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Abstract Large numbers of plant cell-wall (CW)-related
genes have been identified or predicted in several plant ge-
nomes such as Arabidopsis thaliana, Oryza sativa (rice), and
Zea mays (maize), as results of intensive studies of these or-
ganisms in the past 2 decades. However, no such gene list has
been identified in switchgrass (Panicum virgatum), a key
bioenergy crop. Here, we present a computational study for
prediction of CW genes in switchgrass using a two-step pro-
cedure: (i) homology mapping of all annotated CW genes in
the fore-mentioned species to switchgrass, giving rise to a
total of 991 genes, and (ii) candidate prediction of CW genes
based on switchgrass genes co-expressed with the 991 genes
under a large number of experimental conditions. Specifically,
our co-expression analyses using the 991 genes as seeds led to
the identification of 104 large clusters of co-expressed genes,
each referred to as a co-expression module (CEM), covering
830 of the 991 genes plus 823 additional genes that are strong-
ly co-expressed with some of the 104 CEMs. These 1653
genes represent our prediction of CW genes in switchgrass,

112 of which are homologous to predicted CW genes in
Arabidopsis. Functional inference of these genes is conducted
to derive the possible functional relations among these pre-
dicted CWgenes. Overall, these datamay offer a highly useful
information source for cell-wall biologists of switchgrass as
well as plants in general.

Keywords Switchgrass . Plant cell wall . Homology
mapping . Co-expression analysis

Introduction

Substantial efforts have been invested in the past 2 decades
into explorations of future fuels in the post-fossil fuel era
[1–3]. Lignocellulosic biomass is considered one of the most
promising next-generation energy sources [4], which can be
converted into biofuels such as bioethanol through degrada-
tion of the cellulose fibers and hemicellulosic polymers into
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monosaccharides followed by fermentation. One major chal-
lenge in utilizing this form of biofuel lies in the high costs of
releasing the component sugars of the (hemi)cellulosic frac-
tion, primarily from secondary cell walls, an issue that is wide-
ly referred to as biomass recalcitrance [5]. Overcoming this
issue represents a major scientific focus in the biofuel research
domain.

One proposed solution to this challenging problem is
through first understanding how plant (secondary) cell walls
are synthesized at the molecular level and then possibly
rewiring the synthesis processes to reduce biomass recalci-
trance to a minimal level without affecting the major proper-
ties of a plant [6]. A first step toward accomplishing this very
ambitious goal is to identify all the genes involved in or related
to CW construction, remodeling, and degradation.

It has been estimated that ∼10 % of the protein-encoding
genes in a plant genome have functions related to CW [7],
which fall into five large functional classes: (i) substrate
generation, (ii) polysaccharide synthesis and glycosyl
transfer, (iii) assembly, architecture, and growth, (iv) dif-
ferentiation and secondary wall formation, and (v) signal-
ing and response mechanisms (https://cellwall.genomics.
purdue.edu). A number of plant species are considered as
good sources for harvesting lignocellulose for biofuel
production, such as poplar (Populus trichocarpa) and
switchgrass (Panicum virgatum) [8–11]. Switchgrass can
be found in most areas of the USA, Canada, and Mexico
and, with its high adaptability and biomass production, has
been selected as one of the major biofuel crops [12].
Genomic resources are being developed for this species,
including EST and Affymetrix microarray data [13], a
draft genome sequence from the Joint Genome Institute
(http://www.phytozome.net/panicumvirgatum.php), and
efficient genetic transformation systems for multiple
genotypes [14]. However, as of today, no genome-scale
lists of cell-wall genes have been published, in comparison
with model plant species such as Arabidopsis [15, 16],
Oryza sativa (rice) [17, 15], and Zea mays (maize) [16].
This is largely due to the reality that the genome of switch-
grass has not been fully completed, and only limited
genome-scale transcriptomic data are publicly available
[13].

We present here a computational prediction of CW-
related genes in switchgrass, along with a computational
pipeline that was developed for making this prediction.
Figure 1 outlines the functionalities of the pipeline, which
consists of the following components: (1) homology map-
ping of known CW genes in Arabidopsis, maize, and rice
[15] to switchgrass, (2) assignment of the mapped genes to
the five aforementioned CW-associated functional catego-
ries, (3) biclustering analyses of the mapped genes based
on similarities among their expression profiles for infer-
ence of functionally associated gene groups, under the

assumption that co-expressed genes under multiple condi-
tions tend to be functionally related [18] and that mapped
genes not co-expressed with other mapped genes can there-
fore be removed from further consideration as candidate
CW genes, (4) expansion of the predicted co-expression
clusters to include additional genes that are co-expressed
with some of the predicted CW gene clusters, giving rise to
a collection of co-expressed gene modules (CEMs), (5)
identification of transcription factors (TFs) within each
CEM as candidate regulators for the transcription of the
genes in the CEM, and (6) visualization of each co-
expression gene module using Cytoscape [19]. The pre-
dicted CEMs are compared with annotated CW genes in
Arabidopsis as a way to validate the prediction.

