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a  b  s t r a  c t

Populus  is  an important  bioenergy  crop  for  bioethanol  production.  A greater  understanding  of cell wall

biosynthesis  processes  is critical  in  reducing  biomass  recalcitrance,  a major  hindrance  in  efficient  gen-

eration  of biofuels from  lignocellulosic  biomass.  Here, we  report the  identification  of  candidate  cell  wall

biosynthesis  genes  through  the  development  and application  of a  novel  bioinformatics  pipeline.  As a  first

step,  via  text-mining of  PubMed  publications,  we obtained  121  Arabidopsis  genes  that had  the  experi-

mental  evidence  supporting  their  involvement  in  cell wall  biosynthesis  or  remodeling.  The  121 genes

were  then  used as bait  genes  to query  an  Arabidopsis  co-expression  database, and  additional  genes  were

identified  as  neighbors  of the  bait  genes  in the  network, increasing  the  number  of  genes  to 548.  The 548

Arabidopsis  genes were  then  used to re-query  the  Arabidopsis  co-expression  database and re-construct

a  network that  captured  additional  network  neighbors,  expanding to a  total  of  694  genes.  The  694  Ara-

bidopsis  genes were  computationally  divided into  22 clusters.  Queries of the  Populus  genome  using the

Arabidopsis  genes  revealed  817  Populus  orthologs.  Functional  analysis  of  gene  ontology  and  tissue-specific

gene  expression  indicated  that  these  Arabidopsis  and Populus  genes are  high likelihood  candidates  for

functional  characterization  in relation  to cell  wall  biosynthesis.

© 2011 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The  genus Populus, representing the most productive temper-

ate tree species in  the world, has been selected as  an important

model woody crop for economic and ecological applications [1–3].

Populus species currently supply feedstocks for pulp and paper

production, laminated veneer fabrication and an emerging renew-

able energy industry [1,4]. Since plant cell walls form the basis of

this renewable resource [5], understanding the molecular basis of

cell wall formation is  critical for designing strategies to enhance

desirable biomass properties. Based on protein sequence anno-

tation, it is estimated that plants devote approximately 10% of

their genome, about 2500 genes in  Arabidopsis, to  biosynthesis and

rearrangement of  cell walls [6,7]. However, the number of genes

that have been experimentally confirmed to be  involved in cell

wall formation is very limited. The availability of high-quality gene
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co-expression networks in  Arabidopsis [8] provides a new opportu-

nity for genome-wide discovery of  genes associated with cell  wall

biosynthesis. In this study, we developed a pipeline for large-scale

identification of Populus genes involved in  cell wall biosynthesis

and rearrangement (Fig. 1).

Briefly, the PubMed database was queried to obtain research

articles that documented experimental evidence for genes involved

in cell wall biosynthesis in Arabidopsis, followed by  curation of the

Arabidopsis genes from the selected research articles. The curated

Arabidopsis genes were then used as bait genes to query an Ara-

bidopsis co-expression network to reveal additional Arabidopsis

cell wall biosynthesis genes, which are  associated with the bait

genes. The bait  genes and their network neighbors were pooled

and a  co-expression network was reconstructed. The Arabidopsis

genes in  the co-expression network were then computationally

divided into clusters. Analyses of gene ontology and tissue-specific

expression were performed to determine the functional features

of each gene cluster. Candidate Populus genes, orthologous to

the Arabidopsis genes, were identified based on a BlastP search.

Finally, the validity of  Populus candidate genes was tested by

comparative analysis of gene expression between Arabidopsis and

Populus. Using this pipeline, we  identified several hundred Popu-

lus genes which are potentially involved in cell wall biosynthesis

and rearrangement, providing high-value candidate genes for on-
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Query of Arabidopsis co-expression network to find genes
 directly connected to the known cell wall associated

genes in the network

BlastP search to obtain orthologs in  Populus

Functional analysis 

Text-mining of PubMed to obtain genes known to  be
 involved in plant cell wall biosynthesis 

Tissue-specific expression pattern; gene ontology annotation; 
gene family assignment 

Fig. 1. A computational pipeline based on text mining and co-expression analysis for large-scale discovery of candidate genes involved in cell wall biosynthesis in Populus.

going bioenergy research on overcoming biomass recalcitrance in

Populus.

