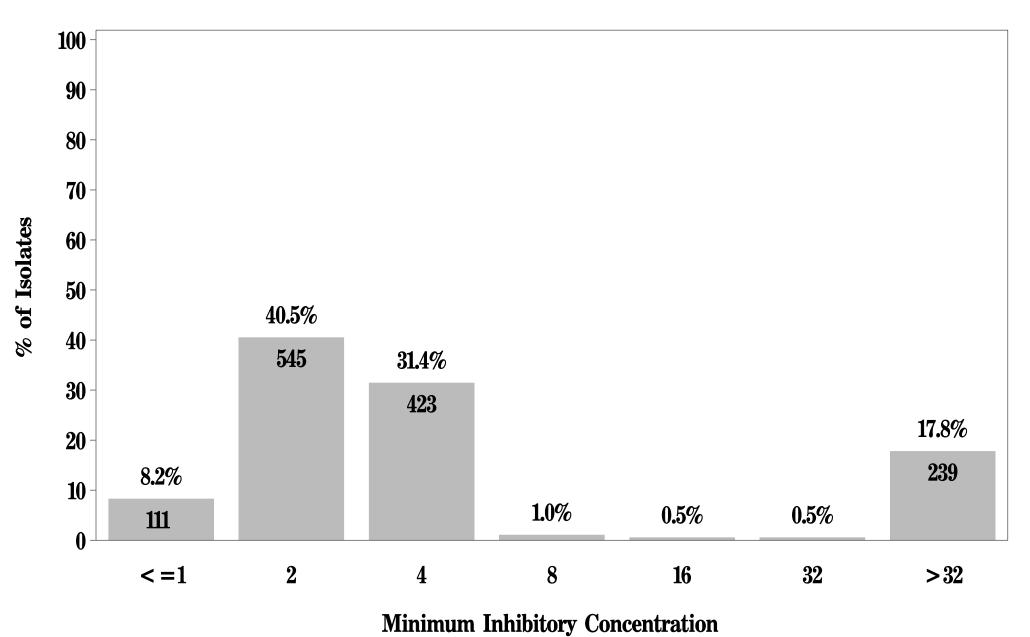


Figure 17d: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia* (N=1346 Isolates)

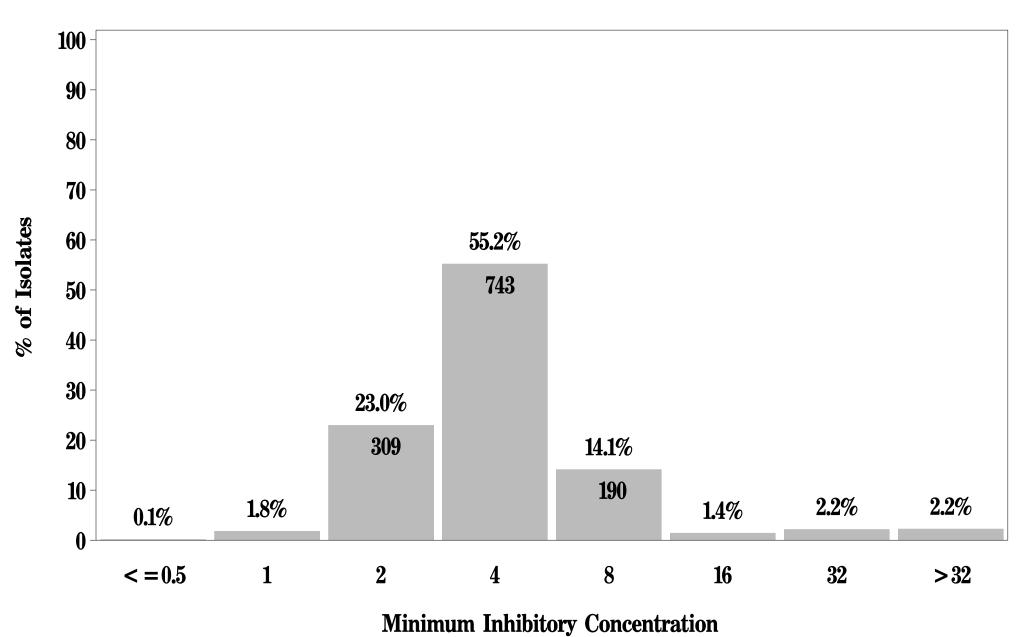
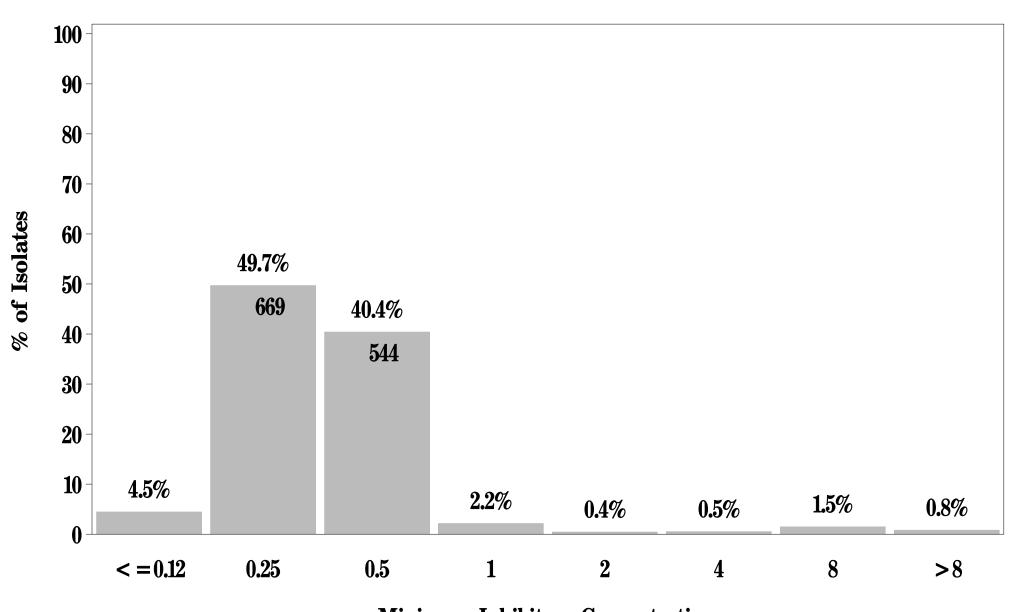



Figure 17e: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* (N=1346 Isolates)

Minimum Inhibitory Concentration

Figure 17f: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia* (N=1346 Isolates)

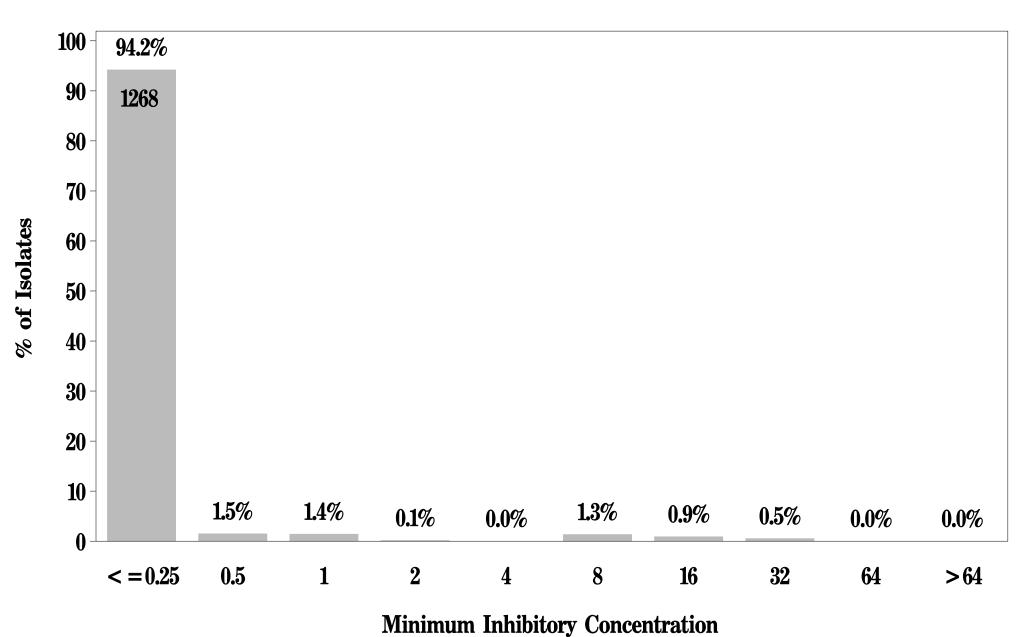


Figure 17g: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* (N=1346 Isolates)

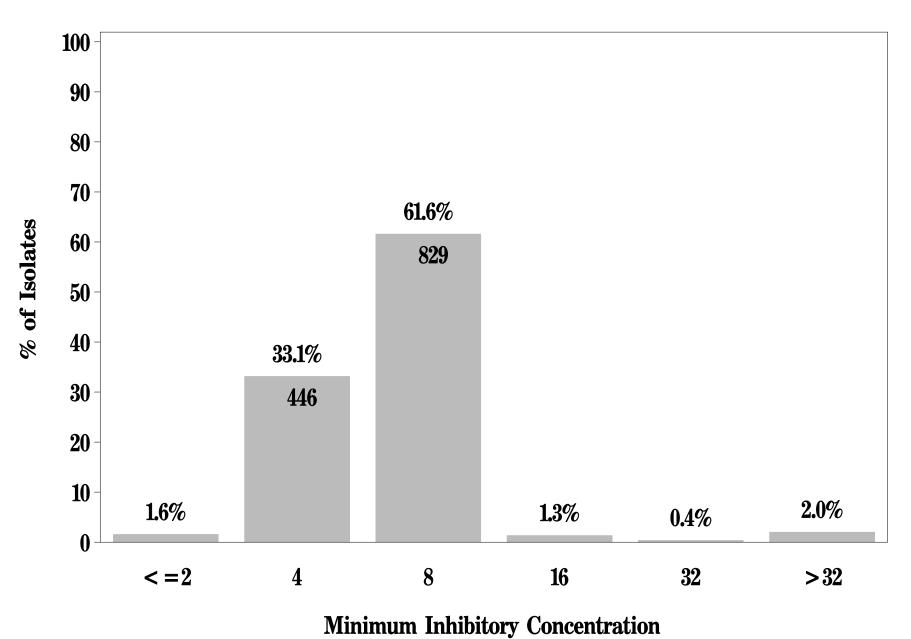


Figure 17h: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* (N=1346 Isolates)

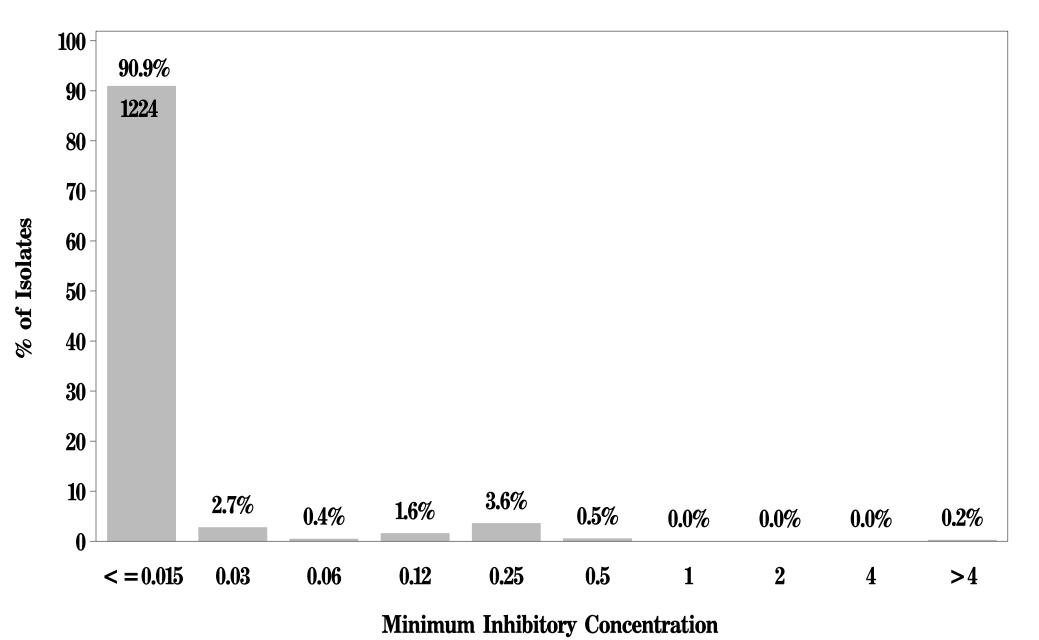


Figure 17i: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* (N=1346 Isolates)

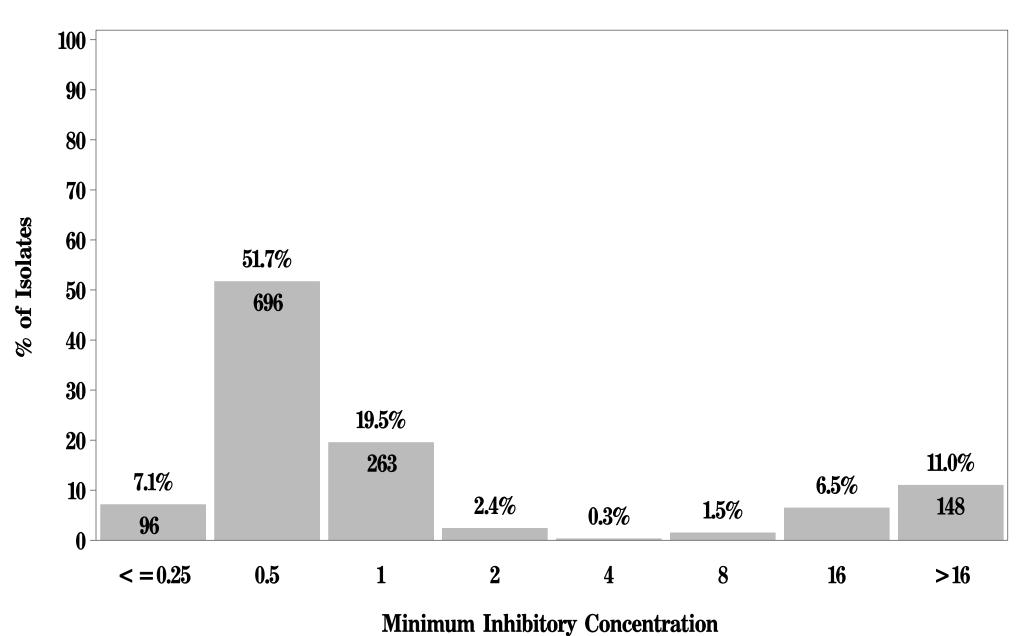


Figure 17j: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* (N=1346 Isolates)

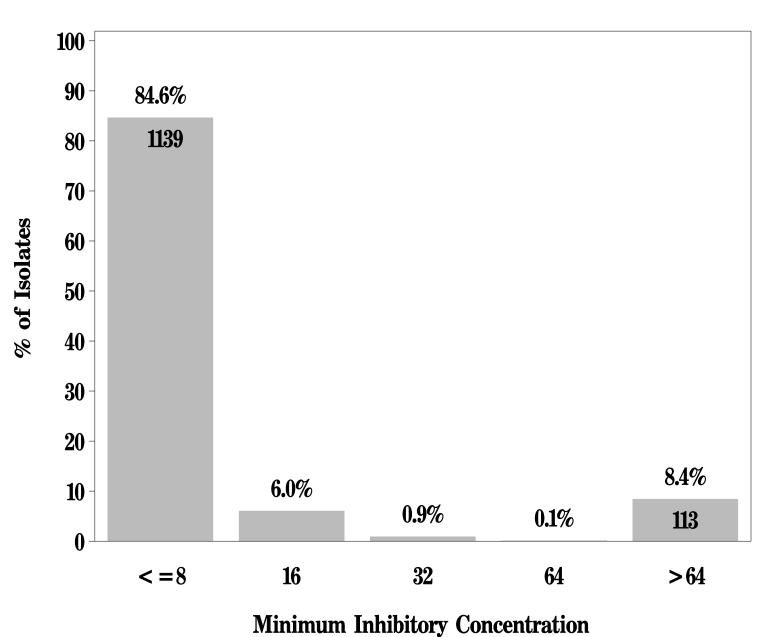


Figure 17k: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* (N=1346 Isolates)

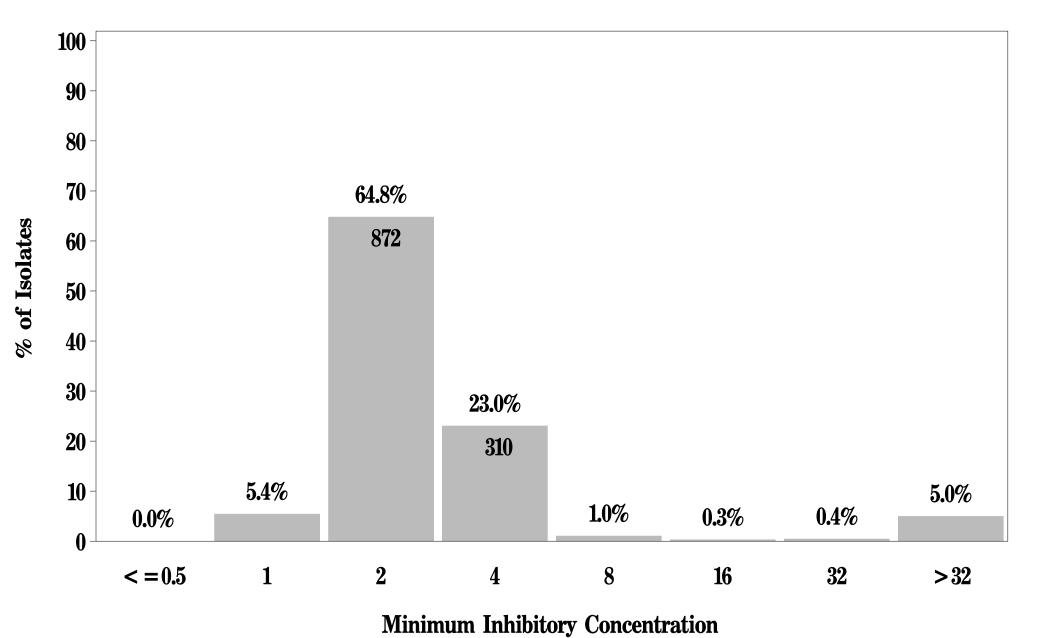
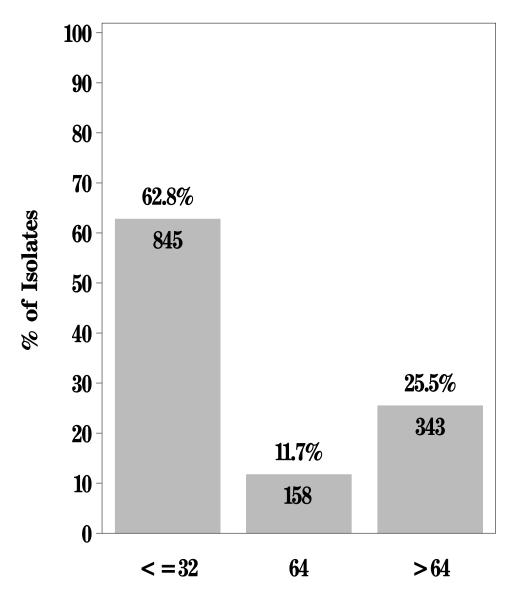



Figure 17l: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* (N=1346 Isolates)

Minimum Inhibitory Concentration

NARMS

Figure 17m: Minimum Inhibitory Concentration of Sulfisoxazole for *Escherichia coli* (N=1346 Isolates)

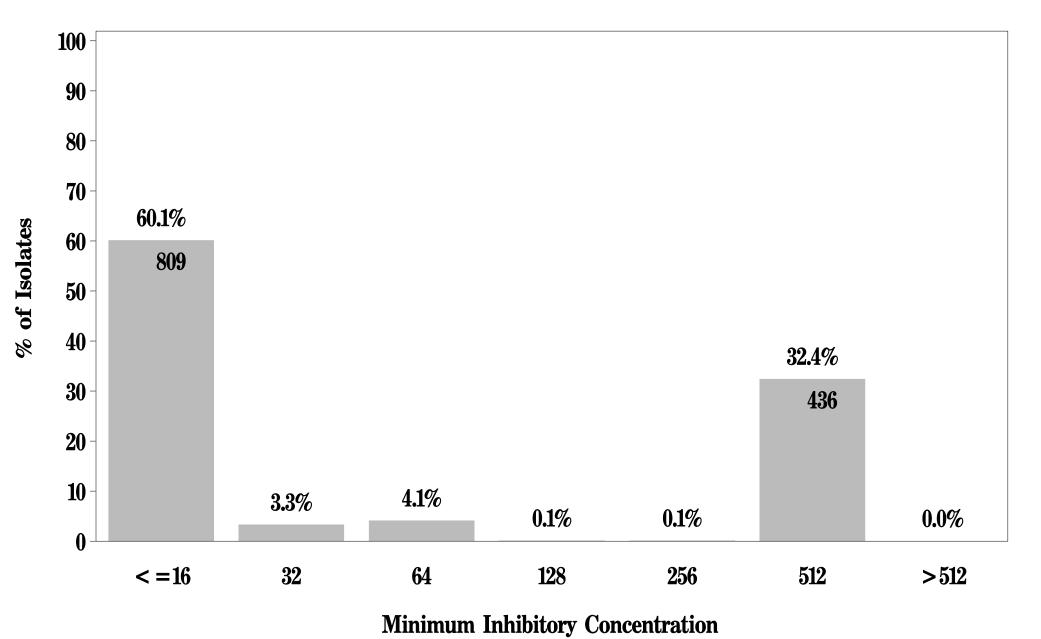


Figure 17n: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* (N=1346 Isolates)

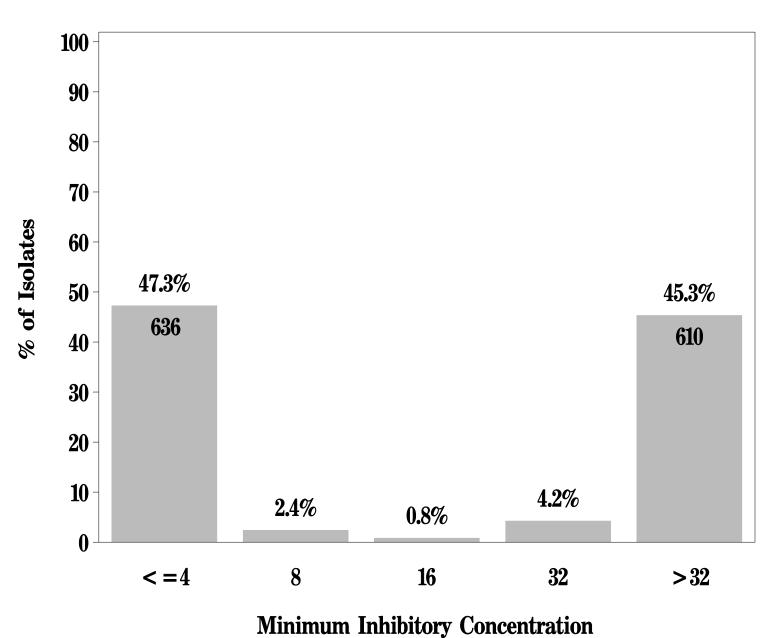


Figure 170: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* (N=1346 Isolates)

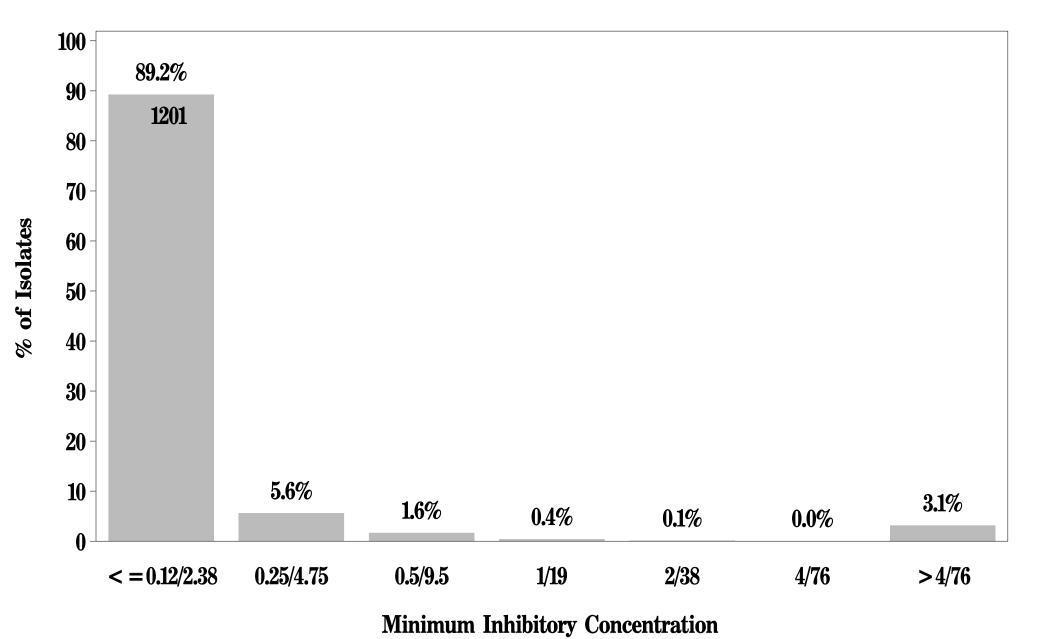


Figure 18a. MIC Distribution among E. coli from Chicken Breast

E. coli from Chicken Breast (N=400)								Distrib	ution (9	%) of N	IICs (in μg/r	nl)					
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	17.0							6.8	40.3	34.0	1.8	0.3	0.3	16.8				
Amoxicillin/Clavulanic Acid	10.0							1.8	21.8	51.3	14.8	0.5	7.3	2.8				
Cefoxitin	8.3							0.3	15.5	53.0	20.8	2.3	3.8	4.5				
Ceftiofur	5.8				4.8	50.5	35.3	2.8		1.0	4.3	1.5						
Ceftriaxone	0.0					90.0	1.3	2.0	0.3		3.5	2.0	1.0					
Nalidixic Acid	7.0							6.5	63.0	23.3	0.3		0.3	6.8				
Ciprofloxacin	0.0	90.3	2.3	0.5	1.8	4.0	1.3											
Sulfisoxazole	41.3											48.5	6.3	4.0			41.3	
Trimethoprim/Sulfamethoxazole	4.3				85.5	7.0	2.5	0.5	0.3		4.3							
Amikacin	0.0							15.0	65.0	17.0	2.5	0.5						
Gentamicin	30.0					5.8	43.3	14.8	2.5	1.0	2.8	10.0	20.0					
Kanamycin	6.8										81.8	10.5	1.0		6.8			
Streptomycin*	56.8												43.3	13.0	43.8			
Chloramphenicol	1.8								3.3	34.5	58.0	2.5	0.3	1.5				
Tetracycline	48.0									51.3	0.8	0.5	3.3	44.3				

Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug where appropriate.

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Figure 18b. MIC Distribution among E. coli from Ground Turkey

E. coli from Ground Turkey (N=376)]	Distrib	ution (%) of I	MICs (in μg/	ml)					
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	33.2							6.4	33.2	26.9		0.3	0.8	32.4				
Amoxicillin/Clavulanic Acid	5.3							1.3	19.9	41.8	28.2	3.5	4.5	0.8				
Cefoxitin	4.5							0.8	22.1	55.9	16.0	0.8	2.7	1.9				
Ceftiofur	1.1				1.9	47.9	45.2	2.4	1.3	0.3	0.5	0.5						
Ceftriaxone	0.0					95.5	1.3	1.9			0.8	0.3	0.3					
Nalidixic Acid	10.6							3.7	62.0	21.5	1.6	0.5	0.5	10.1				
Ciprofloxacin	0.8	84.3	3.5	0.8	2.9	7.4	0.3				0.8							
Sulfisoxazole	48.4											44.4	3.2	4.0			48.4	
Trimethoprim/Sulfamethoxazole	3.7				83.8	9.3	2.7	0.5			3.7							
Amikacin	0.0							17.3	66.5	13.8	2.4							
Gentamicin	29.3					4.8	42.6	19.1	2.1		2.1	12.5	16.8					
Kanamycin	16.0										75.0	6.9	2.1	0.3	15.7			
Streptomycin*	49.2												50.8	18.6	30.6			
Chloramphenicol	0.8								1.3	36.7	60.4	0.8		0.8				
Tetracycline	74.2									25.3	0.5		6.9	67.3				

Vertical bars show the CLSI/ Susceptible/Resistant breakpoints for each drug where appropriate.

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Figure 18c. MIC Distribution among E. coli from Ground Beef

oli from Ground Beef (N=338)							I	Distrib	ution (%) of N	MICs (in μg/ı	ml)					
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	5.3							8.9	46.2	37.9	0.9	0.9	0.3	5.0				
Amoxicillin/Clavulanic Acid	3.8							4.4	23.4	60.9	7.1	0.3	3.6	0.3				
Cefoxitin	1.2							4.1	30.2	53.8	8.9	1.8	0.3	0.9				
Ceftiofur	0.9				5.0	49.4	41.7	2.1	0.3	0.6		0.9						
Ceftriaxone	0.0					95.9	1.8	0.6	0.3		0.3	0.6	0.6					
Nalidixic Acid	1.5							3.0	67.5	26.9	1.2		0.9	0.6				
Ciprofloxacin	0.0	94.4	3.8		0.6	0.9	0.3											
Sulfisoxazole	13.0											84.6		2.4			13.0	
Trimethoprim/Sulfamethoxazole	0.6				97.0	2.1		0.3			0.6							
Amikacin	0.0							15.7	69.8	12.4	1.8	0.3						
Gentamicin	0.6					9.2	67.8	20.7	1.8				0.6					
Kanamycin	2.4										95.6	2.1			2.4			
Streptomycin*	11.8												88.2	4.7	7.1			
Chloramphenicol	3.6								0.3	26.9	68.3	0.9	0.3	3.3				
Tetracycline	22.8									70.7	6.5	2.7	1.2	18.9				

Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug where appropriate.

