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Abstract While there are some large and fundamental differ-
ences among disciplines related to the conversion of biomass
to bioenergy, all scientific endeavors involve the use of bio-
logical feedstocks. As such, nearly every scientific experiment
conducted in this area, regardless of the specific discipline, is
subject to random variation, some of which is unpredictable
and unidentifiable (i.e., pure random variation such as varia-
tion among plots in an experiment, individuals within a plot,
or laboratory samples within an experimental unit) while some
is predictable and identifiable (repeatable variation, such as
spatial or temporal patterns within an experimental field, a
glasshouse or growth chamber, or among laboratory con-
tainers). Identifying the scale and sources of this variation
relative to the specific hypotheses of interest is a critical com-
ponent of designing good experiments that generate meaning-
ful and believable hypothesis tests and inference statements.
Many bioenergy feedstock experiments are replicated at an
incorrect scale, typically by sampling feedstocks to estimate

laboratory error or by completely ignoring the errors associat-
ed with growing feedstocks in an agricultural area at a field or
farmland (micro- or macro-region) scale. As such, actual ran-
dom errors inherent in experimental materials are frequently
underestimated, with unrealistically low standard errors of
statistical parameters (e.g., means), leading to improper infer-
ences. The examples and guidelines set forth in this paper and
many of the references cited are intended to form the general
policy and guidelines for replication of bioenergy feedstock
experiments to be published in BioEnergy Research.
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Abbreviations
SRWC Short-rotation woody crops
QTL Quantitative trait loci
IVDMD In vitro dry matter digestibility
LSD Least significant difference
HSD Honestly significant difference (Tukey’s LSD)
HPLC High-performance liquid chromatography
PCR Polymerase chain reaction
RT-PCR Real-time PCR
RNAseq High-throughput expression profiling (RNA

sequencing)

Introduction

Experimental design is a critical aspect of bioenergy research
projects, one that is often overlooked or underestimated in
value. Proper experimental design allows researchers to de-
velop all of their desired inferences and can help to ensure that
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treatments result in statistically significant results. Conversely,
use of improper experimental design, poorly chosen designs,
or ad hoc experiments which were not designed for the
intended purpose will typically result in lack of significant
differences between experimental configurations, treatments
or genotypes, inability to develop all desired inferences, and
resistance from reviewers and editors of refereed journals. The
purpose of this review paper is to carefully present and de-
scribe the concept of proper experimental design, specifically
as it relates to proper forms and degrees of replication, for a
range of bioenergy research subjects that span the conversion
pipeline from biomass to energy. Our approach is to present a
minimal amount of theoretical framework, just sufficient to
describe the fundamental approaches to solving problems in
designing proper experiments, and to rely heavily on exam-
ples. Upon publication, this article will serve as the de facto
editorial policy for replication in articles submitted to
BioEnergy Research. As such, this paper is not a comprehen-
sive literature review or treatment of this subject, but rather a
set of guidelines and principles to guide researchers in making
decisions that enhance the value and worth of their research in
the eyes of their peers. For that reason, we have divided the
arguments and discussions about replication into five catego-
ries: agronomic crops including both woody and herbaceous
species, glasshouse and growth chamber experiments, bench-
top and reactor-scale experiments, plant genetics, and
biochemistry/molecular biology. These sections are clearly
labeled to enable easy identification of the most relevant
topics for a wide range of research projects.

Controllable Versus Non-controllable Sources of Variation

By definition, bioenergy research projects are based on bio-
logical materials, always a biological feedstock and often a
cocktail of microorganisms or enzymes responsible for com-
plete or partial conversion of biomass to energy. By their very
nature, biological experiments contain numerous sources of
variability, some of which are desirable and under the re-
searcher’s control, while others are undesirable and only par-
tially (or not at all) under the researcher’s control. Nearly
every researcher who conducts critical comparative experi-
ments wishes to make biological comparisons among the
treatments that may impact some important biological mea-
surement variable. Due to the two main sources of biological
variability mentioned above, the key to success in making
biological comparisons is to have a certain degree of statistical
confidence that the biological comparison is meaningful. In
other words, the difference between two treatment means
must be sufficiently large that it overcomes the random, un-
controllable, or undesirable variability that exists within a bi-
ological system, i.e., that the signal-to-noise ratio exceeds
some critical minimum level. Typically, we use standard test
statistics, e.g., t tests, F tests, and χ2 tests, to determine if

signal-to-noise ratios are sufficiently large to warrant the for-
mation of inferential statements. We customarily use a signif-
icance level of 0.05 or 0.01, but this is not always optimal.
Rather, the choice of an appropriate significance level should,
optimally, be chosen using some type of risk assessment and
risk management approach, which can be applied to any ex-
perimental situation [1].

A unique aspect of bioenergy research, particularly as pub-
lished in this journal, is the diversity of scientific disciplines
and methodologies that are represented under a single umbrel-
la. From an editorial standpoint, that level of diversity is some-
what problematic because it includes diversity in the design,
conduct, and analysis of experiments, to the point of including
differences in terminology and definitions of what constitutes
an acceptable vs. an unacceptable experimental design.

What Is an Experimental Unit and Why Is It Important?

Put very simply, an experimental unit is the smallest unit to
which a treatment is applied. This definition represents a crit-
ical phase in the initial planning of an experiment, because it
defines the scale at which the first and foremost level of rep-
lication should be planned. The term “treatment” is used here-
in as a general descriptor of the manipulations or applications
that the researcher creates to form the basis for the experiment
and the hypothesis tests to follow. Randomization is a critical
aspect of the assignment of treatments to experimental units,
ensuring that multiple experimental units of each treatment are
independent of each other. Systematic designs, in which the
treatments are not randomized, are not acceptable, as
discussed later.

Every experiment has an experimental unit, whether the
researcher recognizes this concept or not. In agronomic exper-
iments, the experimental unit is typically a single plant or a
cluster of plants in a “plot.” In glasshouse experiments, the
experimental unit is usually a single pot but sometimes is
defined as a flat or tray containing several pots that are all
treated alike. In benchtop research, the contents of a single
reactor vessel generally comprise the experimental unit,
whether that vessel is a fermentation vessel, a petri dish, or a
flask that contains a microorganism or enzyme interacting
with a substrate. Smaller experimental units are impossible
for benchtop research, unless a vessel can somehow be
subdivided into units that can be treated and measured inde-
pendently of each other. Finally, in genetic research, there is a
wide array of experimental units, depending on the goals of
the experiment. For example, field studies of different culti-
vars or biomass crops will have a “plot” or cluster of plants as
the experimental unit. Genetic variability studies may reduce
the size of the experimental unit to the individual genotype or
clone, provided that individual genotypes can be properly
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replicated. Genomic studies, focused on the discovery of
quantitative trait loci (QTL) can be designed with the allele
as the treatment level, such that large population sizes in
which many individuals will represent each treatment level,
can substitute for traditional replication of the individual
genotypes.

Once the experimental unit has been defined, the next step
for the researcher is to determine how to replicate treatments
that form the core of the experiment. Proper replication re-
quires that, for each treatment, the following conditions must
bemet: (1) there must bemultiple experimental units, repeated
in time or space or both, (2) each experimental unit must
receive the treatment, be allowed to express itself, and be
measured independently from all other experimental units,
throughout the entire course of the experiment, and (3) treat-
ments must be randomized, not organized in a systematic or
ordered manner. The requirement of independence is critical
and absolute and is not open for debate [2]. Failure to replicate
treatments at the proper scale, sometimes termed pseudo-
replication [3], significantly impacts the inference that is pos-
sible from an experiment.