Overall, 991 switchgrass genes were predicted to be
CW-related based on sequence homology, 830 of which
also have strong support from gene-expression data and
741 of which have functional relationships with each other
based on published data. Furthermore, 823 additional CW
genes were predicted based on the similarities of their co-
expression patterns with those of the 830 predicted CW
genes. One hundred and twelve of these are homologous
to predicted CW genes of Arabidopsis, hence providing
additional supporting evidence for their prediction. We be-
lieve that these computational results offer a reliable list of
CW genes in switchgrass, which can be used as an infor-
mation source for experimental studies of cell wall synthe-
sis and modification in this organism.

Materials and Methods

Data

The switchgrass transcriptomic data in our study was retrieved
from the Switchgrass Gene Expression Atlas at the Samuel
Roberts Noble Foundation [13], which contains genome-scale
expression values of 122,973 probes, collected under 94 condi-
tions. Of the 122,973 probes, 120,871 matched 92,686 Unique
Transcript Sequences (UTSs) in the transcriptomic dataset of the
switchgrass Atlas server (http://switchgrassgenomics.noble.org).

Eight hundred and forty-six, 982, and 716 CW-related pro-
teins from Arabidopsis, rice and maize, respectively, were
downloaded from the Purdue Cell-Wall-Genomics Database
and used for homology mapping in this study. In addition, 56
HMM models for transcription factors (TFs) were
downloaded from the PlantTFDB database V3.0 (release of
24/07/2013) [20] and used to predict TFs in switchgrass
through scanning each HMM model against the whole ge-
nome of switchgrass. Throughout this paper, genes and probes
are used interchangeably, and the mapping list between genes
and probes is given in Supplementary File 1.
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Prediction of CW Genes and TFs Through Homology
Mapping

Tblastn was used to homology-map each of the CW genes in
the three template organisms to switchgrass, and only the best
hits with Blast e-value<1e-30 and b-score>90 % were con-
sidered in our prediction of CW genes in switchgrass. A
genome-scale prediction of TFs in switchgrass was conducted
through scanning the 56 HMMs against the whole genome of
switchgrass using HMMER3 with default parameters, which
can be found in Supplementary File 1.

Biclustering Analyses of Switchgrass Genes Based
on Similarities Among Their Gene-Expression Patterns

QUBIC is a biclustering analysis tool designed for co-
expression analyses of genes based on their gene-expression
patterns under multiple conditions. The software can generally
identify all statistically significant groups, or biclusters, of
genes with similar expression patterns under at least a specific
number of experimental conditions, which tend to be more
sensitive and more specific than other biclustering tools [21].
Using this program and default parameter values (i.e., k=5 for
the minimum number of genes per cluster; f=30 % for the
maximum overlap between two clusters; r=1 or −1 represents
upregulation or downregulation), we carried out biclustering
analyses needed in this study. In addition, the program has an
option (−s) for identification of additional genes co-expressed
with a specific bicluster under the defining conditions of the
bicluster. We used this option to expand the initial biclusters to
include additional genes that may be CW related. Specifically,
for any given bicluster, “QUBIC –s” identifies outstanding ex-
pression patterns across a substantial fraction of all the genes in
the bicluster under the defining conditions of the bicluster and
then search for additional genes with expression profiles highly

similar to the bicluster-based expression patterns under the
same set of conditions.

Prediction of Cellular Functions of Predicted CW Genes

Switchgrass genes predicted to be CW related were mapped to
Arabidopsis via Blastn with e-value<e-30. The mapped genes
were then subjected to function prediction using a DAVID-
based pathway enrichment analysis [22] against the GO and
KEGG databases. All genes enriching the same functional
category with an enrichment score>1 were considered to form
a co-functional module (CFM), a threshold widely used in
DAVID-based functional enrichment analyses.

