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Abstract

Switchgrass (Panicum virgatum L.) is a C4 perennial warm season grass indigenous to the North American tallgrass
prairie. A number of its natural and agronomic traits, including adaptation to a wide geographical distribution, low
nutrient requirements and production costs, high water use efficiency, high biomass potential, ease of harvesting,
and potential for carbon storage, make it an attractive dedicated biomass crop for biofuel production. We believe
that genetic improvements using biotechnology will be important to realize the potential of the biomass and
biofuel-related uses of switchgrass. Tissue culture techniques aimed at rapid propagation of switchgrass and
genetic transformation protocols have been developed. Rapid progress in genome sequencing and bioinformatics
has provided efficient strategies to identify, tag, clone and manipulate many economically-important genes,
including those related to higher biomass, saccharification efficiency, and lignin biosynthesis. Application of the
best genetic tools should render improved switchgrass that will be more economically and environmentally
sustainable as a lignocellulosic bioenergy feedstock.

Keywords: Biofuels, Expressed sequence tags, Genetic engineering, Genome sequencing, Lignin biosynthesis,
microRNAs, Molecular markers

Introduction
Resource consumption by humans continues to proceed
at arguably unsustainable levels. In recent times, world-
wide consumption of non-renewable fossil fuel reserves
has increased drastically (U.S. Energy Information Ad-
ministration; http://www.eia.gov/; Figure 1). With high
rates of consumption anticipated and an ever-increasing
population, a great challenge will be meeting the grow-
ing demand for energy for transportation, heating and
industrial processes, and providing the raw industrial
materials in a sustainable way [1]. Fossil fuels supply
more than 80% of energy consumed globally and con-
tribute to atmospheric greenhouse gases, declining water
tables and climate change [2,3]. All of these factors nat-
urally lead to the development of renewable energy
sources.
Biomass and biomass-derived fuels may be able to

provide a partial solution to today’s energy challenges. In

the last decade, there has been increased interest in ded-
icated biomass crops for biofuels [4]. It was considered
that bioenergy provided by starch, sugar, and oils from
plants would be crucial for accomplishing the goals of
incremental substitution of petroleum-based transporta-
tion fuels in addition to reducing CO2 emissions [5,6].
However, first-generation biofuels were produced from
traditional food and feed crops (e.g., sugarcane, corn,
sugar beet), which may lead to supply shortages, and, in
turn, to an increase in food prices [3,7].
Even though plant-derived biofuels are renewable and,

for the most part, carbon-neutral, they have been
condemned for being associated with the loss of biological
diversity and unfavorable consequences of changes in land
use patterns [5]. These shortcomings led to a vision of de-
veloping second-generation lignocellulosic bioenergy crops,
wherein stems, leaves, and/or husks of plants such as
switchgrass, Miscanthus, jatropha, and poplar, may be used
for the production of biofuels. In contrast to the easily-
processed sugars and oils of first-generation bioenergy
feedstocks, lignocellulosic biomass contains hard-to-digest
matter from cell walls of grasses, crop residue, and woody
biomass. One goal for the selection of second-generation
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bioenergy crops is that they should be able to grow on
‘marginal’ and low-cost land not suited for food crops,
thus removing competition between the uses of land for
food or fuel production [8]. Challenges remain in making
second-generation bioenergy crops a reality. Among these
are: (a) how to sustainably maximize the yield per hectare
of biomass while minimizing agricultural inputs, (b) how
to truly avoid competition with food and feed production,
(c) how to increase the efficiency of biomass digestion by
microbes and other processes [9], and (d) whether trans-
genic plants can be used [10].
Among all potential second-generation bioenergy

crops, switchgrass (Panicum virgatum L.) has received,
perhaps, the most attention as a dedicated lignocellulosic

biofuel crop, beginning in the 1980s [11,12] (Figure 2).
Switchgrass is a member of the Paniceae tribe of grasses
and belongs to the family Poaceae. It is native to North
America and widely adapted; growing from 20°-60°
north latitude and east of 100° west longitude [13,14]. It
exhibits tremendous diversity in its form and has been
categorized into two ecotypes: upland and lowland
[15,16]. It can be grown on lands less-suitable for trad-
itional agricultural crops for the production of biofuels,
such as ethanol and butanol, from cellulose [17]. Switch-
grass readily thrives on marginal land as a result of its
deep-rooting habit, C4 photosynthetic metabolism, among
other traits [13]. Its perennial growth habit, wide adapta-
tion, excellent conservation attributes, compatibility with
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Figure 1 Total world petroleum consumption (thousand barrels/day) [Source: U.S. Energy Information Administration (EIA)].
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Figure 2 Flow chart of biofuel production in switchgrass [Photo credits: M Nageswara-Rao].
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conventional farming practices, ease of harvesting, hand-
ling, storage and amenability for being handled and stored
both as wet or dry feedstock has made it a popular choice
for biofuel feedstock crop [18-20]. Its high yielding poten-
tial on marginal lands and high yields across much of the
eastern United States, especially the mid-South has set it
apart from most other biofuel alternatives [12,21,22].
Switchgrass yields higher net energy than required to cul-
tivate, harvest and convert it into cellulosic ethanol lead-
ing to much improved greenhouse gas balance compared
with gasoline [23].
The importance of switchgrass as a bioenergy feed-

stock has increased interest in the generation of new
cultivars optimized for energy production through
breeding, biotechnology and management research. Im-
provement of biomass yield and nutritional quality
should be amenable by conventional breeding. However,
drastically better conversion of cell walls into fuels might
not be possible by conventional breeding; genomics, bio-
technology, systems- and synthetic biology tools might
be required. Genomics and systems biology allow the
identification and characterization of key genes that
underlie critical fundamental processes. Overexpression
of novel genes or knockdown of the expression of key
endogenous genes can alter cell walls to dramatically im-
prove fuel yield of switchgrass. The present scenario
and the future prospects of the utilization of molecular
and biotechnological tools for the genetic improve-
ment of switchgrass have been emphasized in this re-
view. While it is beyond the scope of this review, we
envision that advanced biotechnology tools and syn-
thetic biology will likely be required to optimize de-
sired genetic improvements.