2. Materials and methods

2.1.  Text mining of literature

Abstracts  of the articles related to cell wall genes were retrieved

from the comprehensive PubMed by query with term “Cell wall

AND gene” implemented in the EndNote software (Carlsbad,

CA). After manual screening the approximately 8000 articles,

the abstracts containing experimental evidence (i.e., native, over-

expression or knockdown mutants) for genes involved in plant cell

wall biosynthesis and reorganization were retained for extracting

gene information to  be used in network-querying in  Section 2.2.

2.2.  Co-expression analysis in Arabidopsis

The Arabidopsis genes in  the manually curated abstracts/full-

text articles that contain experimental evidence for cell wall

biosynthesis genes were used as  bait genes to query the ATTED-II

database [8], and the genes connected directly to the bait genes

in the Arabidopsis whole-genome co-expression network were

obtained. The co-expression relationship between the bait genes

and their directly-connected genes were used to  re-construct a

network of  the expanded list of cell wall genes in Arabidopsis

using ATTED-II [8] and the re-constructed co-expression network

was visualized using Cytoscape [9]. The Arabidopsis genes in the

re-constructed co-expression network were divided into clusters

using the ClusterViz Cytoscape plugin [10].

2.3. Identification of orthologs in Populus

The protein sequences of the Arabidopsis cell wall

associated genes were obtained from TAIR release 9

(http://www.arabidopsis.org/) and used to search the

proteins sequences in  Populus genome annotation v2.0

(http://www.phytozome.net/poplar) using BlastP [11] with e-

value cutoff of  1 ×  10−4,  the top hits, i.e., with 99–100% of  the

highest scores, were selected as Populus orthologs/co-orthologs.

To  investigate the conservation of gene expression between Ara-

bidopsis and Populus, one-to-one Arabidopsis to Populus ortholog

pairs as reciprocal best hits (RBH) in the two-way BlastP searches

(i.e., Arabidopsis vs. Populus and Populus vs.  Arabidopsis) were

selected.

2.4. Gene ontology (GO)

GO  annotation of the Arabidopsis genes was  obtained from TAIR

(http://www.arabidopsis.org/). GO enrichment was performed

in agriGO (http://bioinfo.cau.edu.cn/agriGO/)  [12] with default

parameters using the whole Arabidopsis genome as the back-

ground/reference.

2.5. Analysis of gene expression pattern

The Arabidopsis microarray data were obtained from AtGen-

Express (http://www.weigelworld.org/resources/microarray/

AtGenExpress/AtGE dev gcRMA.txt.zip/view) [13]. The Popu-

lus expression data was obtained from PopGenIE (ftp://aspnas.

fysbot.umu.se/v1 archive/eFP data/) [14]. Heat maps were gener-

ated using R (http://www.r-project.org/).  To detect the conserved

gene expression pattern between Arabidopsis and Populus ortholog

gene pairs (i.e., reciprocal best hits in  two-way BlastP search),

the expression data of  3  tissues (i.e., root, stem/xylem and leaf)
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Table  1
Arabidopsis genes known to be involved in cell wall formation.

Gene ID References Gene ID References Gene ID References

AT1G02730 [30] AT1G80820 [31] AT4G12350 [22,32]

AT1G03430 [33] AT2G01850 [34] AT4G15900 [35]

AT1G05850 [32]  AT2G03220 [36,37] AT4G18780 [38–41]

AT1G09540  [32] AT2G15370 [42] AT4G22680 [22,43]

AT1G10550  [44] AT2G15390 [42] AT4G23920 [45]

AT1G12040  [46] AT2G19800 [47] AT4G28500 [22]

AT1G12840  [32] AT2G20370 [35,36,48] AT4G32410 [49–52]

AT1G13690 [53] AT2G21140 [54] AT4G33450 [22]

AT1G13980 [55] AT2G21770 [49] AT4G34230 [56,57]

AT1G14520 [47]  AT2G28110 [58,59] AT4G36890 [58,60]

