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Diversity of Nitrogen-Fixing Bacteria Associated with Switchgrass in
the Native Tallgrass Prairie of Northern Oklahoma

Rahul A. Bahulikar, Ivone Torres-Jerez, Eric Worley, Kelly Craven, Michael K. Udvardi

Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, USA

Switchgrass (Panicum virgatum L.) is a perennial C4 grass native to North America that is being developed as a feedstock for cel-
lulosic ethanol production. Industrial nitrogen fertilizers enhance switchgrass biomass production but add to production and
environmental costs. A potential sustainable alternative source of nitrogen is biological nitrogen fixation. As a step in this direc-
tion, we studied the diversity of nitrogen-fixing bacteria (NFB) associated with native switchgrass plants from the tallgrass prai-
rie of northern Oklahoma (United States), using a culture-independent approach. DNA sequences from the nitrogenase struc-
tural gene, nifH, revealed over 20 putative diazotrophs from the alpha-, beta-, delta-, and gammaproteobacteria and the
firmicutes associated with roots and shoots of switchgrass. Alphaproteobacteria, especially rhizobia, predominated. Sequences
derived from nifH RNA indicated expression of this gene in several bacteria of the alpha-, beta-, delta-, and gammaproteobacte-
rial groups associated with roots. Prominent among these were Rhizobium and Methylobacterium species of the alphaproteobac-
teria, Burkholderia and Azoarcus species of the betaproteobacteria, and Desulfuromonas and Geobacter species of the
deltaproteobacteria.

Switchgrass (Panicum virgatum L.) is a warm-season C4 grass
that is native to the tallgrass prairies of North America, and it

has been targeted for development as a bioenergy crop by the U.S.
Department of Energy (1). Its features, such as perenniality, ad-
aptation to diverse edaphic conditions, wide geographic distribu-
tion, growth on acidic soils, and mutualistic associations with soil
microorganisms, make it an attractive choice for cultivation on
marginal lands that are poorly suited to food crops (2–4).

Although switchgrass is thrifty in its use of N to produce bio-
mass compared to other crops (2, 5), addition of N fertilizer en-
hances growth and generally is needed to maintain switchgrass
productivity over multiple years (6, 7). However, application of N
fertilizer increases production costs, reduces the energy balance of
biomass production, and can be harmful to the environment
through release of N-containing gases to the atmosphere and sol-
uble N compounds to groundwater, which can lead to eutrophi-
cation (8). Biological nitrogen fixation has the potential to reduce
the use and negative consequences of industrial N fertilizer and to
put the nascent biofuels industry on a more sustainable path. Bi-
ological nitrogen fixation has been demonstrated in association
with switchgrass (9, 10). However, to the best of our knowledge,
the bacteria responsible for such activity are unknown, as is the
diversity of potentially nitrogen-fixing bacteria associated with
this species.

Nitrogen-fixing bacteria (NFB) associate with many grasses,
including maize (11–13), rice (14), sugarcane (15), and Miscant-
hus species (16). These diazotrophs are endophytic, living between
plant cells, and/or epiphytic, living on the surface of plant organs,
and most do not elicit plant defense responses (17). However, the
extent to which diazotrophic bacteria contribute to the N econ-
omy of grasses remains unclear.

Most soil microbes remain uncultured and largely uncharac-
terized, in part because appropriate culture conditions have not
been found. Therefore, we used a culture-independent approach,
based on PCR amplification and sequencing of nifH DNA (18, 19),
to assess the diversity of potential diazotrophs associated with
switchgrass. nifH has been used by many researchers to study total

and functional diversity of bacteria in various environments (15,
20–22), and phylogenies based on nifH and 16S rRNA generally
are congruent (23, 24). Additionally, PCR amplification of cDNA
derived from nifH RNA was used to determine whether any bac-
teria express this gene in association with switchgrass. The results
of this work indicate diverse and abundant NFB associated with
switchgrass and active expression of the nifH nitrogen fixation
gene in some of these bacteria.