Biotechnological tools for genetic improvement
Tissue culture
Efficient switchgrass cell and tissue culture is required
for the production of transgenic plants as well as vegeta-
tive propagation. Prior to 1991, little switchgrass tissue
culture research had been conducted. The initiation of US
Bioenergy Feedstock Development Program enhanced op-
portunities for the long-term improvement of switchgrass
[11]. Thus, in the 1990s, this program spurred research
exploring explant types, tissue culture and regeneration of
switchgrass with the ultimate goal of increasing the
resource-base for developing transgenic lines. Switchgrass
is amenable to regeneration after somatic embryogenesis
and organogenesis.

Embryogenic callus
Somatic embryogenesis was used by Denchev and Conger
[24] who reported high frequency plantlet regeneration.
They used mature caryopses (seeds) and young leaf
segments of the lowland cultivar ‘Alamo’ as explants to

produce embryogenic callus on solidified Murashige and
Skoog (MS) medium containing 2,4-dichlorophenoxyacetic
acid (2,4-D) and 6-benzylaminopurine (BAP). The ease of
handling and callus induction from mature caryopses made
these valuable explants. When leaves were used as ex-
plants, there was a response gradient with regards to tissue
age for callus initiation; young tissue is better than old tis-
sue. Although somatic embryogenesis could be induced
from embryogenic calli, regeneration of somatic embryos
directly from the cells of the explants was not observed
[24]. Somatic embryogenesis has also been reported from
young infloresences of ‘Alamo’ [25,26]. The cyclic produc-
tion of plants from embryogenic callus renders this tech-
nique a viable option for rapid clonal propagation of
switchgrass. However, compared with seed production,
clonal propagation would be quite expensive and probably
only used for the most valuable lines.
One disadvantage to the use of embryogenic callus- and

seed-derived callus systems is that they generally have lim-
ited lifespans (months) of usefulness before they cease to
be regenerable. Whereas the longevity of embryo viability
can be only two months, the recently described switch-
grass medium, LP9, increased the viability of callus and
the ability to maintain it for a duration of over six months,
making it more efficient for use in a transformation pipe-
line [27]. LP9 combined N6 macroelements and B5 mi-
croelements for the production and maintenance of
switchgrass callus and its regeneration [27]. Also, the
callus obtained was categorized as type II callus, which is
more effective in grass transformation and regeneration
[27] than type I callus obtained from previously described
tissue culture systems [25,26].

Cell suspension cultures
Cells divide faster in liquid suspension cultures com-
pared with callus cells grown on solidified medium [28].
For large scale propagation, mutant selection, gene
transfer and protoplast isolation, development of em-
bryogenic cell suspension cultures would be advanta-
geous. Cell suspension cultures were first obtained by
Bob Conger’s group that used young inflorescences of
‘Alamo’ as explants, which could directly yield embryo-
genic callus, which could be regenerated into plants [25].
This same group [26] showed that the utilization of os-
motic pretreatment had a positive effect on the initiation
and induction of somatic embryogenesis from suspension
cultures derived from in vitro-cultured inflorescences of
‘Alamo.’ It was also observed that younger cultures gave a
higher embryogenic response as compared with older cul-
tures [26]. The HR8 line that was developed from a recur-
rent tissue culture selection of ‘Alamo’ had a higher seed
germination capacity, and germinating seeds gave rise to
higher percentage of somatic embryogenic callus [29]. Al-
though this HR8 line, and indeed all improved Conger

Nageswara-Rao et al. Biotechnology for Biofuels 2013, 6:77 Page 3 of 15
http://www.biotechnologyforbiofuels.com/content/6/1/77



materials other than ‘Alamo2’ have been lost, the im-
proved germplasm demonstrated very rapid propagation.
These sorts of materials would have great use in breeding
programs [11].
Cell suspensions are also excellent starting materials for

the isolation of protoplasts. Protoplasts are useful in a
wide range of applications including cell fusion and gen-
etic manipulation [30]. Recently, Mazarei et al. reported
protoplast isolation from switchgrass cell suspension cul-
tures established from embryogenic callus [31]. They dem-
onstrated that protoplast isolation efficiency was highly
dependent on the type of cell suspension. Currently, our
and other research groups are using cell suspension cul-
tures for a variety of biotechnology-to-synthetic biology
applications including deciphering the cell wall biology for
improvments and high throughput multi-target genetic
engineering and screening.

Organogenesis
Organogenesis illustrates a significant capability of
plants to adapt to their altering environment; this
process allows organ genesis from undifferentiated cells
[32-34]. Switchgrass regeneration from organogenesis
has been accomplished [24,35]. Explants include mature
caryopses, young leaf segments and young seedling ex-
plants and MS medium supplemented with auxins (2,4-
D or picloram) and BAP is effective [24,35]. The com-
bination of 2,4-D and BAP induced a high regeneration
frequency in both nonembryogenic and embryogenic
calli derived from mature caryopses, while induction of
shoots from young seedling explants was more effective
when picloram was used in combination with BAP [35].
Protocols for high-throughput callus induction by plat-
ing whole dehusked caryopses and plant regeneration
from new, higher yielding switchgrass cvs. ‘NSL’ and
‘SL93’ have been optimized [36]. Seed pretreatments,
such as dehusking with sulfuric acid, chilling for two
weeks at 4°C prior to plating, and sterilizing with so-
dium hypochlorite and ethanol, were found to have
significant effect on callus induction and subsequent
plant regeneration.