AT1G15950  [31,61,62] AT2G32740 [63] AT4G38770 [54]

AT1G16490  [64] AT2G34140 [32] AT4G39350 [49–51,65]

AT1G17950  [22] AT2G35100 [66] AT5G03170 [67,68]

AT1G19300 [58] AT2G35620 [69] AT5G05170 [49–51,70,71]

AT1G22620 [72] AT2G35650 [73] AT5G09870 [51]

AT1G27440 [21,60]  AT2G37090 [58,60,74] AT5G10280 [32]

AT1G28470  [22] AT2G38080 [41,64] AT5G12870 [22,43,64]

AT1G30620 [35,75] AT2G39770 [76] AT5G16600 [22]

AT1G31420 [69] AT2G40890 [77,78] AT5G17420 [38–41,70,79–83]

AT1G32770 [22,43,84–87]  AT2G46770 [22,41,64,85,87,88] AT5G22130 [89]

AT1G45130  [90] AT3G02230 [91] AT5G22940 [59]

AT1G56550  [92] AT3G03050 [93] AT5G26120 [94]

AT1G58370  [95] AT3G10740 [94,96,97] AT5G33290 [98]

AT1G62990  [22,43] AT3G13870 [99] AT5G39340 [33]

AT1G63910 [22] AT3G13890 [41] AT5G44030 [38–40]

AT1G64440  [45] AT3G16360 [33,100] AT5G47820 [101]

AT1G65580 [102]  AT3G19450 [57] AT5G48930 [103]

AT1G66230  [22] AT3G21510 [33] AT5G49360 [104]

AT1G66240  [44] AT3G25140 [105,106] AT5G49720 [81,107]

AT1G66340 [69] AT3G28180 [108] AT5G54160 [61]

AT1G67490 [52] AT3G29350 [33] AT5G54380 [109]

AT1G68560 [97] AT3G49690 [32] AT5G54690 [41,58,68,110]

AT1G71930  [22,64] AT3G51160 [35,111] AT5G58600 [112]

AT1G73410 [22]  AT3G52840 [90] AT5G61840 [21,60]

AT1G74380  [113] AT3G54920 [112,114] AT5G62220 [63]

AT1G75110  [115] AT3G61910 [22,41,64,88] AT5G62380 [22,64]

AT1G75120 [115] AT3G62160 [53] AT5G64530 [116]

AT1G78570  [46,117] AT4G01750 [118] AT5G64570 [97]

AT1G78580 [119]  AT4G01770 [118] AT5G64740 [51,120]

AT1G79180  [64] AT4G08150 [121] AT5G66680 [122]

AT1G80350  [123,124]

were selected and a  Pearson product-moment correlation was

analyzed.

2.6. Gene family assignment

The  family assignment of the Arabidopsis protein-coding genes

were obtained from the plant protein database GreenPhylDB [15].

3.  Results

3.1. Genes known to be involved in cell  wall biosynthesis

Approximately 8000 publications were retrieved from PubMed

using “cell wall +  gene” as the query. Among these papers, 159

research articles contained experimental data/evidence for genes

involved in plant cell biosynthesis: 98 articles for Arabidopsis and 61

for other species (i.e., Cicer, Eucalyptus, Gossypium, Hordeum, Lycop-

ersicon, Medicago, Nicotiana, Oryza, Petunia, Picea, Pinus, Populus,

Solanum, Sorghum and Zea). Since the majority of the information

was obtained from Arabidopsis, and this model plant species has the

most abundant genomic resources available, downstream analysis

was focused on this species. In the 98 articles related to  Arabidop-

sis, 121 genes were characterized with experimental evidence as

involved in  cell wall biosynthesis (Table 1).