In many experimental situations, the experimental unit is
too large to be fully utilized in the data collection phase and
requires analysis of samples representing the experimental
unit. All biomass quality evaluations are subject to this restric-
tion, often with samples of <1 g of tissue having to represent
many tons of biomass harvested from a switchgrass or woody-
species plot, for example. Additional examples of this restric-
tion include aliquots of reaction products in solution or sam-
ples of microorganisms from algal, fungal, or bacterial cul-
tures. These situations all require a carefully designed sam-
pling scheme to ensure that the final sample to be assayed or
analyzed is representative of the entire experimental unit or a
carefully defined portion thereof. Three examples of the latter
approach are the use of stem segments from the lowest inter-
node to represent switchgrass biomass [4], stem cores to rep-
resent maize biomass [5], or stem disks to represent woody
biomass [6]. In each case, highly recalcitrant biomass is sam-
pled from carefully defined tissue that is more homogeneous
than that found in the whole biomass sample.

Ultimately, most bioenergy experiments end with some
form of laboratory analysis. Bulking samples across different
experimental units that represent the same treatment, i.e., cre-
ating composite field samples, is a common practice to save
funds and time spent on laboratory analysis. In general, it is
best to analyze samples representing individual experimental
units, rather than bulk samples representing multiple experi-
mental units. The argument used to justify bulking is that it
“evens out” variation among experimental units, but estima-
tion of this variation is critical for developing appropriate sta-
tistical inferences. In addition, bulking samples has an inher-
ent risk of inadvertent sample mix up. Furthermore, bulking
results in loss of information on individual experimental units,

including outliers caused by malfunctioning equipment or un-
expected local environmental variation. The inclusion of such
outliers in a bulk sample can affect the interpretation of the
larger data set without the researcher’s knowledge.

Scale and Form of Replication

Biological experiments can be replicated at many scales and,
indeed, many experiments contain several different levels of
replication. Scale is important, because it determines the level
of inferences that are possible with respect to the treatments.
Replication at the exact scale of the experimental unit, i.e.,
multiple, independent experimental units per treatment, pro-
vides an estimate of experimental error. It is only this estimate
of experimental error, computed at the proper scale, which
allows the researcher to adequately judge whether or not the
treatment-to-treatment variability exceeds the random or un-
controllable variability by a sufficient degree to judge the
treatment means to be different.

As a general principle, replication at scales larger than the
experimental unit is conducted to allow the researcher to de-
velop greater or broader inferences with regard to a range of
experimental conditions under which the treatments are ex-
pected to cause different effects. For example, agronomic ex-
periments can be replicated across multiple locations,
allowing potentially broader inferences with respect to soil
type, climate, and/or other environmental conditions under
which treatment effects occur. Similarly, reactor or benchtop
experiments can be conducted under a range of physical,
chemical, and/or biological conditions or with different
feedstocks.

Conversely, replication at scales smaller than the experi-
mental unit occurs when the observational unit is smaller than
the experimental unit. In many types of research, the experi-
mental unit is too large for measurements to occur at that scale,
e.g., large field plots (greater than 0.1 ha) or large reactor
vessels such as pilot plants. In these situations, representative
sampling of the experimental unit is a major problem.
Frequently, multiple observations are taken on each experi-
mental unit, e.g., random samples of plants or random aliquots
of a reaction solution. Typically, all measurements taken at
one point in time from an experimental unit can be averaged
together to deliver the observation for that particular experi-
mental unit. In this case, statistical analysis of data from such
an experiment can be made on the basis of these average
values per experimental units as the input data. Replication
at scales smaller than the experimental unit is not a valid
substitute for replication at the experimental unit scale, be-
cause residual variances tend to become smaller, in both ex-
pectation and practice, as the scale becomes smaller. Thus,
using too small a scale for replication results in biased
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hypothesis tests, i.e., p values that are unrealistically low
(overoptimistic) and inflation of the true type I error rate [2, 3].

Example 1: failure to use the proper scale of replication
leads to identification of treatment mean differences that
are not real.

Consider the data in Table 1 for which there were three
levels of replication: replicate switchgrass plots in the field
(experimental units), replicate samples taken from each plot
(sampling units), and laboratory replicates of in vitro dry mat-
ter digestibility, IVDMD (observational units). The experi-
mental design was a randomized complete block with three
replicates and experimental units of 3.6 m2. The F ratio for
treatments is inflated by using any error term that is based on
replication at a scale smaller than the experimental unit, e.g.,
sampling error or laboratory error. The net result is a least
significant difference (LSD) value that is unrealistically low,
creating an inflated type I error rate and numerous false con-
clusions. In other words, failure to use the proper scale of
replication would have led to numerous declarations of treat-
ment differences that were not real.

General Guidelines for Agronomic Studies

Agronomic studies will often involve field experiments
whereby variation in soil composition, fertility, temperature,
and precipitation vary from location to location and from year
to year. In order for data related to bioenergy production to be
maximally relevant, it is therefore important not only to ac-
quire data from multiple locations and/or multiple years but
also to replicate at a given site.

Example 2: confounding factors—impact of manure and
harvest time on maize biomass quality and productivity.

To illustrate the importance of replication, consider an ex-
periment meant to quantify the effect of manure treatments
and harvest time on quality and productivity of maize bio-
mass. The researcher plans four treatments (two sources of
manure in combination with two harvest dates, with harvest-
ing to be accomplished using farm-scale equipment). Due to
the logistical difficulties of creating multiple experimental
units of these four treatments, each treatment is applied to only
one section of a uniform and carefully defined field of maize
(treatments T1 through T4 in Fig. 1, where each plant in the
figure represents a unit of measurement, e.g., the specific field
area to which the treatment is applied, divided into four sec-
tions or samples). The experimental unit and treatment are
completely confounded with each other, i.e., the treatments
are replicated but not at the proper scale to eliminate the con-
founding problem. How can the researcher eliminate this con-
founding effect?