Micropropagation
As mentioned earlier, vegetative/micropropagation using
tissue culture might be useful for valuable germplasm
and also for research. Advanced regeneration techniques
have been developed for switchgrass. For the efficient
multiplication of switchgrass genotypes, micropropaga-
tion has been established using nodal explants especially
the nodes below the top node [37]. Regardless of their
position on the culm, all nodes exhibited shoot induc-
tion at a similar rate. It was also reported that 500 plant-
lets could be regenerated from a single parent plant in
12 weeks [37]. Clonal propagation can be used for

scaling up the number of plants obtained from selected
cultivars, for controlled pollination studies for use in
breeding programs, in genetic transformation experi-
ments, and also as an important explant source for add-
itional in vitro culture initiation.
In switchgrass, the regeneration capacity is highly

genotype-dependent [38,39]. The recalcitrance of upland
cultivars warranted the development of new efficient re-
generation systems. Intact seedlings of both lowland
(‘Alamo’) and upland (‘Trailblazer’ and ‘Blackwell’) culti-
vars exhibited multiple shoot regeneration on MS
medium supplemented with various combinations of
2,4-D and thidiazuron (TDZ) [38]. This technique of in-
ducing multiple shoots from intact seedlings was less
labor intensive and more rapid, efficient and consistent
across genotypes, and the shoots appeared to originate
from enlarged shoot apice [38]. Since each caryopsis vary
for genotype, owing to self-incompatibility and natural
outcrossing that is inherent to switchgrass, this system
did not have utility for clonal propagation.
Immature inflorescences are a significant resource for

in vitro culture establishment. Young inflorescences of
switchgrass have been utilized for callus induction and
plant regeneration [40]. To reduce the damage caused
by harvesting, endogenous or exogenous fungal and bac-
terial contamination, and toxicity of sterilization solu-
tions on inflorescences, growth establishment in axenic
cultures might be beneficial. A protocol for in vitro pro-
duction of inflorescences from node cultures derived
from greenhouse grown tillers of ‘Alamo’ has been
reported [41]. These inflorescences, with completely de-
veloped spikelets and terminal florets, were used as
axenic explants for callus induction and plant regener-
ation. This highly efficient procedure for the develop-
ment of organ-specific differentiating tissues provides a
vehicle for genetic transformation using microprojectile
bombardment in switchgrass. In vitro-grown mature flo-
rets also provide an aseptic source of anthers for the
production of haploids, and open up the possibilities for
in vitro fertilization techniques to enhance breeding ex-
periments between ecotypes that are naturally difficult
to cross.

Genetic engineering
Genetic transformation is useful for gene discovery and
characterization in plant biology. The commercial use of
transformation is to introduce traits into plants that
would not be possible by conventional breeding alone
and also to increase trait development rate [42]. The
main trait targets to address using genetic engineering in
switchgrass include domestication, plant architecture,
and especially reduced recalcitrance for cell wall conver-
sion into biofuel and valuable bioproducts [6,43]. The
recent focus on the use of switchgrass as a biofuel crop

Nageswara-Rao et al. Biotechnology for Biofuels 2013, 6:77 Page 4 of 15
http://www.biotechnologyforbiofuels.com/content/6/1/77



has led to its large-scale production and genetic engin-
eering (Table 1; Figure 3) for incorporating traits by
overexpressing exotic genes and knocking down the ex-
pression of endogenous genes [44]. These genes may be
for increasing the saccharification efficiency, modifying
the cell wall structure and/or composition, enhancing
biomass yields or affecting the growth and development
of switchgrass plants [6,9,44,45].
The first transgenic switchgrass was obtained through

bombardment of immature inflorescence-derived embryo-
genic calluses of ‘Alamo’ using a dual marker plasmid
comprising the reporter gene sgfp (green fluorescent pro-
tein; GFP) driven by the rice actin (Act1) promoter and
the selectable bar gene (conferring tolerance to the herbi-
cide Basta) driven by the maize ubiquitin (Ubi1) promoter
[46]. The leaf tissues and pollen of transgenic plants
exhibited GFP and were also tolerant to Basta. T1 seed-
lings from crosses between transgenic and non-transgenic
control plants that inherited the bar transgene were also
tolerant to Basta [46]. Agrobacterium tumefaciens-mediated
transformation has been accomplished in switchgrass, and
appears to be the most common method for switchgrass
transformation. The hypervirulent A. tumefaciens strain
AGL1 carrying the binary vector pDM805 containing the
bar gene under the control of the Ubi1 promoter and the
uidA gene driven by Act1 promoter was used for
transforming four different explant types of which somatic
embryos gave the highest transformation frequency [47].
This opened up new opportunities for genetic manipulation
of switchgrass as Agrobacterium-mediated transformation
is often the preferred method since it favors the integration

of a low copy number of transgenes. Somleva et al. [48]
was able to influence the transformation efficiency of
switchgrass by manipulating explant type and genotype,
pre-culture treatment of the explant, wounding of explants
preceding infection, addition of acetosyringone during
inoculation and cocultivation, and selection. These ex-
periments have been valuable in making switchgrass
transformation more routine.
Embryogenic calli derived from caryopses or inflores-

cences of ‘Alamo’ were transformed using A. tumefaciens
strain EHA105 in combination with the binary vectors
pCAMBIA 1301 (carrying a gusA from E. coli) and
pCAMBIA 1305.2 (carrying a GUSPlus from Staphylo-
coccus spp.) [49]. Since both binary vectors carried the
hygromycin phosphotransferase gene (hpt) as a selectable
marker, the transgenic plants were selected on medium
supplemented with hygromycin. T1 plants from crosses
between transgenic and non-transgenic control plants
that had multiple copies exhibited transgene silencing,
whereas lines harboring only one insert expressed the
transgene [49]. One of the largest sources, if not the lar-
gest source of efficiency improvement, has come from
genotype. Highly regenerable and transformation-
competent embryogenic calli developed from seeds of
‘Alamo’, ‘Performer’ and ‘Colony’ were used for genetic
transformation using A. tumefaciens strain EHA105
containing the binary vectors pTOK47 (carrying a 20 kb
KpnI fragment of Ti plasmid from pTiBo542, which con-
tains virB, virC and virG virulence genes) and pJLU13 (a
derivative of pCAMBIA 1301 containing hpt and sgfp
genes) [50]. It appears that lines of ‘Performer’ are

Table 1 Summary of genetic transformation of switchgrass

Cultivar used Explant used Method used Gene(s) introduced Reference

‘Alamo’ Embryogenic calli Particle bombardment sgfp, bar [46]

‘Alamo’ Embryogenic calli, somatic embryos,
mature caryopses, seedling segments

At-mediated, strain AGL1 uidA, bar [47]

‘Alamo’, ‘Alamo 2’ Protoplasts PEG-mediated GUS [54]