MATERIALS AND METHODS
Plant material. Switchgrass (Panicum virgatum L.) plants were harvested
from separate locations in the tallgrass prairie (Oklahoma, USA) in April
and July 2010. GPS coordinates of the sampling sites were between
36°38=38�N to 36°48=48�N latitude and 96°10=26�W to 96°26=23�W lon-
gitude (see Table S1 in the supplemental material). Plants were uprooted,
and loosely attached soil was removed from roots by vigorous shaking.
Roots and shoots were rinsed with tap water at the collection site to re-
move soil particles and were transferred to the laboratory on dry ice.
Samples were stored at �80°C within 24 h of collection.

Nucleic acid extraction. Shoot and root pieces were pulverized in
liquid nitrogen using a cryo-mill (6870 freezer mill; SPEX SamplePrep,
USA). DNA was extracted from 0.5 g pulverized tissue using a modified
cetyltrimethylammonium bromide (CTAB) method (25). Total RNA was
extracted from 100 mg of pulverized tissue using an RNeasy plant minikit
(Qiagen, USA) by following the manufacturer’s instructions. Genomic
DNA was removed by DNaseI treatment (Turbo DNase; Ambion, USA),
followed by column purification of RNA using an RNeasy MinElute
cleanup kit (Qiagen, USA). RNA was quantified using a Nanodrop spec-
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trophotometer (ND-100; NanoDrop Technologies, Willington, DE) and
evaluated for purity with a Bioanalyzer 2100 (Agilent, Santa Clara, CA,
USA). Checks for genomic DNA contamination of RNA were performed
using nifH primers (mentioned below), 16S rRNA gene 27F (26), and
1492R primers (27).

PCR conditions for nifH amplification. A nested-PCR approach was
used to amplify nifH gene fragments as described previously (28). Two
degenerate primers, nifH 3 (5=-ATR TTR TTN GCN GCR TA-3=) and
nifH 4 (5=-TTY TAY GGN AAR GGN GG-3=), were used to amplify an
�460-bp region. One microliter of the resultant PCR product was used as
the template to amplify an �362-bp region using degenerate primers nifH
1 (5=-TGY GAY CCN AAR GCN GA-3=) and nifH 2 (5=-AND GCC ATC
ATY TCN CC-3=). All sample manipulations were performed under lam-
inar flow to avoid airborne contamination. PCRs were initiated with de-
naturation at 95°C (5 min); 30 cycles of denaturation at 95°C (30 s),
annealing at 55°C (1 min), and extension at 72°C (1 min); and a final
extension at 72°C (10 min). Reverse transcription-PCR (RT-PCR) was
done as described by Zani et al. (28), and cDNA synthesis was carried out
using 1 �g of DNase-treated total RNA with primer nifH 3 and Super-
Script III reverse transcriptase according to the manufacturer’s instruc-
tions (Invitrogen, USA). Nested PCR was performed with the nifH 3 and
nifH 4 primer combination, followed by the nifH 1 and nifH 2 combina-
tion. No-RT (i.e., no cDNA) controls were included for all RNA samples
analyzed to check for genomic DNA contamination.

nifH amplification products were separated by electrophoresis
through 2.0% agarose gels and visualized with Sybr green. Amplified frag-
ments were excised from gels and purified using a Promega gel extraction
kit (Promega, USA) and then cloned into the pGEM-T Easy vector (Pro-
mega, USA). Bacterial transformation was done using Z-competent cells
(Zymo Research, USA). Forty-eight white colonies per sample were
picked, and colonies were grown in 96-well plates.