Assessment of Significant Associations Between CEMs

We calculated the level of co-expression between two CEMs
through a permutation-based test by using the correlation co-
efficients between co-expression patterns of each pair of genes
in the two CEMs, averaged across the defining conditions of
the CEMs. Specifically, this is calculated as follows:

Considering two CEMs A={a1,a2,…am} and B={b1,b2,
…bn} with m and n genes, respectively, the co-expression
level (CS) between A and B is measured using

CS A; Bð Þ ¼
X

i¼1::mj¼1::n
cor ai; b j

� �

m*n
;

where cor(ai,bj) is the Pearson correlation coefficient between
genes ai and bj. The calculation of CS(A, B) is done using the
following procedure:

1. Randomly, sample n andm genes from the whole gene set
of switchgrass without replacement to construct nominal
CEMs A' and B'.

Fig. 1 A schematic of our
prediction pipeline
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2. Calculate CS(A', B') using the above equation.
3. Repeat steps 1 and 2 for 1,000,000 rounds and then plot

an empirical distribution for CS(A', B')
4. Estimate the P value for the actual CS(A, B) based on the

above empirical distribution.

The estimated P values among all the CEM pairs are then
corrected using the “Bonferroni”method [ref??] to control the
false discovery rate, and the corrected P value <0.05 is used as
the threshold for statistical significance for each pair of CEMs
to be co-expressed. A histogram of a simulated empirical null
distribution of the CS versus the identified CS among the
CEMs is shown in Supplementary File 5.

Results

Homology Mapping of CW-Related Genes
from Arabidopsis, Maize, and Rice to Switchgrass

Eight hundred and forty-six, 982, and 716 CW genes in
Arabidopsis, rice, and maize were retrieved from the Purdue
Cell-Wall-Genomics Database (https://cellwall.genomics.
purdue.edu) and homology-mapped to the genome of switch-
grass. These genes fell into five major functional groups: (i)
substrate generation, (ii) polysaccharide synthesis and glyco-
syl transfer, (iii) assembly, architecture, and growth, (iv) dif-
ferentiation and secondary wall formation, and (v) signaling
and response mechanisms. Of these functional groups, (iii)
has the largest number of CW genes. The details of these
genes and their functional classes are found in Table 1.

Using Tblastn and these template CW genes (Fig. 2, step
A), 629, 1015, and 637 distinct switchgrass genes were
homology-mapped from Arabidopsis, maize, and rice, respec-
tively. Of these, 222 genes were mapped from all three organ-
isms, and 16, 66, and 323 switchgrass genes were mapped
from only one of the three organisms. The detailed

information is shown in Supplementary File 2. Overall, 991
distinct switchgrass genes were mapped from at least one CW
gene in the three organisms. The number of genes mapped
from maize is consistently higher than from the other two
organisms across all five functional classes (Fig. 3), which is
expected since maize is evolutionarily the closest to switch-
grass among the three.

Identification of CEMs Through Co-expression Analyses

We expect that a true CW gene should be functionally re-
lated to other CW genes [18]. Based on this premise, we
have used co-expressions with other predicted CW genes
under multiple conditions as a criterion for predicting a
homology-mapped gene, derived from the previous section,
as a CW gene.

A biclustering analysis was applied to the 991 mapped
genes, using our in-house program QUBIC [21], as shown
in Fig. 2, to detect co-expressed gene clusters under a substan-
tial subset of 94 conditions that were previously collected. The
gene-expression data used here consist of samples collected
from different tissue types, including root, stem internode, and
shoot, under different growth conditions [13]. Specifically,
each bicluster consists of at least 10 genes and five conditions
with a P value at most 0.001.

One hundred and four biclusters were found to satisfy the
above conditions, some of which may overlap with each other
but none with more than 30 % overlap (Table 2). Overall, 830
of the 991 genes (84 %) were found in at least one bicluster,
which are predicted to be CW-related genes in switchgrass. If
we relax the above condition to P values <0.01, the biclusters
will cover 920 out of the 991 genes (92.8 %). While we try to
be conservative in our prediction, this information suggests
the overall high reliability of our initial prediction of CW
genes.

A functional analysis was conducted on the 830 genes,
aiming to gain a pathway-level understanding of the functions
of these genes. Specifically, DAVID [23] was used to carry out
this analysis against the GO and KEGG pathway databases
using the default parameters [24]. A total of 45 co-functional
modules were found. Seven hundred and eighty-three of the
830 predicted CW genes (94.3 %) were covered by these
CFMs. A detailed list of the covered genes is given in
Supplementary File 3.

To further ensure those genes in the 104 identified CEMs
are indeed CW related, we have examined the conditions un-
der which some CEMs are detected. Specifically, eight sus-
pension cell samples were treated with hormone combinations
of brassinolide and 2,4-D, which all led to the production of
extracellular and cell wall-associated lignin, suggesting that
these conditions are related to lignin synthesis. Interestingly,
all the conditions are included in the conditions associated
with group (i) CEMs [25].