Two mechanisms of replication are available: (1) collect
multiple samples within each experimental unit or (2) repeat
the entire experiment for two or more years. Both alternatives
represent replication at a different scale than the treatments or
experimental units. Option (1) fails to solve the fundamental
problem that treatments and experimental units are completely
confounded with each other, resulting in the problems pointed
out in Example 1 (Table 1). Option (2) solves this problem by
using years as a blocking or replication factor, only provided
that the experiment is conducted on new and randomized plots
in the second year. While the maize field may appear to be
uniform, there is no guarantee that it is sufficiently uniform to
implement the design in Fig. 1, which is based on the funda-
mental assumption that the only difference among the four

Table 1 Mixed models analysis of variance for an experiment with three levels of replication: three blocks with one experimental unit per treatment
inside each block, two independent samples per experimental unit, and two independent laboratory determinations per sample

Source of variation df Mean
square

Variance component associated
with error term (random effect)

F ratio for
treatments

p value for
treatments

LSD (0.05) for comparing
treatment means

Blocks 2 2485

Treatments 4 781

Experimental Error 8 147 20 5.31a 0.0219a 11a

Samples within Experimental Units 15 69 23 11.32b 0.0002b 7b

Determinations within Samples 30 23 23 33.96c <0.0001c 4s

Data were in vitro dry matter digestibility (mg/g) of switchgrass biomass (Casler, 2000, unpublished data). The total number of laboratory determinations
was 12 per treatment for each of three hypothesis testing scenarios (a, b, c)
a Correct (unbiased) values of F ratio and LSD calculated using experimental error mean square in this experiment with three experimental units per
treatment, two samples per experimental unit, and two determinations per sample. The treatment means were 496, 502, 505, 514, and 515 mg/g
bValues of F ratio and LSD calculated using the mean square representing variation among samples within experimental units in this experiment
c Values of F ratio and LSD calculated using the mean square representing variation among determinations within samples in this experiment
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experimental units is due to the application of treatments.
While this assumptionmay be correct, there is noway to know
for certain. By definition, that is the nature of confounding—
two or more items are inextricably intertwined, such that no
amount of statistical analysis, wishful thinking, or discussion
can separate them. The problem of confounding treatments
with experimental units is illustrated in the anlysis of variance
(ANOVA) source of variation that reflects the fact that treat-
ment effects cannot be estimated as a pure and unconfounded
factor (Fig. 1). Imagine the potential impact on the data col-
lected if there is an underground gradient in fertility, soil type,
moisture holding capacity, pH, or some other important factor
that cannot be observed or was not measured and that the
direction of this gradient is horizontal with respect to the
fieldmap in Fig. 1.

Because statistical analysis software packages do not rec-
ognize the limitations of the experimental design, anyone can

devise hypothesis tests for this scenario and apply them to the
data. Use of multiple samples within each experimental unit,
represented by the observational (or sampling) units in Fig. 1,
allows estimation of an error term and subsequent F tests or t
tests, but this error term is biased downwards due to scale.
Observational units occur over a smaller and more uniform
area than experimental units, and they are correlated with each
other, thus resulting in a smaller variance than would be ex-
pected for multiple independent experimental units of each
treatment. Such a test results in overoptimistic p values and
an unknown degree of inflation of the type I error rate.

Solution 1: an experimental design with replicated
treatments.

So, what options are available to solve this problem? We
begin with the simplest and least problematic, from most re-
searchers’ point of view. Replication at the proper scale,
resulting in unbiased estimates of treatment means and error
variances, requires multiple and independent experimental
units for each treatment. Figure 2 illustrates the simplest solu-
tion to this problem, using four treatments each replicated four
times. The number of observations made is identical to the
design in Fig. 1, but each of the four observations made on a
single treatment were mutually independent, assuring that
both problems, confounding and the improper scale of repli-
cation (Fig. 1), have been solved. In this particular case, only
one sample or data point is collected within each experimental
unit, confounding the experimental and observational units,
but this usually is not a problem. If researchers are concerned
about this problem, for example in very large experimental
units that are subject to high levels of variability, then the
design illustrated in Fig. 3 offers a solution. In this case, the
design remains the same, with multiple independent experi-
mental units per treatment, but the multiple samples or

Fig. 1 Design example 1: Sixteen plants are assigned to four
experimental units, each of which is assigned to one treatment level (T1
through T4, symbolized by the treatment effect, τi in the linear model).
Treatments are confounded with experimental units because replication is
conducted at a scale that does not match the treatment application

Fig. 2 Design example 2: 16
plants are assigned to 16
experimental units, 4 of which are
independently assigned to each
treatment level (T1 through T4,
symbolized by the treatment
effect, τi in the linear model). This
is an example of the completely
randomized design
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observations within each experimental unit help the researcher
to control variability that may be present within the plots. The
ANOVA in Fig. 3 shows estimates of two random effects,
representing variability at two scales (the observational unit
and the experimental unit scale), but it is equally valid to
compute the averages of all samples within each experimental
unit, then to conduct the ANOVA on the experimental-unit
average values. Experimental units in most agronomic re-
search are established from seeds planted in rows, broadcast
seeding, or from transplanted plants. Observations made on
units smaller than the entire experimental unit can be on indi-
vidual plants, on groups of plants within a quadrat or sampling
frame, or from individual bales of biomass. Figures 2 and 3
both represent variations of the completely randomized de-
sign, the simplest of all experimental designs.

Solution 2: replication over multiple years or locations.

Another option would be to repeat the experiment over
multiple years. The easy way to accomplish this does not
actually solve the problem of confounding within an individ-
ual year or growing season. If the treatments shown in Fig. 1
are repeated on the same experimental units for multiple years,
as would be the case with repeated observations of a perennial
plant, any environmental or unknown factors that are con-
founded with treatments remain as such for the duration of
the experiment. In some cases, it may become worse with
time, if its effects are cumulative. Even though multiple ob-
servations are made on each treatment, those observations are
not independent of each other, e.g., they are correlated with

each other. Because they are correlated with each other, they
do not provide an unbiased estimate of experimental error, as
with the design in Fig. 1. However, multiple years could be
used to solve this problem, as shown in Fig. 4. In this case, the
block on the left, which contains four experimental units and
four treatments is applied in 1 year, while the block on the
right is applied to a new field of maize, independent of the
previous years’ field, in the second year. This represents an
application of the randomized complete block design, in
which each year acts as a “block” of experimental units. Of
course, such a design would not require the use of multiple
years, provided that sufficient land and labor are available to
apply multiple experimental units of each treatment in a single
year. The choice of completely randomized design vs. ran-
domized complete block (to block or not to block) can be
complex and is beyond the scope of this paper, having been
effectively discussed in numerous other sources [2, 7, 8].

Large-Scale Agronomic or Engineering Experiments

As pointed out in example 2, certain types of treatment factors
are routinely difficult to replicate at the proper scale.
Examples include irrigation treatments, slurry or manure ap-
plications, planting dates, and soil types. Replication of treat-
ments, such as irrigation and planting dates, can be achieved,
although sometimes at great cost. Replication of “natural”
treatments, such as soil type, is virtually impossible without
some form of artificial environment, such as an aboveground
or belowground soil-filled structure. For many of these fac-
tors, replication at the scale of the experimental unit is

Fig. 3 Design example 3: Sixteen plants are assigned to eight
experimental units, two of which are independently assigned to each
treatment level (T1 through T4, symbolized by the treatment effect, τi
in the linear model). Each experimental unit contains two observational,
or sampling, units. This is another example of the completely randomized

design. In this design, the researcher is using two independent samples
from each experimental unit to provide a better estimate of the
performance of each experimental unit, i.e., representative sampling, as
compared with design example 2
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impossible or extremely difficult due to logistical or equip-
ment expenses, the need for larger plots than are available,
or extreme labor requirements. Agronomists typically utilize
split-plot designs to assist in solving this problem [7], but this
design does not eliminate the need to replicate treatments at
the whole-plot experimental unit scale. These obstacles should
not be used as excuses to proceed with poorly designed ex-
periments that result in limited or impossible-to-interpret in-
ferences but should be used to drive creativity toward solving
problems using imaginative and innovative, yet statistically
valid, approaches. There is a rich body of literature that de-
rives from biological scientists interacting with statisticians or
biometricians to solve experimental design and measurement
problems, some of which is cited in this paper.