nifH sequencing and phylogenetic analysis. Recombinant pGEM-T
plasmids containing nifH fragments were sequenced using an ABI Prism
3100 Genetic Analyzer (Applied Biosystems, USA). DNA sequences were
edited to remove vector sequences using GeneDoc (29), and identical
sequences were grouped into operational taxonomic units (OTUs), using
the FastGroupII tool (30) with the method of percent sequence identity
with gaps of 100% identity. DNA sequences were translated into protein
amino acid sequences using BioEdit software (31). Protein sequences were
subjected to BLAST analysis (32) against GenBank, and nifH protein se-
quences from cultivated bacteria that showed the closest match to query
sequences were included for phylogenetic analysis. OTUs representing 4
or more sequences were subjected to phylogenetic analysis. The MAFFT
web interface was used for alignment (33).

Phylogenetic trees were constructed using MEGA (ver. 5.0) with the max-
imum likelihood method based on a Poisson correction model (34). The
bootstrap consensus tree was produced from 1,000 replicates, and Methano-
thermococcus okinawensis NifH (accession no. NZ_AEDA01000001) was used
as an outgroup.

Data analysis. nifH sequences from root DNA, root RNA (cDNA),
and shoot DNA of individual plants were subjected to rarefaction analysis,
and Shannon-Weaver and Simpson diversity indices were calculated us-
ing PAST statistical software (35). The percentage of total sequence diver-
sity captured in sequenced clones of each organ for each plant was esti-
mated by Good’s method using the formula [1 � (n/N)] � 100, where n is
the number of clones appearing only once in a library and N is the total
number of clones sequenced (36). Venn diagrams were drawn using Excel
(Microsoft).

Accession numbers. Representative sequences from each OTU were
deposited in GenBank under accession numbers KF541058 to KF541088,
and the protein accession numbers are AIE38835 to AIE38865.

RESULTS
Diversity of nifH sequences. A total of 28 clone libraries were
produced from nifH PCR amplicons derived from DNA of roots

and shoots separately from 10 independent plants and RNA from
roots of 8 of these plants. Up to 48 clones were sequenced from
each library, yielding a total of 1,087 high-quality nifH sequences.
Based upon shared sequence identity, these sequences formed 52
distinct OTUs, which were tentatively associated with known spe-
cies based on the highest sequence similarity (Table 1).

Estimations of species coverage, diversity, and dominance
were calculated for each library separately (Table 2). Good’s cov-
erage averaged over 90% for root DNA libraries, over 95% for root
RNA, and over 98% for shoot DNA libraries, indicating that the
majority of nifH-containing and nifH-expressing bacteria associ-
ated with switchgrass plants were represented in the sequences
obtained. Based on the number of OTUs represented by sequences
in each library, bacteria containing nifH were significantly more
diverse in roots than in shoots (P � 0.0145) of switchgrass plants,
with an average of approximately 10 and 6 OTUs per plant, re-
spectively (Table 2). About one-third of nifH-containing bacteria
were found to express the gene in association with switchgrass
roots (Table 1). Simpson’s and Shannon’s indices supported these
conclusions about nifH bacterial diversity in the different sample
types (Table 2). Overall dominance of one or a few OTUs was
highest in root RNA, followed by shoot DNA and root DNA (Ta-
ble 2). In three of the eight plants analyzed for RNA, only a single
OTU was represented in the nifH sequences (i.e., dominance � 1).

Seven OTUs were common to all sample types, while 22 were
specific to roots (DNA plus RNA), and 10 OTUs were specific to
shoots (Fig. 1).