Table 1 Functional classes of CW-related proteins in Arabidopsis,
maize, and rice

Group Function class Arabidopsis Maize Rice

i Substrate generation 117 140 120

ii Polysaccharide synthases
and glycosyl transferase

140 247 225

iii Assembly, architecture and growth 409 325 327

iv Differentiation and secondary
wall formation

91 154 27

v Signaling and response mechanisms 89 116 17

via Secretion and targeting pathways 0 0 0

a This group was not included in our study due to the lack of CW-related
genes in the Purdue Cell-Wall-Genomics database
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Prediction of Additional CW Genes Through Expanded
Co-expression Analyses

We then conducted an expanded co-expression analysis to
include all the switchgrass genes to identify additional genes
that are strongly co-expressed with genes in the 104 predicted
CEMs under the defining conditions of the 104 CEMs. The
rationale is that genes having strong co-expressions with the
104 CEMs should be functionally related to genes in the 104
CEMs. For each CEM, we identified non-CEM genes having
similar expression patterns to those of the genes in the CEM
under the defining conditions of the CEM and then applied the
same criteria as used for identifying the 104 CEMs to the new
genes to each CEM. Themethod developed for accomplishing
this is given in “Materials and Methods.” Overall, 823

additional genes were predicted as CW genes in switchgrass,
which are detailed in Table 3 and Supplementary File 3.

We have checked whether the 823 new predictions are
homologous to any predicted CW genes in Arabidopsis [26],
to provide additional supporting evidence for the predictions.
Specifically, we compared these genes against all the predict-
ed CW genes, totaling 3105 in Arabidopsis [26]. One hundred
and twelve of the 823 genes have homologs among the 3105
genes. Hence, these 112 genes are considered as reliable pre-
dictions among the new additions. A statistical significance
assessment, using a hypergeometric test, revealed that the p
value for having 112 out of 823 genes with Arabidopsis CW
homologs is <e-22, indicating that this result is highly signif-
icant. Table 3 shows a summary of these genes, and the de-
tailed list of the 112 genes is given in Supplementary File 3.

Fig. 3 Mapping results from CW
genes of Arabidopsis, maize, and
rice to switchgrass. Union
represents the collection of all the
unique switchgrass genes mapped
from at least one of the three
organisms in each functional
group. Note: Group (iii) shared a
total of six genes with groups (i)
and (iv)

Fig. 2 A schematic diagram of homology mapping and co-expression
analysis. a Homology mapping procedure. Tblastn was used to map
template genes to the genome of switchgrass, using the following
cutoffs: Tblastn e-value<1e-30, sequence identity>60 %, and b-score>
90 % of the best hits. The numbers above genes represent mapping b-

scores between a template gene and a mapped gene. The solid blocks
represent genes above the aforementioned cutoff values, and the hollow
blocks are genes below the cutoff values and hence discarded in the next
step. b QUBIC is used for biclustering analysis of the mapped genes to
detect the co-expressed gene clusters
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Among the five major functional groups, group (i) contains
the highest number of the new CW genes, largely due to the
presence of important cell wall-related transcription factors,
such as MYB family genes [27, 28], in this group while group
(iv) has the smallest number of the new CW genes.

Network-Level Functional Analyses and Predication
of Transcriptional Regulators Within CEMs

Here, we aim to predict the main transcriptional regulators
(TFs) for genes in each predicted CEM and the relationships
among all the identified CEMs. To accomplish this, we have
done a new round of biclustering analysis among all the 1653
predicted CW genes (830 initial and 823 additional), which
consist of 22 TFs (see “Materials andMethods”). A total of 89
biclusters were identified across the 1653 genes with some of
the original 104 CEMs being merged into larger biclusters
bridged by some of the 823 new predictions.

The following observations were made regarding these
CEMs: (i) 33 of the 89 (37 %) CEMs consist predominantly
of the initial 830 genes mapped from the other plants, (ii) 40 of
the 89 (45 %) CEMs consist of a substantial number of genes
from both the initial 830 and the 823 new genes, suggesting
that the newly predicted genes work closely with the initial
genes, and (iii) the remaining 16 (18 %) CEMs tend to have
fewer initial genes but more new ones, suggesting that the new
genes in each of these CEMsmay form a distinct pathway that
can be extended from the initial genes. Figure 4 shows exam-
ples of each of these types, each represented as a graph with

nodes representing genes and edges representing pairs of co-
expressed genes.