Harvesting and storage research represent two specific re-
search topics that are specifically problematic regarding the
conflict between statistical inference and logistics of
accomplishing the research. Seldom are these studies replicat-
ed at the proper scale to generate valid statistical inferences
between field-based treatments. Harvesting studies typically
involve the use of different harvest dates to create biomass
crops with different moisture contents or different harvesting
or swathing equipment that may impact either dry matter
losses or crop quality. Typically, an experiment with three
treatments will have only three field plots, patterned after
Fig. 1. However, there is a fairly easy solution to this problem
in which engineers could use the design in Fig. 2 by random-
izing single passes of each treatment through the field,
allowing for very precise estimation of confidence intervals
and inferential statements at the field level. Likewise, biomass
storage studies generally fail to replicate at the proper level.
These studies typically involve different types of bales and
storage treatments, many of which can be easily replicated
and randomized, e.g., different sizes of bales, different shapes

of bales, and different bale coverings. Other types of storage
treatments are difficult or impossible to replicate, e.g., inside
or outside a barn, ground surface composition (concrete,
grass, or gravel), or stacking methods.

Specific Considerations for Experiments with Perennials

Many of the obstacles and impediments to creating valid in-
ferences for perennial crop research, including both herba-
ceous species and short-rotation woody crops (SRWC) are
similar to those discussed above. Nevertheless, there are some
obvious differences between annuals and perennials, created
largely by differences in scale and longevity of experimental
plots, with perennials often demanding research on a larger
physical scale and conducted over a longer period of time than
for herbaceous crops. Many perennials are genetically hetero-
geneous and may require considerable time to become
established. In addition, individual plant mortality creates
open spaces that can be handled in many different manners
or simply ignored and considered part of the “treatment.”
Sometimes, experimental material, such as seed or rhizomes,
are in short supply, prompting the need for unreplicated or
partially replicated designs, such as discussed later in example
5. In addition, stand age is often an important factor to be
studied, to gain an understanding of changes in biomass pro-
duction over time. Creating an experimental design in which
the fixed effect of stand age is not confounded with random
weather effects is particularly difficult [9].

Due to these requirements, scientists working on perennials
cannot respond as quickly and readily as those working on
annuals to new initiatives or by creating new experiments
every year as needs arise. As such, many critical comparative
experiments designed to evaluate bioenergy production and
sustainability characteristics of perennials are conducted on

Fig. 4 Design example 4:
Sixteen plants are assigned to
eight experimental units.
Experimental units are grouped
into two blocks, each of which
contains a number of
experimental units exactly equal
to the number of treatment levels
(T1 through T4, symbolized by
the treatment effect, τi in the linear
model). Each experimental unit
contains two observational, or
sampling, units. This is an
example of the randomized
complete block design, with
sampling
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existing stands that were created strictly for production pur-
poses, creating potential limitations to research inferences.
Pseudo-replication [3], replication at an improper scale, which
is usually smaller than the actual experimental unit, can be a
common problem in research on existing stands of perennials.

Example 3: Pseudo-replication in Production-scale
Research

As an example, consider a new experiment to be conducted
at an existing plantation of SRWC or in an area that includes
numerous fields of a perennial energy grass. An existing re-
search areamight typically include multiple planting dates and
multiple genotypes, clones, or cultivars planted over several
years, with a small amount of new land converted to the bio-
mass crop in each year. Considerable care must be taken when
using this type of production land for bioenergy research.
Figure 1 represents the basic scheme of the potential experi-
mental area, in which experimental units are represented by
the land used for energy-crop establishment in any given year
and the treatments become different establishment years and
genotypes. Simply using this experimental area to draw statis-
tical and biological inferences about stand age or genotype is
completely untenable, as described above in Example 2. Such
an experimental area would have stand age, genotype, and
perhaps a host of other environmental factors all confounded
with each other to unknown degrees. The researchers could
convince themselves that stand age and genotype are the dom-
inant sources of variation, but many reviewers will justifiably
not be convinced that this assumption is valid. It is far better
for the research team to face this issue "head-on" at the design
phase than after receiving unfavorable peer reviews from an
international scientific journal.

Ideally, a new experiment would be designed, with replicat-
ed and randomized treatments, solely within each individual
planting that is homogeneous for establishment date and geno-
type. As with the agronomic experiment designed above, prop-
er randomization and replication of treatments to multiple in-
dependent experimental units within a homogeneous experi-
mental site allow for clean and valid statistical and biological
comparisons and hypothesis tests. Repetition of the experiment
across different establishment dates and/or genotypes would
allow the researchers to broaden the inferences to be derived
from such an experiment. In some cases, this may require some
compromise in the final size of the experimental unit, resulting
in "plots" that are smaller than desired. For a discussion of this
concept and approaches to evaluate its potential impact on
experimental results, see the following sources [7, 10]. In most
biological situations where a researcher is evaluating the costs
and benefits of increasing the size of the experimental unit vs.
the number of replicates, and there is no specific data to help
guide an informed choice, the latter is generally better for both
statistical precision and inference space [11, 12].

Two highly undesirable approaches to this problem would
be (1) partially or completely confounding the new treatments
with establishment dates and genotypes or (2) ignoring the
multiple establishment dates and genotypes in the layout of
the experimental treatments. The first of these, in the worst
case, would simply take the existing problem and make it
worse, by adding another confounded factor to the mix, e.g.,
a new genotype or a different planting density in the next
establishment year. The second of these is problematic in a
different way, because it introduces variability that may not be
controllable to the new critical comparative experiments.
There are sophisticated spatial analysis methods readily avail-
able to biological researchers [10, 13], but the proper use of
experimental design, including proper randomization and rep-
lication, is always the preferred first step [7, 14]. Spatial anal-
ysis, no matter how sophisticated, should never be viewed as
an alternative or excuse to ignore principles of proper random-
ization, replication, and blocking.

Alternatively, a highly desirable solution to this problem
could be created by the introduction of a new research objec-
tive. For example, consider Fig. 1 in which the four “treat-
ments” represent four different genotypes established in 1 year.
Assuming that each field plot is sufficiently large, new critical
comparative experiments, e.g., fertilization treatments or har-
vest timings, could be designed with proper replication and
randomization within each of the field plots in Fig. 1. Such a
study would be extremely powerful, allowing the develop-
ment of inferences with regard to the critical comparative ex-
periment within and across the various genotypes. The “geno-
type” effect is the only effect for which a valid statistical
inference cannot be developed, due to the confounding and
lack of replication.

Finally, one more alternative solution would involve the
use of control-plot designs, which can be designed and tai-
lored to fit almost any researcher’s needs [7]. Control plots are
frequently used in on-farm or farm-scale agronomic research
as a mechanism to adjust observations on unreplicated treat-
ments for spatial variation that typically exists within extreme-
ly large experimental areas. One highly efficient design is to
assign one of the treatments as the control and to pair the
control treatment with each other treatment in a paired-plot
design.