3.2. Co-expression network of Arabidopsis cell  wall associated

genes

We  used the 121 acknowledged cell wall genes as  bait genes

to query a whole-genome co-expression network [8], and genes

directly-connected to the bait genes were obtained, increasing the

number of candidate genes associated with cell biosynthesis to

548. This list  of 548 Arabidopsis genes was then used to  recon-

struct a  co-expression network using ATTED-II [8], expanding the

gene list to 694 genes (Supplementary Table 1) (692 genes having

the protein sequences in the TAIR release 9). The 694 Arabidopsis

genes in the network were further divided into 22 clusters using

ClusterViz Cytoscape plugin (Fig. 2; Supplementary Fig. 1), with

each cluster consisting of at least one bait gene (i.e., Arabidop-

sis genes known to be involved in cell wall formation) (Table 2;

Supplementary Fig. 1). Some bait genes are  likely to be hub genes,

such as CESA7 in Cluster 02, MYB103 in Cluster 04, THE1 in Clus-

ter 07 and SND3 in Cluster 11  (Fig. 2; Supplementary Fig. 1).

More than 250 gene families were identified in the 692 protein-

coding genes. About one-half of the 692 genes were distributed in

87 families, with seven families (i.e., kinase/LRR superfamily, gly-

coside hydrolase family, MYB  family, glycosyl transferase family,

cellulose synthase family, exostosin family and plastocyanin-like

family) containing 10 or more gene members (Supplementary

Table 2). In addition, 46 and 14 genes were classified as
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Fig. 2. Clusters C01 (A) and C02 (B) of a  co-expression network containing Arabidopsis cell wall associated genes. Red dots represent the seed genes (i.e., the genes known to

be  involved in cell wall formation) listed in Table 1 and green dots represent the genes associated with the seed genes. The lines connecting two genes indicate that the two

genes  were co-expressed.

domain of unknown function (DUF) and hypothetical protein,

respectively.

3.3. Gene ontology

Gene  Ontology (GO) analysis was performed for the 692

Arabidopsis protein-coding genes in the co-expression network.

Compared with the whole Arabidopsis genome annotation, biolog-

ical  processes related to cell wall biosynthesis were significantly

enriched in the 692 Arabidopsis genes, including processes related

to cell wall biogenesis, polysaccharide biosynthesis, secondary cell

wall biogenesis, phenylpropanoid metabolism and cell wall orga-

nization (Supplementary Table 3). GO cellular component analysis

revealed that several protein sub-cellular localizations (i.e., cell

wall, membrane, Golgi apparatus and endoplasmic reticulum) were

enriched in  the co-expression network (Fig. 3). There was differ-
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Table  2
Co-expression clusters of the Arabidopsis cell wall associated genes (known/bait genes and their nearest-neighbors in the co-expression network).

Cluster Gene number Bait gene number GO enrichment (P  < 0.05) GO term level Gene family number

C01 61 11  Primary cell wall biosynthetic

process(GO:0009833) glucan metabolic

process(GO:0006073)

8 41

C02  58 12  Secondary cell wall biosynthetic

process(GO:0009834) xylem

histogenesis(GO:0010089); xylan metabolic

process(GO: 0045491)

8 31

C03  54 8  Glucan metabolic process(GO:0006073) 8  35

C04 53 9 NA NA 30

C05 40 6  Lignin biosynthesis (GO: 0009809) 8  26

C06 37  6  Hormone-mediated signaling(GO:0009755) 6  27

C07  37 3  NA NA 28

C08  35 4  Purine nucleoside triphosphate

biosynthesis(GO:0009145) proton

transport(GO:001 5992)

8  28

C09  33 5  NA NA 25

C10  32 4  Actin cytoskeleton organization and

biogenesis(GO: 0030036)

7 23

C11  30 7  Transcription, DNA-dependent(GO:0006351) 7  21

C12 28 5  Lipid metabolic process(GO: 0006629) 4  18

C13  25 5  Regulation of innate immune

response(GO:0045088)

7 15

C14  25 4  NA NA 16

C15  23 5  Cell wall biosynthetic process(GO:0042546) 6  18

C16 23 4 NA NA 13

C17  22 2  NA NA 15

C18 17  3  Carbohydrate metabolic process(GO:0005975)

generation of precursor metabolites and

energy(GO: 0006091)

4 11

C19 16 2 Protein  amino acid glycosylation(GO: 0006486)

polysaccharide biosynthetic process(GO:0000271)

glucan metabolic process(GO:0006073)

8 8

C20 16 2  NA NA 11

C21 15  1  Cellular morphogenesis (GO: 0000904) 6  11

C22  14 2  NA NA 8

Table 3
Arabidopsis genes involved in secondary cell wall biogenesis and cell wall organization, which were selected based on GO annotation (biological process).