OTUs were matched to the most closely related known nitro-
gen-fixing species based on nifH sequence comparisons using the
BLAST algorithm. A total of 23 OTUs representing 704 sequences
appeared to derive from alphaproteobacteria, 9 OTUs (177 se-
quences) from deltaproteobacteria, 8 from betaproteobacteria
(146 sequences), 6 from gammaproteobacteria (37 sequences), 2
from cyanobacteria (3 sequences), and 1 OTU each from Firmic-
utes (15 sequences) and Verrucomicrobia (3 sequences) (Table 1
and Fig. 2).

nifH diversity and expression in roots. Among the nifH se-
quences derived from root-associated DNA, more than 65% orig-
inated from alphaproteobacteria, 15% from betaproteobacteria,
and 12% from deltaproteobacteria. The largest number of se-
quences in a single OTU (OTU-8; 81 sequences) were most similar
(95 to 99% identity) to nifH from Sphingomonas azotifigens (ac-
cession no. BAE71134). Approximately one-third of all sequences
(33%) were affiliated with various Bradyrhizobium species and
distributed into 3 OTUs (1, 2, and 10) (Table 1 and Fig. 3). At the
individual plant level, OTUs 1, 2, 4, 5, 8, and 10 (all alphaproteo-
bacteria) were present in 7 to 8 out of 10 plants (see Table S2 in the
supplemental material).

Among the nifH sequences derived from root-associated RNA,
58% matched sequences from alphaproteobacteria, 20% from be-
taproteobacteria, and 19% from deltaproteobacteria (Table 1 and
Fig. 2). Over one-third of transcribed nifH sequences (88) fell into
OTU-14, which is affiliated with Rhizobium helanshanense
(ADP37388; 95 to 100% identity) or Sinorhizobium meliloti
(CCH40450), while 38 sequences fell into OTU-12, affiliated with
Methylobacterium nodulans (AAQ82902). Five OTUs contained
sequences derived from root RNA but not root DNA (OTU-11,
affiliated with Rubrivivax gelatinosus; OTU-13, affiliated with
Amorphomonas oryzae; OTU-14, affiliated with Rhizobium helan-
shanense/S. meliloti; OTU-21, affiliated with Desulfuromonas ace-
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toxidans; and OTU-27, affiliated with Bradyrhizobium japonicum),
indicating measurable nifH gene expression in several apparently
low-abundance root bacteria (Table 1 and Fig. 3). Overall, 3 OTUs
contained sequences derived from root DNA and RNA, 14
OTUs contained sequences from root DNA but not RNA, and 5

OTUs contained sequences from root RNA but not DNA (Table
1 and Fig. 1). At the individual plant level, OTU-4 contained nifH
RNA sequences from the most plants (only 4 of 8 plants), indicat-
ing that no single nifH-expressing species was common to all
switchgrass plants (see Table S2 in the supplemental material).

TABLE 1 Phylotypes of nifH associated with switchgrass

Phylotype Closest relative Accession no.
Similarity
(%)