^{*}Currently no CLSI/ breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Figure 18d. MIC Distribution among $E.\ coli$ from Pork Chop

E. coli from Pork Chop (N=232)								Distril	oution	(%) of	MICs	(in μg	/ml)					
Antimicrobial Agent	%R	0.015	0.03	0.06	0.125	0.25	0.5	1	2	4	8	16	32	64	128	256	512	>512
Ampicillin	15.1							12.9	44.4	25.0	1.7	0.9	0.9	14.2				
Amoxicillin/Clavulanic Acid	5.6							4.3	27.6	46.6	15.5	0.4	4.7	0.9				
Cefoxitin	2.2						0.9	2.6	26.7	59.9	7.3	0.4	1.3	0.9				
Ceftiofur	0.4				7.3	51.7	39.7	0.9			0.4							
Ceftriaxone	0.0					97.0	1.7	0.9				0.4						
Nalidixic Acid	0.0							9.9	68.5	19.4	1.3	0.9						
Ciprofloxacin	0.0	97.8	0.9	0.4	0.4	0.4												
Sulfisoxazole	19.4											69.8	3.0	6.9	0.4	0.4	19.4	
Trimethoprim/Sulfamethoxazole	3.9				93.1	2.2	0.9				3.9							
Amikacin	0.0						0.4	15.5	56.0	26.3	1.3	0.4						
Gentamicin	1.3					10.3	57.8	26.7	3.4		0.4		1.3					
Kanamycin	8.2										89.2	2.6			8.2			
Streptomycin*	21.1	_											78.9	8.6	12.5			
Chloramphenicol	4.3								0.9	34.1	59.9	0.9	1.3	3.0				
Tetracycline	56.0									41.8	2.2		6.0	50.0				

Vertical bars show the CLSI Susceptible/Resistant breakpoints for each drug where appropriate.

^{*}Currently no CLSI breakpoints have been established for this organism/antimicrobial combination. Indicated breakpoints were established by NARMS.

[†]Discrepancies between %R and sums of distribution %s are due to rounding.

Figure 19a: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

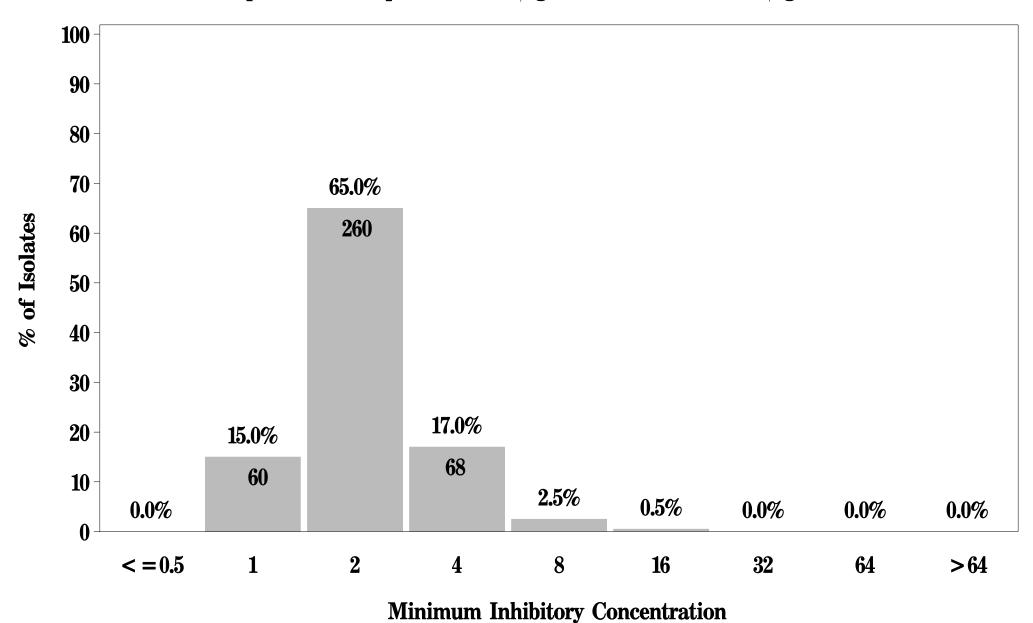


Figure 19a: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Ground Turkey (N=376 Isolates) Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

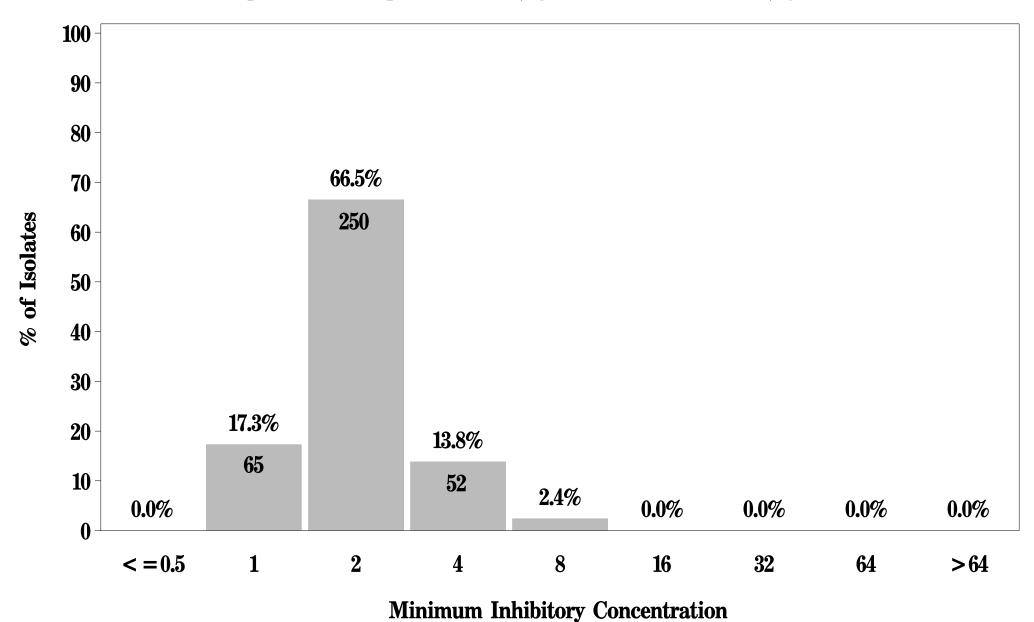
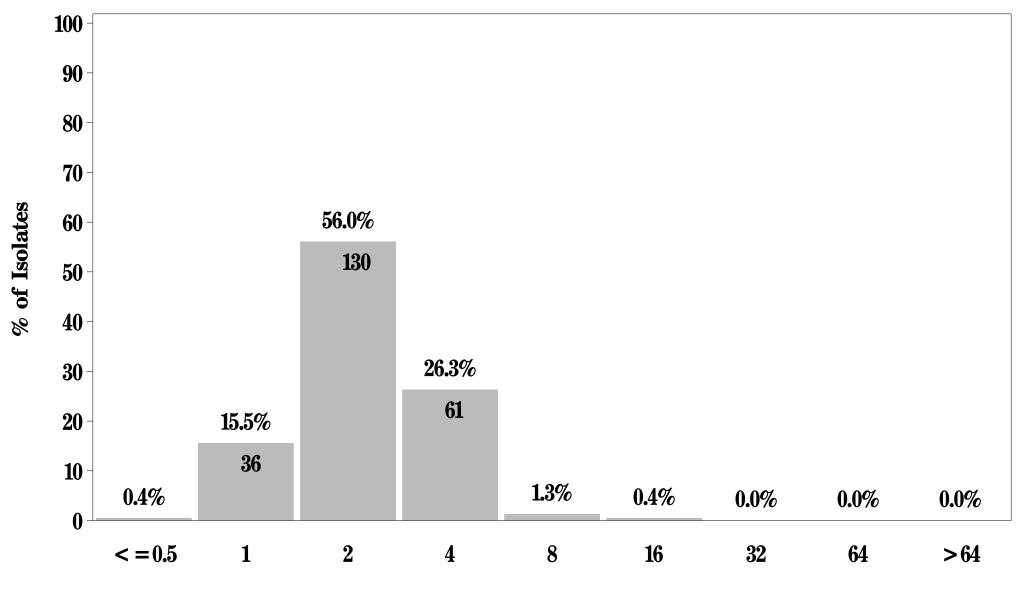



Figure 19a: Minimum Inhibitory Concentration of Amikacin for *Escherichia coli* in Ground Beef (N=338 Isolates)
Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

Figure 19a: Minimum Inhibitory Concentration of Amikacin for Escherichia coli in Pork Chop (N=232 Isolates)

Minimum Inhibitory Concentration

Figure 19b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* in Chicken Breast (N=400 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

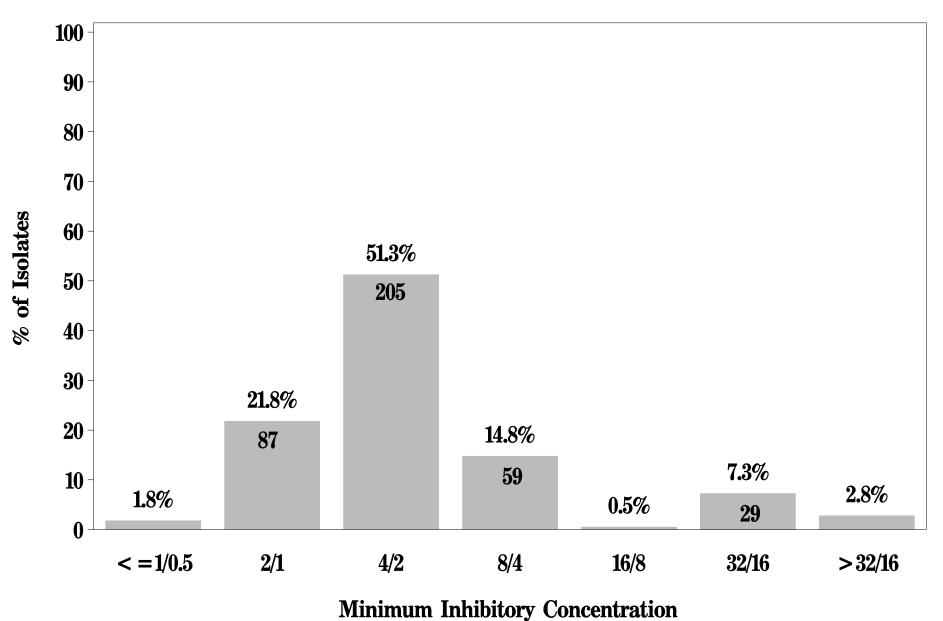
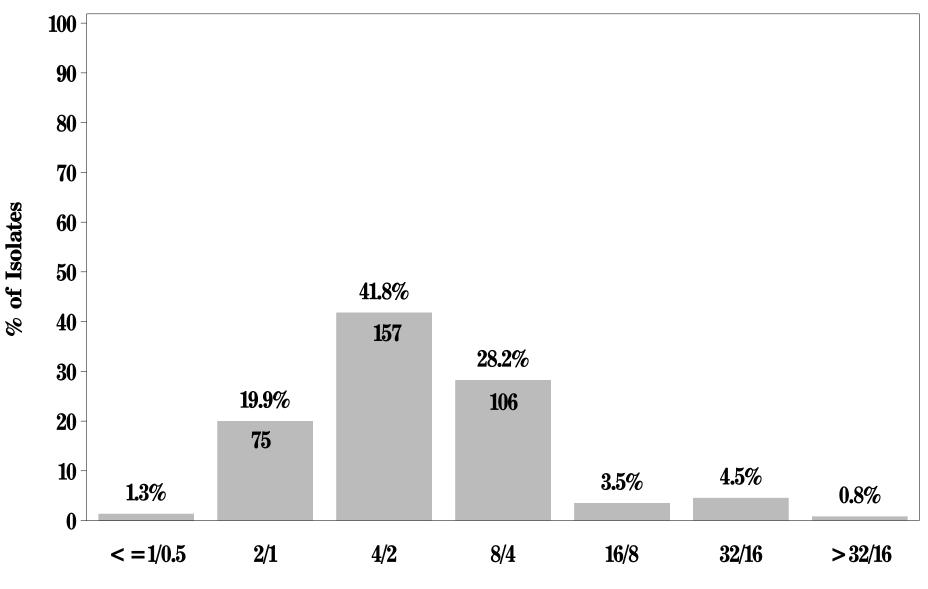



Figure 19b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* in Ground Turkey (N=376 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

Minimum Inhibitory Concentration

Figure 19b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* in Ground Beef (N=338 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

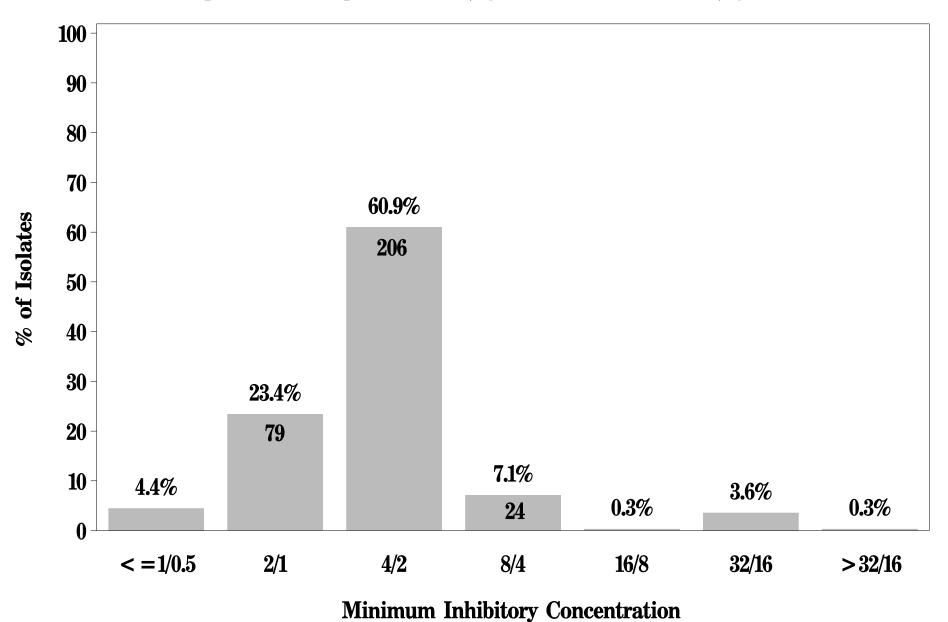


Figure 19b: Minimum Inhibitory Concentration of Amoxicillin/Clavulanic acid for *Escherichia coli* in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$

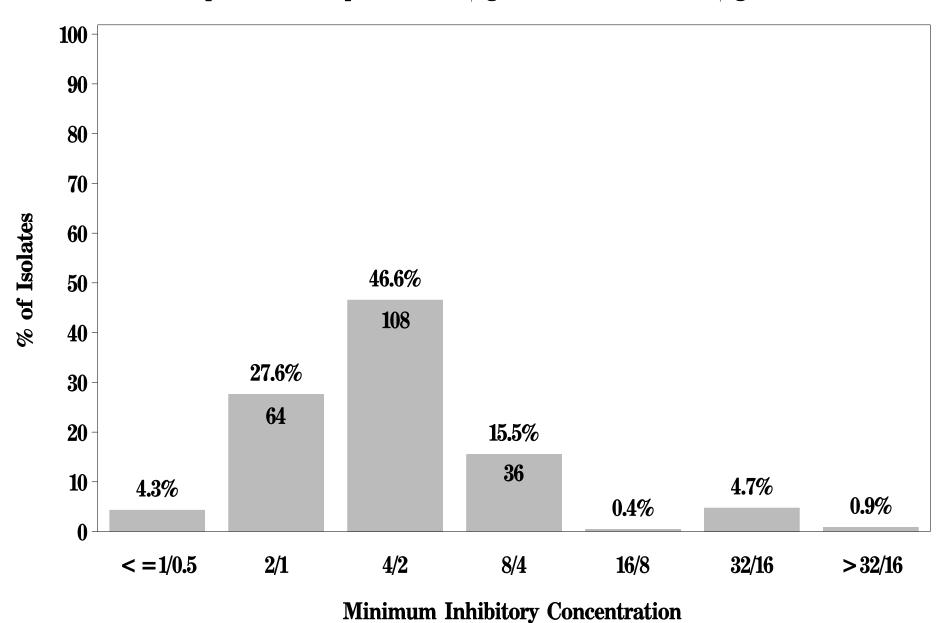
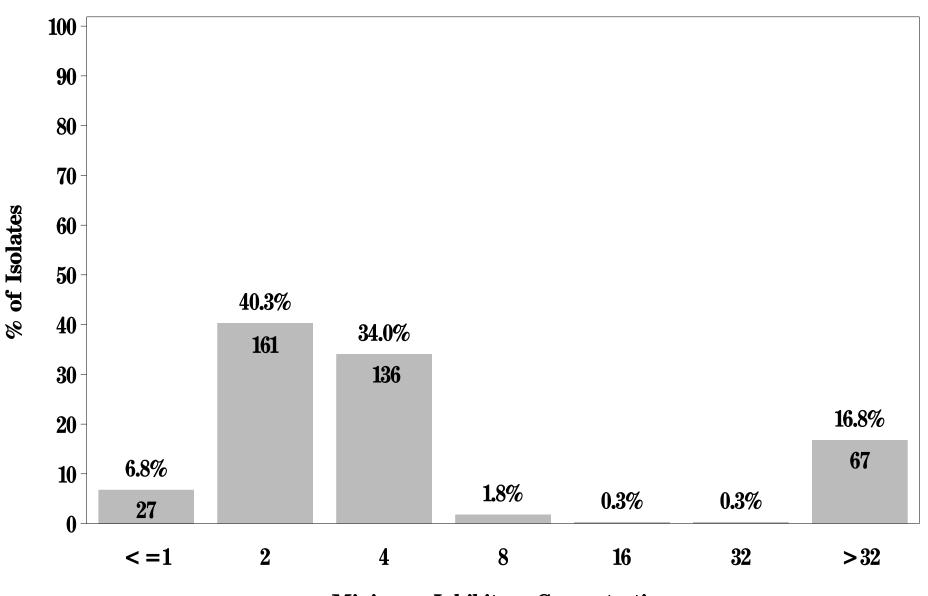



Figure 19c: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 19c: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Ground Turkey (N=376 Isolates) Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

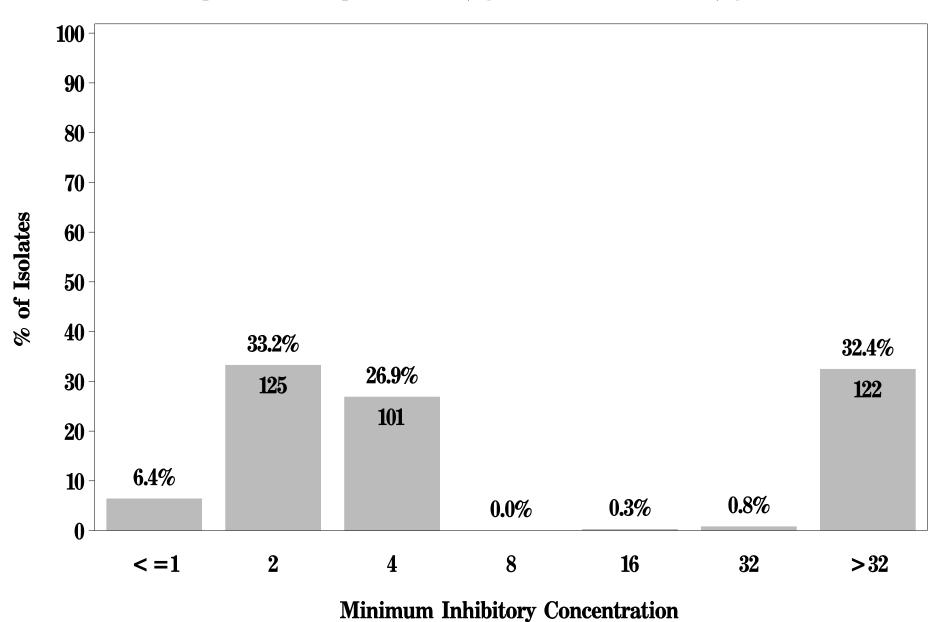


Figure 19c: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Ground Beef (N=338 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

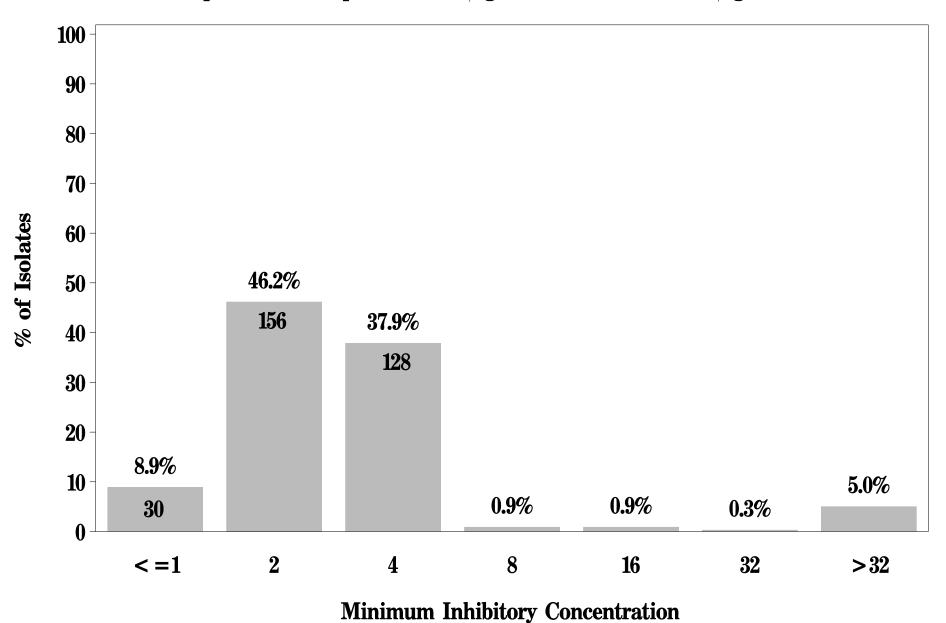
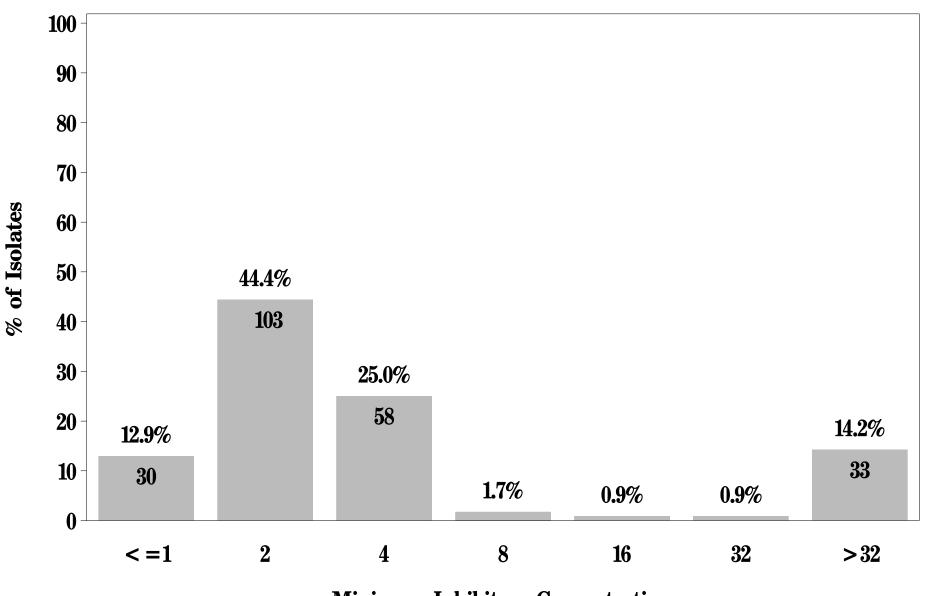
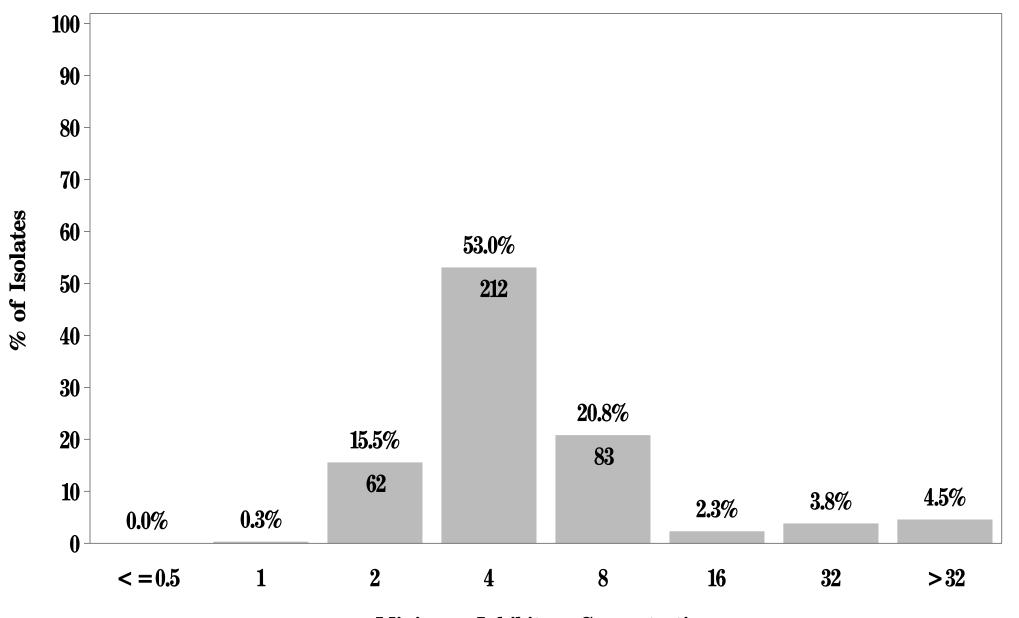



Figure 19c: Minimum Inhibitory Concentration of Ampicillin for *Escherichia coli* in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

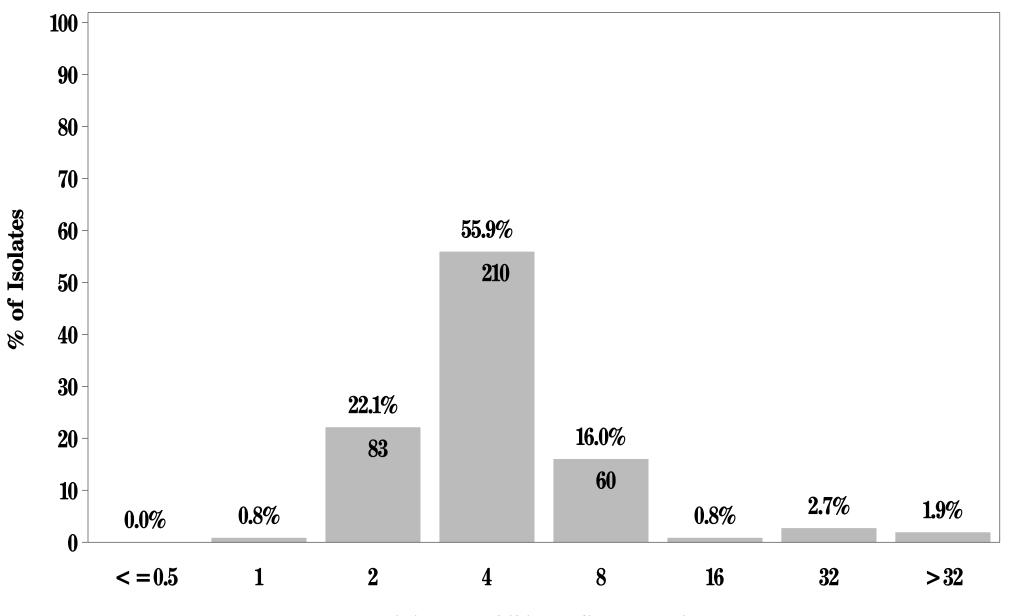


Minimum Inhibitory Concentration

NARMS

Figure 19d: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia* in Chicken Breast (N=400 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL



Minimum Inhibitory Concentration

NARMS

Figure 19d: Minimum Inhibitory Concentration of Cefoxitin for Escherichia in Ground Turkey (N=376 Isolates)

Breakpoints: Susceptible $< = 8 \mu g/mL$ Resistant $> = 32 \mu g/mL$



Minimum Inhibitory Concentration

NARMS

Figure 19d: Minimum Inhibitory Concentration of Cefoxitin for *Escherichia* in Ground Beef (N=338 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

Minimum Inhibitory Concentration

NARMS

Figure 19d: Minimum Inhibitory Concentration of Cefoxitin for Escherichia in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 32 μ g/mL

Minimum Inhibitory Concentration

Figure 19e: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

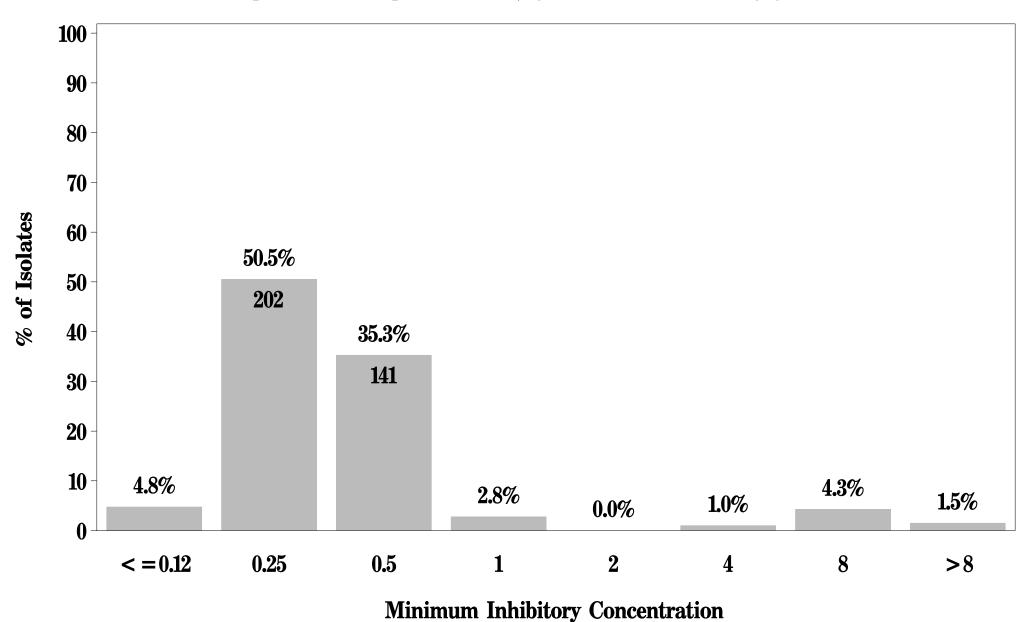


Figure 19e: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Ground Turkey (N=376 Isolates) Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