Guidelines for Glasshouse and Growth Chamber
Research

Glasshouse research is generally conducted at one or both of
two scales: macro- or micro-environmental. Research at the
micro-environmental scale is simple and straightforward, in-
volving one set of environmental conditions and likely pre-
senting little problem for most researchers. The required
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environmental conditions for the glasshouse should be
predetermined by the research team and arranged to be as
uniform as possible throughout the physical space to be uti-
lized. The experimental unit should be carefully defined, usu-
ally a single pot, containing one or more plants, or sometimes
a tray or flat of cells. Once this definition is made, each treat-
ment should be assigned to multiple and independent experi-
mental units (replicates) and all experimental units should be
randomized in an experimental design or pattern that is capa-
ble of dealing with spatial variation that may exist within the
glasshouse environment. Except in very unusual cases, multi-
ple plants within a pot cannot serve as independent replicates
of the treatment, because they are not independent of each
other and their variance will be an underestimate of the true
variance among experimental units treated alike.

The completely randomized design, which involves a sim-
ple randomization of all experimental units in a single block,
is a good idea only under one of two circumstances: (a) there
is little likelihood of spatial variation, or microclimate effects,
within the glasshouse or (b) the researchers plan to re-
randomize or rearrange the experimental units periodically
during the course of the experimental time period [15–17].
We strongly discourage option (b) for four reasons: (1) rear-
rangement of experimental units increases the workload and
creates more opportunities for mistakes in randomization or
damage to plants [17]; (2) successful application of this ap-
proach requires that experimental units spend similar amounts
of time within each microclimate [15]; (3) there is no evidence
that this approach will lead to greater precision than the use of
formally randomized designs, because the rearrangement ei-
ther eliminates or creates significant challenges in accounting
for spatial or microclimate variation; and (4) there are numer-
ous alternative experimental design options ranging in both
complexity and expected effectiveness. Microclimate effects
are common in glasshouse environments and these effects are
generally predictable over extended periods of time [18, 19].
As such, systematic blocking designs will generally be more
effective in accounting for microclimate variation than rear-
rangement approaches [15].

Blocking designs generally provide the optimal solution
for glasshouses or growth chambers that possess some micro-
climate effects [7]. Blocking designs can be grouped into two
categories: one-way blocking (randomized complete block,
lattice, and balanced incomplete block designs) or two-way
blocking (Latin squares, Youden squares, Trojan squares, lat-
tice squares, and row-column designs). Not all blocking de-
signs and patterns are effective [20]; as such, experiments with
many small blocks, such as incomplete blocking designs
should be used in combination with spatial statistical methods
to identify patterns of microclimate effects that can be used as
a basis for designing future experiments [18, 19]. This is a
highly empirical process that may involve several iterations
or repetitions to identify consistent patterns [18–20].

Edmondson [18] suggested that using uniformity trials, in
which all pots represent a single uniform treatment, is “folly”
and we agree that such an experiment is unnecessary given the
ability of blocking designs and spatial statistics to parse out
sources of variability on a fine scale, especially when the
design involves many small blocks [2, 7, 14].

Macro-environmental glasshouse or growth chamber ex-
periments create experimental design and statistical analysis
problems, because replication is seldom conducted at the
proper scale. Multiple glasshouses or growth chambers are
often used to create highly controlled and differential environ-
mental conditions, for which hypothesis testing and/or quan-
titative differences are of interest. Most of these experiments
are designed as shown in Fig. 1, with the glasshouse or cham-
ber as the experimental unit and replication conducted only
within the experimental unit, at some type of sampling unit
level. These conditions may form the entire experiment or
serve as one factor in a multifactor experiment. In the case
where they form a single factor experiment, the statistically
viable options are (1) to double the number of chambers,
allowing true replication of the macro-environmental treat-
ments, or (2) to repeat the experiment over time, re-
randomizing the environmental conditions (treatments) to
the various glasshouses or growth chambers to ensure that
the error term is estimated at the proper scale, i.e., that each
treatment is applied to multiple and independent experimental
units (glasshouses or chambers). Use of multiple plants, pots,
trays, or flats within each house or chamber does not allow the
researcher to estimate the proper error term, underestimating
the true variation among experimental units treated alike
(Fig. 1; Table 1).

Example 4: a glasshouse study on the effect of macro-
environmental variation.

Recently, BioEnergy Research published a paper that used
a novel and very economical approach to solve this problem.
Arnoult et al. [21] designed a two-factor experiment with four
macro-environmental treatments, defined by all combinations
of two daylengths and two temperature regimes, each assigned
to one glasshouse. This is almost identical to the design shown
in Fig. 1, differing only in the number of treatments and rep-
licates within each macro-environment. Within each glass-
house, the second factor consisted of eight different genotypes
of Miscanthus. Genotypes were established in a completely
randomized design with ten replicates within each glasshouse
(80 plants and pots within each glasshouse). Without replica-
tion of the environmental treatments over time, comparisons
among genotypes provide the only valid statistical hypothesis
tests. The authors were partly interested in making compari-
sons among genotypes for mean performance across environ-
ments, but their principal goal was to determine if genotypes
differed in their response to the environmental factors (light
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and photoperiod). The authors designed three independent-
sample t tests to evaluate the environmental sensitivity of each
genotype: (1) long vs. short days, (2) warm vs. cool tempera-
ture regime, and (3) the daylength×temperature interaction.
Each of these represents an interaction contrast within the
larger genotype×environment interaction. Each t test was ap-
plied to the raw data of each genotype, creating a total of 24
hypothesis tests that focused on the simple effects of each
environmental response within each genotype. Comparison
of these effects across the eight genotypes provided an assess-
ment of their relative environmental responses.

Guidelines for Benchtop and Reactor-Scale Research

Reactor-scale research consists of biomass conversion studies
in batch or continuous-flow reaction vessels. The scale can
vary from small and relatively inexpensive reactors present
in multiples, to large and expensive pilot- or commercial-
scale reactors, available as a single unit. Benchtop research
may take on a wider range of disciplinary activities, e.g., ger-
mination tests, growth of fungal or bacterial pathogens, insect
preference or survivorship studies, etc. The principles
discussed below apply equally to any type of critical compar-
ative experiment conducted on biological material that is sub-
ject to random and unexplained sources of variation.

It is common for descriptions of benchtop or reactor-scale
research to contain sparse or no reference to experimental
design, generally referencing the use of laboratory duplicates
or triplicates as the only reference to replication. Our recom-
mendation to researchers in these disciplines is to include a
thorough description of the experimental design, preferably
using standard terminology classically used in statistical text-
books (e.g., [2, 8]). Ideally, the treatments should be random-
ized and replicated so that any variation that is introduced into
the experiment, associated with changes in reaction conditions
over time or with an inability to stop every reaction at exactly
the same time, can be controlled or removed from the fixed
effects of treatments. For example, if there is some disturbance
or variation that is associated with timing of stoppage or sam-
pling of reaction products, the worst-case scenario would be to
have triplicate samples of each treatment that are grouped
together, sampled consecutively, and analyzed consecutively
(e.g., Fig. 1). In this case, the undesirable time-scale variation
is completely confounded with desirable treatment variation.
If such a situation has the potential to occur, Fig. 4 represents
the best-case scenario, allowing estimation and removal of a
“block” or “time” effect in the ANOVA. Such a design can be
applied even in the case of a single large-scale reactor, simply
by applying the treatments in Fig. 4 in a randomized sequence
over time. In this case, the authors should describe their labo-
ratory duplicates as having been arranged in a randomized
complete block in time. Figures 2 and 3 represent

intermediate-level solutions to this potential problem, using
the completely randomized design to arrange duplicates or
triplicates of the treatments in a manner that reduces the po-
tential for confounding and bias to treatment effects.
Regardless of the specific design, randomization is an essen-
tial insurance policy against undesirable consequences of a
disturbance or unexpected source of variation [22].