‘Alamo’ Embryogenic calli At-mediated, strain AGL1 bar, phaA, phaB, phaC [62]

‘Alamo’ Harvested leaves Agroinfiltration using At strain C58C1 uidA [52]

‘Alamo’ Embryogenic calli At-mediated, strain EHA105 hpt, gusA, GUSPlus [49]

‘Alamo’ Germinating seedlings At-mediated, strain AGL1 GUSPlus [53]

‘Alamo’, ‘Performer’, ‘Colony’ Embryogenic calli At-mediated, strain EHA105 hpt, sgfp [50]

‘Alamo’ Embryogenic calli At-mediated, strain AGL1 Cg1 [80]

‘Alamo’ Embryogenic calli At-mediated, strain EHA105 COMT [68]

‘ALBA4’, ‘ALBA22’ Embryogenic calli At-mediated, strain AGL1 hpt, PviCAD2 [73]

‘HR8’ Embryogenic calli At-mediated, Strain C58C1 Pv4CL1 [67]

‘Alamo’ Embryogenic calli At-mediated, strain AGL1 hpt, Pre-OsmiR156b [81]

‘Alamo 2’, ‘ST1’ Embryogenic calli At-mediated bar, hpt, GUSPlus, pporRFP [61]

‘ST2’ Embryogenic calli At-mediated PvMYB4 [74]

‘Alamo’, ‘Cave-in-Rock’ Dehusked and husked seeds At-mediated, strain EHA105 nptII, gusA, bar, hpt [51]
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probably the best switchgrass for tissue culture and
transformation. Application of vacuum during infec-
tion and dehydration at co-cultivation also enhanced
the transformation efficiency, as did resting after infec-
tion and before culturing onto the selection medium
[50]. Transformation efficiency can be improved by the
optimization of the gene delivery system, and the ap-
propriate selection and regeneration of transformed

cells. Transformation efficiency was enhanced by util-
izing the basal parts of ‘Alamo’ seedlings that had
higher regeneration potential [51]. Genetic transform-
ation of the type II callus derived from the inflores-
cences of switchgrass on LP9 medium [27] exhibited
transformation efficiency of as high as 34% and also
decreased the time taken for transgenic production by
one month [52].

Plant material (immature inflorescence-derived 
embryogenic calluses, somatic embryos, mature 

caryopses or seedling segments)

Agrobacterium-mediated 
genetic transformation

Microprojectile/biolistic 
bombardment

Co-cultivation

Selection medium containing 
appropriate antibiotic(s)

Regeneration of putative transgenics

Histochemical assays for the detection 
of gus/gfp/rfp followed by PCR and 

Southern blot  analysis

Acclimatization and evaluation of the 
incorporated trait in the greenhouse

Figure 3 Flow chart of transgenic production in switchgrass [Photo credits: Wegi A. Wuddineh and M Nageswara-Rao].
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Though a number of procedures are well established
for switchgrass plant transformation, evaluation of the
transgene expression may take several weeks. To reduce
this time required for testing gene constructs, transient
transgene expression could be a rapid screen [53].
Inoculation of germinating ‘Alamo’ seedlings using an
Agrobacterium-mediated transient gene expression sys-
tem (agroinfiltration) was optimized using AGL1, C58,
EHA105, and GV3101 strains, of which AGL1 showed
the highest efficiency in gene delivery [54]. In another
study, it was reported that EHA105 was more effective
in gene delivery than LBA4404 or GV3101 [51]. To
study the effects of agroinfiltration conditions such as
mechanical wounding (bead beating, sonication or
vortexing), concentration of the surfactant (Break-Thru
S 240, Silwet L77 or Li700), and application of vacuum
on transient β-glucuronidase expression, experiments
were performed using harvested switchgrass leaves or
seedlings [53,54]. Though bead beating wounded the
leaf surface, it did not have any effect on the transient
β-glucuronidase expression [53]. On the other hand,
utilization of sonication and vortexing with carborun-
dum had a positive effect on the transient expression
[54]. Use of ‘Break-Thru S 240’ under low vacuum ap-
plication improved the transient expression [53] while
Silwet L77 or Li700 had a negative effect [54]. Transi-
ent expression was also enhanced by increasing the
vacuum application when surfactant concentration was
low [53]. Incorporation of chemicals (L-cysteine and
dithiothreitol), heat stress and separation by centrifu-
gation also influenced transient transgene expression
[54]. Agroinfiltration might provide a quick assay for
overexpression studies in switchgrass.
Mazarei et al. [55] developed a protoplast system

using leaves and roots of ‘Alamo’ and the ‘Alamo2’ clone
followed by transient expression of polyethylene glycol
(PEG) mediated DNA uptake in protoplasts [55]. GUS
driven by either the CaMV 35S promoter or the maize
ubi1 promoter was utilized as the reporter gene. To de-
velop a transformation system for upland cultivars, calli
were induced from seedling segments of the upland oc-
toploid cultivar ‘Cave-in-Rock.’ However, the callus was
not amenable for regeneration and produced only roots
[51]. Since the tissue culture and transformation systems
have been developed for ‘Alamo’ or its derivatives, for a
wide applicability across the species, there is a need to
create more genotype-independent methodologies for
switchgrass. It is also highly crucial to select the right
candidate gene(s) for genetic transformation, and de-
velop appropriate protocols for evaluation of transgenics
with the non-transgenics [56]. Given the strong germ-
plasm effects observed, this might be a difficult task. In
addition, ‘Alamo’ and ‘Performer’ are both agronomically
viable lowland cultivars.

A wide variety of promoters have been used for mono-
cot transformation [57-59], but only a few of these have
been utilized in switchgrass [46,47,50]. Thus, attention
has been given toward promoter testing and discovery
for switchgrass genetic engineering [60,61]. Two novel
switchgrass ubiquitin gene (PvUbi1 and PvUbi2) pro-
moters have been tested [60]. Particle bombardment of
callus using these two promoters exhibited expression
patterns comparable to the maize Ubi1 promoter and
much higher than that using the 35S promoter [60].
To rapidly screen transgenes in switchgrass, monocot-

effective plant expression vectors are required. One such
new vector set is pANIC, which uses a Gateway-
compatible cassette for over-expression or RNAi of the
target gene [62]. The set contains selectable marker and
visible marker cassettes for Agrobacterium-mediated
transformation as well as biolistic bombardment [62].
These vectors were designed especially for switchgrass
and are being routinely used in several switchgrass
transformation labs.