Secondary Cell wall Biogenesis Cell wall organization

Gene Cluster Bait gene Gene Cluster Bait gene

AT1G43790 C02 AT1G31420 C01 Yes

AT2G37090  C02 Yes AT4G38400 C01

AT2G38080  C02 Yes AT5G60920 C01

AT4G18780  C02 Yes AT1G05310 C02

AT5G12870  C02 Yes AT5G16490 C02

AT5G15630  C02 AT5G17420 C02 Yes

AT5G17420  C02 Yes AT5G54690 C02 Yes

AT5G44030  C02 Yes AT1G10550 C03 Yes

AT1G27440  C04 Yes AT1G19300 C03 Yes

AT1G32770  C04 Yes AT3G59010 C04

AT2G35700  C04 AT2G45220 C05

AT3G61910  C04 Yes AT3G10720 C07

AT2G28110  C05 Yes AT3G45970 C07

AT5G61840  C06 Yes AT4G26690 C07

AT3G13890  C15 Yes AT1G23200 C09

AT1G13980 C10 Yes

AT5G47820 C10 Yes

AT2G21140 C12 Yes

AT3G54920 C12 Yes

AT1G66340 C14 Yes

AT5G33290 C15 Yes

AT2G35620 C16 Yes

AT5G63800 C18

AT3G08550 C19

AT5G66680 C19 Yes

AT3G50410 C20

AT4G13390 C21
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Fig. 3.  GO (cellular component) enrichment for all  cell wall associated genes detected in  the co-expression network in Fig. 2.

ence in the enrichment of biological processes among the gene

clusters. For example, the primary cell wall biosynthetic processes

were enriched in  Cluster01 (Table 2), secondary cell wall biosyn-

thesis in  Cluster02 (Table 2; Fig. 4), lignin biosynthesis in  Cluster05

(Table 2), hormone-mediated signaling in  Cluster06 (Table 2; Fig. 5),

regulation of transcription in Cluster11 (Table 2)  and regulation of

innate immune response in Cluster13 (Table 2). Differences in  the

tissue-specific expression pattern were also revealed among the

alternate GO  term groups. For example, the expression patterns

of the genes involved in secondary cell wall biogenesis are largely

consistent, with most of the genes expressed preferentially in  stem

(i.e., the second internode counting from the bottom), whereas the

genes involved in cell wall organization displayed diverse expres-

sion patterns (Table 3; Fig. 6).

3.4.  Populus orthologs as candidate genes for cell wall formation

In  order to obtain the candidate genes associated with cell

wall formation in Populus, the 692  Arabidopsis protein-coding

genes identified in  this study were used to search the Popu-

lus genome annotation (V2.0) using BlastP. The top hits, i.e.,

those with 99–100% of the highest score, were selected as  Pop-

ulus orthologs/co-orthologs. 817 Populus orthologous genes were

obtained as candidate genes involved in cell wall formation

(Supplementary Table 1). Also, based on reciprocal BlastP search,

using the Populus orthologs with the highest score from the 817-

gene set as the query to  search the Arabidopsis genome, 399 pairs

of Reciprocal Best Hits (RBHs) were identified (Supplementary

Table 1).
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Fig. 4.  GO (biological process) enrichment for the genes found in Cluster02 in Table 2.

3.5. Conserved co-expression of cell wall associated genes

between Arabidopsis and Populus

We used similar gene expression patterns among the ortholog

gene pairs in two  different species to  advocate similar functions.