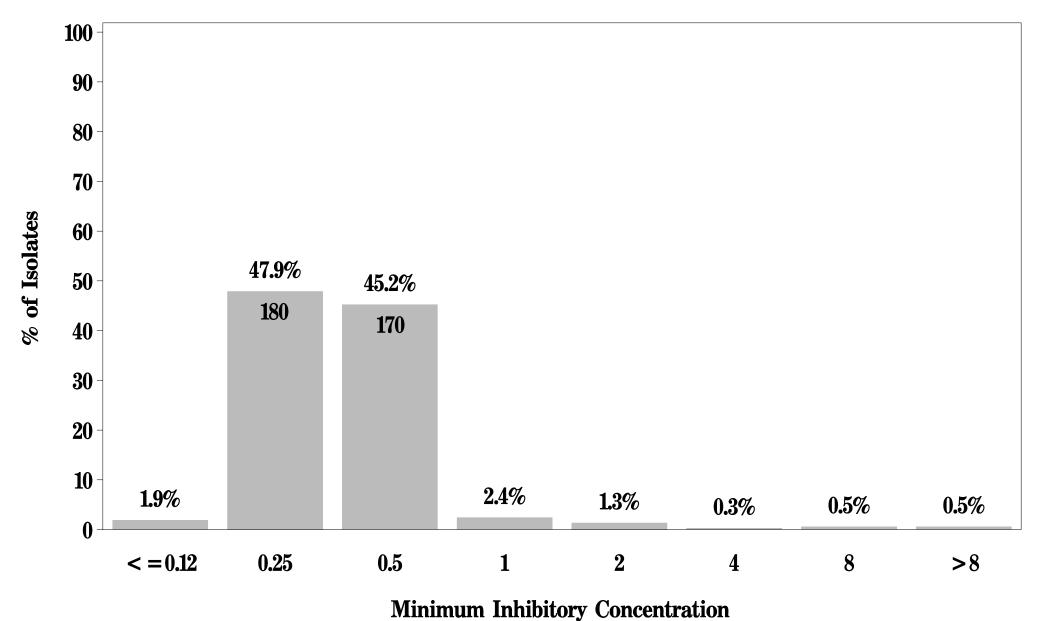
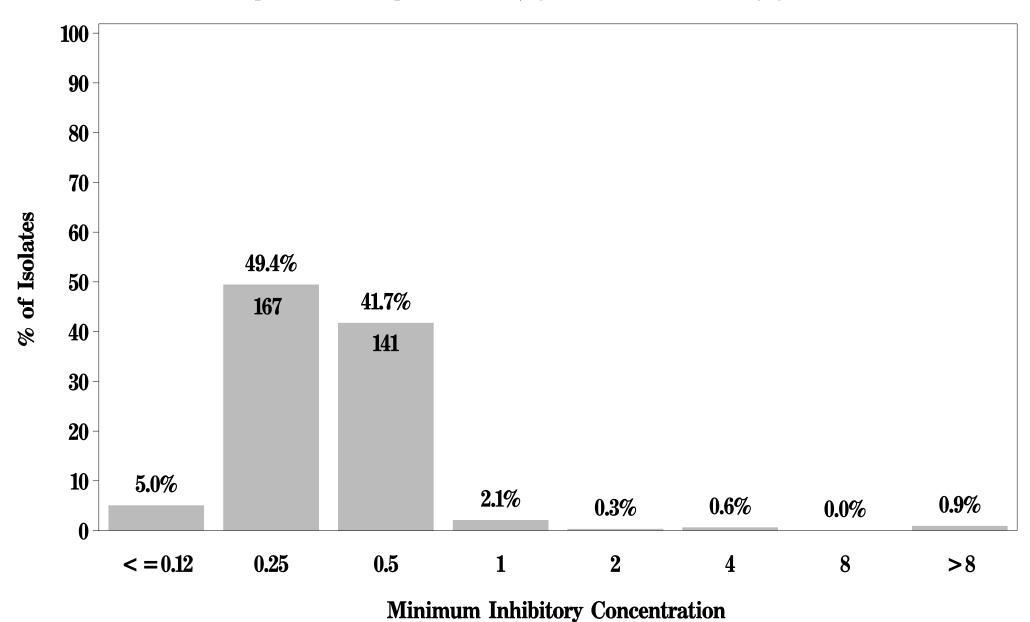
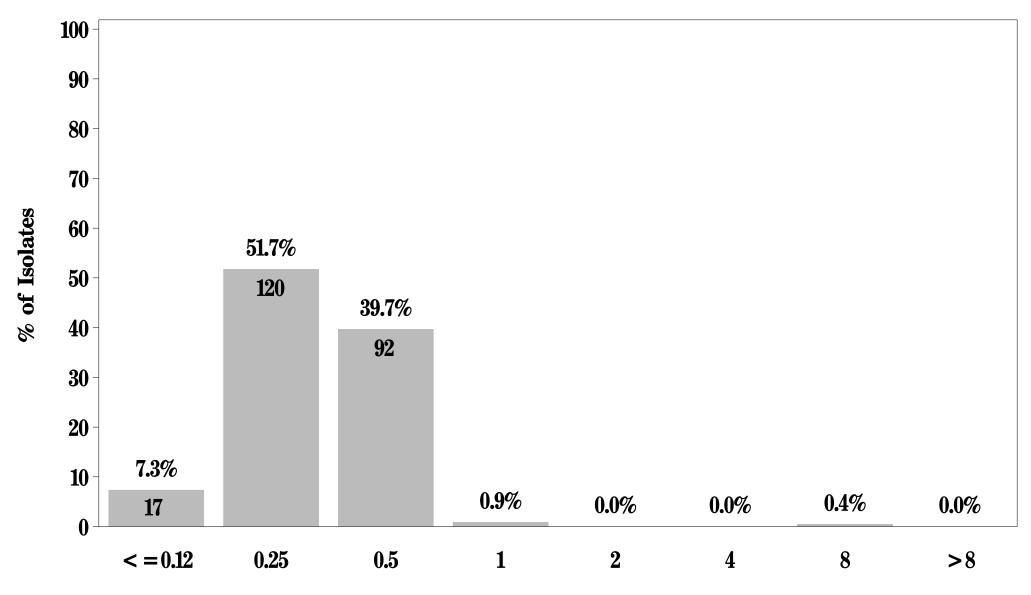




Figure 19e: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Ground Beef (N=338 Isolates) Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

NARMS

Figure 19e: Minimum Inhibitory Concentration of Ceftiofur for *Escherichia coli* in Pork Chop (N=232 Isolates)
Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 8 \mu g/mL$

Minimum Inhibitory Concentration

Figure 19f: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia* in Chicken Breast (N=400 Isolates)

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 64 μ g/mL

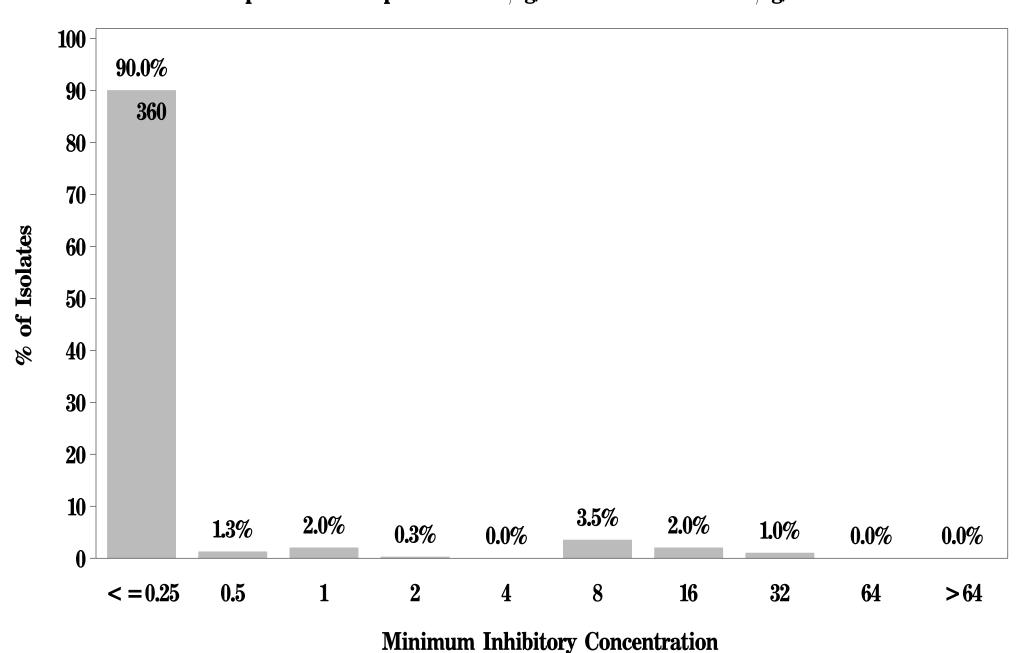


Figure 19f: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia* in Ground Turkey (N=376 Isolates)

Breakpoints: Susceptible <= 8 μ g/mL Resistant >= 64 μ g/mL

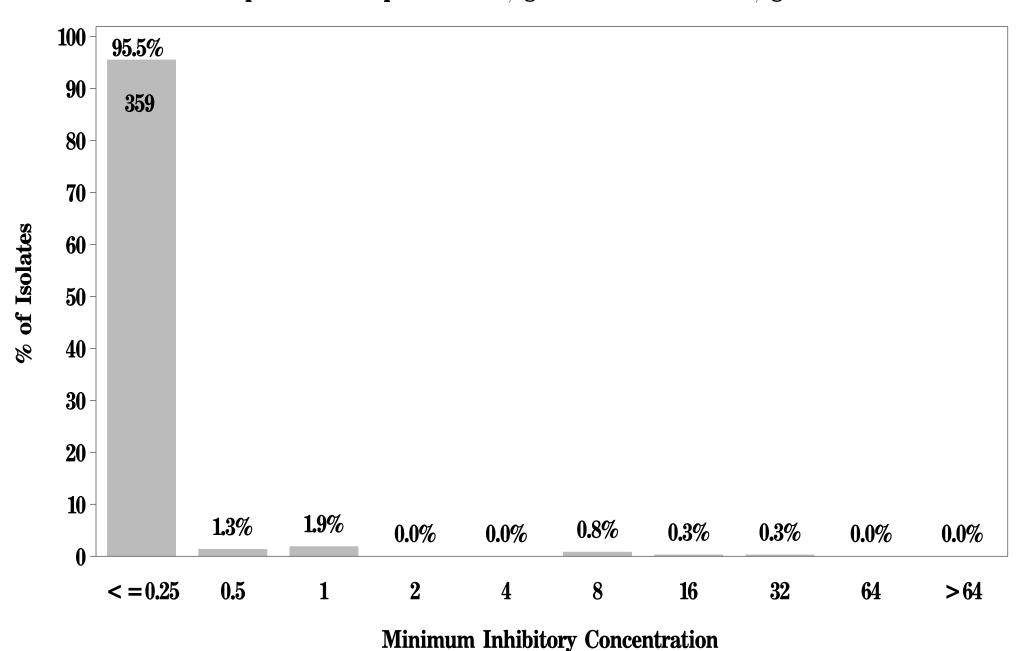
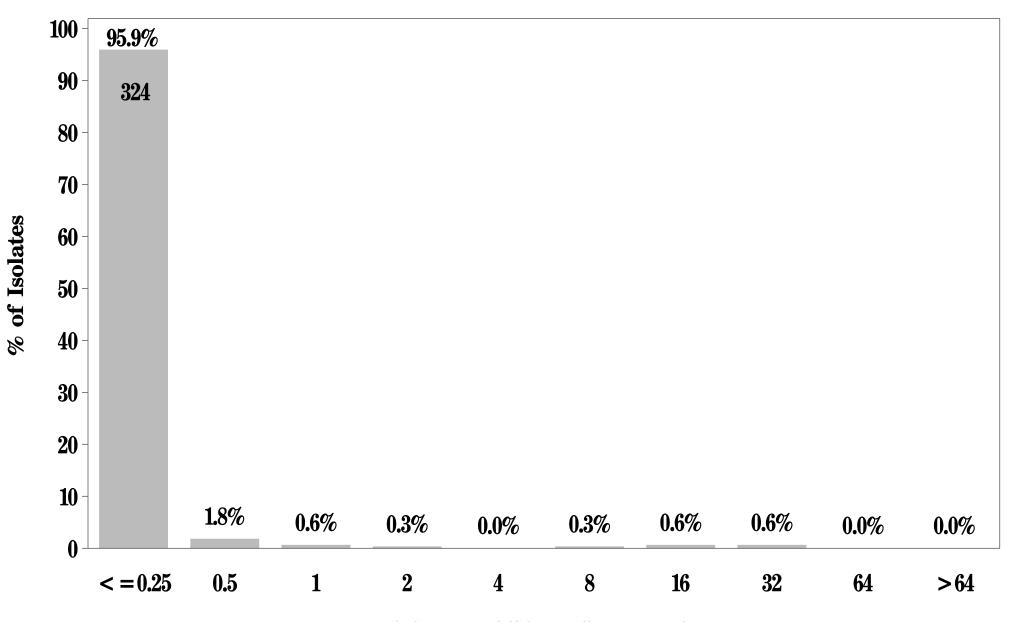
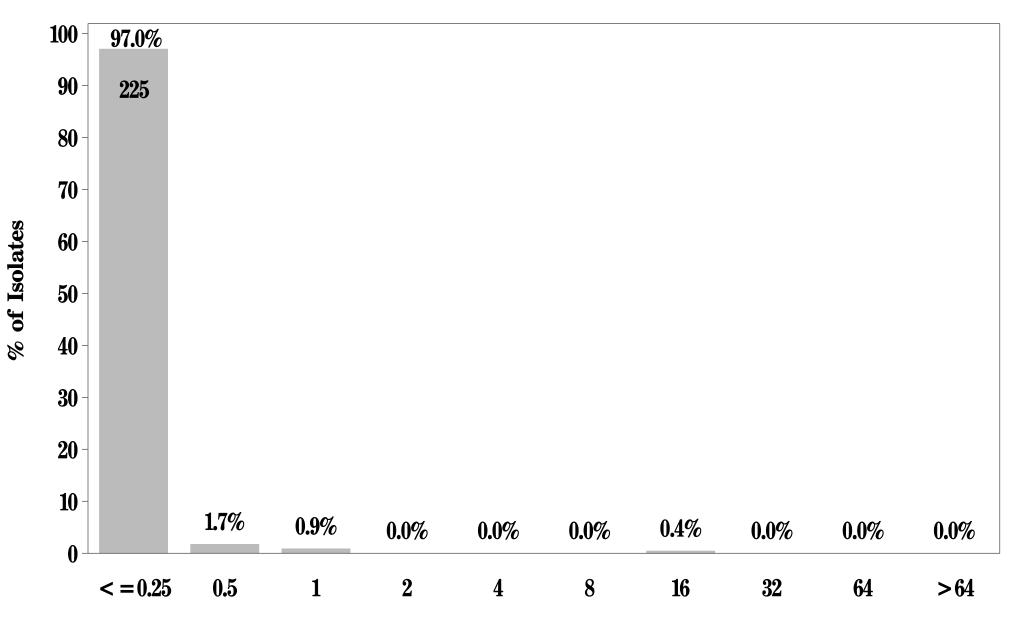
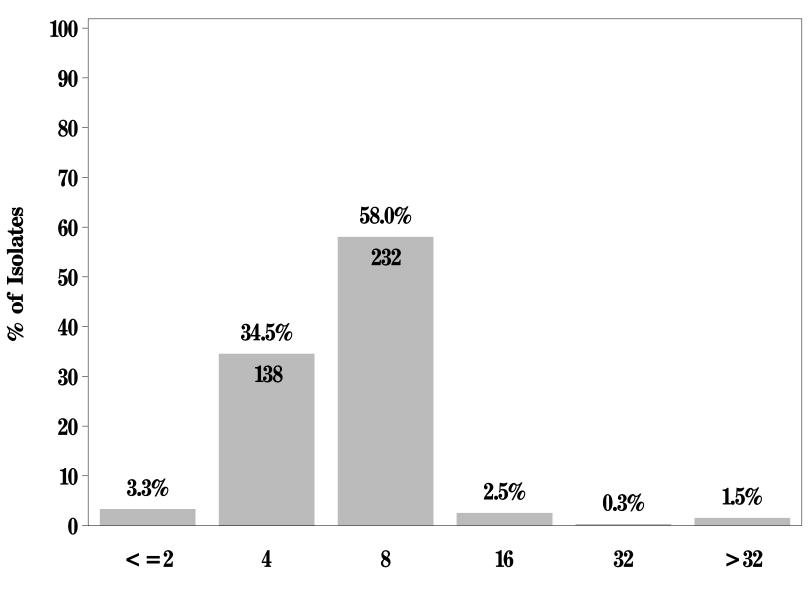



Figure 19f: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia* in Ground Beef (N=338 Isolates)

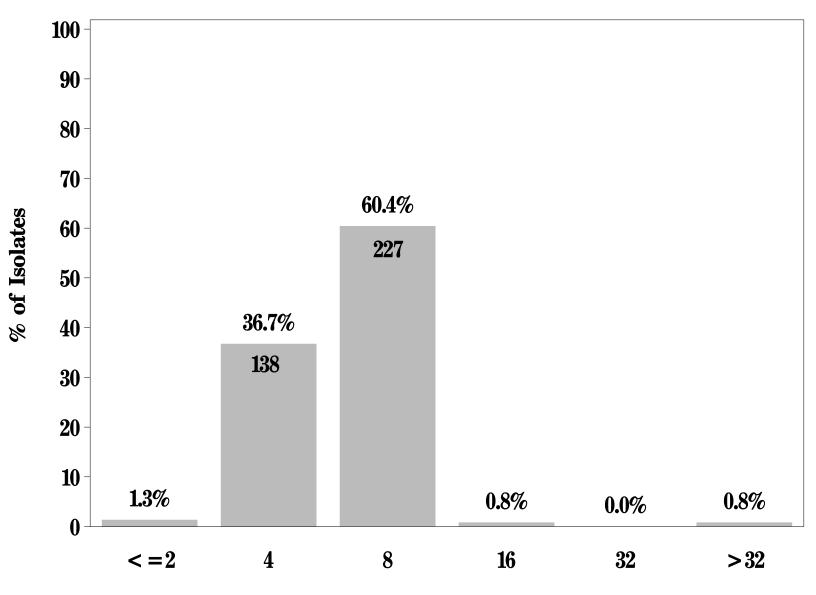

Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration


Figure 19f: Minimum Inhibitory Concentration of Ceftriaxone for *Escherichia* in Pork Chop (N=232 Isolates)

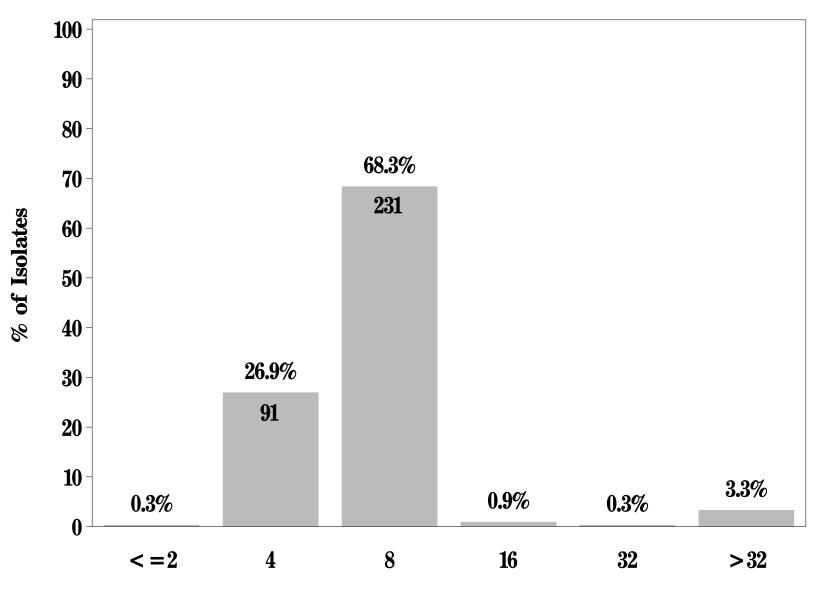
Breakpoints: Susceptible < = 8 μ g/mL Resistant > = 64 μ g/mL

Minimum Inhibitory Concentration


Figure 19g: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

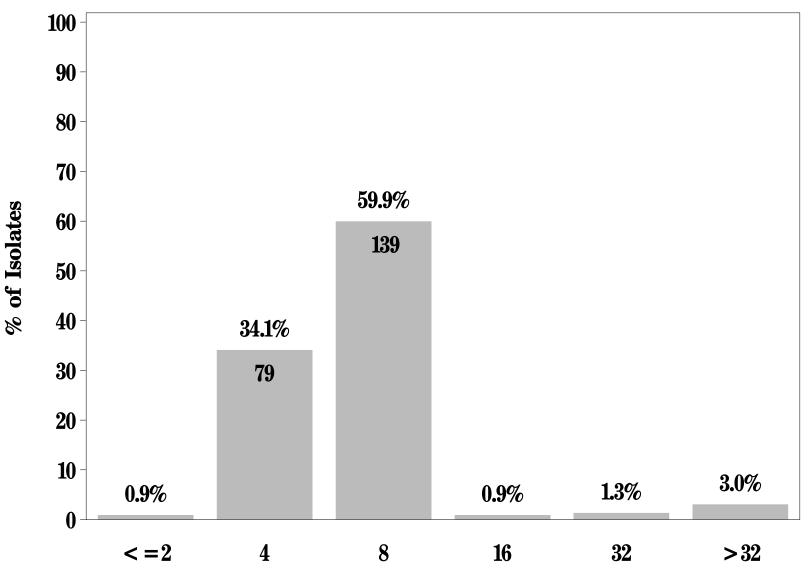
Minimum Inhibitory Concentration

Figure 19g: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Ground Turkey (N=376 Isolates)


Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 19g: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Ground Beef (N=338 Isolates)


Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 19g: Minimum Inhibitory Concentration of Chloramphenicol for *Escherichia coli* in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible $< = 8 \mu \text{g/mL}$ Resistant $> = 32 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 19h: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

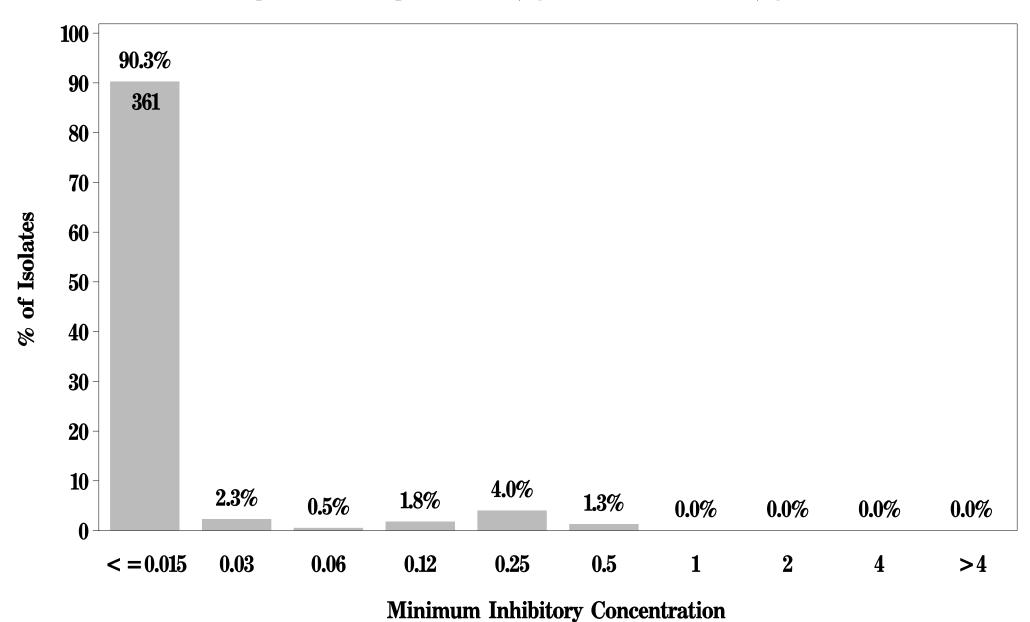
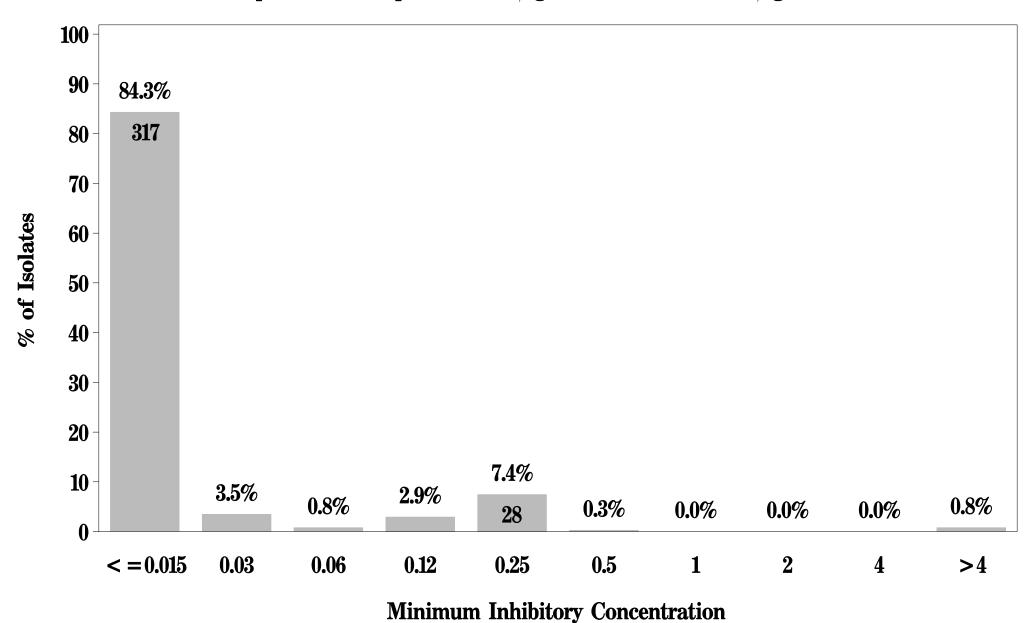
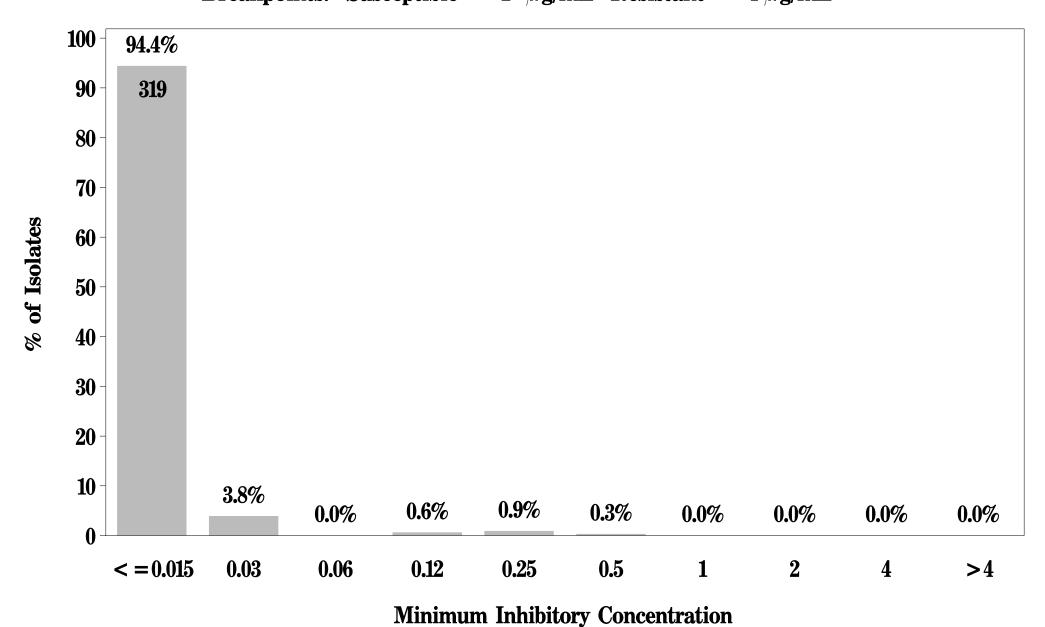
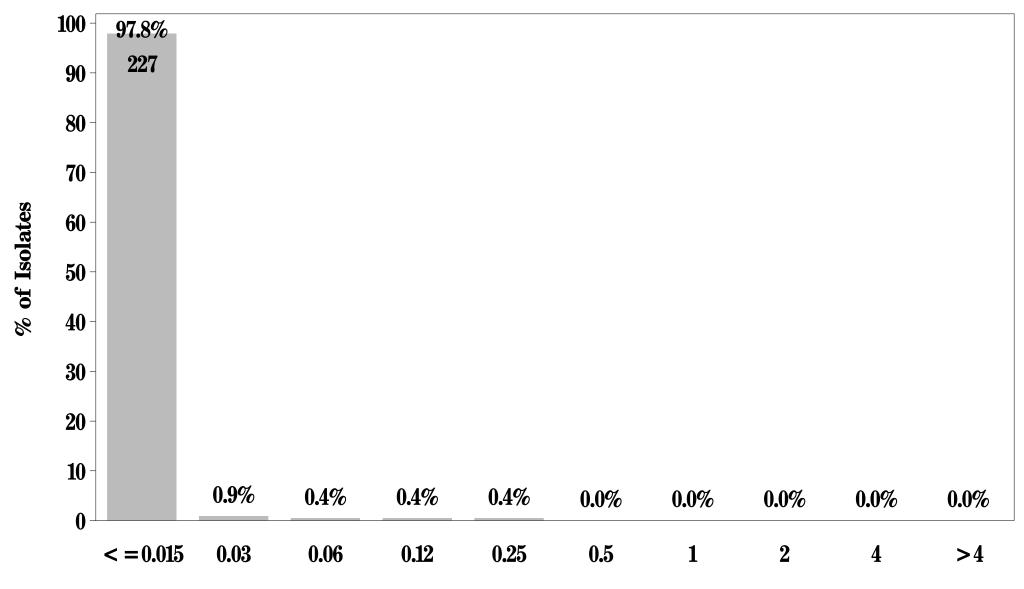