We noted that 27 of the 89 (30 %) CEMs contain at least
one TF per CEM. In addition, intra-modular connections (i.e.,
co-expressions) were assessed to identify the possible core
genes using the WGCNA R package [29]. The result is sum-
marized as follows: A total of 30 cores, i.e., subnetworks in
CEMs with highly dense intra-connections (with density
above a specific threshold), were detected in the 89 CEMs.
Fifteen of these cores predominantly consist of the initial CW
genes, and the remaining 15 consist of largely new CW genes
as defined above. The detailed information of intra-connection
within each CEM is given in Supplementary File 5.

We have also assessed inter-CEM connections across the
89 CEMs as shown in Fig. 5 (and Supplementary File 5). We
note the following: (1) CEMs in the same functional group
((i)–(v)) do not necessarily have stronger functional relations
compared with CEMs in different functional groups, which
seems to be true across all five functional groups, indicating
that CEMs in the same group do not necessarily work more
closely with each other compared to CEMs in other groups,
(2) group (v) has the highest density per CEM in terms of their
connections with CEMs in other groups while group (ii)
seems to have the lowest connection density between its
CEMs and CEMs in other groups, and (3) there seem to be
multiple parallel “pathways,” each of which connects largely
distinct CEMs in each of the five groups, particularly groups
(i)–(iii), suggesting the possibility that there are multiple,
largely nonoverlapping larger functional molecules, each
consisting CEMs in each of functional groups. Clearly, this
requires more detailed analyses of the hierarchical organiza-
tion of the CEMs, which may lead to new knowledge and
understanding about the synthesis and remodeling of plant cell
walls in switchgrass.

Discussion

Two types of information were used to predict CW genes
in switchgrass: (i) homology mapping of annotated CW
genes in other plant genomes to switchgrass and (ii)
switchgrass genes co-expressed with genes in (i). Out of
the 1653 predicted CW genes, 942 are considered as reli-
able predictions since they each have at least two pieces
of independent evidence supporting the prediction: ho-
mology to known or predicted CW genes in other plants
and co-expressed, hence functionally related, with other
predicted CW genes in switchgrass. In addition, all the
remaining 711 of the 1653 genes have not been reported
to be CW related. These genes, along with their predicted
co-expression and functional relationships, can serve as a
basis for further experimental studies of CW-related genes
in switchgrass.

Table 3 Predicted CW genes with supporting evidence

Group i ii iii iv v

# new CW genes 313 233 136 35 101

# new genes homologous
to CW genes in Arabidopsis

43 25 11 6 27

Table 2 Biclustering results and associated enriched CW pathways

Group i ii iii iv v

#CEMs 21 38 26 13 6

#Genes 152 180 315 109 74

#CFMs 12 5 14 6 8

% of CEM genes
coinciding with CFMs

98 % 86.1 % 95.6 % 100 % 93.2 %

#CEMs the number of co-expression modules in a specific functional
group, #Genes the number of genes in at least one CEM, #CFM the
number of co-functional modules, % of CEM genes coinciding with
CFMs the percentage of genes in a CEM that also share the same CFM
in a specific functional group
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Fig. 5 Inter-CEM connections.
Each node represents a CEM.
Edges are defined based on the
average co-expression correlation
coefficients between two CEMs

Fig. 4 Examples of three CEM types with purple nodes for TFs. (I)
CEMs consisting of predominantly initial predictions of CW genes,
(II) CEMs consisting of both types of genes (initial and new), and (III)
CEMs consisting of predominantly new predictions of CW genes. The

networks are drawn using Cytoscape (Supplementary File 5). Note
that we consider only co-expressions in a network with Spearman
correlation coefficient >0.6. The network modules are generated
using the Cytoscape software [19]

Bioenerg. Res.



For further work, we see a few ways to extend and refine
our predictions. One is to increase the prediction reliability of
the co-expressed gene modules by checking if the predicted
genes tend to share common cis regulatory motifs that can
potentially bind with the predicted TF(s), hence offering ad-
ditional information in support of transcriptional co-regulation
of the predicted co-expressed genes. A reliable approach for
doing this is to generate genome-scale ChIP-seq data of the
relevant TFs. Another area for improvement is to use a larger
number of gene-expression datasets, particularly datasets col-
lected under conditions specifically designed to study plant
(secondary) cell walls, to refine our co-expression analyses
for inference of CW genes. We expect that such data may
become available once the switchgrass genome is better as-
sembled. A third area is to conduct more detailed analyses of
the large co-expression networks spanning all the 89 CW-
related CEMs and five functional groups.
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