To test whether the tissue-specific expression pattern of cell wall

associated genes is  conserved between Arabidopsis and Populus,

the microarray data were analyzed for 238 Arabidopsis–Populus

RBH  ortholog pairs, for which both Arabidopsis and Populus genes

have expression data in  AtGenExpress [13] and PopGenIE [14],

respectively (Supplementary Table 4). In general, the tissue-specific

expression pattern (leaf, stem and root) of the Arabidopsis cell wall

associated genes was significantly correlated with that of their Pop-

ulus homologs (P < 1 × 10−15). Furthermore, there was variation in

the  conservation of co-expression among the gene clusters. Specif-

ically, nine clusters (i.e., C01–05, C08, C11, C16 and C20) showed

significant (P  <  0.05) correlation in  gene expression between Ara-

bidopsis and Populus (Table 4). In particular, there was a  strong

correlation (r = 0.65, P <  1 × 10−7)  in expression of the cluster C02

genes between Arabidopsis and Populus (Table 4; Fig. 7).

4.  Discussion

4.1. An efficient approach for discovering candidate genes

associated with cell wall biosynthesis

A limited number of genes have been identified to be  involved

in cell wall biosynthesis in Arabidopsis (Table 1; references
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Fig. 5. GO (biological process) enrichment for the genes found in Cluster06 in Table 2.

therein). In this study, we  identified more than 550 Arabidop-

sis candidate genes associated with cell wall biosynthesis using

the 121 experimentally verified genes to query the Arabidopsis

co-expression network built from microarray data. The GO anno-

tations revealed that the additional genes are relevant to cell

wall biosynthesis and organization (Supplementary Table 3). This

demonstrates that querying genome-wide co-expression networks

with known cell wall-related genes as bait can be an efficient

approach for large-scale identification of additional genes involved

in cell wall biosynthesis. In fact, the list of bait genes used for

co-expression network query in this study was compiled from

papers published through May  2009. Over the past year-and-a-half

since then, 22 Arabidopsis genes involved in cell wall biosyn-

thesis have been documented in  literature with experimental

evidence and eight of these genes were already included in  our

extended list  of candidate cell wall biosynthesis genes in  Arabidop-

sis (Supplementary Table 5), indicating that the prediction of our

bioinformatic pipeline for genome-wide discovery of new genes is

robust.

Based on protein sequences in  the genome annotation, it

was estimated that about 2500 Arabidopsis genes are potentially

involved biosynthesis and rearrangement of  cell walls [6,7]. How-

ever, this large list of genes (1) may  not  be informative regarding the

co-ordination of  gene subsets, (2)  is  difficult to characterize gene

function  in  a  reverse genetics context, and (3) includes members of

large gene families. Moreover, it is  well known that the members

of large gene families have diverse functions due to subtle but sig-

nificant variation in both promoter (determining gene expression

pattern) and protein-coding (defining protein functions) regions

[1,16]. As shown in  this study, a  number of genes from multi-

ple gene families can work together in a  single biological process

(Table 2). Therefore, gene co-expression network analysis is  com-

plementary to gene family annotation, providing more detailed

information about the roles  of the candidate genes in biological

processes.

The candidate gene discovery strategy used in the study should

be considered an on-going dynamic effort. As  future transcriptome-

sequencing efforts occur, new co-expression network analyses will

identify additional genes potentially involved in cell wall biosyn-

thesis. As additional cell wall-related genes are experimentally

identified, additional candidate genes could be identified from the

next-generation co-expression network analysis.

4.2. Genes with diverse family background involved in cell wall

formation

In  this study, more than 250 gene families were identified in the

Arabidopsis protein-coding genes associated with cell wall biosyn-
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Fig. 6. Tissue-specific expression pattern (based on  microarray data) of Arabidopsis genes involved in secondary cell wall biogenesis (A) and cell wall organization (B). The

genes  were selected based on GO annotation (biological process).

thesis and reorganization. Among these gene families, five (i.e.,

kinase/LRR superfamily, glycoside hydrolase family, MYB  family,

glycosyl transferase family and cellulose synthase family) were

the most abundant, containing 12  or more gene members iden-

tified in this study (Supplementary Table 2), and suggesting that

members of  these gene families play a  key role  in cell wall

biosynthesis and reorganization. This is consistent with previous

studies [17–23]. More importantly, 46  and 14  genes, classified

as domain of  unknown function (DUF) and hypothetical protein,

respectively, were discovered as  a  result of our approach. These

genes are candidates for further characterization and experimental

validation.