Figure 19h: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Ground Turkey (N=376 Isolates)


Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

NARMS

Figure 19h: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Ground Beef (N=338 Isolates)


Breakpoints: Susceptible $< =1 \mu g/mL$ Resistant $> =4 \mu g/mL$

NARMS

Figure 19h: Minimum Inhibitory Concentration of Ciprofloxacin for *Escherichia coli* in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible < =1 μ g/mL Resistant > =4 μ g/mL

Minimum Inhibitory Concentration

Figure 19i: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible < =4 μ g/mL Resistant > =16 μ g/mL

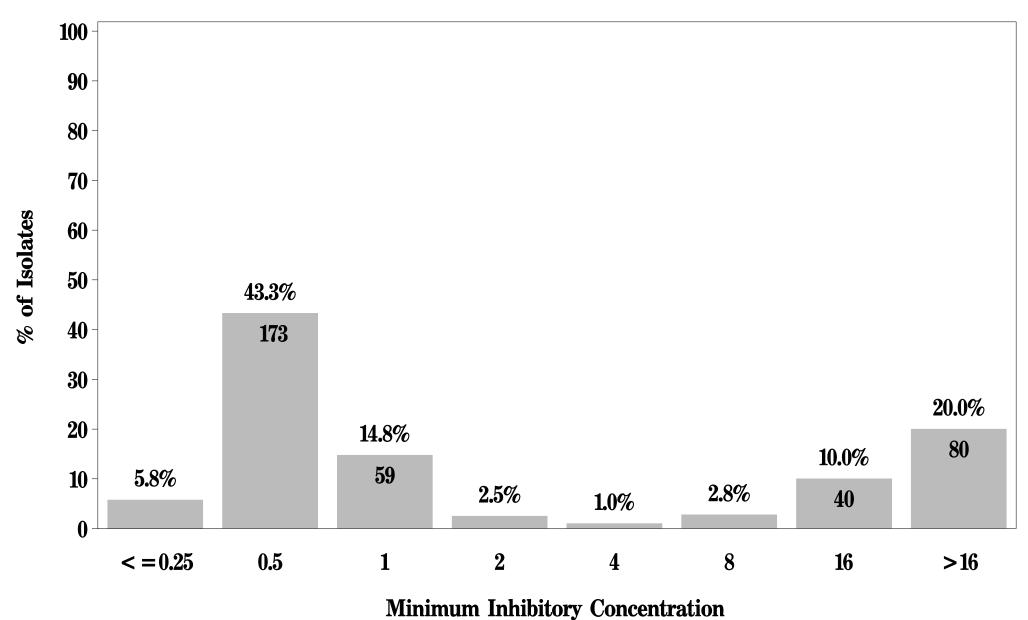


Figure 19i: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Ground Turkey (N=376 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

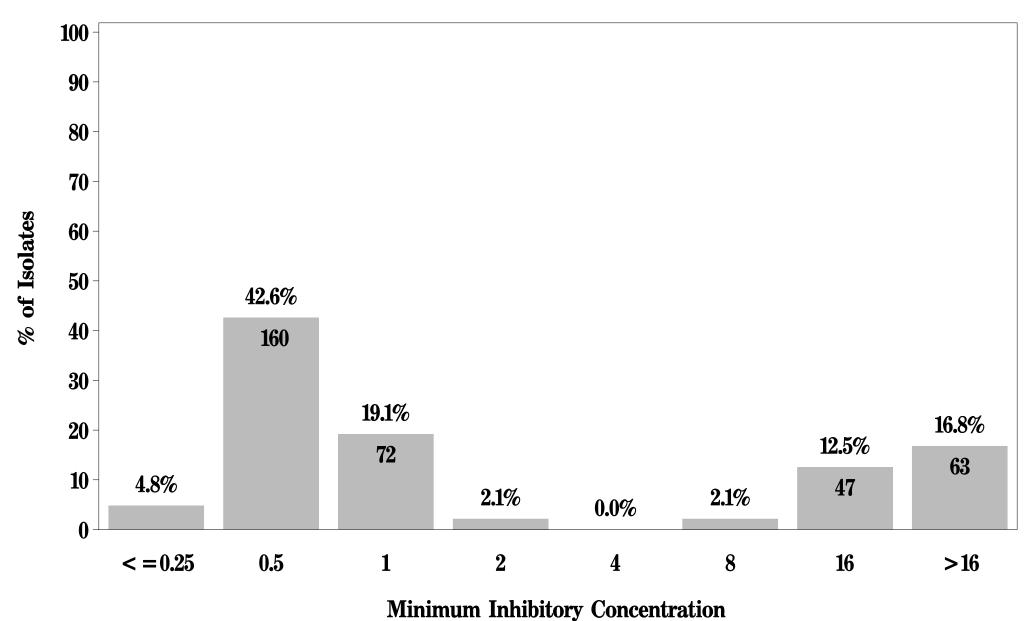


Figure 19i: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Ground Beef (N=338 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

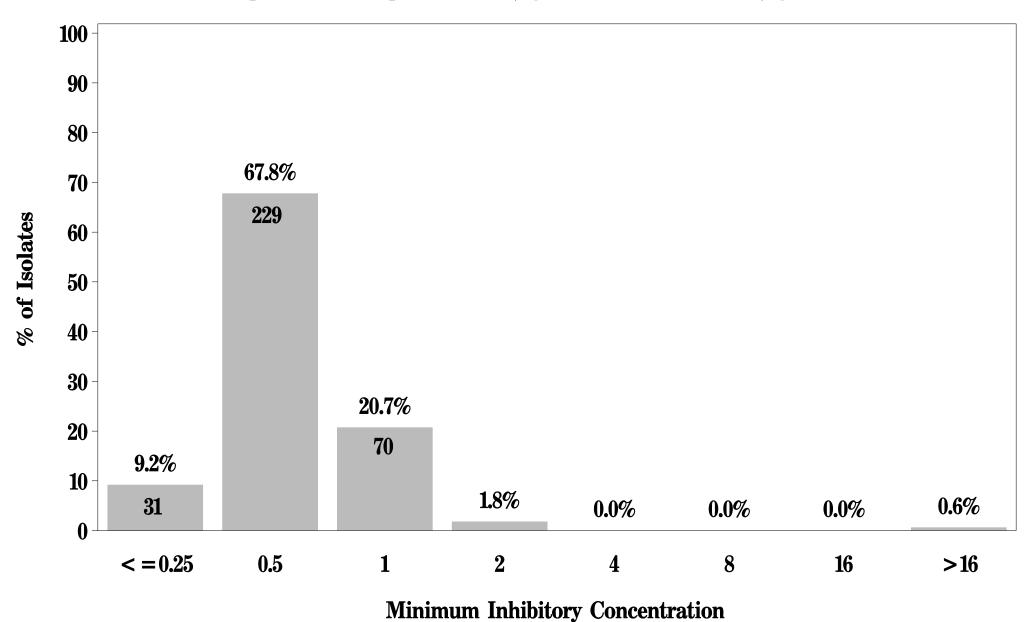


Figure 19i: Minimum Inhibitory Concentration of Gentamicin for *Escherichia coli* in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

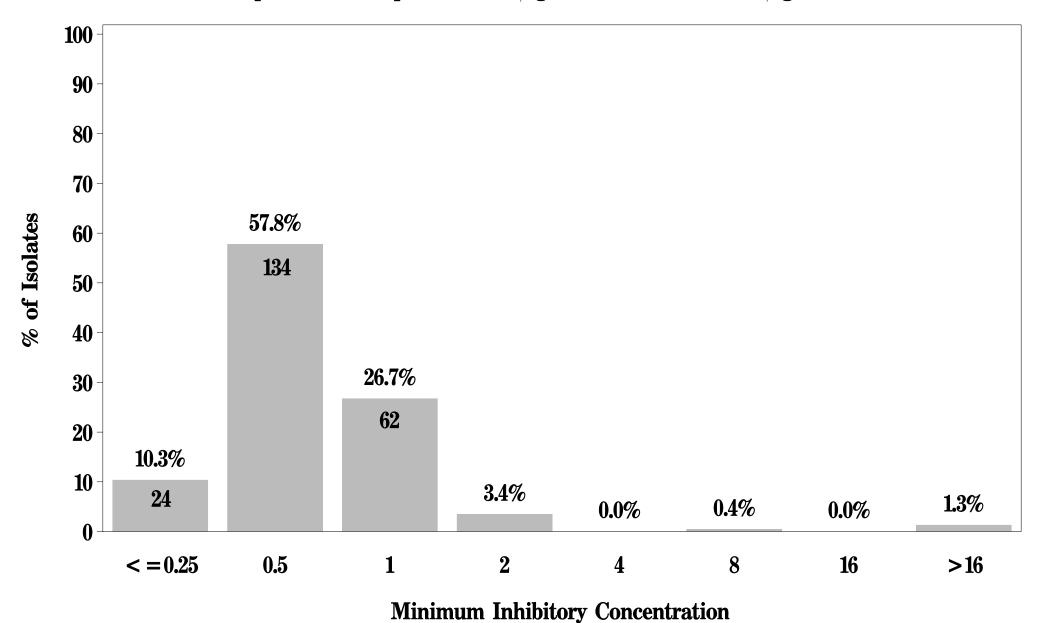
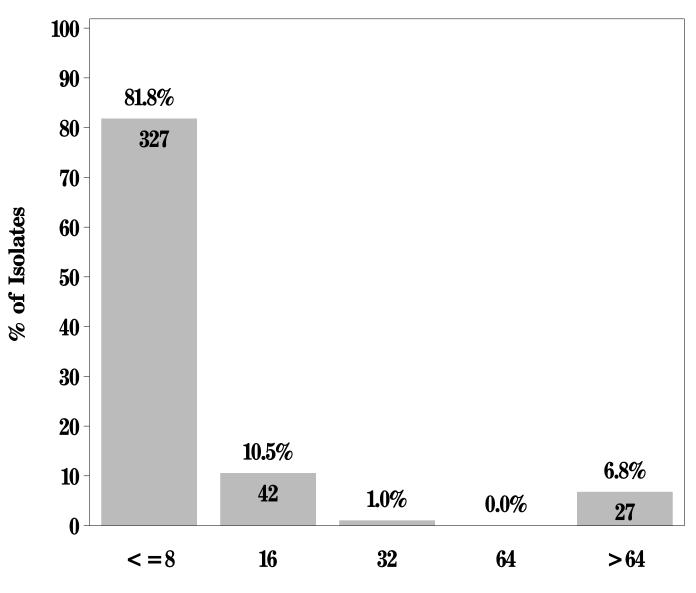
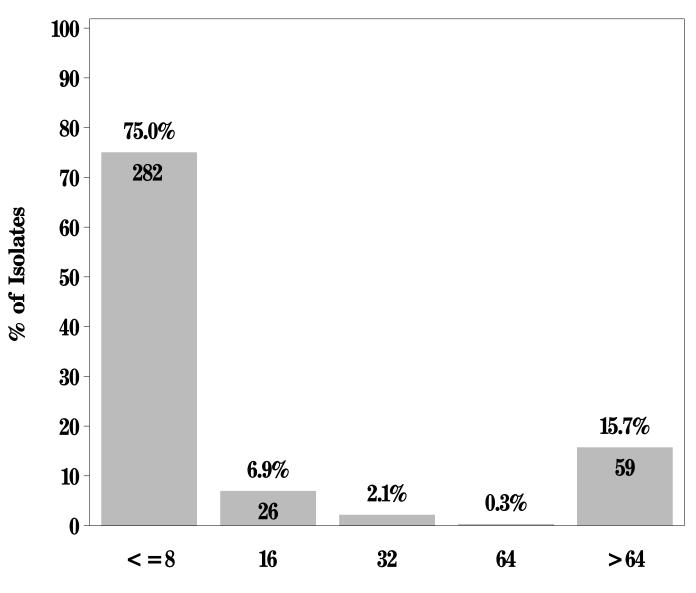




Figure 19j: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

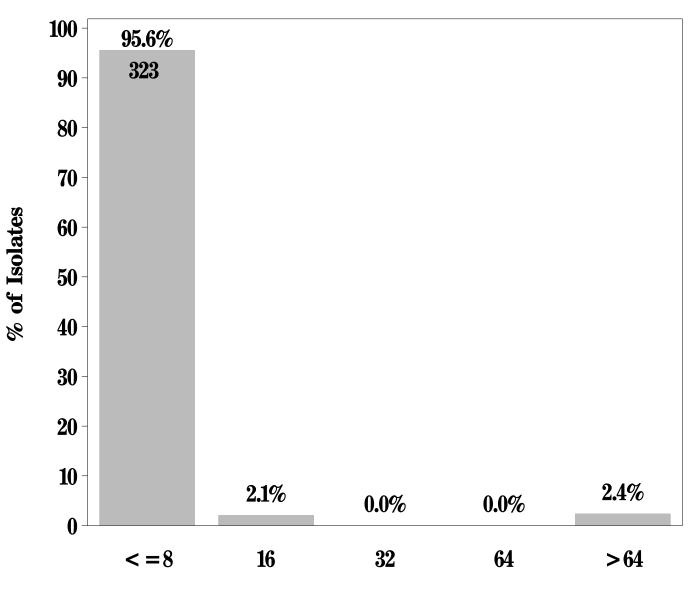

Minimum Inhibitory Concentration

Figure 19j: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Ground Turkey (N=376 Isolates) Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

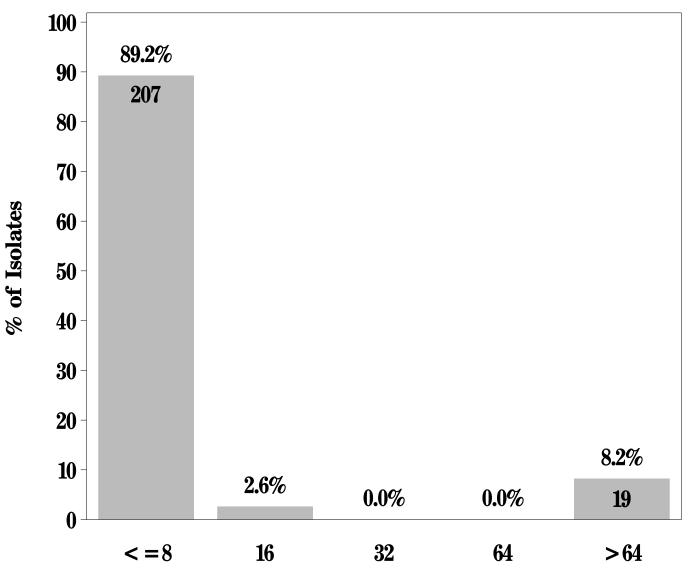

Minimum Inhibitory Concentration

Figure 19j: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Ground Beef (N=338 Isolates)
Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 64 μ g/mL

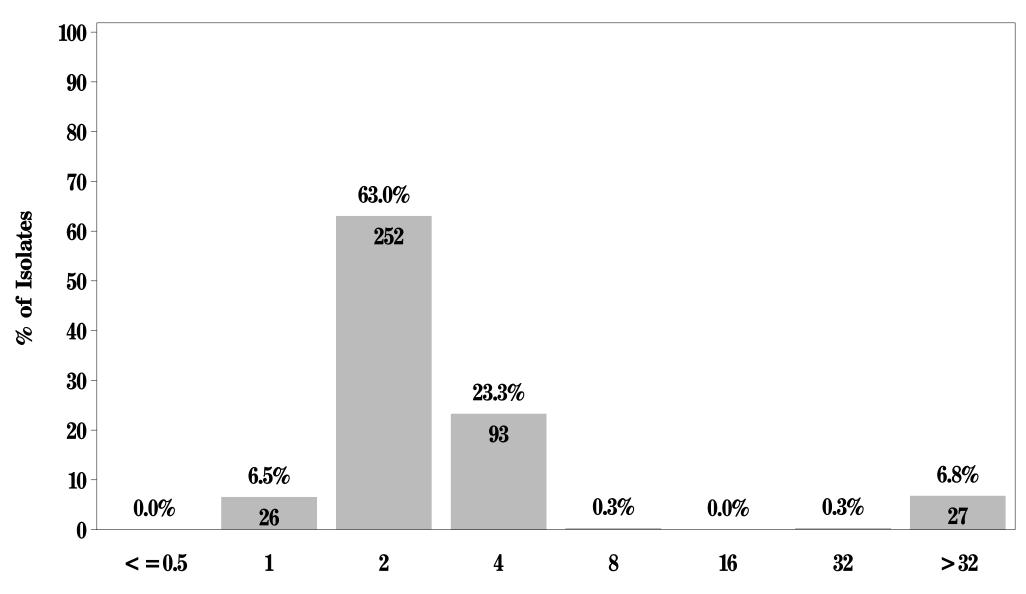

Minimum Inhibitory Concentration

Figure 19j: Minimum Inhibitory Concentration of Kanamycin for *Escherichia coli* in Pork Chop (N=232 Isolates)
Breakpoints: Susceptible $< = 16 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 19k: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible < =16 μ g/mL Resistant > =32 μ g/mL

Minimum Inhibitory Concentration

Figure 19k: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Ground Turkey (N=376 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 32 μ g/mL

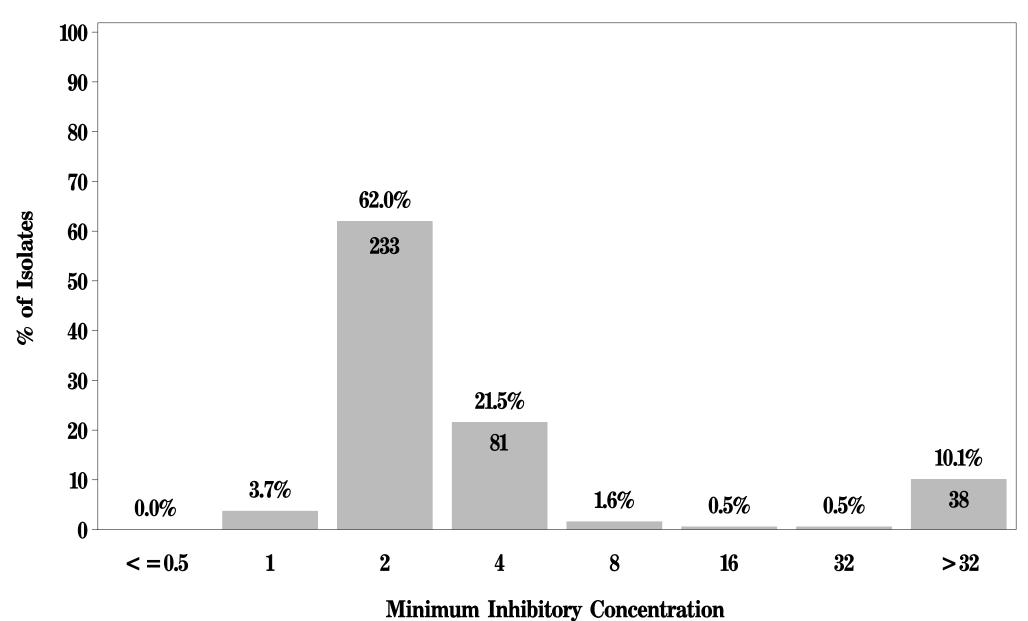
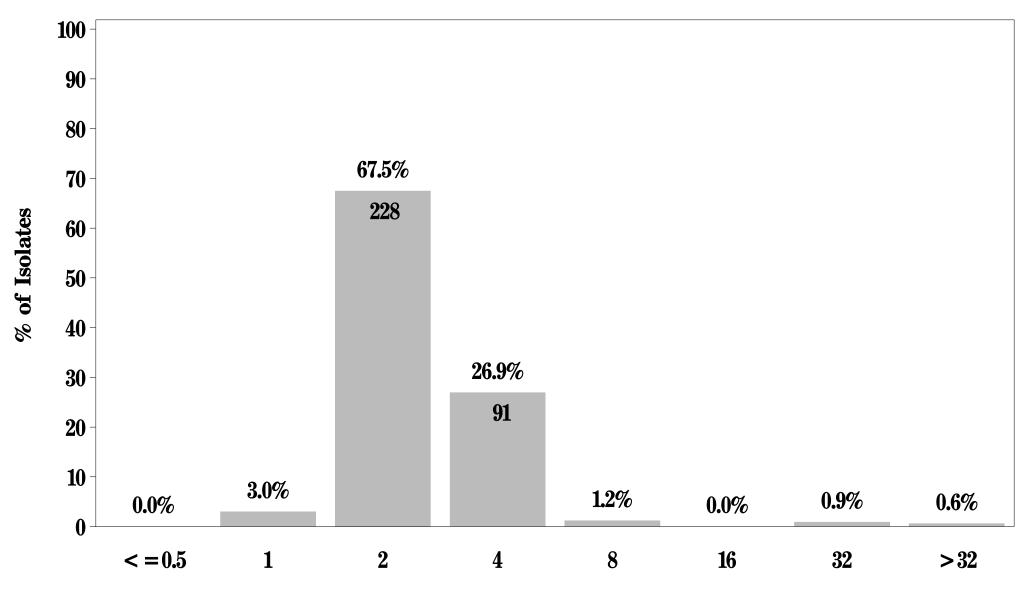
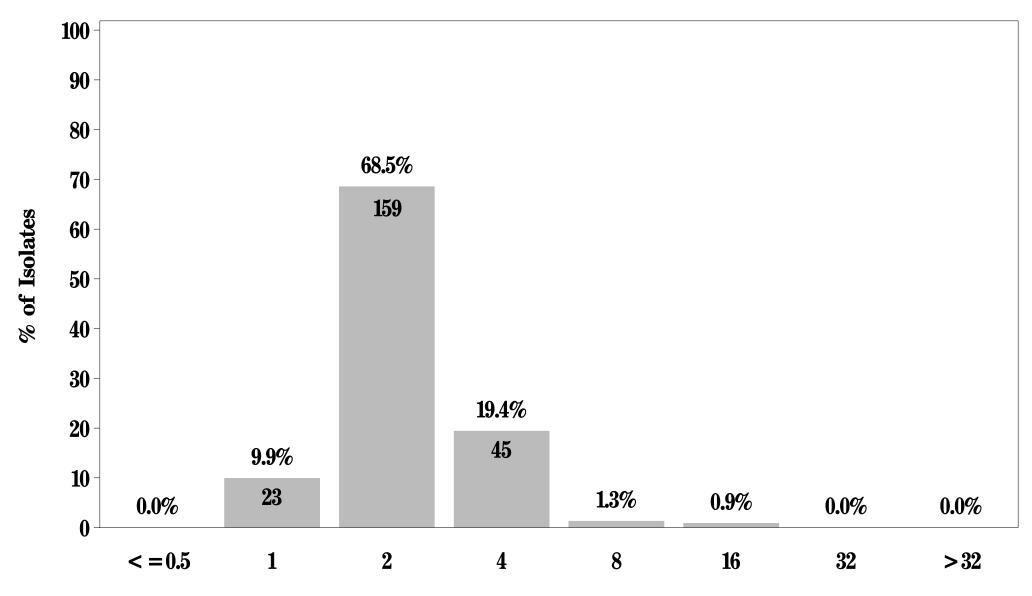



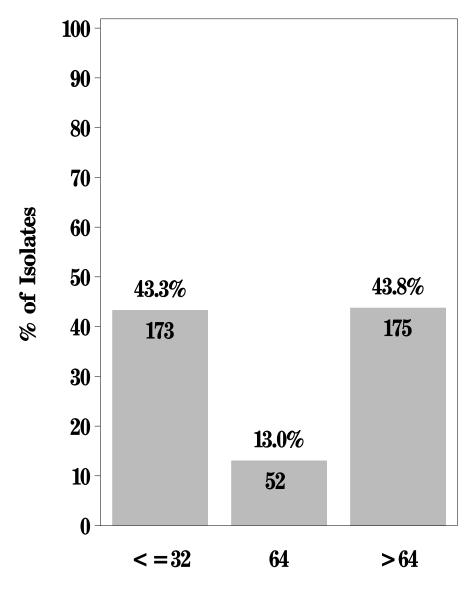
Figure 19k: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Ground Beef (N=338 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 32 μ g/mL



Minimum Inhibitory Concentration

NARMS


Figure 19k: Minimum Inhibitory Concentration of Nalidixic acid for *Escherichia coli* in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible < = 16 μ g/mL Resistant > = 32 μ g/mL

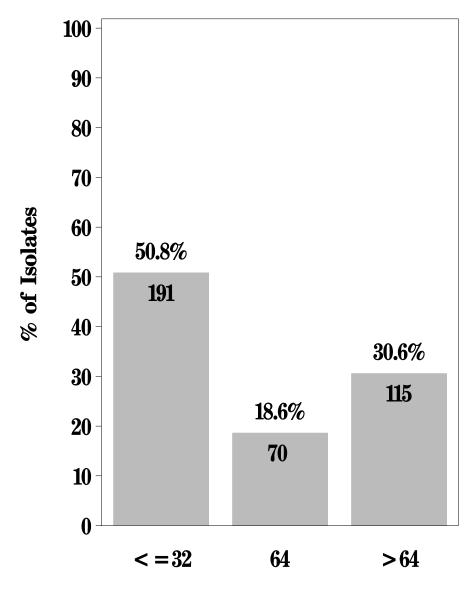
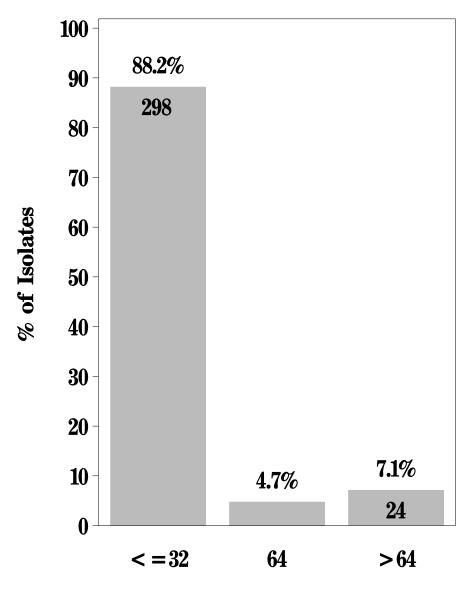

Minimum Inhibitory Concentration

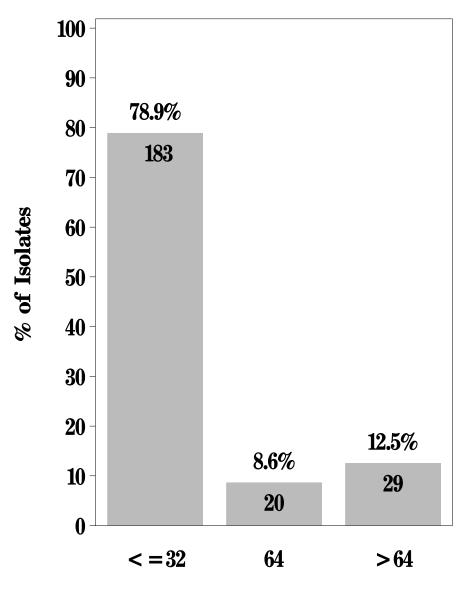
Figure 19l: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration


Figure 19l: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Ground Turkey (N=376 Isolates) Breakpoints: Susceptible $< = 32 \mu g/mL$ Resistant $> = 64 \mu g/mL$

Minimum Inhibitory Concentration

Figure 19l: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Ground Beef (N=338 Isolates)