Another common omission in the reactor-scale experi-
ments is a description of the feedstock and its preparation.
This stems from the fact that these kinds of experiments typ-
ically rely on very large, industrial-scale samples, and it is
often assumed that the feedstock composition for a given
source (e.g., wheat straw, corn stover, pine wood chips, etc.)
can be treated as a constant. As many readers of BioEnergy
Researchwill appreciate, this is rarely an accurate assumption.
As a consequence, lack of details on the origin of the feed-
stock makes independent replication very challenging, if not
impossible. We therefore encourage authors to provide as
much detail on their samples in the experimental section of
the manuscript, including the location where the feedstock
was collected, the age of the material (in units of time or
physiological stages), any genotypic information (especially
when commercially produced feedstocks were used), and the
manner in which the samples were handled after collection
(drying, grinding, storage conditions). Lastly, especially when
a single feedstock sample is used, or when comparisons are
made between two species, each represented by a single
source, the authors need to be careful to not overstate the
conclusions and leave room for the possibility that observed
differences may not occur in the same way when different
samples of these feedstocks are used. For example, if two
feedstocks were used in an experiment, care must be taken
in the conclusions not to attribute feedstock differences to only
one of many potentially confounding factors, i.e. the numer-
ous factors that may or may not have differed between the two
feedstocks and their environments, such as species, harvest
date and stage, soil type, climate, etc.

Lack of replication is also a common challenge in reactor-
scale research involving anaerobic digestion. These studies
typically rely on a sample collected from a sewage treatment
facility. Experiments are conducted with this sample to eval-
uate, for example, methane production following anaerobic
digestion of a number of different feedstocks, or a common
feedstock that has been prepared following different pretreat-
ments. It is common to report on methane yields over a period
of days or weeks, and then compare the relative merits of
certain feedstocks or treatments. When conclusions are based
on a single anaerobic digestion experiment, the conclusions
only apply to the conditions involving this particular sample
of sludge. Given that sewage sludge is a microcosm of bacte-
ria, it is unlikely to be static. The microbial community on the
day the sample was collected may be different 2 days or
2 weeks later, when the sewage composition changes, for
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example, due to seasonal fluctuations. In addition, conducting
laboratory experiments based on a small sample of sludge has
the risk of random changes in the microbial community, anal-
ogous to the concept of genetic drift. As a consequence, it
would be preferable, at the very minimum, to replicate exper-
iments involving sewage sludge by including parallel incuba-
tions with subsamples of the sludge. Even better, though,
would be to collect sludge samples on different days or from
different sewage treatment plants in order to extend the con-
clusions beyond one specific sample of sludge. Samples of
sewage sludge collected on different dates or from different
sewage treatment plants should not be bulked or homogenized
with each other, but should be applied to feedstocks in inde-
pendent reactor vessels as a mechanism to assess feedstock
conversion under potentially different reaction conditions.
Considerable care should be taken to match the replication
and experimental unit designation to the question to be an-
swered or the principal hypothesis to be tested. For example, if
the “treatments” include multiple genotypes of a feedstock,
individual field replicates of the genotypes should not be
bulked, but processed independently as an additional “treat-
ment” factor for the fermentations. Additional critical infor-
mation for fermentation studies includes the duration of the
“starvation” period and the standard substrate (with known
methane yield) to be used in the fermentation experiment [23].

Guidelines for Genetics Research

Genetic research is highly diverse, in scope and purpose, as
well as in the statistical methodology that is used to develop
genetic inferences. Many genetic field studies are based on
agronomic crops or SRWC, so the fundamental principles that
apply to those experiments were discussed in those two sec-
tions of this paper. Perhaps the most fundamental distinctions
are: (1) genetic experiments tend to be large with many treat-
ments and (2) there are two scenarios in which a case can be
made not to replicate genetic experiments or to replicate them
in a less traditional manner. With regard to experiment size,
genetic experiments generally demand more sophisticated ex-
perimental designs and spatial analysis methods to develop
precise estimates of genotype or family means. Incomplete
block designs tend to be the rule, rather than the exception
[7], often combined with spatial analysis methods [24]. This
topic is discussed in great detail in numerous review articles
and books, e.g., [7, 24].

Traditional field experiments designed to evaluate large
numbers of clones, genotypes, lines, or families are increas-
ingly moving toward modified replication structures that give
the genetic research more flexibility, broader inference, and
greater precision for phenotypic data. Most genetic studies,
particularly those that involve attempts to develop genotype-
phenotype (marker-trait) associations generally have three

common characteristics: (1) hundreds or thousands of geno-
types or families, (2) a need or desire to evaluate genotypes in
multiple environments, and (3) extremely limited amounts of
land, seed, or vegetative propagules for replicating genotypes.
As such, many breeders and geneticists are utilizing resource-
allocation theory [7] to minimize or eliminate traditional rep-
lication in favor of evaluating all genotypes or families at
multiple locations [25]. For example, if there is sufficient seed
or vegetative tissue to replicate 500 genotypes four times each,
resource-allocation theory and empirical results, ignoring
costs, nearly always point to the use of four locations with
one replicate at each location as the best choice [7].

For studies that are purely based on phenotype, such as
selection nurseries or candidate-cultivar evaluations, lack of
traditional replication for individual genotypes can be difficult
for some peer reviewers to accept. However, one can make a
case for this scenario in genotype-phenotype association stud-
ies that are designed to detect quantitative trait loci (QTL) for
biomass traits. In these studies, the individual genotype or
family is no longer the unit of evaluation, i.e., we generally
do not care which genotype or family is best or worst. Rather,
the unit of evaluation is the allele, i.e., for each locus, we need
to know which allele is best and we need to estimate that
allele's effect on phenotype. Thus, a simple randomization of
500 genotypes within a fairly uniform field area will result in a
valid randomization of the two alleles at any locus. Even if
there is some error involved in measuring the phenotype of
each plant, the number of plants that possess each allele be-
comes the actual form of replication for the alleles, i.e., the
number of genotypes or families (replication of alleles) is now
the critical value with respect to the power of the experiment.

Example 5: a control-plot design for a large number of
unreplicated genotypes.

In either of the cases above, we strongly recommend that
any experiment designed to evaluate a large number of geno-
types and families without benefit of traditional replication at
the experimental unit level include a mechanism to control
and adjust for spatial variation, which is inevitable and inex-
orable in most large field studies. Figure 5 provides an exam-
ple of a grid design of 421 genotypes, only one of which is
replicated, i.e., the “control” genotype. This design could be
applied to any type of genotype or family structure, provided
that one genotype, line, or family can be chosen for a massive
amount of replication, in this case 80 plots at each location.
The design shown in Fig. 5 would be replicated at the desired
number of locations and the data analysis would involve the
use of spatial statistical methods to adjust each plant's pheno-
typic observation for spatial variation in rows, columns, and
squares [24]. This design belongs to the family of partially
replicated or augmented designs, which are highly flexible
with regard to size, dimension, and ratio of test plots to control
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plots [7, 26, 27]. Such a design provides two levels of error
control for estimating allele effects: (1) spatial adjustment to
enhance precision and accuracy of phenotypic data and (2)
large population size to provide adequate precision for estima-
tion of allele effects.