4.3. Conservation of gene expression is associated with functional

categories

It  is hypothesized that genes with essential functions (e.g.,

transcription factors) are disproportionately retained following

speciation [24–28]. This hypothesis is  supported by our com-

parative  analysis of gene expression between Arabidopsis and

Populus (Tables 2  and 4; Fig. 7). For example, the co-expression

patterns of genes in  nine clusters (C01–05, C08,  C11, C16 and

C20) are significantly conserved between Arabidopsis and Populus

(Table 4). The clusters showing conserved co-expression between

the two  species are involved in biological processes essential

for cell wall formation, including primary cell wall biosynthesis

(Cluster01), secondary cell wall biosynthesis (Cluster02), glucan

metabolic process (Cluster03), lignin biosynthesis (Cluster05), and

DNA-dependent transcription (Cluster11) (Table 2). The Populus

orthologs corresponding to the conserved co-expression clus-

ters should be considered high confidence candidates involved

in cell wall biosynthesis. One possible evolutionary mecha-

nism leading to non-conserved co-expression in  the other 12

clusters is  that orthologs were lost via small deletions or

pseudonization in one species [16]. Alternatively, some of the

genes may  have experienced rapid lineage-specific expansion, as

demonstrated in the F-box gene family in  herbaceous annual

plants, which would not  be found in woody perennial plants

[29].
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Fig. 7. Expression pattern (based on  microarray data) of Arabidopsis Cluster02 genes and the corresponding Populus orthologs (Supplementary Table 1)  which were selected

based  on reciprocal best hits (RBH) in two-way BlastP searches (i.e., Arabidopsis vs. Populus and Populus vs. Arabidopsis).

4.4. Differential expression between cell wall biosynthesis and

cell  wall organization

Both  cell wall biosynthesis and cell wall organization are impor-

tant biological processes contributing to the cell wall formation.

This study revealed differences in the tissue-specific expression

pattern between the genes involved in secondary cell wall bio-

genesis and the genes involved in cell wall organization, with

the cell wall biogenesis gene category showing consistent pref-

erential expression in the second internode whereas the cell wall

organization gene category displaying diverse expression patterns

(Table  3; Fig. 6). The second internode is  the principal location

of secondary cell wall formation and maturation in  the stems of

Arabidopsis. Despite the fact that most plant cell types share a  com-

mon pathway to  generate basic polymers (e.g., cellulose, lignin,

etc.) for building the cell wall, our analysis detected significantly

higher expression of the majority of the cell wall biogenesis genes

in the second internode. More expectedly, the genes identified by

our network analysis associated with cell wall organization var-

ied among the different tissues. It  can be hypothesized then that

manipulating of genes involved in cell wall organization may  hold

great promise for reducing the biomass recalcitrance in targeted
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Table  4
Correlation in gene expression pattern between Arabidopsis (leaf, stem and root)

and Populus (leaf, xylem and root).

Cluster Pearson correlation (r) P-value Gene number

C01–C22** 0.40 2.20E−16 238

C01* 0.28 2.42E−02 22

C02** 0.65 8.66E−08 18

C03** 0.35 3.55E−03 22

C04** 0.62 9.99E−06 14

C05** 0.49 4.58E−05 21

C06 0.17  2.36E−01 17

C07 0.10  5.49E−01 12

C08* 0.40 1.43E−02 12

C09 0.31 2.15E−01 6

C10 0.19 4.58E−01 6

C11** 0.58 4.64E−04 11

C12 0.20 1.81E−01 16

C13 0.07 7.42E−01 8

C14 0.08  7.40E−01 6

C15 0.59 9.22E−02 3

C16* 0.43 2.60E−02 9

C17 −0.33 7.50E−02 10

C18 0.18 3.97E−01 8

C19 0.11 5.70E−01 9

C20** 0.62 6.32E−03 6

C21 −0.86  3.47E−01 1

C22 −0.43 7.17E−01 1

* Significance at P < 0.05.
** Significance at P < 0.01.

tissues, independent of  modifications in cell wall biosynthesis

genes.
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