Breakpoints: Susceptible <= 32 μ g/mL Resistant >= 64 μ g/mL

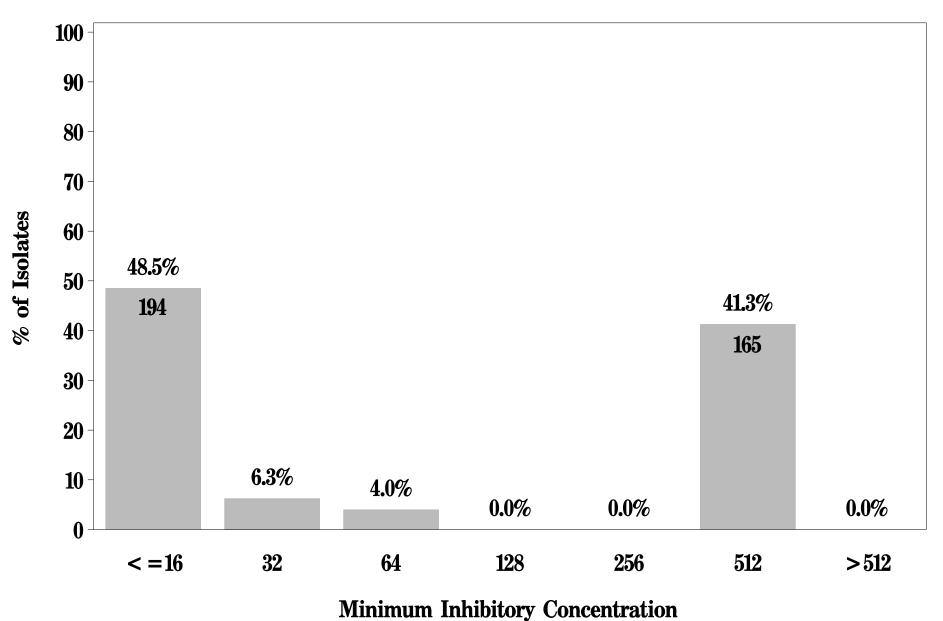
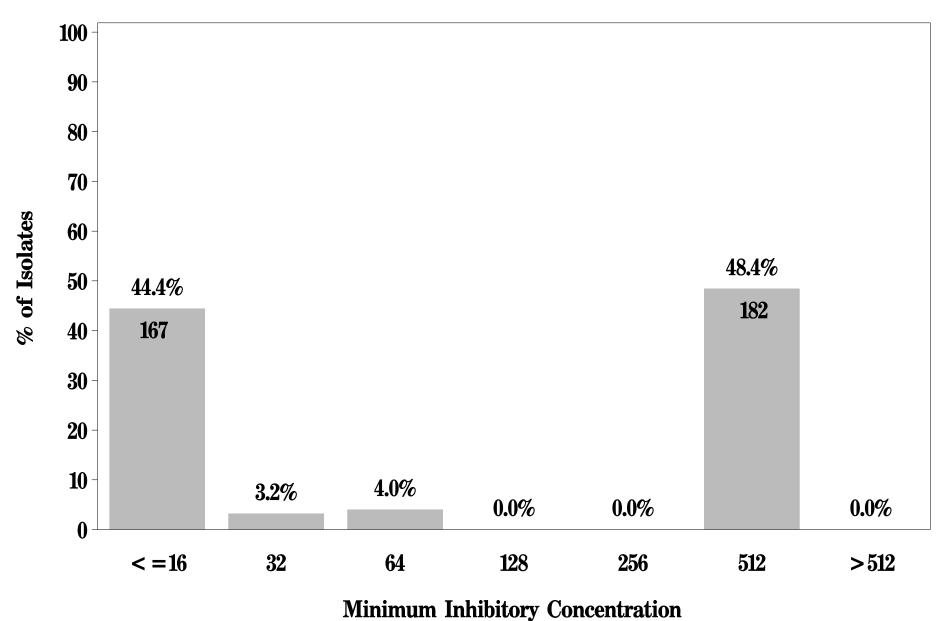
Minimum Inhibitory Concentration

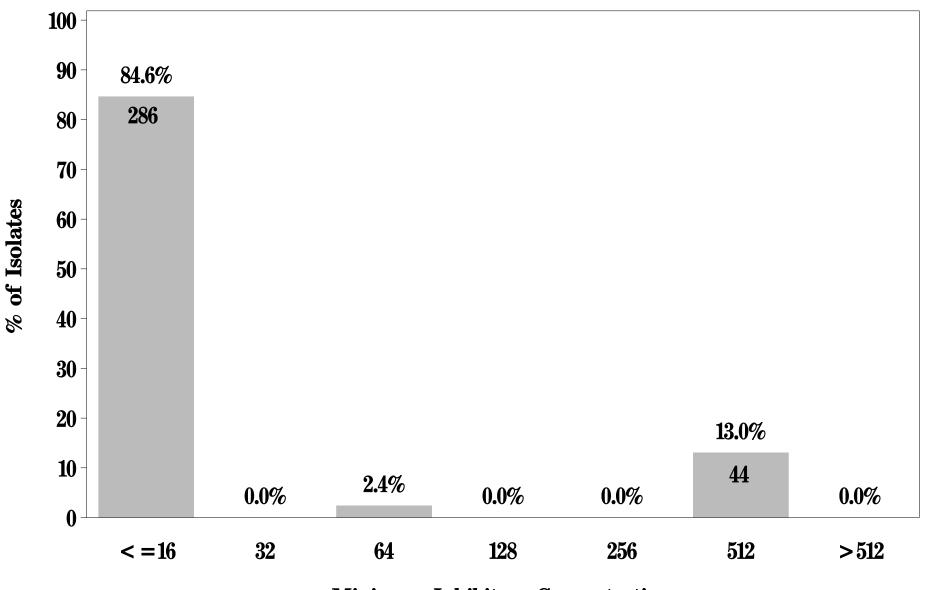
Figure 19l: Minimum Inhibitory Concentration of Streptomycin for *Escherichia coli* in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible $< = 32 \mu \text{g/mL}$ Resistant $> = 64 \mu \text{g/mL}$

Minimum Inhibitory Concentration

Figure 19m: Minimum Inhibitory Concentration of Sulfisoxazole for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible $< =256 \mu g/mL$ Resistant $> =512 \mu g/mL$

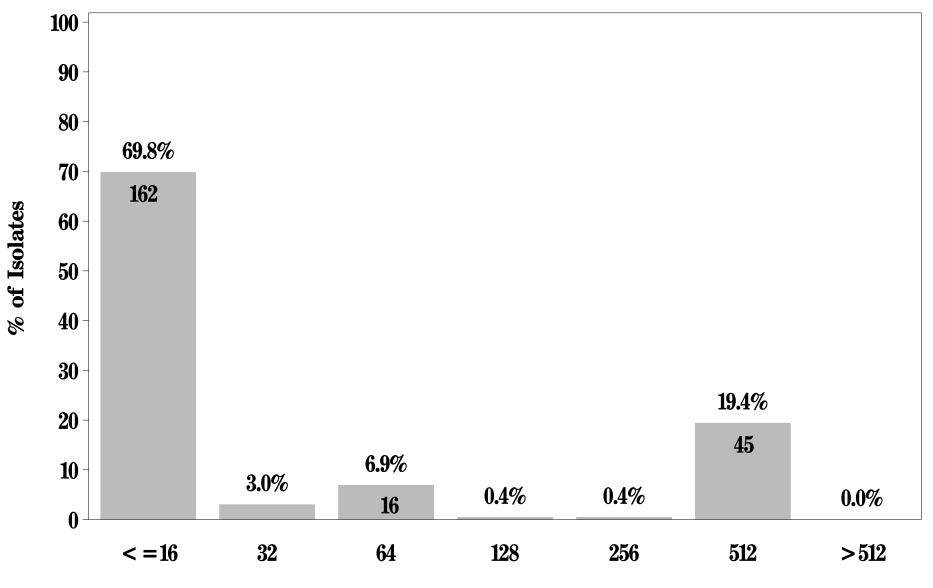




Figure 19m: Minimum Inhibitory Concentration of Sulfisoxazole for *Escherichia coli* in Ground Turkey (N=376 Isolates) Breakpoints: Susceptible < = 256 μ g/mL Resistant > = 512 μ g/mL

NARMS

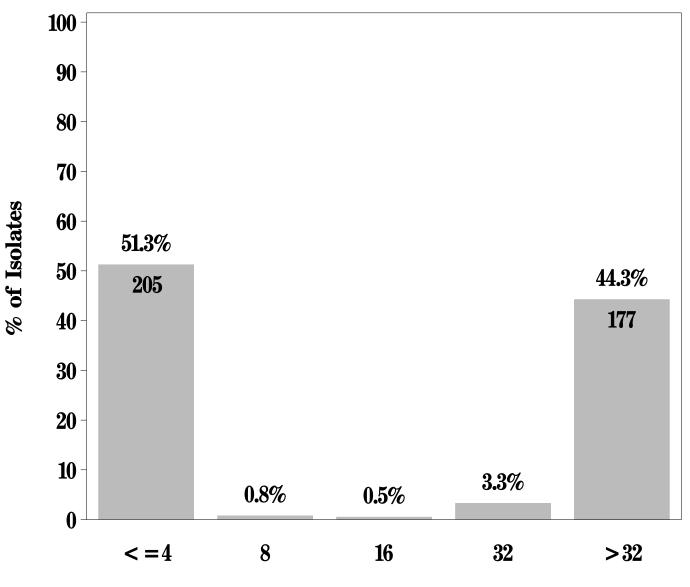
Figure 19m: Minimum Inhibitory Concentration of Sulfisoxazole for *Escherichia coli* in Ground Beef (N=338 Isolates)

Breakpoints: Susceptible < = 256 μ g/mL Resistant > = 512 μ g/mL



Minimum Inhibitory Concentration

NARMS


Figure 19m: Minimum Inhibitory Concentration of Sulfisoxazole for *Escherichia coli* in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible < = 256 μ g/mL Resistant > = 512 μ g/mL

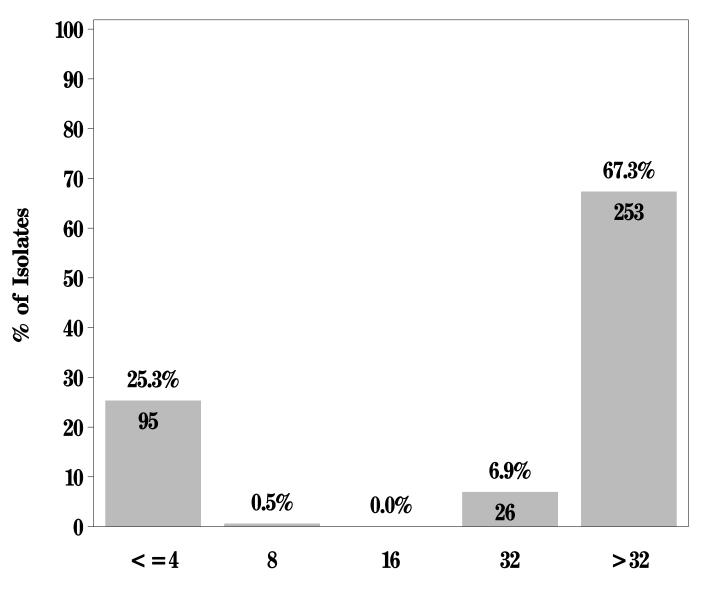
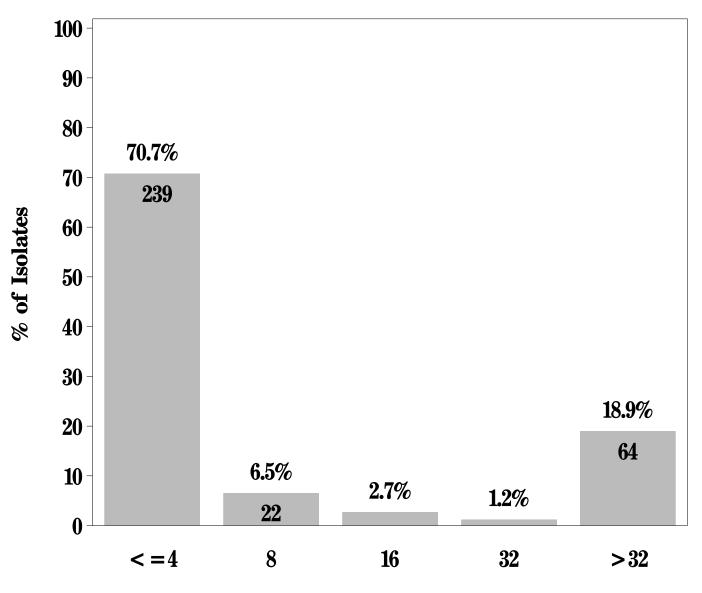

Minimum Inhibitory Concentration

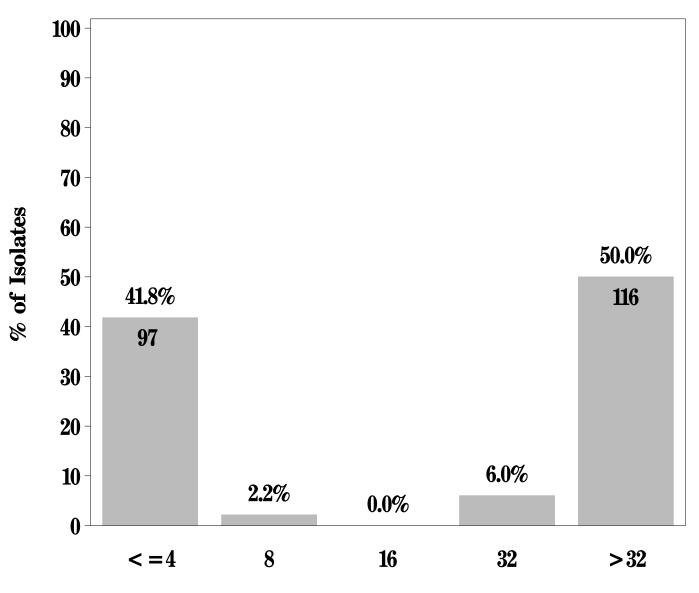
Figure 19n: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration


Figure 19n: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Ground Turkey (N=376 Isolates)
Breakpoints: Susceptible $< = 4 \mu g/mL$ Resistant $> = 16 \mu g/mL$

Minimum Inhibitory Concentration

Figure 19n: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Ground Beef (N=338 Isolates)


Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Figure 19n: Minimum Inhibitory Concentration of Tetracycline for *Escherichia coli* in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible < = 4 μ g/mL Resistant > = 16 μ g/mL

Minimum Inhibitory Concentration

Figure 190: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* in Chicken Breast (N=400 Isolates) Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 4 \mu g/mL$

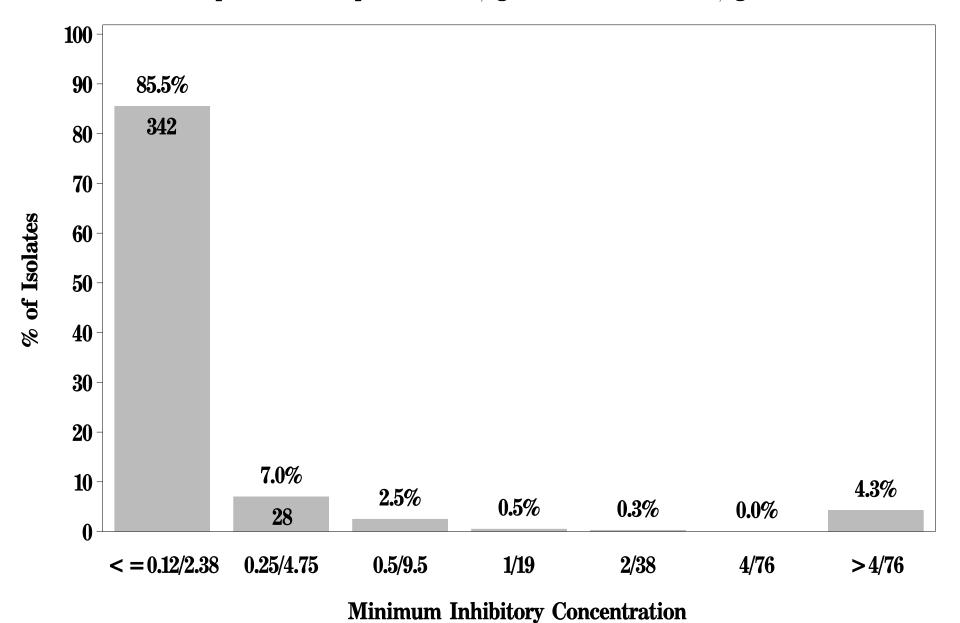


Figure 190: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* in Ground Turkey (N=376 Isolates) Breakpoints: Susceptible $< = 2 \mu g/mL$ Resistant $> = 4 \mu g/mL$

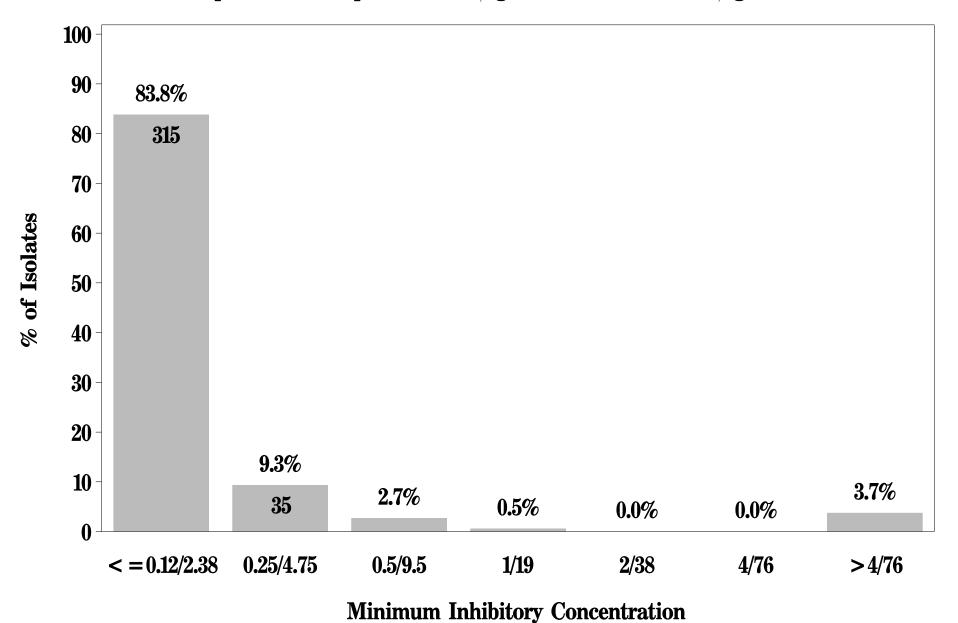


Figure 190: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* in Ground Beef (N=338 Isolates)

Breakpoints: Susceptible <= $2 \mu g/mL$ Resistant >= $4 \mu g/mL$

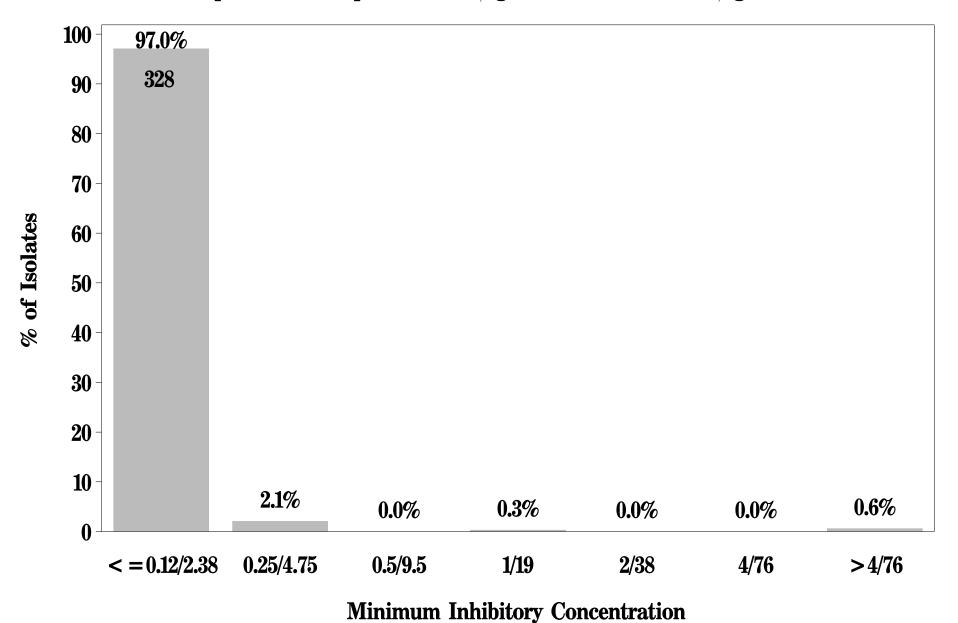


Figure 190: Minimum Inhibitory Concentration of Trimethoprim/sulfamethoxazole for *Escherichia coli* in Pork Chop (N=232 Isolates)

Breakpoints: Susceptible $< = 2 \mu \text{g/mL}$ Resistant $> = 4 \mu \text{g/mL}$

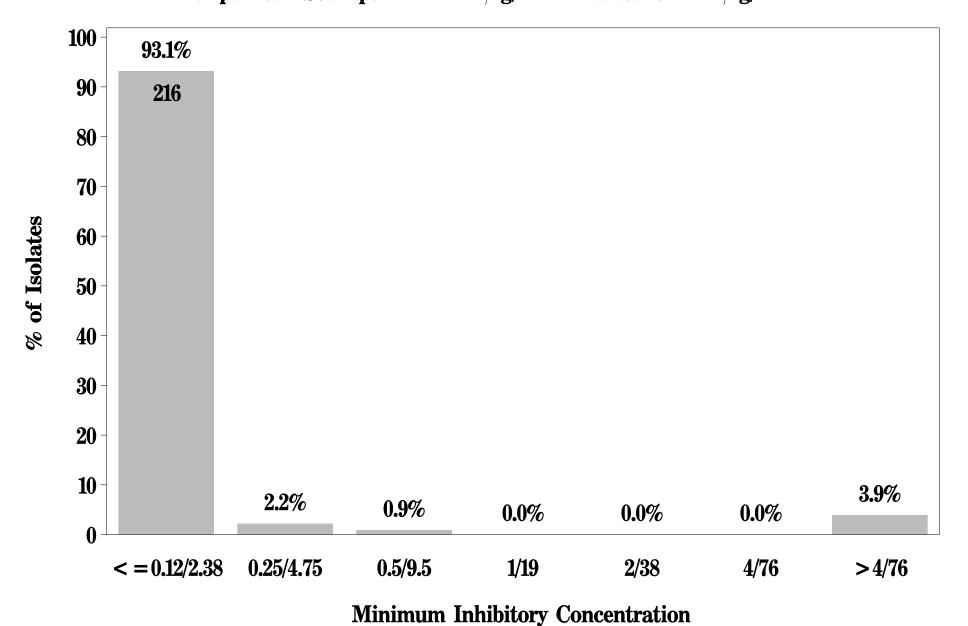


Table 41. Antimicrobial Resistance among Escherichia coli by Meat Type, 2004

	Antimicrobial Agent														
Meat Type	TET	STR	FIS	AMP	GEN	KAN	AMC	NAL	FOX	COT	CHL	TIO	CIP	AMI	AXO
Chicken Breast (n=400)	48.0%*	56.8%	41.3%	17.0%	30.0%	6.8%	10.0%	7.0%	8.3%	4.3%	1.8%	5.8%	_†	-	-
Ground Turkey (n=376)	74.2%	49.2%	48.4%	33.2%	29.3%	16.0%	5.3%	10.6%	4.5%	3.7%	0.8%	1.1%	0.8%	-	-
Ground Beef (n=338)	22.8%	11.8%	13.0%	5.3%	0.6%	2.4%	3.8%	1.5%	1.2%	0.6%	3.6%	0.9%	-	-	-
Pork Chop (n=232)	56.0%	21.1%	19.4%	15.1%	1.3%	8.2%	5.6%	-	2.2%	3.9%	4.3%	0.4%	-	-	-
Total (N=1346)	50.4%	37.2%	32.4%	18.3%	17.5%	8.5%	6.4%	5.4%	4.4%	3.1%	2.4%	2.3%	0.2%	-	-

^{*} Where % Resistance = (# *E. coli* isolates resistant to antimicrobial) / (total # *E. coli* isolates).

 $^{^{\}dagger}$ Dashes indicate 0.0% resistance to antimicrobial.

Table 42. Antimicrobial Resistance among Escherichia coli by Site, Meat Type, and Antimicrobial Agent, 2004

							A	Antimicr	obial Ag	gent						
Site	Meat Type	TET	STR	FIS	AMP	GEN	KAN	AMC	NAL	FOX	COT	CHL	TIO	CIP	AMI	AXO
	CB (n=115)	44.3%*	50.4%	54.8%	12.2%	46.1%	5.2%	7.8%	4.3%	6.1%	5.2%	0.9%	4.3%	_†	-	-
GA	GT (n=119)	74.8%	54.6%	46.2%	36.1%	29.4%	15.1%	3.4%	6.7%	3.4%	-	0.8%	0.8%	-	-	-
UA	GB (n=91)	18.7%	13.2%	14.3%	6.6%	1.1%	6.6%	4.4%	-	3.3%	-	2.2%	2.2%	-	-	-
	PC (n=64)	46.9%	12.5%	10.9%	10.9%	-	10.9%	-	-	1.6%	3.1%	1.6%	-	-	-	-
	Total (n=389)	48.1%	36.8%	35.5%	18.0%	22.9%	9.5%	4.4%	3.3%	3.9%	2.1%	1.3%	2.1%	-	-	-
	CB (n=110)	39.1%	58.2%	32.7%	20.0%	20.0%	3.6%	15.5%	10.9%	13.6%	3.6%	-	7.3%	-	-	-
MD	GT (n=109)	69.7%	40.4%	43.1%	36.7%	27.5%	14.7%	7.3%	16.5%	4.6%	5.5%	-	-	0.9%	-	-
MID	GB (n=83)	21.7%	10.8%	8.4%	2.4%	-	-	1.2%	1.2%	-	-	2.4%	-	-	-	-
	PC (n=62)	54.8%	14.5%	11.3%	17.7%	3.2%	4.8%	6.5%	-	1.6%	1.6%	4.8%	-	-	-	-
	Total (n=364)	47.0%	34.6%	26.6%	20.6%	14.8%	6.3%	8.2%	8.5%	5.8%	3.0%	1.4%	2.2%	0.3%	-	_
	CB (n=73)	57.5%	54.8%	30.1%	20.5%	15.1%	5.5%	9.6%	8.2%	6.8%	4.1%	4.1%	5.5%	-	-	-
OR	GT (n=53)	73.6%	49.1%	41.5%	17.0%	15.1%	18.9%	1.9%	11.3%	1.9%	3.8%	1.9%	-	-	-	-
OK	GB (n=99)	25.3%	11.1%	15.2%	7.1%	1.0%	1.0%	7.1%	-	1.0%	1.0%	8.1%	1.0%	-	-	-
	PC (n=51)	64.7%	35.3%	29.4%	25.5%	-	5.9%	5.9%	-	3.9%	7.8%	5.9%	2.0%	-	-	-
	Total (n=276)	50.4%	34.4%	26.8%	15.9%	7.2%	6.5%	6.5%	4.3%	3.3%	3.6%	5.4%	2.2%	-	-	_
	CB (n=102)	54.9%	63.7%	43.1%	16.7%	33.3%	12.7%	6.9%	4.9%	5.9%	3.9%	2.9%	5.9%	-	-	-
TN	GT (n=95)	78.9%	52.6%	61.1%	34.7%	38.9%	16.8%	7.4%	8.4%	7.4%	6.3%	1.1%	3.2%	2.1%	-	-
111	GB (n=65)	26.2%	12.3%	13.8%	4.6%	-	1.5%	1.5%	6.2%	-	1.5%	-	-	-	-	-
	PC (n=55)	60.0%	25.5%	29.1%	7.3%	1.8%	10.9%	10.9%	-	1.8%	3.6%	5.5%	-	-	-	-
	Total (n=317)	57.1%	43.2%	40.1%	18.0%	22.7%	11.4%	6.6%	5.4%	4.4%	4.1%	2.2%	2.8%	0.6%	-	_
To	otal (N=1346)	50.4%	37.2%	32.4%	18.3%	17.5%	8.5%	6.4%	5.4%	4.4%	3.1%	2.4%	2.3%	0.2%	-	_

^{*} Where % Resistance = (# isolates resistant to antimicrobial per meat type per site) / (total # isolates per meat type per site). † Dashes indicate 0.0% resistance to antimicrobial.

Table 43. Number of *Escherichia coli* Resistant to Multiple Antimicrobial Agents, 2004

Meat Type	Num 0	ber of	Antin		bials ≥8
Chicken Breast	86	97	190	23	4
Ground Turkey	74	61	212	24	5
Ground Beef	249	45	36	7	1
Pork Chop	90	72	64	6	0
Total	499	275	502	60	10

Appendix A-1. Number of Samples Tested by Site, Meat Type, and Month, 2004

Site: CA

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Total	40	40	40	40	40	40	40	40	40	40	40	40	480

Site: CO

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	1	6	7	6	7	10	10	10	10	10	10	10	97
Ground Turkey	5	4	9	6	7	10	10	10	10	10	10	10	101
Ground Beef	8	6	9	6	7	10	10	10	10	10	10	10	106
Pork Chop	2	6	8	6	7	10	10	10	10	10	10	10	99
Total	16	22	33	24	28	40	40	40	40	40	40	40	403

Site: CT

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Total	40	40	40	40	40	40	40	40	40	40	40	40	480

Site: GA

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Total	40	40	40	40	40	40	40	40	40	40	40	40	480

Site: MD

Total

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Total	40	40	40	40	40	40	40	40	40	40	40	40	480
e: MN													
Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chi-l Dt	10	10	10	10	10	10	10	10	10	10	10	10	120
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Total:	20	40	40	40	40	40	40	40	40	40	40	40	480
e: NM													
Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	9	10	10	10	10	10	10	10	10	10	10	10	119
Ground Turkey		10		10	10	10	10				10		120
•	9		9					10	10	10		10	
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	118
Pork Chop	10	10	9	10	10	10	10	10	10	10	10	10	119
Total:	38	40	38	40	40	40	40	40	40	40	40	40	476
e: NY													
Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
CI. I D	10	16	10	10	10	1.0	16	10	16	1.6	10	10	120
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120

480

Site: OR

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Turkey	10	10	10	10	10	10	10	10	10	10	10	10	120
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	10	10	120
Fotal:	40	40	40	40	40	40	40	40	40	40	40	40	480

Site: TN

Meat Type	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Chicken Breast	10	10	10	10	10	10	8	10	10	10	8	10	116
Ground Turkey	10	7	10	10	10	4	10	7	10	8	10	10	106
Ground Beef	10	10	10	10	10	10	10	10	10	10	10	10	120
Pork Chop	10	10	10	10	10	10	10	10	10	10	8	10	118
Total:	40	37	40	40	40	34	38	37	40	38	36	40	460
Total Year:													4699

Appendix A-2. Percent Positive* Samples by Month, Meat Type, and Bacterium, 2004

Month: January

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	90	60	66.7%
Salmonella	90	16	17.8%
Enterococcus	40	38	95.0%
Escherichia coli	40	36	90.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	94	1	1.1%
Salmonella	94	22	23.4%
Enterococcus	40	39	97.5%
Escherichia coli	40	37	92.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	98	0	0.0%
Salmonella	98	5	5.1%
Enterococcus	40	36	90.0%
Escherichia coli	40	24	60.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	92	0	0.0%
Salmonella	92	6	6.5%
Enterococcus	40	35	87.5%
Escherichia coli	40	20	50.0%

 $^{^{*}_{\ast}}$ Where % $\,$ Positive= (# isolates of isolates / # of samples).