Production of bioproducts in transgenic switchgrass
Somleva et al. [63] demonstrated the amenability of trans-
genic switchgrass to synthesize polyhydroxybutyrate
(PHB), a biodegradable polyhydroxyalkanoate biobased
plastic, in which the pathway was engineered into switch-
grass. PHB was accumulated to 3.72% and 1.23% (dry
weight) in the leaves and whole tillers respectively. PHB
production was stable in the next plant generation too.
This study has shown the incorporation of a complex trait
in switchgrass is possible for biomanufacturing.

Cell wall modification
Genetically modified feedstocks play an important role
in scenarios for next-generation biofuel production [64].
Reducing lignin biosynthesis can lead to lower recalci-
trance and higher saccharification efficiency, making lig-
nin composition and amount an obvious target to
change in lignocellulosic feedstocks [6]. Recalcitrance of
cell walls conversion to biofuels is perhaps the greatest
hurdle in realizing the economic potential of switchgrass
and other lignocellulosic biofuel feedstocks [64,65]. Cur-
rently, to enable efficient enzymatic degradation of cellu-
lose, harsh physical or chemical pretreatment is required
for the modification of the cell wall structures, removal
of lignin and degradation of the hemicelluloses [66]. For
augmenting the biofuel production from lignocellulosic
feedstocks, changing lignin composition and amount are
being performed [67,68].
Fu et al. reported a reduction in lignin content, and in-

crease (38%) in ethanol yield from transgenic switchgrass
in which the endogenous caffeic acid O-methyltransferase
(COMT) gene was down-regulated [69]. The syringyl:
guaiacyl monolignol ratio was decreased and the transgenic
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plants required less pretreatment and enzymes to yield the
same levels of ethanol using simultaneous saccharification
and fermentation. As a result, there was also enhanced for-
age quality in the COMT down-regulated lines.
The last step in the biosynthesis of lignins is catalyzed

by cinnamyl alcohol dehydrogenase (CAD) [70]. CAD
deficiency modifies the lignin structure, reduces the lig-
nin content, and augments the saccharification efficiency
in grasses [71,72]. Agrobacterium-mediated transform-
ation was utilized for RNAi of CAD in switchgrass
[73,74]. These two studies reported a reduction in lignin
content and increased saccharification efficiency in the
transgenic lines. Another important enzyme involved in
the biosynthesis of lignin is 4-coumarate:coenzyme A
ligase (4CL). Xu et al. carried out phylogenetic analysis
and gene expression studies, and suggested the involve-
ment of Pv4CL1 in the biosynthesis of lignins [68].
Pv4CL1 down-regulated transgenic switchgrass plants,
obtained by Agrobacterium-mediated transformation,
had normal biomass yields with reduced lignin content
and increased saccharification efficiency [68].
In contrast to the above-mentioned approach in

which endogenous lignin biosynthesis genes were
down-regulated, Hui Shen and colleagues targeted the
overexpression of a key transcription factor affecting the
expression of many lignin biosynthesis genes [75]. A de-
crease in recalcitrance in transgenic switchgrass was ob-
served when the repressor, PvMYB4 was overexpressed
[75]. The transgenic lines exhibited a drastic reduction
in lignin, but no change in the S:G ratio. The plants were
also morphologically affected, having more tillers and re-
duced height. The transgenics had increased cellulose
and pectin contents, significantly reduced wall recalci-
trance and phenolic fermentation inhibitors, and pro-
duced approximately 1.8-fold more ethanol using yeast
based simultaneous saccharification and fermentation
without pretreatment (Shen et al., in review).
These efforts have highlighted the usefulness of lignin

biosynthesis or lignin repressor gene targets for down-
regulation, and these genetically engineered plants for
reduced lignin may contain higher levels of free
monolignols and other phenylpropanoids. The accessi-
bility of cell wall carbohydrates for the production of
biofuels is negatively correlated with the amount of lig-
nin present [76,77]. Decrease in lignin content or alter-
ation in its composition alleviated the digestibility of the
cellulose and hemicelluloses. This led to enhanced sac-
charification efficiency, reduction in the severity of the
pretreatment, decrease in enzyme requirements and in-
crease in the energy available to microorganisms for
breaking down the carbohydrates [69,76,78]. To
change the lignin content of the biomass, dwarfing
might also be of use as it shifts the biomass allocation
from the stem to the leaves [44]. Reduced lignin

content during the vegetative phase in switchgrass
might also delay flowering, which could also increase
vegetative biomass [44,79].
In is unclear whether the lignin biosynthetic pathway

is perfectly conserved between widely-studied model
species and switchgrass. There might be many more
genes and transcription factors that have not been dis-
covered in switchgrass and be manipulated for improved
biofuel production. Other cell wall targets include cellu-
lose, reducing the crystallinity of cellulose, hemicellulose,
pectin, and their interactions with lignin. Research on
the expression of cellulases, in planta, under extreme
conditions and its thermal stability also needs to be car-
ried out. The cost of lignocellulosic ethanol production
may also be reduced by genetically modifying switch-
grass to produce the enzymes that are required during
fermentation. Devising strategies for recycling these en-
zymes will also lead to reduction in biofuel production
cost.