Guidelines for Biochemical and Molecular Biological
Experiments

Biochemical analyses in the test tube generally conform to the
benchtop or reactor type of study described above. A good
example is the determination of kinetic constants for two re-
combinant enzymes, one being the wild-type enzyme and the
other a mutated form (e.g., a cellulase designed for enhanced
activity). As described above, the worst-case scenario would
be to have triplicate samples of each treatment that are
grouped together, sampled consecutively, and analyzed con-
secutively. If the enzyme assay was performed, for example,
using high-performance liquid chromatography (HPLC) to
quantify product formation, each sample should be analyzed
more than once on the HPLC to determine the analytical var-
iation. In most cases, this is smaller than biological variation
(but see below). There is also a need in such an experiment for
additional replication at the level of the enzyme preparations
themselves, to ensure that apparent differences in kinetics

between the wild-type and mutant enzyme are not the result
of different efficiencies of enzyme extraction, different times
from enzyme extraction to assay, or any other differences in
the physical environment in which the samples were handled.
The method used for determination of enzyme activity can
also influence the experimental design. For example, analysis
by HPLC often involves extraction from the aqueous phase in
which the enzyme assay was performed to an organic phase
that is injected onto the column. The efficiency of this extrac-
tion process (determined by the partition coefficient of the
reaction product between the aqueous and organic phases)
can impact the size of the analytical variation, with low effi-
ciencies leading to higher variations. Such efficiencies should
be measured, and if possible controlled for, for example by
inclusion of an internal standard that acts as a proxy for the
product of interest (acceptable but not optimal), or, if the prod-
uct of the enzyme reaction is radiolabeled or heavy-isotope
labeled, by spiking the sample with unlabeled product, or by
spiking with labeled product if the product is unlabeled, prior
to separation and determination of product levels. Similar
principles apply to the quantification of protein levels through
mass spectrometric approaches [28].

The determination of gene transcript levels presents a num-
ber of issues as regards to both replication and interpretation.
Three methods are now generally used: RT-PCR for low- to
medium-throughput analyses, and DNA microarray or

Fig. 5 Design example 5: 420 genotypes, lines, or families are evaluated
in a grid design with one replicate or experimental unit per genotype at
each location. In this example, 21 genotypes are randomly assigned to
each of 20 groups or grids (open squares) and each grid contains four
independent replicate plots of a single check genotype (filled squares).
The entire design is repeated at the desired number of locations, with re-

randomization at each location. Statistical data analysis would involve the
use of spatial statistical methods to adjust each plant’s phenotypic
observation for spatial variation in rows, columns, and squares. This
type of design is highly flexible with regard to size, dimension, and
ratio of test plots to control plots
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RNAseq for high-throughput whole-genome level analyses.
An important issue with PCR approaches and one that often
causes problems for authors is whether the PCR method is
truly quantitative. For example, simple staining of DNA gels
with ethidium bromide does not give a linear response and
suffers from problems with saturation, such that this method
should never be used for making quantitative inferences.
Staining DNAwith SYBR green/SYBR gold gives linear re-
sponses over a greater concentration range. True quantitative
PCR approaches, which exploit the proportional relationship
between the quantity of the initial template and the quantity of
the PCR products in the exponential phase of amplification
(i.e., in real time), present the same problems of replication as
found for enzyme assays, namely the need for sufficient ana-
lytical and technical replicates to ensure statistical signifi-
cance. Additional statistical elements inherent in the method
itself also require consideration for data analysis and quality
control of real-time PCR experiments [29].

Microarray analysis presents a different type of challenge.
In the older two-channel printed microarray design, the print-
ing process itself introduces errors and large variance; in some
respects, a spotted microarray resembles the previously de-
scribed field in which differences in response (here DNA
binding) might be confounded by differences in the microen-
vironment in different parts of the field (here the chip). This is
less of a factor in the Affymetrix chip design. Statistical anal-
ysis of microarrays is a whole discipline in itself, in which
normalization of gene expression and controlling for false
positives are the major factors of concern. Authors reporting
any type of microarray experiment should, at a minimum,
adhere to the conventions described in [30]. The types of
considerations necessary to overcome errors inherent in the
spotted microarrays have been discussed [31], and an example
of the types of corrections needed in analysis of Affymetrix
arrays can be found in [32].

Next-generation sequencing (RNAseq) is now becoming
the method of choice for transcript profiling, particularly for
those species with sequenced or partially sequenced genomes
(e.g., Populus or Panicum virgatum). Because of the still sig-
nificant cost of sequencing, and the enormous amount of data
generated, observational studies with no biological replication
are common, but are clearly prone to misinterpretation. The
reader is referred to [33] for a discussion of the best experi-
mental designs for meaningful comparisons of RNAseq
datasets; the principles are fundamentally similar to those de-
scribed above for field and greenhouse plot design.

Determining the Appropriate or Necessary Number
of Replicates

The power of the statistical test is the probability of rejecting a
null hypothesis that is, in fact, false. In other words, power

reflects the capability of the researcher to detect true differ-
ences among treatment means—more powerful experiments
result in a higher likelihood that true differences will be de-
tected. Increases in power can be achieved principally by in-
creasing the number of replicates and, secondarily, by chang-
ing the replication structure. Both of these topics have been
treated in great detail elsewhere (e.g., [7, 24]) and will be
presented briefly here.

Example 6: determine the number of replicates required
to achieve desired power

Consider any type of bioenergy experiment with two levels
of replication: true replication of treatments at the proper scale
and sampling of experimental units that are too large to mea-
sure in toto. Such a design applies to a wide array of experi-
ments, e.g., bales of biomass as the experimental unit and
cores within bales as the sampling unit, agronomic plots as
the experimental unit and plants within plots as the sampling
unit, or reactors as the experimental unit and aliquots of reac-
tion products as the sampling unit. Figure 6 shows the esti-
mated power of hypothesis tests for 50 potential replication
scenarios with a range of experimental units from r=3 to 12
replicates and sampling units from s=3 to 20 samples per
experimental unit. These computations require input data in
the form of estimates of error variances obtained from prior
experiments and a desired detection limit, i.e., the difference

Fig. 6 Estimated power of a hypothesis test designed to detect a
treatment difference of 5 % of the mean with a type I error rate of 0.05,
experimental and sampling errors, respectively, of 5 and 10 % of the
mean, and varying numbers of experimental units (r=3 to 12) and
observational units (s=3 to 20). The dashed line represents power=0.75
and illustrates that different replication and sampling scenarios can be
created to achieve the same result

Bioenerg. Res. (2015) 8:1–16 13



between treatment means that the researcher desires to detect.
From this particular scenario (variances of 5 and 10 % of the
mean and a detection limit of 5 % of the mean), it is clear that
there are several options that could achieve the desired result:
r=4 and s=20, r=5 and s=10, r=6 and s=5, r=7 and s=4, or
r=10 and s=3. Typically, these activities lead most re-
searchers to the conclusion that most experiments are under-
powered with regard to desired detection levels. Nevertheless,
they provide a critical mechanism to assist researchers in de-
signing better, more powerful, experiments, utilizing nothing
more than information already obtained from prior ex-
periments. Additional examples can be found in other
publications, e.g., [7, 24].