Month: February

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	96	59	61.5%
Salmonella	96	9	9.4%
Enterococcus	40	40	100.0%
Escherichia coli	40	37	92.5%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	91	0	0.0%
Salmonella	91	8	8.8%
Enterococcus	37	33	89.2%
Escherichia coli	37	25	67.6%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	96	0	0.0%
Salmonella	96	0	0.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	28	70.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	96	0	0.0%
Salmonella	96	1	1.0%
Enterococcus	40	32	80.0%
Escherichia coli	40	16	40.0%

Month: March

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	97	47	48.5%
Salmonella	97	18	18.6%
Enterococcus	40	39	97.5%
Escherichia coli	40	37	92.5%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	98	2	2.0%
Salmonella	98	2	2.0%
Enterococcus	40	34	85.0%
Escherichia coli	40	29	72.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	99	0	0.0%
Salmonella	99	0	0.0%
Enterococcus	40	33	82.5%
Escherichia coli	40	26	65.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	97	0	0.0%
Salmonella	97	1	1.0%
Enterococcus	40	34	85.0%
Escherichia coli	40	15	37.5%

Month: April

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	96	35	36.5%
Salmonella	96	8	8.3%
Enterococcus	40	40	100.0%
Escherichia coli	40	34	85.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	96	0	0.0%
Salmonella	96	18	18.8%
Enterococcus	40	39	97.5%
Escherichia coli	40	31	77.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	96	0	0.0%
Salmonella	96	1	1.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	25	62.5%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	96	0	0.0%
Salmonella	96	1	1.0%
Enterococcus	40	38	95.0%
Escherichia coli	40	25	62.5%

Month: May

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	97	51	52.6%
Salmonella	97	7	7.2%
Enterococcus	40	39	97.5%
Escherichia coli	40	36	90.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	97	0	0.0%
Salmonella	97	17	17.5%
Enterococcus	40	39	97.5%
Escherichia coli	40	36	90.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	97	0	0.0%
Salmonella	97	1	1.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	33	82.5%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	97	0	0.0%
Salmonella	97	0	0.0%
Enterococcus	40	36	90.0%
Escherichia coli	40	22	55.0%

Month: June

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	59	59.0%
Salmonella	100	12	12.0%
Enterococcus	40	37	92.5%
Escherichia coli	40	34	85.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	94	2	2.1%
Salmonella	94	11	11.7%
Enterococcus	34	34	100.0%
Escherichia coli	34	24	70.6%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	0	0.0%
Enterococcus	40	35	87.5%
Escherichia coli	40	25	62.5%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	1	1.0
Salmonella	100	0	0.0%
Enterococcus	40	30	75.0%
Escherichia coli	40	13	32.5%

Month: July

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	98	67	68.4%
Salmonella	98	10	10.2%
Enterococcus	38	38	100.0%
Escherichia coli	38	29	76.3%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	1	1.0%
Salmonella	100	17	17.0%
Enterococcus	40	38	95.0%
Escherichia coli	40	33	82.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	5	5.0%
Enterococcus	40	36	90.0%
Escherichia coli	40	24	60.0%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	0	0.0%
Enterococcus	40	23	57.5%
Escherichia coli	40	21	52.5%

Month: August

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	62	62.0%
Salmonella	100	16	16.0%
Enterococcus	40	40	100.0%
Escherichia coli	40	31	77.5%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	97	0	0.0%
Salmonella	97	17	17.5%
Enterococcus	37	33	89.2%
Escherichia coli	37	29	78.4%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	1	1.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	35	87.5%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	0	0.0%
Enterococcus	40	36	90.0%
Escherichia coli	40	22	55.0%

Month: September

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	72	72.0%
Salmonella	100	14	14.0%
Enterococcus	40	40	100.0%
Escherichia coli	40	31	77.5%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	1	1.0%
Salmonella	100	5	5.0%
Enterococcus	40	38	95.0%
Escherichia coli	40	31	77.5%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	0	0.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	29	72.5%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	0	0.0%
Enterococcus	40	37	92.5%
Escherichia coli	40	20	50.0%

Month: October

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	73	73.0%
Salmonella	100	20	20.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	32	80.0%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	98	0	0.0%
Salmonella	98	4	4.1%
Enterococcus	38	34	89.5%
Escherichia coli	38	31	81.6%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	0	0.0%
Enterococcus	40	36	90.0%
Escherichia coli	40	33	82.5%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	1	1.0%
Salmonella	100	0	0.0%
Enterococcus	40	32	80.0%
Escherichia coli	40	22	55.0%

Month: November

Meat Type: Chicken Breast

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	98	58	59.2%
Salmonella	98	13	13.3%
Enterococcus	38	37	97.4%
Escherichia coli	38	29	76.3%

Meat Type: Ground Turkey

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	5	5.0%
Salmonella	100	13	13.0%
Enterococcus	40	37	92.5%
Escherichia coli	40	34	85.0%

Meat Type: Ground Beef

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	0	0.0%
Enterococcus	40	40	100.0%
Escherichia coli	40	31	77.5%

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	98	1	1.0%
Salmonella	98	2	2.0%
Enterococcus	38	34	89.5%
Escherichia coli	38	19	50.0%

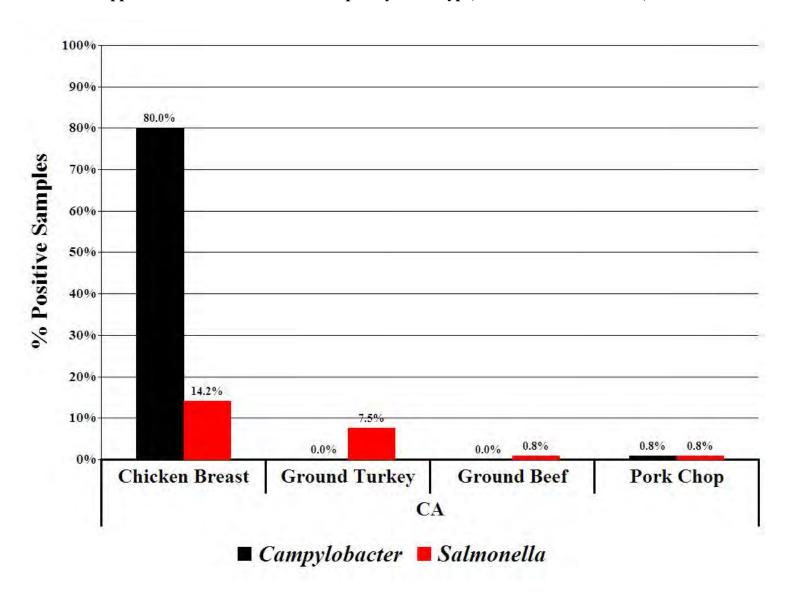
Month: December

Meat Type: Chicken Breast

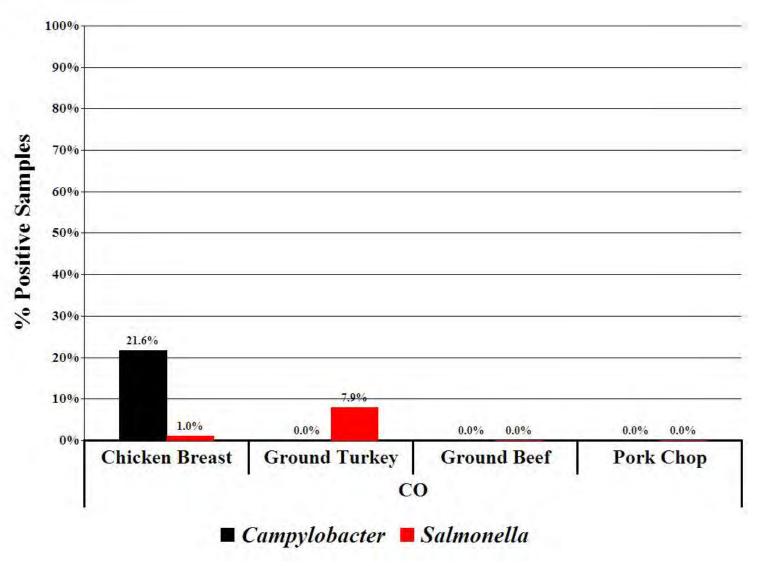
Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	73	52	71.2%
Salmonella	73	4	5.5%
Enterococcus	38	38	100.0%
Escherichia coli	38	37	97.4%

Meat Type: Ground Turkey

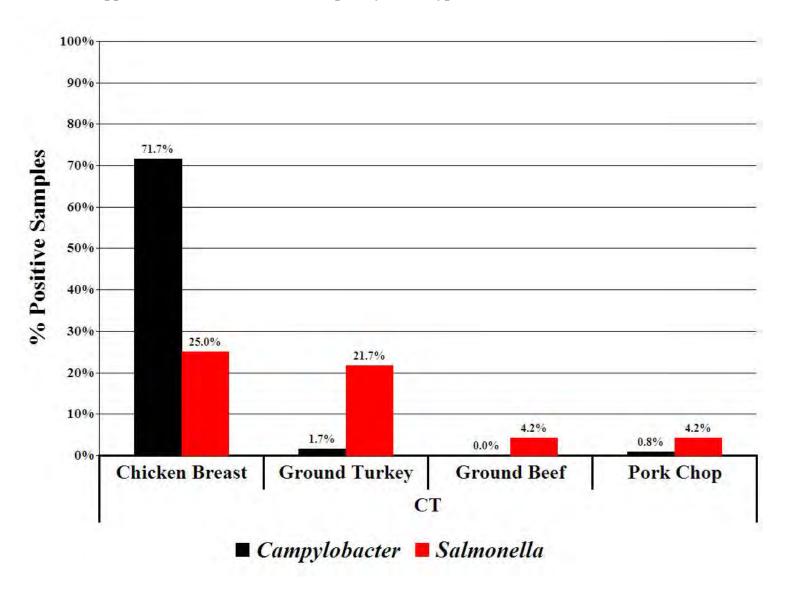
Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	8	8.0%
Enterococcus	40	39	97.5%
Escherichia coli	40	36	90.0%

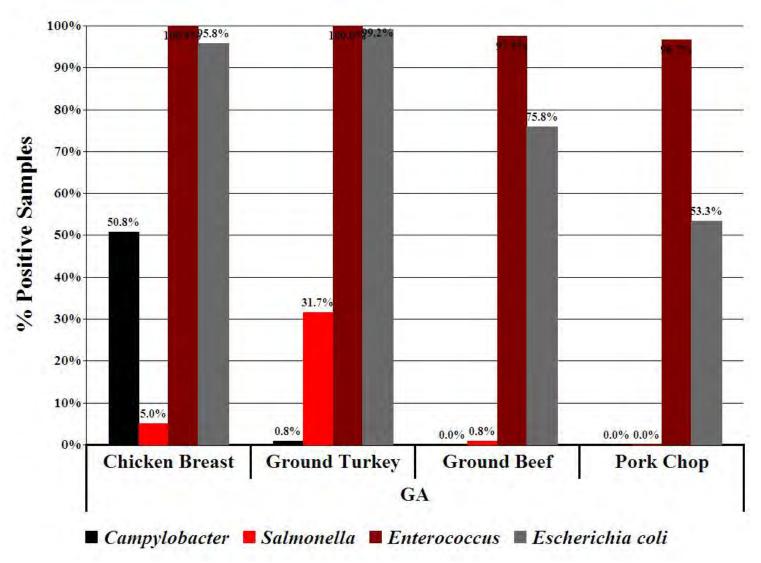

Meat Type: Ground Beef

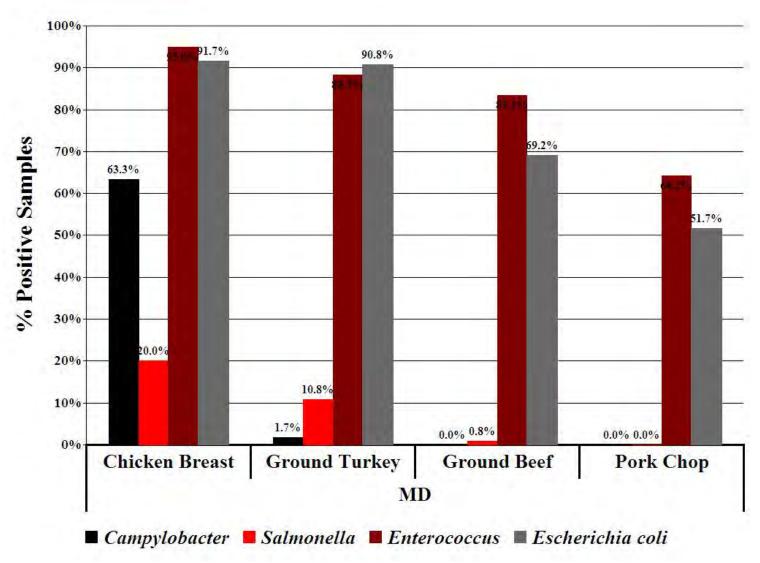
Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	1	1.0%
Enterococcus	40	37	92.5%
Escherichia coli	40	25	62.5%

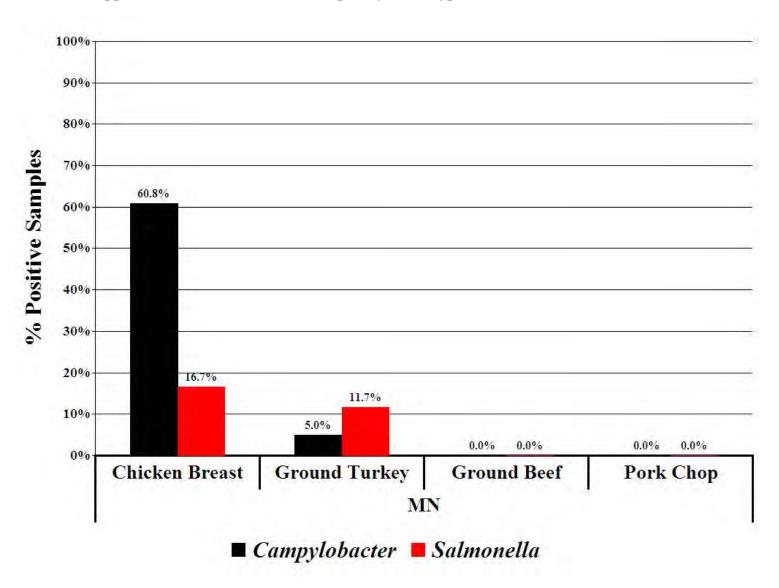

Bacterium	# of Samples	# of Isolates	Positive (%)
Campylobacter	100	0	0.0%
Salmonella	100	0	0.0%
Enterococcus	40	37	92.5%
Escherichia coli	40	17	42.5%

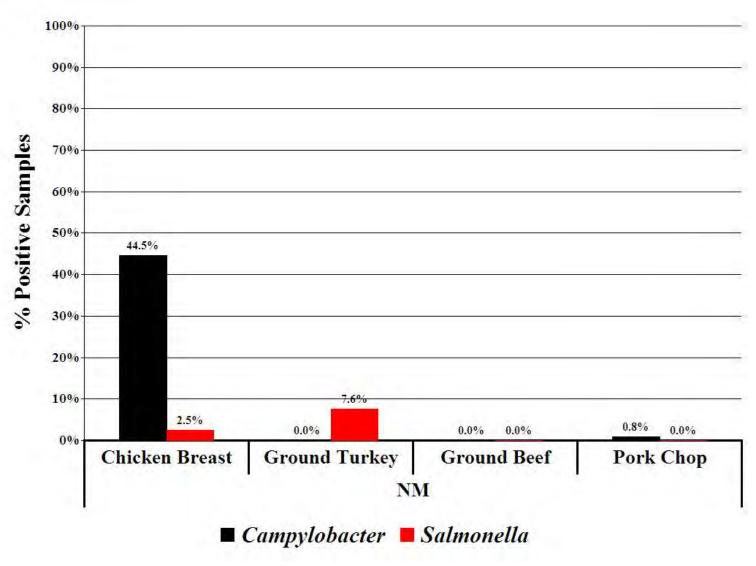
		Appendix A-3. Percent Positive Samples by Meat Type, Bacterium, and Site, 2004											
		C	ampylol	bacter		Salmon	ella	1	Enteroco	occus	Es	cherich	ia coli
Meat Type	Site	N	Isolate	%Positive	N	Isolate	%Positive	N	Isolate	%Positive	N	Isolate	%Positive
V 1	CA	120	96	80.0%	120	17	14.2%						
	CO	97	21	21.6%	97	1	1.0%						
	CT	120	86	71.7%	120	30	25.0%						
	GA	120	61	50.8%	120	6	5.0%	120	120	100.0%	120	115	95.8%
	MD	120	76	63.3%	120	24	20.0%	120	114	95.0%	120	110	91.7%
Cl. l. D.	MN	120	73	60.8%	120	20	16.7%						
Chicken Breast	NM	119	53	44.5%	119	3	2.5%						
	NY	120	96	80.0%	120	16	13.3%						
	OR	120	73	60.8%	120	25	20.8%	120	118	98.3%	120	73	60.8%
	TN	116	71	61.2%	116	15	12.9%	116	114	98.3%	116	102	87.9%
	Total	1172	706	60.2%	1172	157	13.4%	476	466	97.9%	476	400	84.0%
	CA	120	0	-	120	9	7.5%						
	CO	101	0	-	101	8	7.9%						
	CT	120	2	1.7%	120	26	21.7%						
	GA	120	1	0.8%	120	38	31.7%	120	120	100.0%	120	119	99.2%
	MD	120	2	1.7%	120	13	10.8%	120	106	88.3%	120	109	90.8%
Ground Turkey	MN	120	6	5.0%	120	14	11.7%						
·	NM	118	0	-	118	9	7.6%						
	NY	120	0	-	120	11	9.2%	1.00	40=	0= ==:	400		44.004
	OR	120	0	-	120	6	5.0%	120	105	87.5%	120	53	44.2%
	TN	106	1	0.9%	106	8	7.5%	106	106	100.0%	106	95	89.6%
	Total	1165	12	1.0%	1165	142	12.2%	466	437	93.8%	466	376	80.7%
	CA CO	120 106	0	-	120	1	0.8%						
	CT	120	0	-	106	0	4.20/						
	GA	120	0	-	120 120	5 1	4.2% 0.8%	120	117	97.5%	120	91	75.8%
	MD	120	0	-	120	1	0.8%	120	100	83.3%	120	83	69.2%
Ground Beef	MN	120	0	-	120	0	0.6%	120	100	63.3%	120	63	09.2%
Ground Deer	NM	120	0	-	120	0	-						
	NY	120	0	-	120	0	-						
	OR	120	0		120	6	5.0%	120	115	95.8%	120	99	82.5%
	TN	120	0	_	120	0	5.070	120	115 116	96.7%	120	65	54.2%
	Total	1186	0	<u> </u>	1186	14	1.2%	480	448	93.3%	480	338	70.4%
	CA	120	1	0.8%	120	14	0.8%	460	440	73.370	400	336	70.470
	CO	99	0	-	99	0	-						
	CT	120	1	0.8%	120	5	4.2%						
	GA	120	0	-	120	0	-	120	116	96.7%	120	64	53.3%
	MD	120	0	_	120	0	_	120	77	64.2%	120	62	51.7%
Pork Chop	MN	120	0	_	120	0	_						
I of K Chup	NM	119	1	0.8%	119	0	-						
	NY	120	0		120	3	2.5%						
	OR	120	0	_	120	2	1.7%	120	108	90.0%	120	51	42.5%
	TN	118	0	-	118	0		118	103	87.3%	118	55	46.6%
	Total	1176	3	0.3%	1176	11	0.9%	478	404	84.5%	478	232	48.5%
Total		4699	721	15.3%	4699	324	6.9%	1900	1755	92.4%	1900	1346	70.8%

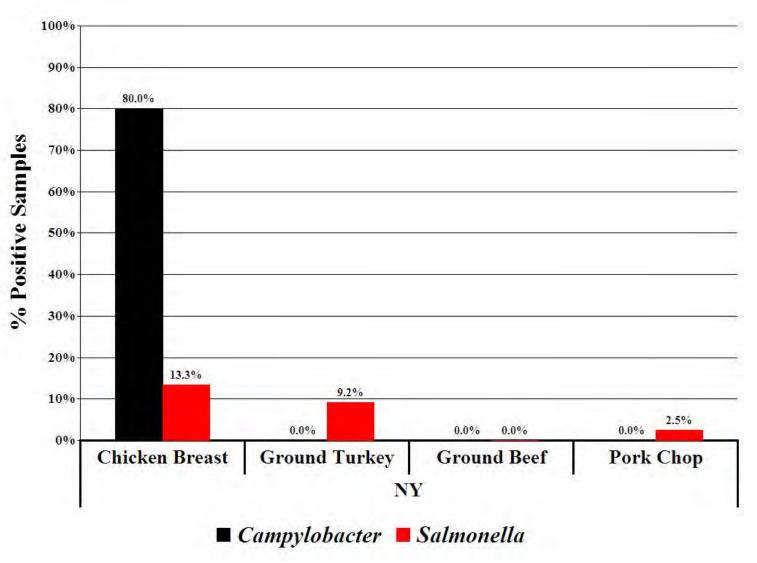

Appendix 3a. Percent Positive Samples by Meat Type, Bacterium in California, 2004

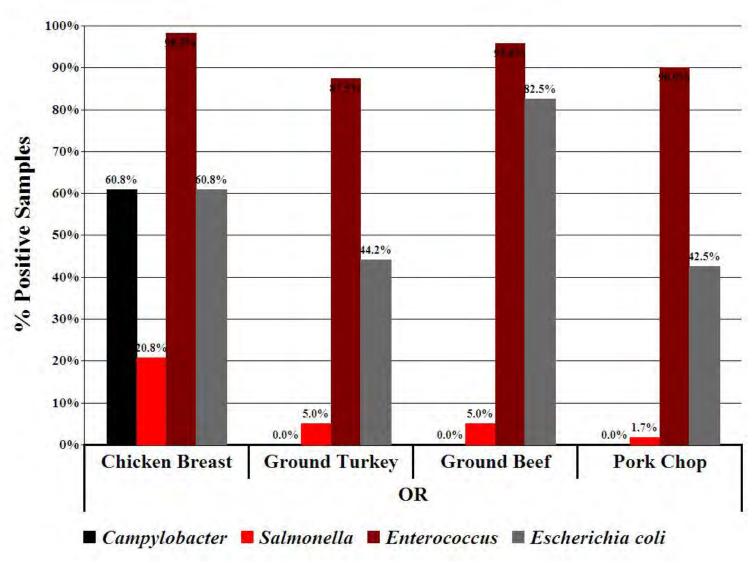

Appendix 3b. Percent Positive Samples by Meat Type, Bacterium in Colorado, 2004

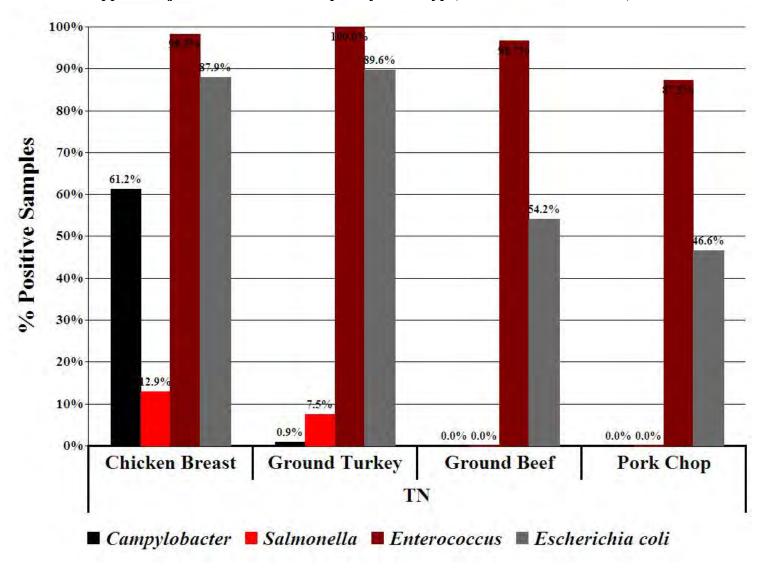

Appendix 3c. Percent Positive Samples by Meat Type, Bacterium in Connecticut, 2004

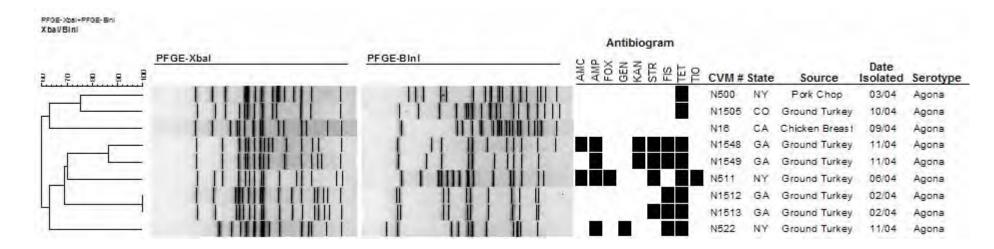

Appendix 3d. Percent Positive Samples by Meat Type, Bacterium in Georgia, 2004

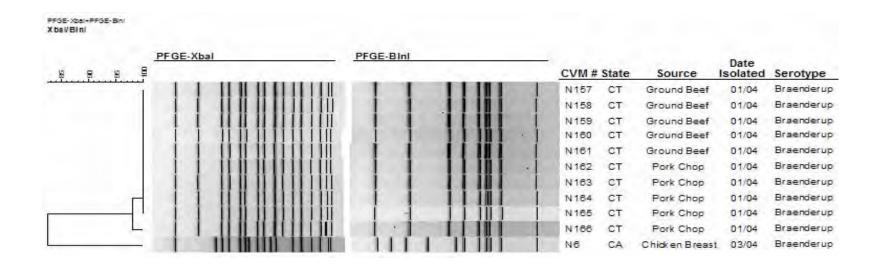

Appendix 3e. Percent Positive Samples by Meat Type, Bacterium in Maryland, 2004

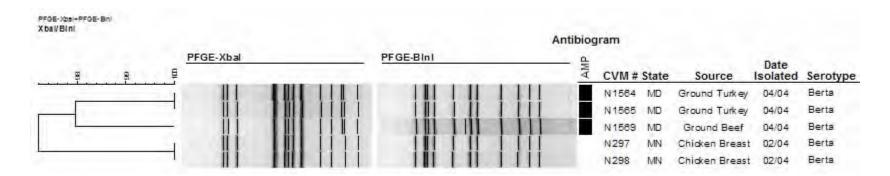

Appendix 3f. Percent Positive Samples by Meat Type, Bacterium in Minnesota, 2004

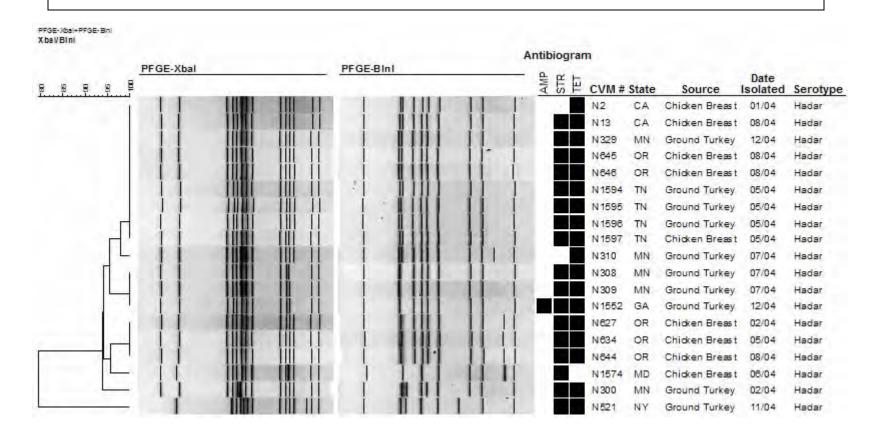

Appendix 3g. Percent Positive Samples by Meat Type, Bacterium in New Mexico, 2004