Altering switchgrass development: microRNAs and other
targets
Improvement in the rate of saccharification efficiency,
which is inhibited by the complex structure of the plant
cell wall, is an important objective in developing a com-
petent and lucrative biofuel industry [80,81]. Biomass
yield could be enhanced by manipulating microRNAs
(miRNAs) that regulate transcription factors controlling
growth and development in plants [69,81-84]. The maize
Corngrass1 (Cg1) gene, which produces a miR156, tar-
gets the SQUAMOSA PROMOTER BINDING LIKE
(SPL) family and reduces lignification while promoting
juvenile characteristics in plants [85,86]. To study how ju-
venile characters improve the biofuel potential of switch-
grass, the Cg1 gene was constitutively overexpressed in
‘Alamo’ [81]. A second miR156 study overexpressed the
switchgrass PvmiR156 in switchgrass, [82]. In both studies,
the transgenic plants had delayed flowering, variant morph-
ology, and improved sugar release. Transgene expression
levels were sufficient to allow three morphology categories
to be observed. Low expressers resembled non-transgenic
switchgrass. Moderate expression levels rendered plants
that were shorter and with more tillers. The plants had de-
layed flowering, which could be useful in bioconfinement
of transgenes. High levels of miR156 accumulation induced
severe dwarfism and reduced biomass accumulation
[81,82]. Thus, targeted overexpression of miR156 could not
only make biofuel production more efficient but allow the
production of switchgrass that is more suitable for produc-
tion. These studies highlight the potential utility of this ap-
proach for the domestication of new switchgrass cultivars,
and the lack or delay in flowering will have important im-
plications for the limitation or prevention of transgene flow
into native/wild relatives or non-transgenic agronomic
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plantings of switchgrass. Recently, it was demonstrated that
the expression levels of miR156 and miR162 could be
changed under drought conditions in switchgrass [87].
Genetic engineering can also be used to increase the

biomass by modifying the plant growth regulators such
as increasing the biosynthesis of gibberellins [88] to im-
prove the growth and increase the biomass in switch-
grass. Thus, early transgenic research in switchgrass has
revealed that multiple targets for improvement have
been reached. It appears that there could be a tradeoff
between sugar release and plant growth, but results are
promising with regards to increasing liters per hectare.
To date, there has been no transgene stacking in switch-
grass, which should be pursued. For example, it makes
sense to hybridize miRI56 plants with those with greatly
reduced lignin, such as MYB4 overexpressers. In addition,
tissue-specific and inducible expression of transgenes will
also be valuable in decreasing off-target effects. Targeted
expression is particularly needed for genes, such as those
that are master regulators, to diminish or better control
pleiotropic effects. The transgenic studies to date with
switchgrass show the power of the technology, which is
becoming increasingly routine.

Genetic and genomics resources
Molecular markers
A number of DNA marker systems such as restriction
fragment length polymorphism (RFLP), chloroplast DNA,
randomly amplified polymorphic DNA (RAPD), amplified
fragment length polymorphism (AFLP) and simple se-
quence repeats (SSRs) have been developed for the genetic
diversity assessment and phylogenetic studies in switch-
grass [20,89-95]. Marker studies helped delineate upland
and lowland variation and are useful in developing germ-
plasm conservation and breeding programs [96]. Genetic
linkage maps have been constructed using single dose re-
striction fragments (SDRFs), SSRs, sequence-tagged sites
(STS) markers, expressed sequence tags (EST)-derived
SSRs, gene-derived STS markers, and diversity array tech-
nology (DArT) markers [97-101]. Linkage maps will aid in
the identification of quantitative trait loci linked with bio-
mass yield, plant composition and other important agro-
nomic traits, providing a genetic framework to facilitate
marker-assisted breeding and genomics research in
switchgrass.
Over the last few years, even though various technolo-

gies have emerged for whole genome sequencing, it is
still technically difficult and expensive to completely se-
quence complex polyploid species such as switchgrass
[102,103]. Transcriptome sequencing of expressed se-
quence tags (ESTs) is amenable for any organism, in-
cluding those for which de novo whole genome
sequencing is difficult, thereby aiding in gene discovery
and annotation [103-107]. ESTs have been successfully

used for identification of molecular markers, analysis of
tissue-specific patterns of expression or for comparative
genomics [105,108]. cDNA libraries derived from leaf,
stem, crown, and callus of ‘Kanlow’ were utilized for
generating 11,990 individual sequences of which 7,810
were unique gene clusters [105]. Sequence similarity and
functional classification of these unique gene clusters
was also performed. EST sequence information can also
be mined for DNA sequence polymorphisms for single
nucleotide polymorphisms (SNPs) and SSRs that can be
used for genome characterization and genetic diversity
assessment [94]. For developing SSR markers, Tobias
et al. assessed the unique gene clusters and reported the
occurrence of short tandem repeats in 3.8% of the ESTs
tested [105]. ESTs were also produced by end-sequencing
of callus, crown, and seedling tissue derived cDNA librar-
ies of ‘Kanlow,’ and the assembled consensus sequences
were aligned with the sorghum genome [108]. They ob-
served that 3.3% of the sequences were similar to potential
cell wall related genes. Millions of ESTs from tissue or
xylem cell-specific EST libraries of ‘Alamo’ are also now
available (http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/
gimain.pl?gudb=switchgrass) [56].
SSRs and EST-SSRs are significant resources for devel-

oping dense linkage maps and identifying economically
important traits for utilization in molecular breeding
programs intended to develop superior switchgrass culti-
vars [94]. EST-SSR markers were identified and assessed
for the production of fragment length polymorphisms in
the two individual parents of a mapping population
[108]. To identify SSR sequences longer than 20 bp,
available sequence data from switchgrass were assessed
using the program SSRIT and approximately 32 genic
di-, tri- and tetranucleotide repeat SSRs were character-
ized [109,110]. When used to differentiate ‘Alamo’ and
‘Kanlow’ individuals, these SSRs exhibited a high degree
of polymorphism consistent with their tetraploid, allog-
amous genome states [110]. Using genomic DNA of
‘SL93 7 × 15’, Wang et al. reported the construction of
five genomic SSR-enriched libraries and identified 1,300
unique SSR-containing clones [94]. Given the power of
genomics as described above, continued expansion of se-
quence availability, especially when assembled switch-
grass genome is made available, will enable better
understanding of switchgrass biology as well as facilitate
genetic engineering.