No. of sequences per sample type

Taxonomic
description

Root
Shoot
DNA TotalDNA RNA

OTU-01 Bradyrhizobium sp. strain BTAi 1 BAC07281 98–100 35 0 15 50 Alphaproteobacteria
OTU-02 Bradyrhizobium sp. strain MAFF 210318 BAC07283 94–98 46 2 71 119 Alphaproteobacteria
OTU-03 Mesorhizobium loti BAF95636 100 0 0 4 4 Alphaproteobacteria
OTU-04 Methylocystis sp. strain LW2 AAK97418 97–98 24 2 8 34 Alphaproteobacteria
OTU-05 Burkholderia sp. strain WSM3937 ABX80637 93–98 58 17 1 76 Betaproteobacteria
OTU-06 Burkholderia sp. strain JPY105 AFM28513 97 7 7 3 17 Betaproteobacteria
OTU-07 Burkholderia sp. strain PTK47 AAU85620 96–100 3 0 20 23 Betaproteobacteria
OTU-08 Sphingomonas azotifigens BAE71134 95–99 81 0 55 136 Alphaproteobacteria
OTU-09 Novosphingobium sp. strain Rr 2-17 ZP_10360790 98–99 29 0 0 29 Alphaproteobacteria
OTU-10 Bradyrhizobium japonicum ACT67985 92–98 71 0 2 73 Alphaproteobacteria
OTU-11 Rubrivivax gelatinosus BAE15985 90–94 0 5 0 5 Betaproteobacteria
OTU-12 Methylobacterium nodulans AAQ82902 94–97 6 38 4 48 Alphaproteobacteria
OTU-13 Amorphomonas oryzae BAF48338 96 0 1 7 8 Alphaproteobacteria
OTU-14 Rhizobium helanshanense ADP37388 95–100 0 88 40 128 Alphaproteobacteria
OTU-15 Sinorhizobium sp. strain SCAU224 AFH96094 98 3 0 1 4 Alphaproteobacteria
OTU-16 Azospirillum lipoferum ABG88868 96–100 3 2 22 27 Alphaproteobacteria
OTU-17 Methylomonas sp. strain MG30 CCH22595 93 5 0 0 5 Gammaproteobacteria
OTU-18 Pseudomonas stutzeri CAC03734 97 7 4 0 11 Gammaproteobacteria
OTU-19 Klebsiella sp. strain AL060224_04 ACM68399 99–100 0 0 18 18 Gammaproteobacteria
OTU-20 Azoarcus sp. strain BH72 YP_932042 96–98 1 21 0 22 Betaproteobacteria
OTU-21 Desulfuromonas acetoxidans ZP_01312343 94–99 0 32 31 63 Deltaproteobacteria
OTU-22 Anaeromyxobacter sp. strain Fw109-5 YP_001380211 93–97 12 0 15 27 Deltaproteobacteria
OTU-23 Geobacter uraniireducens Rf4 YP_001229952 92 1 0 5 6 Deltaproteobacteria
OTU-24 Geobacter sp. strain M21 YP_003021955 93–96 4 3 0 7 Deltaproteobacteria
OTU-25 Geobacter sp. strain M21 YP_003021955 97–98 35 15 5 55 Deltaproteobacteria
OTU-26 Geobacter uraniireducens Rf4 YP_001229952 95–97 3 0 6 9 Deltaproteobacteria
OTU-27 Anaeromyxobacter sp. strain Fw109-5 YP_001380211 88–91 0 5 2 7 Deltaproteobacteria
OTU-28 Desulfotomaculum gibsoniae ZP_09101754 93–95 0 0 15 15 Firmicutes
OTU-29 Geobacter sp. strain M21 YP_003021955 89–92 13 0 0 13 Deltaproteobacteria
OTU-30 Desulfovibrio magneticus RS-1 YP_002953433 89 4 0 0 4 Deltaproteobacteria
OTU-31 Syntrophobacter fumaroxidans YP_845148 90–93 0 0 16 16 Deltaproteobacteria
OTU-32 Methylocystis sp. strain LW5 AAK97419 98 2 0 0 2 Alphaproteobacteria
OTU-33 Coraliomargarita akajimensis YP_003550022 89 1 0 1 2 Verrucomicrobia
OTU-34 Cupriavidus sp. strain pp2.75 ADM25241 92 1 0 0 1 Betaproteobacteria
OTU-35 Rhizobium sp. strain SMF 466_6 CCN27451 98 0 0 2 2 Alphaproteobacteria
OTU-36 Paenibacillus graminis BAH23271 94 0 0 2 2 Firmicutes
OTU-37 Rhizobium sp. strain SMF 466_6 CCN27451 92 0 2 0 2 Alphaproteobacteria
OTU-38 Nostoc sp. strain PCC 7120 NP_484917 99 0 0 2 2 Cyanobacteria
OTU-39 Calothrix sp. strain LEGE 06100 AGG40738 97 0 0 1 1 Cyanobacteria
OTU-40 Ectothiorhodospira haloalkaliphila ABN10975 88 1 0 0 1 Gammaproteobacteria
OTU-41 Desulfatibacillum alkenivorans YP_002430688 93 1 0 0 1 Deltaproteobacteria
OTU-42 Bradyrhizobium sp. strain cmy11 AEP33459 96 1 0 0 1 Alphaproteobacteria
OTU-43 Rhizobium sp. strain SMF 466_6 CCN27451 97 0 0 1 1 Alphaproteobacteria
OTU-44 Cupriavidus sp. strain pp2.75 ADM25241 98 1 0 0 1 Betaproteobacteria
OTU-45 Dechloromonas aromatica YP_284634 98 1 0 0 1 Betaproteobacteria
OTU-46 Ectothiorhodospira haloalkaliphila ABN10975 90 1 0 0 1 Gammaproteobacteria
OTU-47 Heliorestis baculata BAD80875 88 0 1 0 1 Firmicutes
OTU-48 Mesorhizobium tianshanense CAR57837 96 0 0 1 1 Alphaproteobacteria
OTU-49 Methylocystis echinoides AAO49390 89 1 0 0 1 Alphaproteobacteria
OTU-50 Pelobacter carbinolicus YP_006717849 93 0 0 1 1 Deltaproteobacteria
OTU-51 Geobacter bemidjiensis YP_002138883 95 1 0 0 1 Deltaproteobacteria
OTU-52 Halorhodospira halophila ABN10970 94 0 1 0 1 Gammaproteobacteria
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nifH sequences from shoot bacteria. BLAST results indicated
that 63% of sequences derived from shoot-associated DNA were
affiliated with alphaproteobacteria and 20% with deltaproteobac-
teria. Sequences affiliated with firmicutes were associated only
with shoots (OTU-28) (Fig. 2). Eighteen sequences affiliated