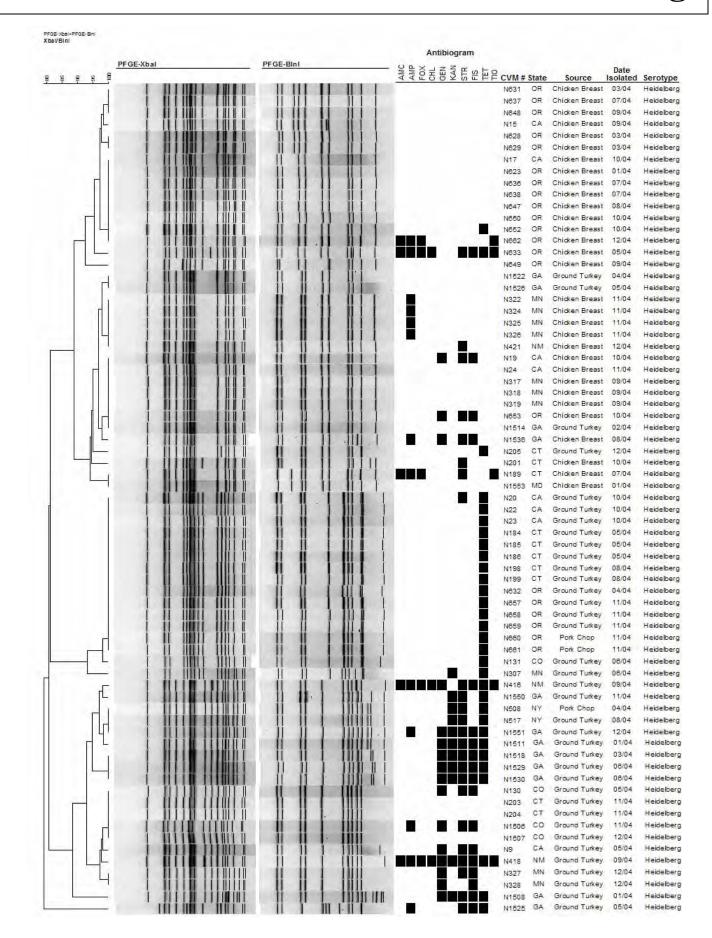

Appendix 3h. Percent Positive Samples by Meat Type, Bacterium in New York, 2004

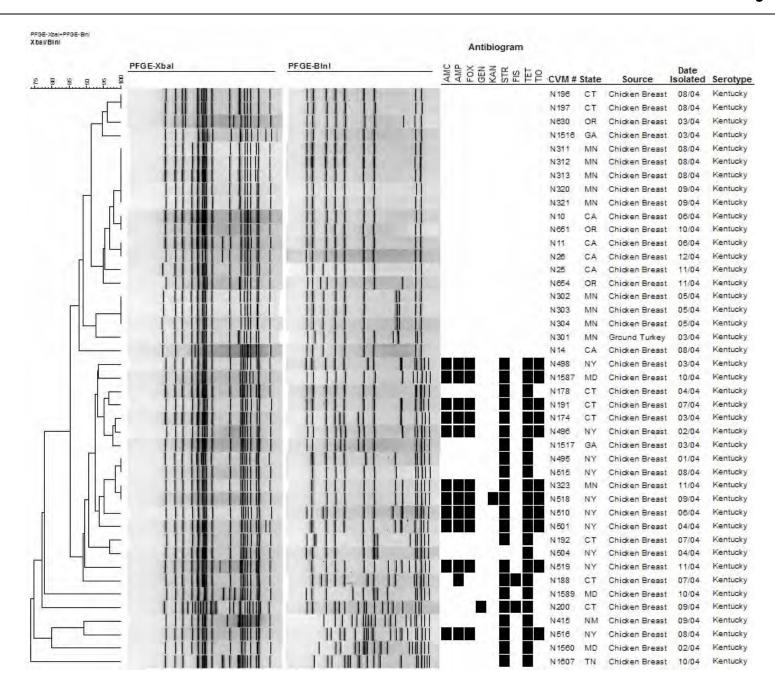

Appendix 3i. Percent Positive Samples by Meat Type, Bacterium in Oregon, 2004

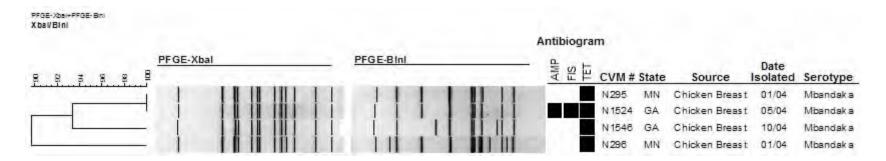

Appendix 3j Percent Positive Samples by Meat Type, Bacterium in Tennessee, 2004


A-4a. PFGE Profiles for Salmonella Agona

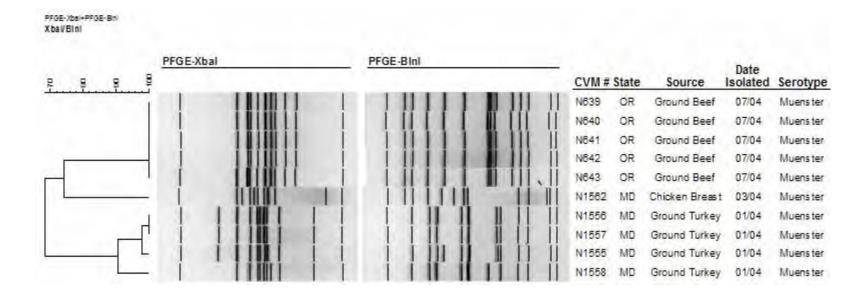

A-4b. PFGE Profiles for Salmonella Braenderup

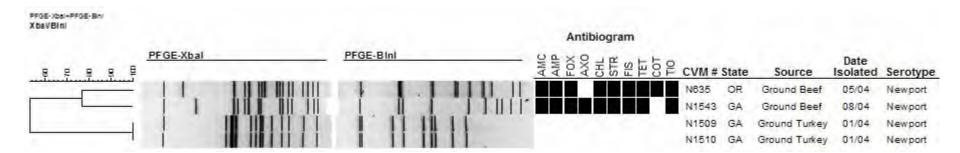

A-4c. PFGE Profiles for Salmonella Berta

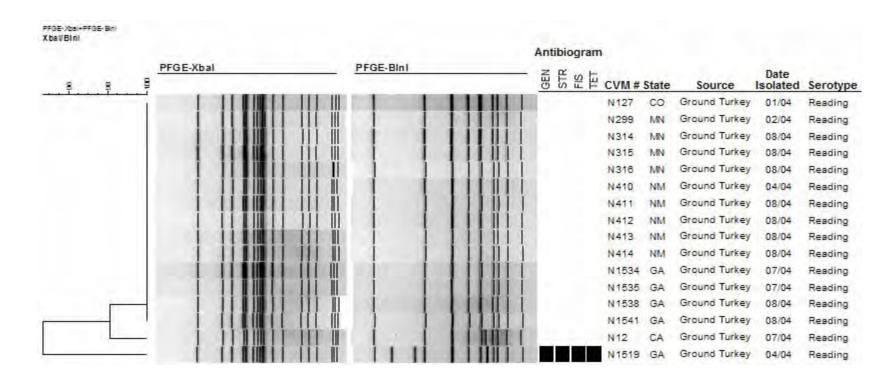

A-4d. PFGE Profiles for Salmonella Hadar

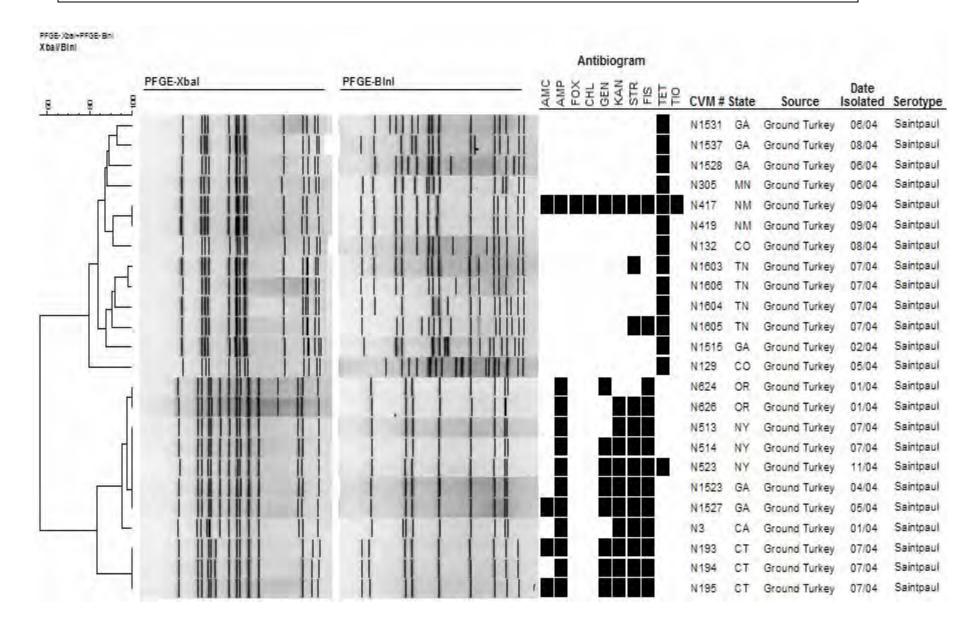

A-4e. PFGE Profiles for Salmonella Heidelberg

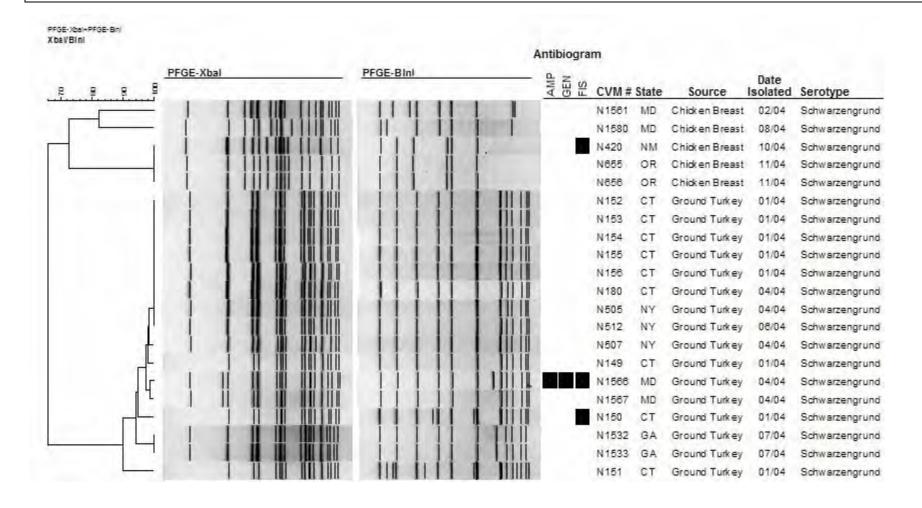
A-4f. PFGE Profiles for Salmonella Kentucky

