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The benefits of using transgenic switchgrass with decreased levels of caffeic acid 3-O-methyltransferase (COMT) as biomass
feedstock have been clearly demonstrated. However, its effect on the soil microbial community has not been assessed. Here we
report metagenomic and metatranscriptomic analyses of root-associated soil from COMT switchgrass compared with nontrans-
genic counterparts.
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The use of transgenic crops in agriculture continues to increase
worldwide, with uses in energy and environmental applica-

tions. One potential largely unexplored effect of growing trans-
genic plants is the alteration of indigenous soil microbial commu-
nities (1, 2). Since soil microorganisms play a key role in the global
nutrient cycling and maintenance of soil structure (3), alteration
of microbial community diversity or activity might have signifi-
cant effects on the soil ecology and biogeochemical processes. The
results of previous studies of soil microbes associated with trans-
genic plants used non-sequencing-based methods and were of
limited scope (4, 5). In this study, we performed metagenomics
and metatranscriptomics investigations of soil microbial commu-
nities associated with transgenic switchgrass (Panicum virgatum
L.), in which the endogenous caffeic acid 3-O-methyltransferase
(COMT) gene was downregulated (6). The field-grown trans-
genic plants had altered lignin, higher saccharification, and
50% more biofuel production per hectare when grown in
Knoxville, TN, USA (6). In addition, greenhouse-grown trans-
genic switchgrass yielded more ethanol with the use of consol-
idated bioprocessing (7).

Soil samples were collected from 12 plots (6 each planted with
transgenic and nontransgenic plants) on 20 November 2012 from
year 2 of the aforementioned field study (6). Soil cores were col-
lected 15 cm from the plants and composited to a depth of 35 cm
from the soil surface. Plant roots were gently removed from bulk
soil. Soil clinging to the roots was analyzed further. DNA was
extracted using the Fast DNA spin kit (MP Biomedicals, Santa
Ana, CA). Total RNA was isolated using an RNA PowerSoil total

RNA isolation kit (MO BIO Laboratories, Carlsbad, CA). rRNA
depletion was performed using a Ribo-Zero rRNA removal kit
(Bacteria) (Epicenter, WI) and/or Nugen ovation technology
(NuGEN Technologies, CA). Metagenomic and metatranscrip-
tomics libraries were prepared using an Illumina Nextera DNA
library preparation kit and a Truseq RNA v. 2 kit, respectively
(Illumina, Inc., CA) and sequenced using the Illumina HiSeq 2000
platform in triplicate (biological samples), yielding ~117 Gb of
metagenomic and ~53 Gb of metatranscriptomic data.

Raw sequence reads from 32 metagenomic and 13 metatran-
scriptomic datasets were submitted to the MG-RAST v. 3.3.7 (8)
server for downstream analyses. Shotgun sequences were also as-
sembled using Metavelvet (9) and contigs were uploaded to JGI’s
IMG/M (10) and MG-RAST pipelines for annotation and analy-
ses. The GC percentages ranged from 64 � 2% to 66 � 5%. Met-
agenomes consisted of ~97% bacteria, ~1% archaea, and ~1 to 2%
eukaryota. The major phyla were Proteobacteria (40 to 43%), Ac-
tinobacteria (16 to 25%), Acidobacteria (3 to 8%), Firmicutes (6 to
8%), Chloroflexi (3 to 5%), Planctomycetes (3 to 4%), Cyanobac-
teria (2 to 4%), Bacteroidetes (2 to 3%), Germmatimonadetes (1%),
and Nitrospirae (0.2 to 0.8%). Analysis of variance showed no
statistical difference in the major phyla between transgenic and
nontransgenic plant soils. Relative abundances of major taxo-
nomic groups were similar in the DNA and cDNA libraries.

These datasets provide information on the potential long-term
effects of transgenic crops on the soil microbial populations. In
addition, the systematic and replicated analyses allow direct com-
parison between the transgenic and nontransgenic counterparts.
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Nucleotide sequence accession number. Nucleotide se-
quences obtained were deposited at the NCBI Sequence Read Ar-
chive under the accession number SRP044193.
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