BAC libraries and physical mapping
Efforts to map important traits for enhancing the breed-
ing programs, and utilizing map-based cloning for the
isolation of target genes are dependent on the availability
of extensive physical and genetic maps; a switchgrass
physical map is needed [111]. Genome assembly for
switchgrass requires the genome structure information
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that can be obtained by sequencing bacterial artificial
chromosome (BAC) libraries [96,112,113]. ‘Alamo’ has
been extensively used in switchgrass breeding programs
and is the parent of several mapping populations, there-
fore, it follows that the current whole-genome sequen-
cing effort is focused on an ‘Alamo’ clone; the clone
chosen was termed AP13. AP13 and all Alamo is a het-
erozygous tetraploid with two subgenomes [96]. Saski
et al. assembled the first BAC library, by incomplete di-
gestion of nuclear DNA of the ‘Alamo’-derived genotype,
SL93 2001–1 with EcoRI, which had approximately ten-
fold coverage of the total nuclear content and five-fold
of each of the two genomes based on a genome size of
3.2 gigabases (~1.6 Gb per genome) [111]. Since the
study was restricted to a single locus and restriction en-
zyme, it warranted the need of additional libraries to at-
tain fair and near-complete depiction for genome-wide
studies. Recently, two (HindIII- and BstYI-fragmented)
BAC libraries were constructed from AP13, which also
aided in discoveries of SSRs [113]. Comparative analysis
with other grass genomes such as foxtail millet, sor-
ghum, rice, maize, and Brachypodium revealed high
levels of homology with switchgrass exhibiting high
microcolinearity with foxtail millet as compared with
sorghum [114]. In addition, HudsonAlpha/Joint Genome
Institute (JGI) has generated BAC-end sequences from a
collection of BACs (http://genomicscience.energy.gov/).
These studies provided a precise BAC-based physical
platform that offers a definitive approach for sequencing
and assembly of the switchgrass genome. They will also
be able to give a precise estimate of the GC content, dis-
tribution of known, novel and repeat elements, and,
thus, of the genome structure and composition of
switchgrass.

Sub-organelle genome sequencing
Chloroplasts are invaluable for genetic and phylogenetic
studies. Switchgrass chloroplasts are often maternally
inherited and can be transformed, in several other plant
species, to deliver high recombinant protein production
[115,116]. To differentiate genetic diversity in whole
chloroplast genomes and a large number of nuclear loci
in switchgrass, a unique strategy utilizing high-throughput
sequencing of multiplexed restriction-digested reduced-
representation libraries was used for the identification of
SNPs [117]. The SNPs identified were able to characterize
eight haplogroups. Switchgrass chloroplast genomes were
also sequenced from individuals of the upland (‘Summer
Lin2’) and lowland (‘Kanlow Lin1’) ecotypes giving an
insight regarding the amount of variation within the two
ecotypes, and facilitated comparisons within the ecotypes
as well as among other sequenced plastid genomes [118].
These studies emphasize the use of chloroplast genome
for comparing genetic variation between the upland and

lowland ecotypes, are highly desirable for robust phylo-
genetic studies and can be used in differentiating mixed
population into up- or lowland ecotypes. The complete
chloroplast genome will facilitate the generation of
species-specific transformation vectors [119] and will cre-
ate an opportunity for the utilization of plastid genetic en-
gineering in switchgrass.

Whole genome sequencing
Basic characterization of the switchgrass genome indi-
cates that the tetraploid lowland cultivars have a nuclear
DNA content of 3.07 ± 0.06 pg per nucleus [120],
resulting in an effective genome size of ~1600 Mb for
‘Alamo’ derived genotypes, which is approximately twice
that of sorghum and about three and a half times that of
rice [111,121]. Even with the availability of new and
modern technologies, whole genome sequencing (WGS)
of switchgrass would be difficult to achieve due to its
large genome size and polyploidy. A practical solution to
Sanger sequencing may be provided by pyrosequencing
or other such next generation sequencing (NGS) tech-
nologies that offer quick and inexpensive technologies
for transcriptomics by avoiding extensive and compara-
tively low throughput steps [122-124]. For de novo se-
quencing and transcriptomics of complex genomes, 454
pyrosequencing is the most extensively exploited NGS
technology. GS FLX Titanium, the latest 454-sequencing
platform, can produce a typical read length of approxi-
mately 330–700 bases [125,126].
‘Alamo’ AP13 has been chosen for WGS by JGI (http://

genome.jgi.doe.gov/genome-projects/). Sequencing of AP13
cDNA libraries produced from various tissues of switch-
grass utilizing GS-FLX Titanium technology produced
large number of reads for de novo assembly, and EST and
SSR identification [103]. The accessibility to the foxtail mil-
let draft genome also enhanced the switchgrass EST assem-
bly and nearly doubled the EST information in the public
domain. JGI also used a combination of Roche 454-based
and Illumina-based sequencing to produce the switchgrass
genomic sequence [96]. Initial investigations on assem-
bly of switchgrass genome onto the foxtail millet
framework led to the identification of paralogous as-
semblies from homoeologous assemblies [114]. How-
ever, autonomous assembly of both the subgenomes to
achieve chromosome-scale contiguity for the reference
is challenging [96]. Although dihaploid lines may sim-
plify sequence assembly in switchgrass, they are not
preferred for whole genome sequencing because of
their elevated infertility and instability [126,127]. The
draft genome sequence of switchgrass is now available
(http://www.phytozome.net/panicumvirgatum). The gen-
ome of switchgrass will help the biologists to determine
the function and biotechnological potential of genes, espe-
cially those responsible for increasing the biofuel potential
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such as biomass yield, decreased lignin content and im-
proved saccharification efficiency. Furthermore, compara-
tive analysis of switchgrass with other sequenced grass
genomes such as foxtail millet and sorghum will enable a
more detailed annotation, and will play an important role
in understanding how gene networks evolved and func-
tion (National Plant Genome Initiative:2009–2013; http://
www.nsf.gov/bio/pubs/reports/). WGS also helps plant
breeding efforts.