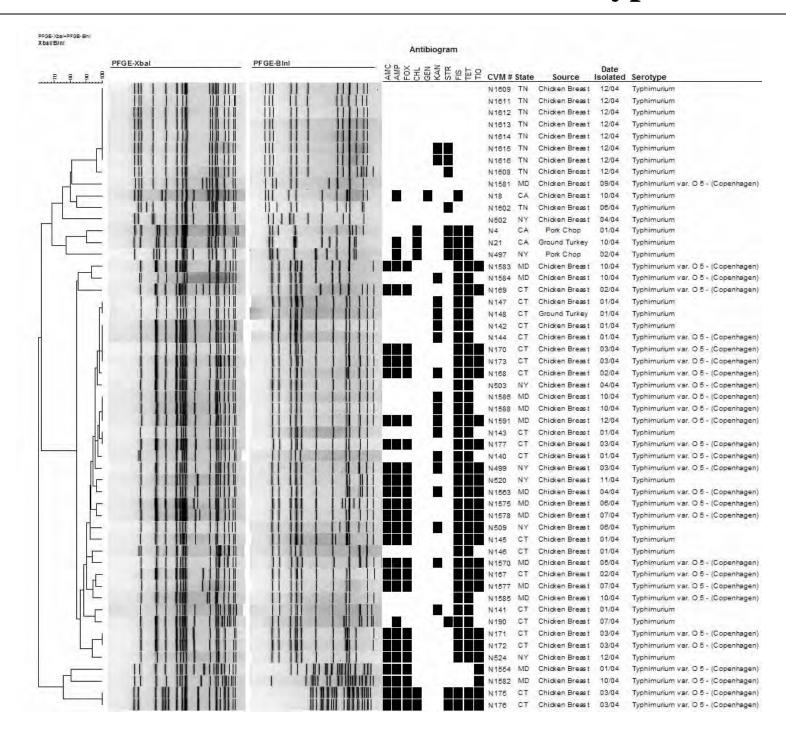

A-4g. PFGE Profiles for Salmonella Mbandaka

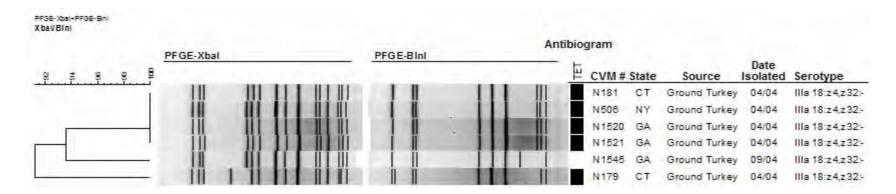

A-4h. PFGE Profiles for Salmonella Montevideo

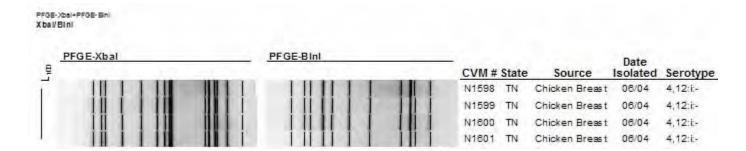

A-4i. PFGE Profiles for Salmonella Muenster

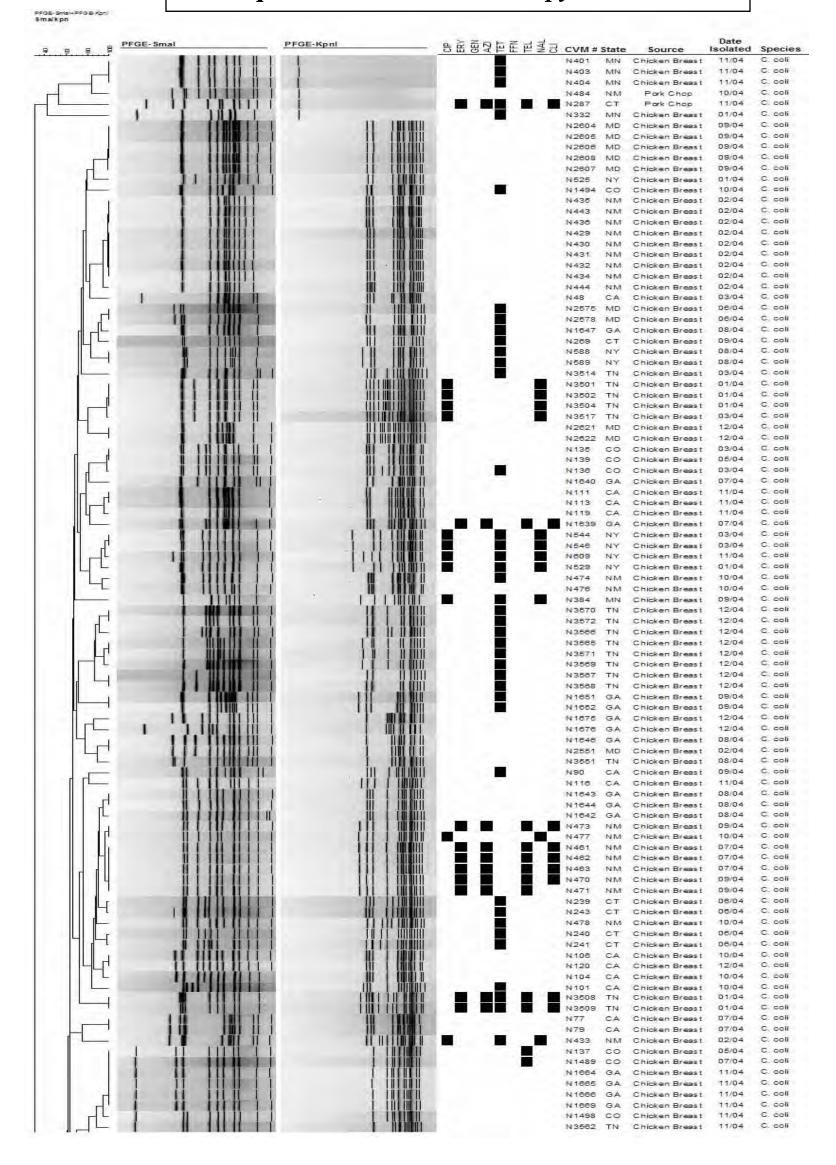

A-4j. PFGE Profiles for Salmonella Newport

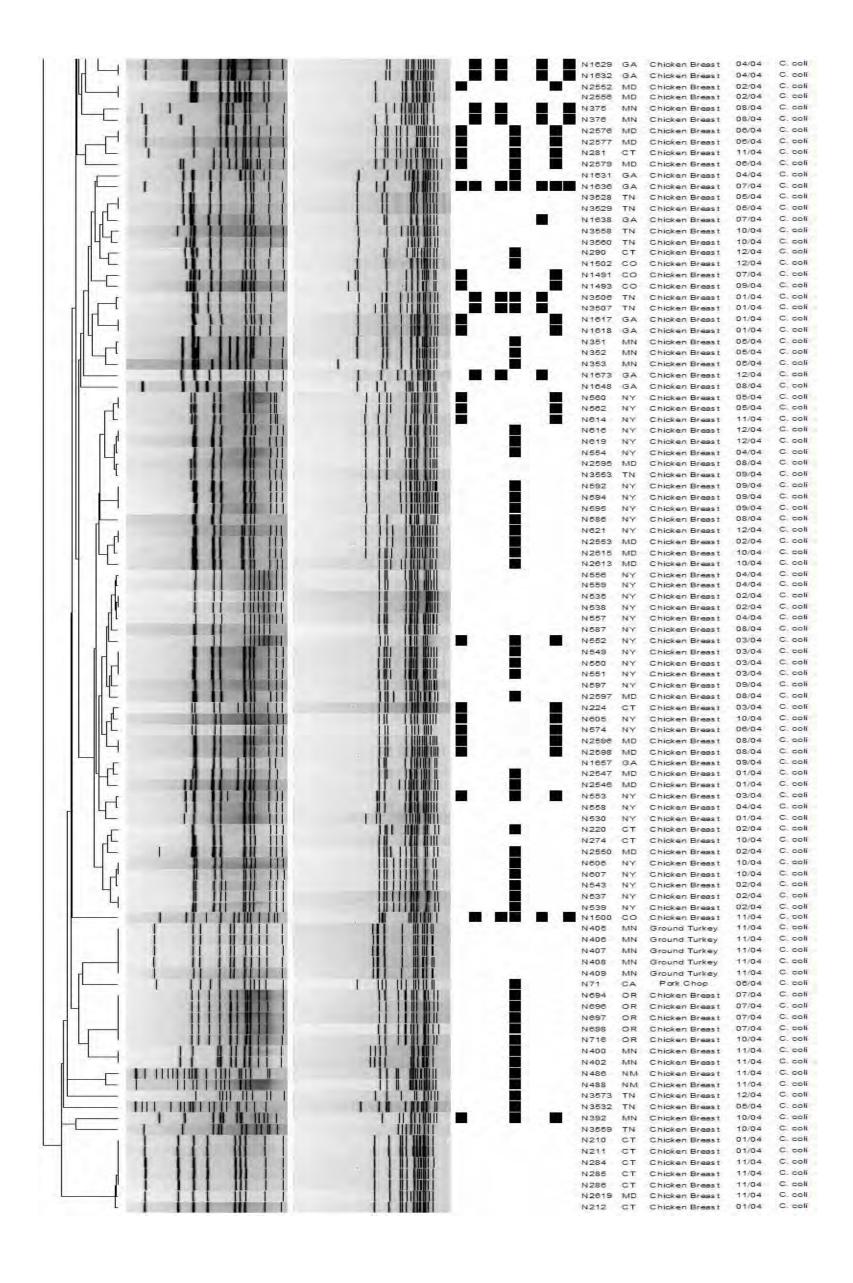

A-4k. PFGE Profiles for Salmonella Reading


A-41. PFGE Profiles for Salmonella Saintpaul

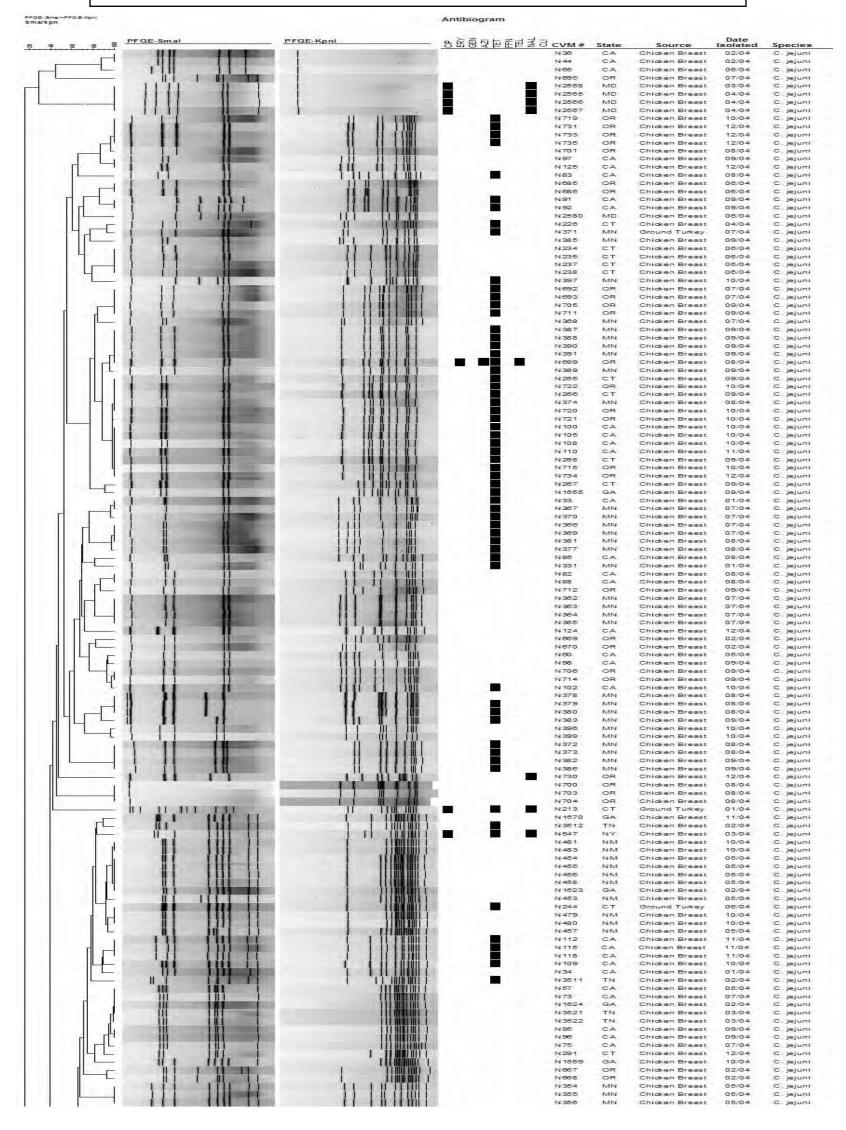

A-4m. PFGE Profiles for Salmonella Schwarzengrund

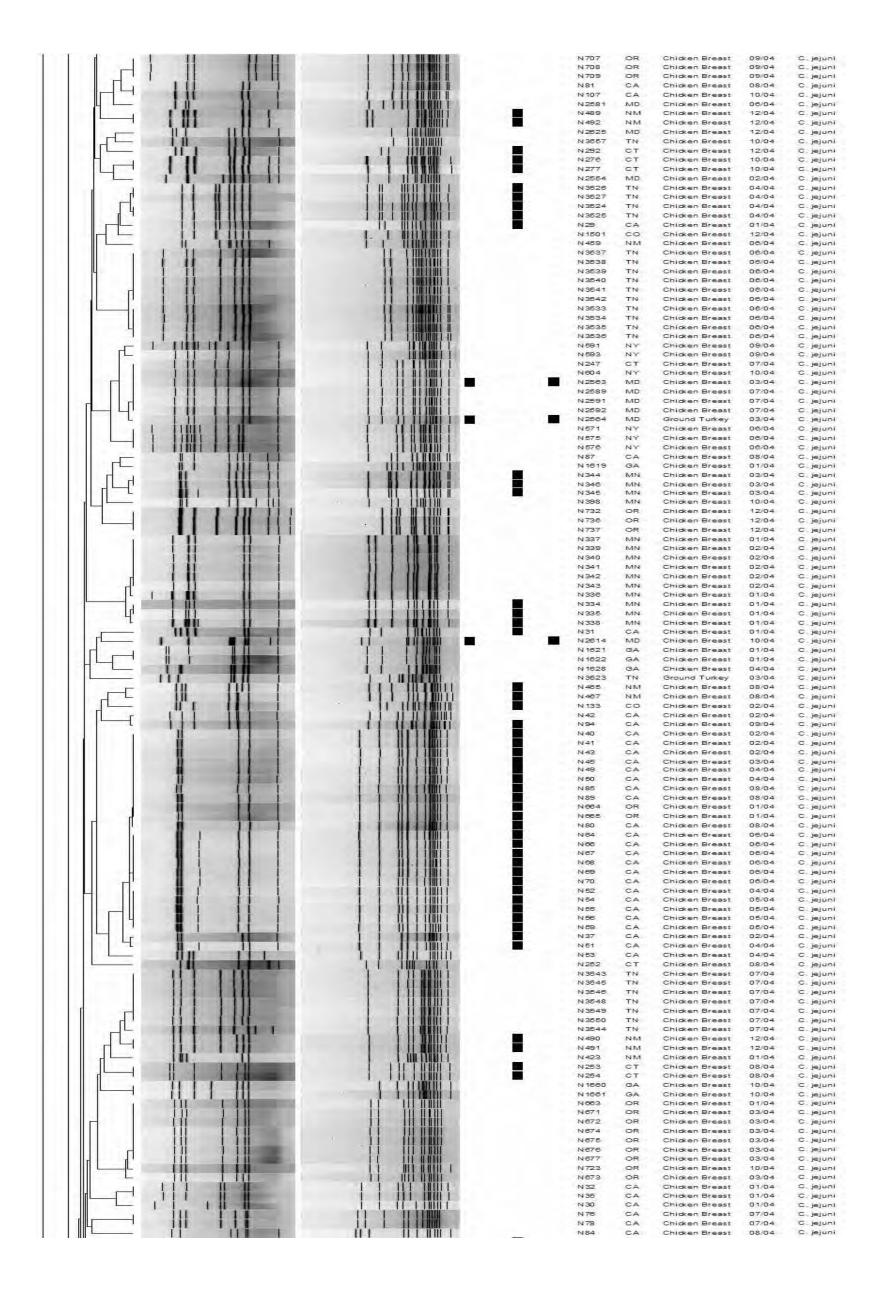

A-4n. PFGE Profiles for Salmonella Typhimurium

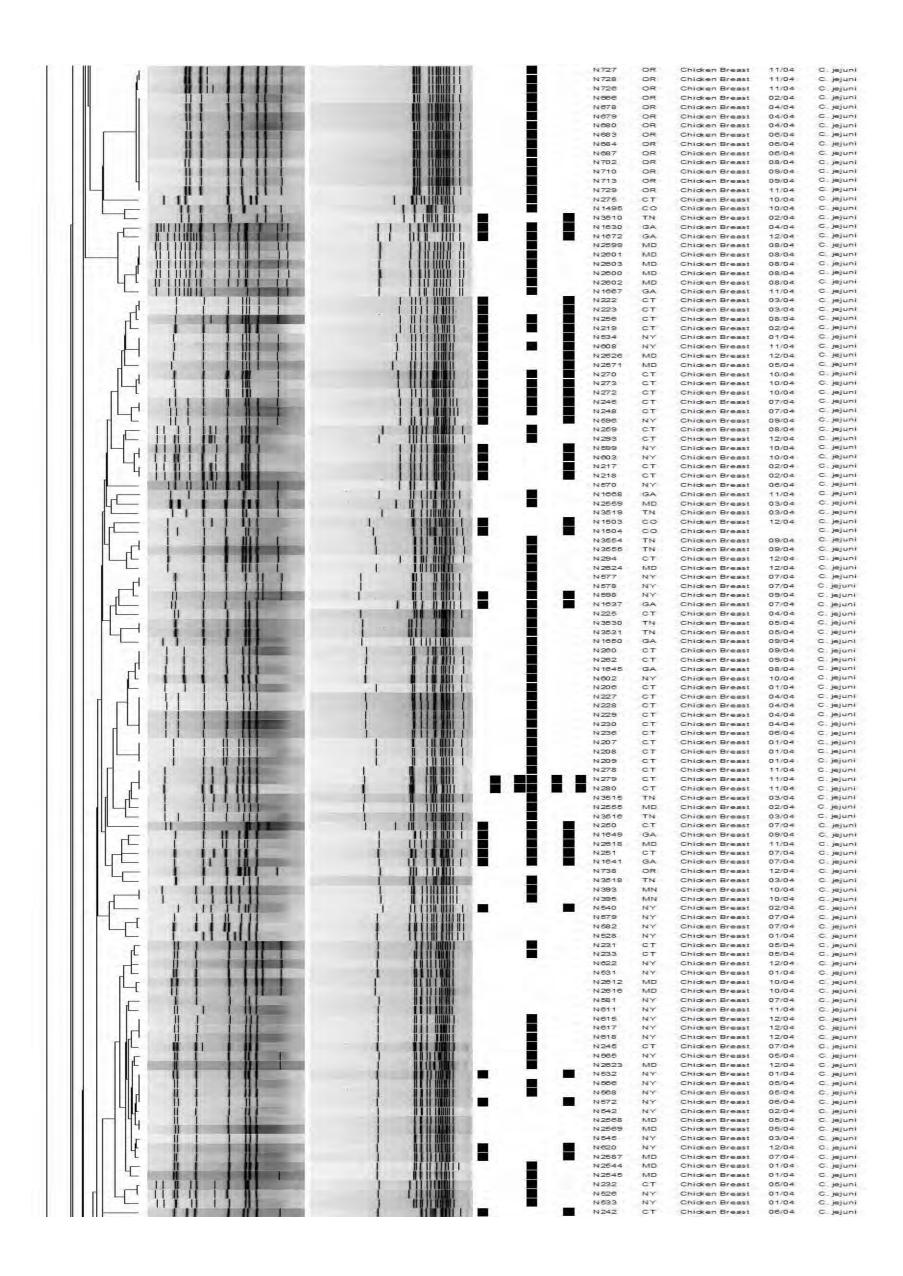

A-40. PFGE Profiles for Salmonella IIIa 18:z4,z32:-



A-4p. PFGE Profiles for Salmonella 4,12:i:-




A-4q. PFGE Profiles for Campylobacter coli



A-4r. PFGE Profiles for Campylobacter jejuni

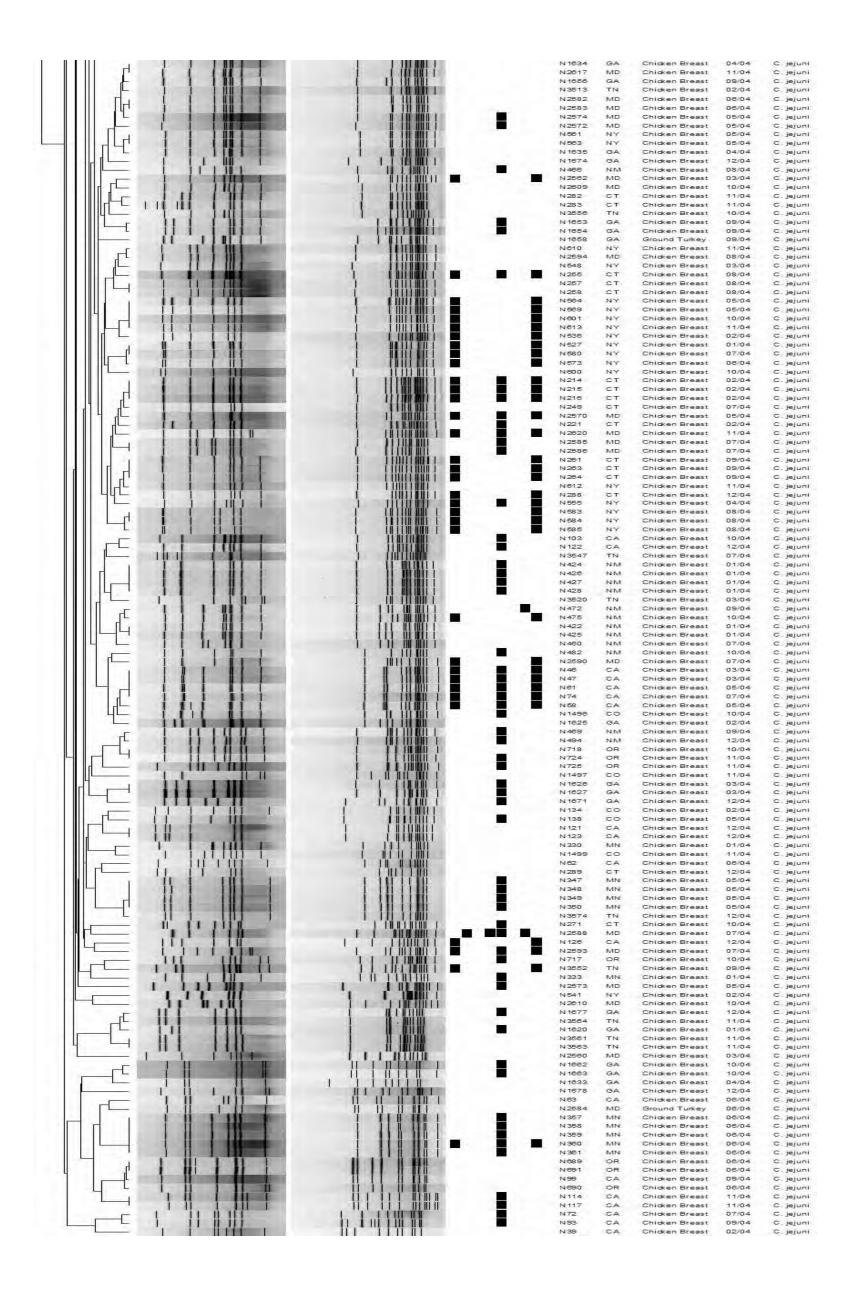


Figure A-5. Antimicrobial Resistance among Salmonella by Meat Type, 2004

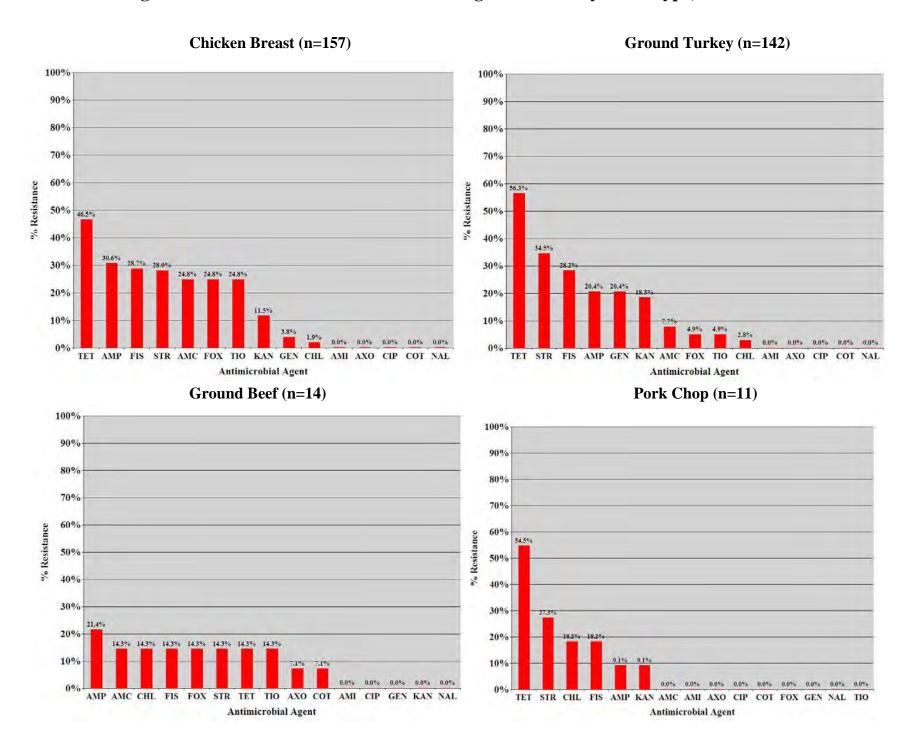
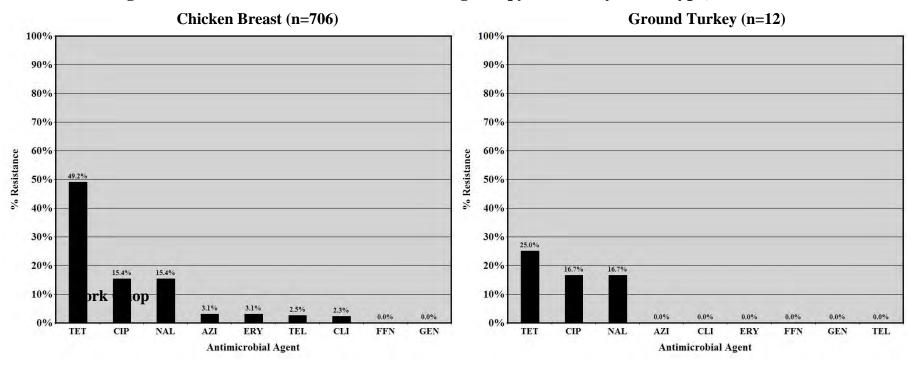



Figure A-6. Antimicrobial Resistance among Campylobacter by Meat Type, 2004

Pork Chop (n=3)

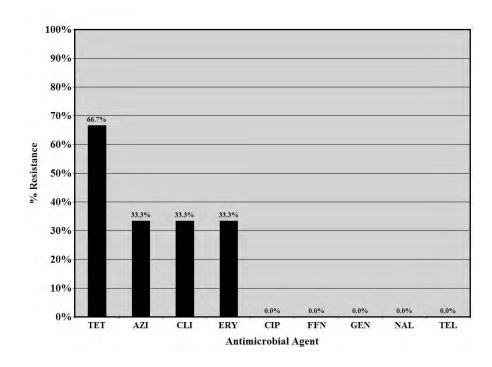
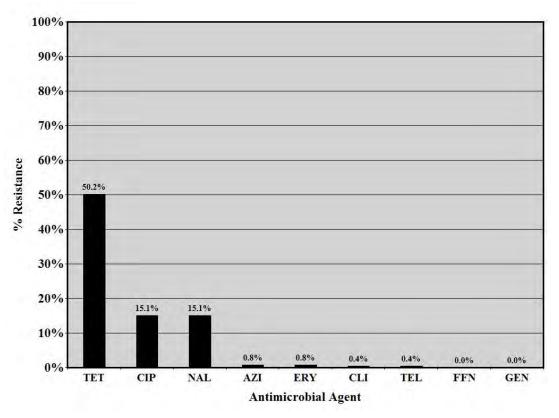



Figure A-6a. Antimicrobial Resistance among Campylobacter jejuni Meat Type, 2004

Ground Turkey (n=7)

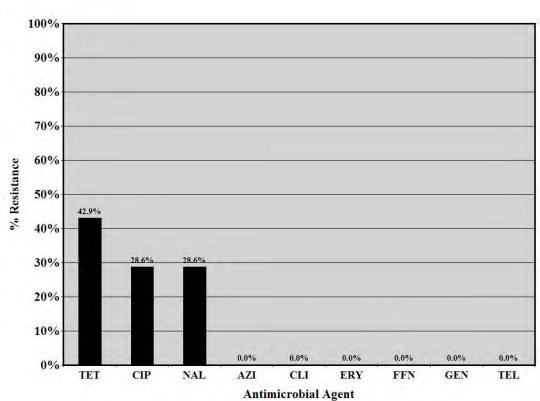
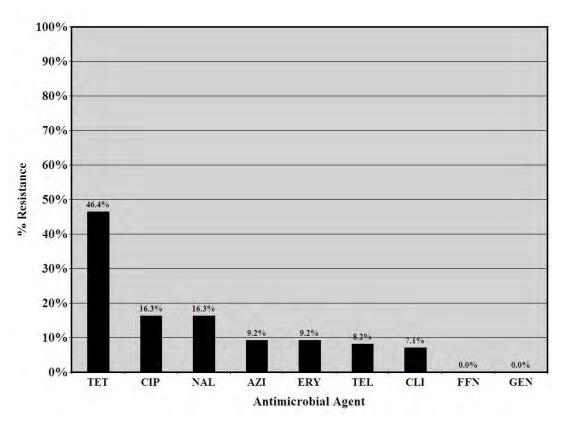
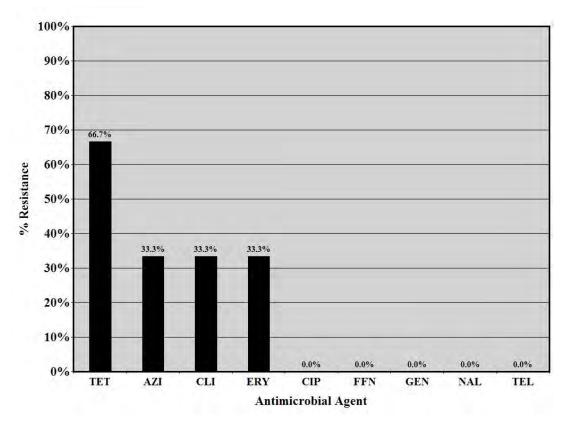
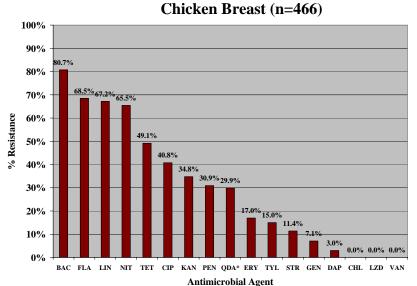
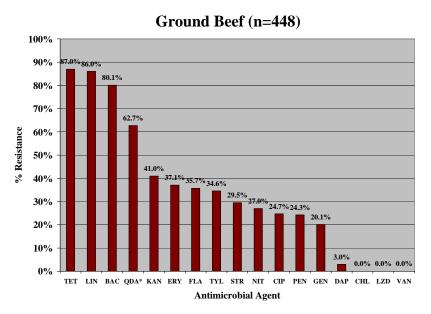



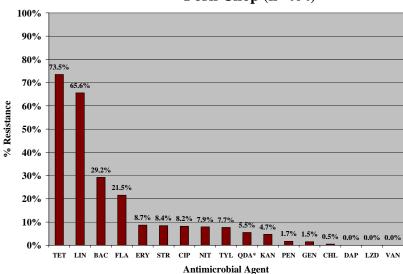
Figure A-6b. Antimicrobial Resistance among Campylobacter coli by Meat Type, 2004

Pork Chop (n=3)


Figure A-7. Antimicrobial Resistance among Enterococcus by Meat Type, 2004

^{*} Presented for all species except E. faecalis in QDA (n=466-88= 378 non E. faecalis)


Ground Turkey (n=437) 90% 87.0% 86.0% 80% 70% 62.7% 60% 40% 30% 20% 10% TET LIN BAC QDA* KAN ERY FLA TYL STR NIT CIP PEN GEN DAP CHL LZD VAN

Antimicrobial Agent

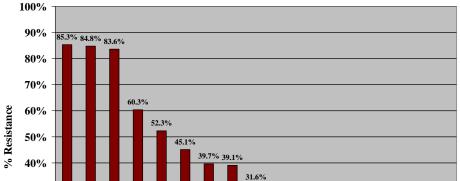
^{*} Presented for all species except E. faecalis in QDA (n=448-194= 254 non E. faecalis)

Pork Chop (n=404)

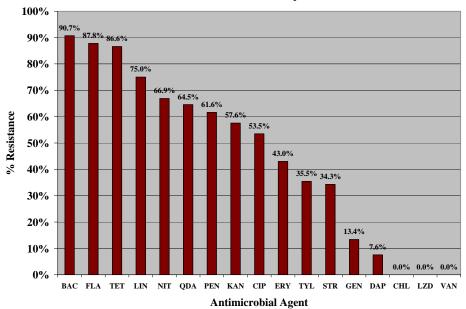
^{*}Presented for all species except E. faecalis in QDA (n=404-313= 91 non E. faecalis)

^{*} Presented for all species except E. faecalis in QDA (n=437-260= 177 non E. faecalis)

Figure A-7a. Antimicrobial Resistance among Enterococcus faecium by Meat Type, 2004



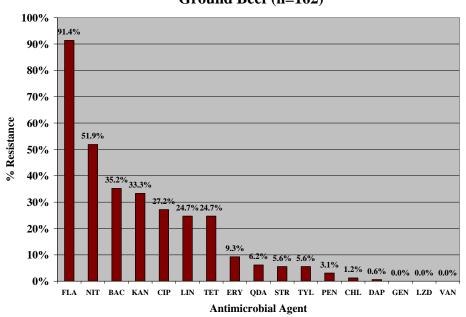
30%


20%

10%

NIT BAC FLA LIN CIP TET KAN

Ground Turkey (n=172)



Ground Beef (n=162)

Antimicrobial Agent

10.3%

4.3% 4.0%

Pork Chop (n=75)

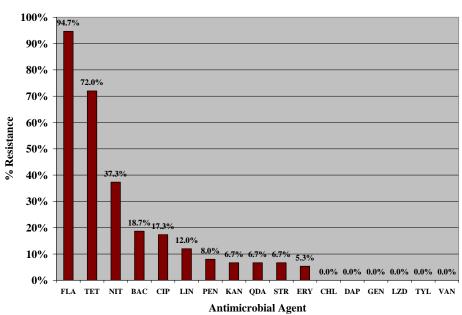
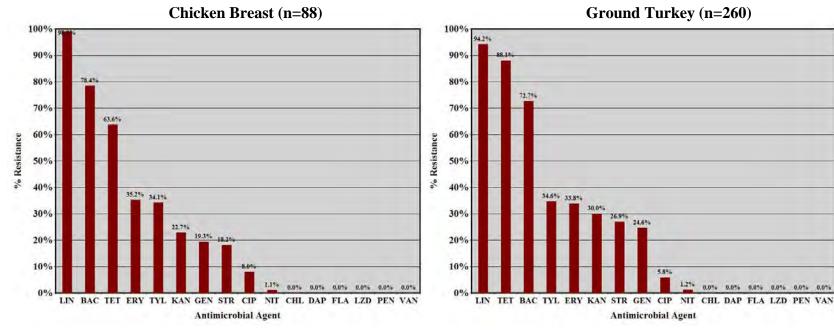
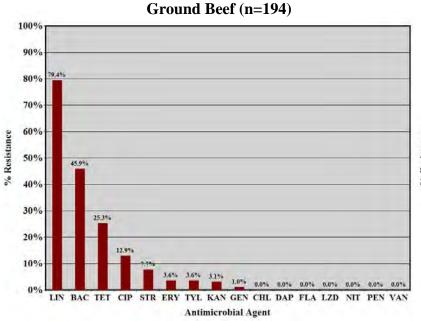
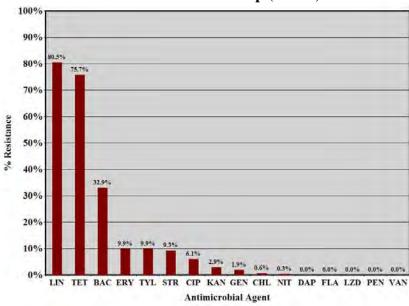
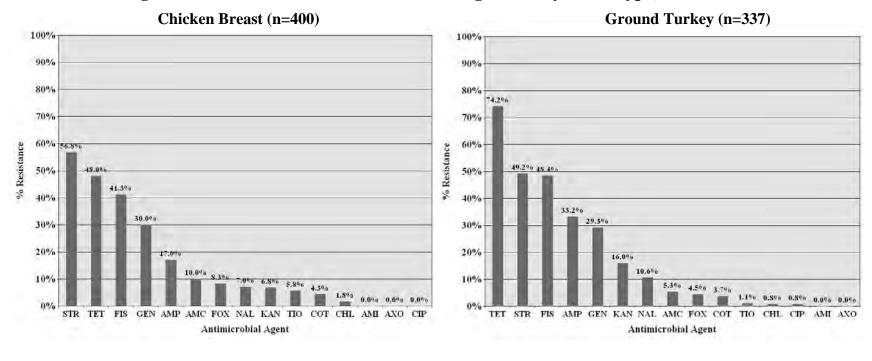
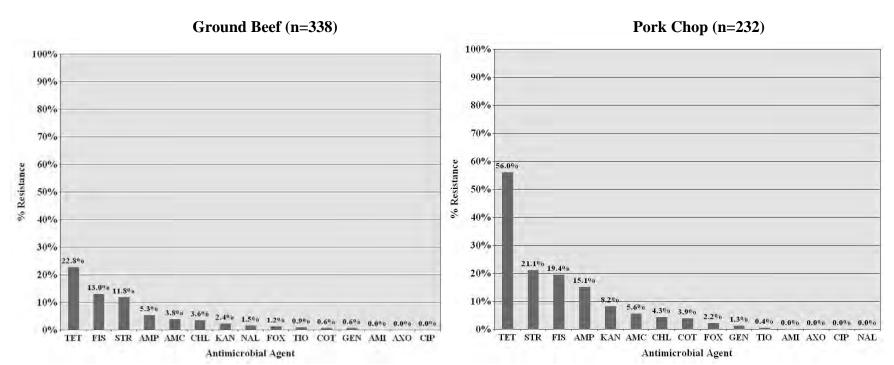




Figure A-7b. Antimicrobial Resistance among Enterococcus faecalis* by Meat Type, 2004


^{*} Data does not include QDA, as *E. faecalis* is considered intrinsically resistant.

^{*} Data does not include QDA, as E. faecalis is considered intrinsically resistant.


^{*} Data does not include QDA, as *E. faecalis* is considered intrinsically resistant.


Pork Chop (n=313)

^{*} Data does not include ODA. as E. faecalis is considered intrinsically resistant.

Figure A-8. Antimicrobial Resistance among E. coli by Meat Type, 2004

STATE_____ MONTH____ YEAR_

Circle One → CHICKEN BREAST						GROUND TURKEY				GROUND BEEF			PORK CHOP			Completed By (Initials):										
										PART I																
		Sample ID Number			Store Name, City							ot Number			Cut/Ground IN-STORE (√ One) Y N		Se C	Sell-by Date (M / D / Y)			Purchase Date (M / D / Y)			Lab Process Date (M / D / Y)		
1																										
2																										
3																										
4																					\perp	\perp				
5																						\perp	\perp			
4 5 6 7																						4	_			
7																						4	_			
8 9					-																_	\dashv	\dashv			
																					\dashv	+	\dashv			
10					<u> </u>																_	_	_			
										PART II																
C O N T. →		owth One) N Serotype Isolate ID Number					owth One) N	Species	Campylobacter IF GROWTH Isolate ID Number			Growth (√ One) Y N			oli (GA, MD, TN, OR) GROWTH			Grov √ O Y								
1	'	11	Gerotype	Isolate	ID Number									130141	C ID IN	arriber				-						
3																										
4																										
5																										
2 3 4 5 6 7																										
															-									·		
8																										
9																										
10																										

Fax log sheet to CDC at 404-371-5444; send original log sheet with specimens to FDA-CVM and keep a copy for your records. Thank you.

NARMS Retail Meat, 2004

Experimental Design and Procedures:

Microbiological analysis:

In the laboratory, samples were refrigerated at 4°C and processed no later than 96 hours after purchase. After microbiological examination, recordings were made on the log sheets whether or not the meat and poultry samples were presumptively positive for Salmonella, Campylobacter, E. coli, and Enterococcus. Each laboratory used essentially the same procedure for sample collection. Retail meat and poultry packages were kept intact until they were aseptically opened in the laboratory at the start of examination. For chicken and pork samples, one piece of meat was examined, whereas, 25 g of ground product was examined for ground beef and ground turkey samples. The analytical portions from each sample were placed in separate sterile plastic bags, 250 mL of buffered peptone water was added to each bag, and the bags were vigorously shaken. Fifty mL of the rinsate from each sample was transferred to separate sterile flasks (or other suitable sterile containers) for isolation and identification of Salmonella, Campylobacter, E. coli, or Enterococcus using standard microbiological procedures. Once isolated and identified, bacterial isolates were sent to FDA's CVM Office of Research for further characterization including species confirmation, antimicrobial susceptibility testing and PFGE analysis (Salmonella and Campylobacter only).

Salmonella isolation:

Fifty mL of double strength lactose broth was added to each flask containing the 50 mL of rinsate to be used for *Salmonella* isolation. The contents were mixed thoroughly and incubated at 35°C for 24 hours. From each flask, 0.1 ml was then transferred to 9.9 mL tubes of RVR10 medium. The tubes of RVR10 medium were incubated in a water bath at 42°C for 16-20 hours before transferring one ml to pre-warmed (35-37°C) 10 mL tubes of M Broth. The inoculated M Broth tubes were incubated in a water bath at 35-37°C for 6-8 hours. From each M

Broth culture, one ml was heated at 100°C for 15 minutes, and the remaining portion was refrigerated. The heated portion from each culture was cooled to room temperature and tested using the TECRA Salmonella Visual Immunoassay kit (International BioProducts, Bothell, WA) or the VIDAS® Salmonella Immunoassay kit (bioMerieux, Hazelwood, MO) according to the manufacturers' instructions. If the TECRA or VIDAS assay was negative, the sample was considered negative for Salmonella. If the TECRA or VIDAS assay was positive, a loopful of the corresponding, unheated M Broth culture was streaked for isolation onto a XLD agar plate. The inoculated plate was incubated at 35°C for 24 hours. Each XLD agar plate was examined for typical Salmonella colonies (pink colonies with or without black centers). If no Salmonella like growth was observed on XLD agar, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. When Salmonella like growth was observed, one well-isolated colony was streaked for isolation onto a trypticase soy agar plate supplemented with 5% defibrinated sheep blood (BAP). The BAP(s) were incubated at 35°C for 18-24 hours before sub-culturing an isolated colony for further biochemical identification and serotyping using the FoodNet laboratory's standard procedures. Salmonella isolates were subsequently frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, every isolate was streaked for purity on a BAP before being confirmed as Salmonella using the Vitek microbial identification system (bioMérieux, Hazelwood, MO). These isolates were further serotyped for O and H antigens using either commercially available (Difco-Becton Dickinson, Sparks, MD) or CDC antisera.

Campylobacter isolation:

Fifty mL of double strength Bolton broth was added to each flask containing the 50 mL of rinsate to be used for *Campylobacter* isolation. The broth and rinsate were mixed thoroughly, but gently to avoid aeration, and incubated at 42°C for 24 hours in a reduced oxygen atmosphere

that was obtained using a commercial gas generating envelope or a gas mixture containing 85% nitrogen, 10% carbon dioxide, and 5% oxygen. Using a swab, the first quadrant of a CCA Plate was inoculated with the incubated Bolton broth culture. The remainder of each plate was then streaked with a loop to obtain isolated colonies, and the CCA plates were incubated at 42°C in the above atmosphere for 24 to 48 hours. Each CCA plate was examined for typical Campylobacter colonies (round to irregular with smooth edges; thick translucent white growth to spreading, film-like transparent growth). If no Campylobacter like growth was observed on a CCA plate, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. When *Campylobacter* like growth was observed, one typical well-isolated *Campylobacter* like colony from each positive CCA plate was sub-cultured to a BAP and incubated as described for the CCA plates. Following incubation, one typical well-isolated Campylobacter like colony was gram stained and tested using a smear catalase, oxidase, hippurate and/or motility test. If the Gram stain showed small, Gram-negative, curved rods, and the isolate was positive with the other test(s) that were conducted, a sample was considered presumptively positive for *Campylobacter*. If the CCA plates or BAPs had no typical colonies or isolate testing was inconsistent with Campylobacter, a sample was considered negative. All isolates presumptively identified as Campylobacter were frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, isolates were twice streaked for purity on a BAP before being identified to the species level using PCR assays previously described (2, 6).

<u>E. coli isolation</u> (Georgia, Maryland, Oregon and Tennessee)

Fifty mL of double strength MacConkey broth was added to each flask containing the 50 mL of rinsate to be used for *E. coli* isolation. The contents were mixed thoroughly and incubated at 35°C for 24 hours. One loopful from each flask was then transferred to an EMB agar plate and streaked for isolation. Agar plates were then incubated at 35°C for 24 hours in ambient air

and examined for typical *E. coli* colonies (colonies having a dark center and usually a green metallic sheen). If no typical growth was observed on an EMB agar plate, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. When *E. coli*-like growth was present, one typical, well-isolated colony was streaked for isolation onto a BAP. The BAPs were incubated at 35°C for 24 hours in ambient air and examined for purity. One typical, well-isolated colony was subcultured for indole and oxidase tests. Indole positive and oxidase negative isolates were considered presumptively positive as *E. coli*. Presumptive *E. coli* isolates were subsequently frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM, every isolate was streaked for purity on a BAP before being confirmed as *E. coli* using the Vitek microbial identification system (bioMérieux, Hazelwood, MO). *Enterococcus* isolation (Georgia, Maryland, Oregon and Tennessee)

Fifty mL of double strength Enterococcosel broth was added to each flask containing the 50 ml of rinsate to be used for *Enterococcus* isolation. The contents were mixed thoroughly and incubated at 45°C for 24 hours in ambient air. If no typical growth or blackening was observed in the flask, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. If blackening of the broth was observed, a loopful was streaked for isolation onto an EA plate. The plates were then incubated at 35°C for 24 hours in ambient air and examined for enterococcal-like colonies (small colonies surrounded by a blackening of the agar). If no typical growth was observed on the EA plate, the sample was considered negative and the appropriate documentation was made on the log sheet accompanying the sample. If enterococcal-like growth was present, one well-isolated colony was streaked for isolation onto a BAP, and incubated at 35°C for 24 hours in ambient air.

Presumptive *Enterococcus* isolates were subsequently frozen at -60 to -80°C in Brucella broth with 20% glycerol and shipped in cryo-vials on dry ice to FDA-CVM. Upon arrival at CVM,

every isolate was streaked for purity on a BAP before being confirmed as *Enterococcus* using the Vitek microbial identification system (bioMérieux, Hazelwood, MO).

Antimicrobial Susceptibility Testing:

Antimicrobial MICs were determined using a 96 well broth microdilution method (Sensititre, Trek Diagnostic Systems, Westlake, OH) according to CLSI standards (3, 4, 5). Salmonella and E. coli isolates were tested using a custom plate developed for Gram negative bacteria, catalog # CMV1AGNF; Enterococcus isolates were tested using a custom plate developed for Gram positive bacteria, catalog # CMV1AGPF; and Campylobacter isolates were tested using a custom plate developed for Campylobacter, catalog # CAMPY (Table 1). CLSI recommended QC organisms were used each time that antimicrobial susceptibility testing was performed. The QC organisms included Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853, and Campylobacter jejuni ATCC 33560 (3, 4, 5).

CLSI approved interpretive criteria were used when available; otherwise tentative NARMS breakpoints were used (Table 1). All antimicrobial susceptibility testing was conducted in the laboratories of the Division of Animal and Food Microbiology, CVM-FDA, Laurel, MD.

Pulsed Field Gel Electrophoresis (PFGE):

Pulsed-field gel electrophoresis was used to assess genetic relatedness among *Salmonella* and *Campylobacter* isolates. The PFGE was performed according to protocols developed by CDC (1). Agarose-embedded DNA was digested with the enzyme *Xba*I for *Salmonella* isolates and *Smal*I for *Campylobacter* isolates DNA restriction fragments were separated by electrophoresis using a Chef Mapper electrophoresis system (Bio-Rad, Hercules, CA). Genomic-DNA profiles or "fingerprints" were analyzed using BioNumerics software (Applied-Maths, Kortrijk, Belgium), and banding patterns were compared using Dice coefficients with a

1.5% band position tolerance. PFGE analysis was conducted in the laboratories of the Division of Animal and Food Microbiology, CVM-FDA, Laurel, MD.

References

- Center for Disease Control and Prevention. 2002. Standardized molecular subtyping of foodborne bacterial pathogens by pulsed-field gel electrophoresis. Center for Disease Control and Prevention. Atlanta, GA.
- 2. Linton, D., A. J. Lawson, R. J. Owen, and J. Stanley. 1997. PCR detection, identification to species level, and fingerprinting of *Campylobacter jejuni* and *Campylobacter coli* direct from diarrheic samples. J. Clin. Microbiol. 35:2568-2572
- Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard
 – Second Edition (M31-A2). 2002. CLSI, Wayne, Pa.
- Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Informational Supplement (M31-S1). 2004. CLSI, Wayne, Pa.
- Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement (M100-S16). 2006. CLSI, Wayne, Pa.
- 6. Zhao, C., B. Ge, J. De Villena, R. Sudler, E. Yeh, S. Zhao, D. G. White, D. Wagner, and J. Meng. 2001. Prevalence of *Campylobacter* spp., *Escherichia coli*, and *Salmonella* serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C., area. Appl.Environ.Microbiol. 67:5431-5436