Data Analysis and Presentation of Results

Significant thought should be given to the most logical and
sensible data presentation for readers to interpret, understand,
and cite the work. Presentation of means and standard errors
alone is not acceptable for any data in which the discussion
infers treatment differences. Readers cannot ascertain that these
differences are statistically significant or repeatable based on
means and standard deviations alone. Consequently, appropri-
ate statistical tests need to be performed, and enough detail
needs to be provided in the manuscript to enable independent
replication of the data analysis. A comment in theMaterials and
Methods section that the statistical analysis was performed with
a particular software package but without any further details is,
therefore, not acceptable. The most common statistical proce-
dure is analysis of variance (ANOVA) as based on fixed effects
linear models or standard mixed effects linear models with
diagonal variance/covariance matrices for random effects.
Modern mixed linear models analysis based on restricted
maximum likelihood (REML) approaches has become more
common and readily available (Fig. 7). Authors should report
the following fundamental information regarding the data
analysis, as appropriate:

& List all effects that were originally fitted in the model.
& Specify fixed versus random effects, including

justification.
& Identify any repeated measures effects in the model.
& Identify the criteria used to select the final model.
& When applicable, identify any and all covariance struc-

tures used in the final model, specifically including repeat-
ed measures autocorrelation structures, use of spatial anal-
ysis, and use of heterogeneous variance structures.

& Specify distributions fit to data and the link functions uti-
lized, if appropriate.

& Specify if and how overdispersion was accommodated in
a generalized linear mixed models approach, if necessary.

Methods for data analysis have changed radically within
the past 10 years. The classical ANOVA assumptions of nor-
mally distributed data, variance homogeneity, and uncorrelat-
ed errors are no longer required because of the development of
sophisticated methods of analysis that can model a wide range
of distributions and error structures. This is summarized in
Fig. 7 and further explained in the next section for the inter-
ested reader.

For fixed effects of qualitative factors in which the specific
levels are of interest, authors should consider the following
options, in order of preference:

& Specific, pre-planned comparisons among treatment
means, e.g., contrasts.

& Comparisons of each treatment to a control treatment,
using Dunnett’s test.

& Ad hoc comparisons of each treatment mean to each other
treatment mean using a multiple comparison procedure,
e.g., LSD, HSD, etc. It is most desirable to use a test
statistic that adjusts for multiple non-independent compar-
isons, such as Tukey’s test (HSD) or a Bonferroni correc-
tion, or a simulation approach.

For fixed effects of quantitative factors, e.g., “rate”- or
“time”-related factors, scatter graphs or line graphs are gener-
ally the most informative method of presentation, accompa-
nied by some type of regression analysis. Presentation of re-
sults for quantitative factors can be effectively accomplished
in a tabular or bar graph form if the number of levels is very
small, e.g., two or three, and if accompanied by appropriate
statistical analysis to clarify the nature of the response. The
legend of the table or figure needs to mention the number of

Fig. 7 Hierarchical diagram of SAS procedures (in italics) that are
appropriate for various model assumptions and restrictions involving
fixed vs. mixed or random effects at the highest level, normal vs. non-
normal data at the second level, and independent vs. correlated errors at
the third level. The diagram shows that generalized linear mixed models
procedures that can handle the most complex cases are also the most
generalizable to a wide range of model assumptions and restrictions, as
well as hypothesis testing scenarios
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replicates used to calculate the standard deviation. Two excel-
lent review papers clarify many of these general principles—
despite the age of these papers these are timeless principles
[34, 35].

Analysis of Large and Complex Data Sets

Proper statistical analysis is critical, especially when dealing
with large and complex data sets that required substantial ef-
fort and money to generate. In most of these instances, statis-
ticians will be involved in the design of the experiments and
the analysis of the data, and BioEnergy Research encourages
the participation of the statistician(s) in the writing of the man-
uscript, and hence their inclusion as co-author(s).

This section describes the recently developed analysis
methods that are especially useful for large, complex, or
non-normal data sets. Generalized linear mixed models
(GzLMM) approaches afford the user numerous options to
model a wide range of distributions commonly found in bio-
logical data (e.g., binary, binomial, negative binomial, expo-
nential, Poisson, etc.). The GzLMM family provides re-
searchers with both ANOVA and regression frameworks for
specific distributions without the need to alter the data by
transformation to meet assumptions of normality [36]. In ad-
dition, both linear mixed models and GzLMM offer the user a
wide range of both spatial and temporal autocorrelation struc-
tures, as well as the opportunity to model variance heteroge-
neity at several levels within the experiment. Non-parametric
procedures, such as the Kruskal–Wallis orMann–Whitney test
are also valid options for simple experimental designs with
relatively simple hypothesis tests, and situations in which their
specific assumptions can be met, e.g., symmetry for Kruskal–
Wallis and similar distributions for Mann–Whitney.

Using the Statistical Analysis System [36] as a model,
Fig. 7 shows eight different software procedures that are ap-
propriate for specific statistical analysis situations involving
fixed vs. mixed or random effects, normal vs. non-normal
data, and independent vs. correlated errors. Proc REG is strict-
ly a regression-based method that is appropriate in only a very
limited set of circumstances. Proc GLM, Proc MIXED, Proc
GENMOD, and Proc GLIMMIX are all ANOVA-based
methods that are designed to solve various problems and
failed assumptions within the data, with Proc GLIMMIX hav-
ing the greatest flexibility and problem-solving power. Proc
CATMOD and Proc LOGISTIC are methods to be used on
categorical data. Proc NLMIXED is a generalizedmixedmod-
el approach to be used in non-linear modeling of data. Of
course, most of these procedures are offered by several other
statistical packages and we do not promote SAS over any of
these; we simply use SAS as the model to illustrate this gen-
eral principle.

In the more modern of the above methods, models are
selected based on Akaike’s or Bayesian Information Criteria,

as opposed to classical F tests or t tests in ANOVA, REG, or
GLM procedures. One of these criteria is used to choose
models with the appropriate number of parameters, all neces-
sary error terms or random effects, and the appropriate
variance/covariance structures.

Summary and Conclusions

In this paper, we have described the general principles for
proper replication across a wide array of bioenergy research
topics and disciplines. This paper is intended to serve as the
foundation for editorial policy regarding scale and form of
replication for future studies to be published in BioEnergy
Research. While there is flexibility in form and degree of
replication for most experiments, the general principles
established in this paper include the following points.

& The most important scale for replication is at the individ-
ual treatment level. Treatments should be repeated in mul-
tiple and independent experimental units.

& Additional levels of replication can be applied to an ex-
periment at higher scales, lower scales, or both.

& A higher scale of replication can serve to replace
replication at the scale of the individual treatment,
if the experiment is properly designed to ensure that
each treatment is applied to multiple and indepen-
dent experimental units.

& Authors should adhere to the following guideline in pre-
paring information for materials and methods: provide
sufficient information so that a colleague with similar
skills could repeat your experiment and analysis. This in-
cludes providing certain minimal information regarding
the experimental material, the treatments, the experimen-
tal design, and the statistical data analysis.
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