Gene expression studies
Information on the fundamental biology and the regula-
tory mechanisms of gene expression in switchgrass
under abiotic stress conditions are required for deter-
mining the consequences of genetic improvements and
for detection and manipulation of stress tolerance re-
lated gene candidates [87]. An Affymetrix microarray
chip for switchgrass has been produced that contains
representatives of most of its expressed genes that has
been used to make a gene expression atlas (http://
genomicscience.energy.gov/) [128] as well as the switch-
grass relative Panicum hallii [129].
Of particular interest with regards to gene expression

are miRNA studies. Mature miRNAs inhibit gene ex-
pression at the post-transcriptional levels by either
targeting mRNAs for degradation or inhibiting protein
translation [83,130], which in turn can lead to transcrip-
tional regulatory changes. Switchgrass traits of interest
include cellulose biosynthesis, sucrose and fat metabol-
ism, signal transduction, and plant development [131].
Investigations on the effect of salt and drought stress on
the expression of miRNAs revealed an altered expression
pattern of miRNAs in a dose-dependent manner [87].
Transgenic plants expressing the miR156 gene that
exhibited severe morphological alterations was used to
investigate the effects of miR156 over-expression on its
downstream genes using Affymetrix microarray analysis
[82]. The study discovered that transcript abundance re-
duced in eight SPL gene probe sets, leading to the ex-
pression analysis of the corresponding cDNA sequences,
which showed that the highest miR156 expressers had
the most reduction in PvSPLs transcript abundance [82].
Such gene expression analyses will further augment the
characterization and expression of genes controlling the
biofuel traits, enhance the functional genomics studies
and molecular breeding, and may further help in the as-
sembly of the switchgrass genome.

Reverse genetics
To take advantage of the new DNA sequence information
and to investigate the functions of specific genes, targeting
induced local lesions in genomes (TILLING) was devel-
oped. TILLING is a non-transgenic technology that uti-
lizes a reverse genetics approach for the production and

detection of mutation [132]. EcoTILLING is a variation of
TILLING that investigates the natural variation among
cultivar/inbred line/accession when aligned with a se-
quenced reference genome for the identification of SNPs
[133,134]. In switchgrass, TILLING, EcoTILLING, or a
permutation of both are being utilized [134]. This will lead
to the identification of multiple SNPs within a target re-
gion of switchgrass accessions and when compared to a
reference genome will be able to define the relatedness
and differences among the target region. Traits such as
biomass yield, saccharification efficiency, and flowering
time may be potentially identified in switchgrass using
these techniques. The limitations being that the mutations
may be introduced randomly throughout the genome, and
a large number of individuals need to be screened to iden-
tify the mutants having the trait of interest. It will also be
difficult to identify recessive mutants due to the poly-
ploidy nature of switchgrass.

Discussion
Switchgrass has been the topic of important discoveries
and relevance in genomics and biotechnology in the last
decade [27,46,47,63]. Significant trait improvement via
biotechnology e.g. [69,73,74] with increased transform-
ation efficiency [50] has been demonstrated in switch-
grass. This suggests that genetic improvements of
biofuel properties of switchgrass through expression and
down-regulation of transgenes is a practical way to rap-
idly establish it as a viable bioenergy crop on a commer-
cial level and will be achieved with growing reliability in
the coming years [60,81,82]. Though transgenic ap-
proaches are considered imperative for the development
of switchgrass and other biofuel crops, their cost-
effectiveness will be dependent on their domestication,
productivity and biofuel properties [44]. However, we
speculate that a regulatory necessity, at least in the US,
will likely be bioconfinement of transgenes [10,135,136].
Transgene escape has been considered as a major en-

vironmental, ecological and regulatory concern. Hence,
for commercialization of transgenic switchgrass, efficient
and reliable transgene bioconfinement strategies would
be enabling, especially in US the geographic center of di-
versity of switchgrass. While transgenes can be vectored
in pollen or seed and less commonly asexually, the
prospective for long-distance pollination has made
pollen-dispersed transgenes a major concern [137].
One strategy to control gene flow in switchgrass would
be to introduce male sterility using transgene-encoded
ribonucleases that inhibit pollen formation [138,139].
With switchgrass being wind-pollinated, the excision
of transgenes from the pollen genomes using site-
specific recombination systems will also be desirable
[140,141]. Another strategy would be to use plastid
(chloroplasts or mitochondria) transformation for the
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introduction of cytoplasmic male sterility into switch-
grass, and thus developing plastid transformation for
switchgrass would be helpful. Since the pollen of most
plant species contain no chloroplasts, pollen spread
will not introduce the foreign genes into wild or non-
transgenic switchgrass populations [142,143]. Thus,
strategies for transgene bioconfinement and alleviation
of gene flow and research that facilitates the utilization
of information and proper regulatory guidelines for
transgenic feedstocks are essential in developing the
biofuel industry’s infrastructure [10], including that for
switchgrass [136]. The challenge is to generate efficient
methods and procedures to accomplish elevated levels
of agricultural productivity while conserving the envir-
onment and natural resources [7].
Recent advances in switchgrass genomics will further

facilitate biotechnological interventions as well as its
germplasm improvements via conventional and molecu-
lar breeding. The close colinearity of the switchgrass
genome with other grasses will aid in the elucidation of
gene function, regulation, and expression by leveraging
off other resources. The application of new knowledge
and tools developed from genomic resources such as
identification of genes like those involved in the lignin
pathway, saccharification efficiency, biomass yield, nutri-
tional quality, and pest resistance will help geneticists
and plant genetic improvement managers to overcome
the limitations associated with conventional breeding,
make sexual hybridization more efficient and manipulate
various traits effectively. It is important to keep in mind,
however, that the utility of new genetic combinations
must be demonstrated ultimately by field trials and the
value to consumers.

Conclusions
The development of switchgrass as a biofuel crop has
the potential to contribute significantly to lignocellulosic
ethanol production without competing with food and
feed crops. Biotechnological advances made to genetic-
ally modify important biofuel related traits in switch-
grass will play a key role in shaping the future of the
switchgrass biofuel industry. Genomic information being
generated for switchgrass will further enhance the breed-
ing and biotechnological endeavors. Although plant bio-
technology will play an important role to the successful
generation of energy crops, it should be followed up
with breeding programs aimed at sustaining or im-
proving the significant agronomic attributes which
made these plants imperative for biofuel generation to
start with, namely resistance to abiotic and biotic fac-
tors, and low fertilization requirements [144]. The crit-
ical issue to be dealt with is how to improve the
conversion efficiency from the solar energy to biofuel
energy such that biofuels can meet anthropogenic

energy consumption demands and be able to replace
the fossil fuels.
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