with gammaproteobacteria (Klebsiella species accession no.
ACM68399) were represented by OTU-19 (Table 1 and Fig. 3).
OTU-2 contained the largest number (71 sequences) of nifH se-
quences from shoots, which were affiliated with an uncultured
bacterium related to Bradyrhizobium sp. strain MAFF 210318 (94
to 98% identity). Ten OTUs were unique to shoots (OTUs 3, 19,
28, 31, 35, 36, 38, 39, 48, and 50; Fig. 1), among them sequences
affiliated with Mesorhizobium loti (OTU-3; 100% identity) and
with Syntrophobacter fumaroxidans (OTU-31; 90 to 93% identity)
(Table 1 and Fig. 3). Half or more of the plants contained nifH
DNA sequences affiliated with Bradyrhizobium sp. strain BTAi 1
(OTU-1), Burkholderia sp. strain PTK47 (OTU-7), and Sphin-
gomonas azotifigens (OTU-8). A small number of nifH sequences
from shoots were affiliated with cyanobacteria (Table 1 and
Fig. 3).

DISCUSSION

We used a culture-independent, nifH sequence-based approach to
survey the diversity of potential nitrogen-fixing bacteria associ-
ated with switchgrass. To our knowledge, this is the first study of
its kind for switchgrass, and as such it lays a foundation for future
work on the isolation and characterization of associative di-
azotrophic bacteria from switchgrass and their potential use as a
nitrogen source for this biofuel crop.

Over 1,000 nifH PCR amplicons derived from root and shoot
DNA and root RNA of 10 plants were cloned and sequenced in this
study. Roots of switchgrass plants harbored a greater diversity of
nifH-containing bacteria than did shoots (Table 2). Similar results
have been obtained for maize (37). However, only a small fraction
of root-associated nifH-containing bacteria expressed this gene

TABLE 2 nifH diversity and coverage estimates for root DNA and RNA and shoot DNA

DNA/RNA type and parameter

Value for plant no.:

AvgE-01 E-04 E-06 E-08 E-13 E-18 E-28 E-31 E-36 E-40

Root DNA
No. of taxa 11 12 14 15 8 10 5 5 9 9 9.8
No. of clones 48 48 48 44 48 46 46 44 44 48 46.4
Good’s estimator (%) 89.58 83.33 93.75 79.55 95.83 93.48 97.83 93.18 93.18 95.83 91.55
Dominance 0.201 0.237 0.133 0.137 0.248 0.158 0.306 0.717 0.185 0.170 0.249
1 � Simpson diversity index 0.799 0.763 0.867 0.863 0.752 0.842 0.694 0.283 0.815 0.829 0.750
Shannon’s diversity index 1.897 1.8 2.311 2.266 1.647 2.002 1.333 0.622 1.86 1.929 1.766
Evenness 0.606 0.50411 0.721 0.643 0.649 0.740 0.759 0.372 0.711 0.765 0.646

Root RNA
No. of taxa 5 6 3 1 1 3 1 6 3.25
No. of clones 41 31 32 33 25 19 32 34 30.87
Good’s estimator (%) 97.56 93.33 100.00 100.00 100.00 100.00 100.00 100.00 98.86
Dominance 0.327 0.611 0.639 1 1 0.424 1 0.279 0.659
1 � Simpson diversity index 0.673 0.389 0.361 0 0 0.576 0 0.721 0.340
Shannon’s diversity index 1.271 0.884 0.656 0 0 0.972 0 1.492 0.659
Evenness 0.713 0.404 0.643 1 1 0.882 1 0.741 0.798

Shoot DNA
No. of taxa 3 4 5 3 6 7 8 9 8 9 6.2
No. of clones 38 38 44 41 47 32 31 42 28 35 37.6
Good’s estimator (%) 100.00 97.37 95.45 100.00 100.00 90.63 93.55 97.62 89.29 91.43 95.53
Dominance 0.367 0.540 0.371 0.411 0.231 0.320 0.213 0.194 0.212 0.211 0.307
1 � Simpson diversity index 0.633 0.459 0.629 0.589 0.769 0.679 0.787 0.806 0.788 0.789 0.693
Shannon’s diversity index 1.043 0.872 1.155 0.967 1.579 1.437 1.769 1.874 1.753 1.827 1.428
Evenness 0.946 0.598 0.635 0.877 0.809 0.601 0.733 0.724 0.722 0.691 0.733

FIG 1 Venn diagram showing the number of shared and unique OTUs among
the three sample types (root DNA, root RNA, and shoot DNA). Numbers
indicated in the diagram are OTU identity numbers (details of each OTU are
given in Table 1).
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(Table 2). Similar results have been found in sugarcane, spruce
(15), and rice (14). Shannon’s diversity indices for nifH transcripts
associated with individual plants ranged from 0.142 to 1.245 for
sugar cane, and for one spruce tree it was 0.184 (15), similar to
what was found here for switchgrass.

Alphaproteobacteria were the main source of nifH sequences
in both roots and shoots, accounting for 62% of all DNA and
RNA sequences combined. Within this group, 58% of the se-
quences were related to nifH in bacteria from the order Rhizobiales
and were present in all sample types. More specifically, these se-
quences were affiliated with the genera Bradyrhizobium, Mesorhi-
zobium, Methylobacterium, Rhizobium, and Sinorhizobium, all of
which contain species that are known to fix nitrogen in symbioses
with legumes (38–45).

Based on the frequency of nifH recovered from DNA, Brady-
rhizobium was the dominant genus associated with switchgrass
roots and shoots, with 22% (243 sequences) of all clones distrib-
uted in 3 OTUs (Table 1). OTU-10 was closely related to Brady-
rhizobium japonicum sequences. B. japonicum is a functionally
diverse species (38), and some strains can fix nitrogen under free-
living conditions (46). Bradyrhizobium sp. strain MAFF210318,
affiliated with OTU-2, is a nonphotosynthetic bacterium that can
fix nitrogen under free-living conditions (47). Bradyrhizobium sp.
strain BTAi 1, affiliated with phylotype 1, is a photosynthetic rhi-
zobium that also can fix nitrogen under free-living conditions (8,
48). Bradyrhizobium species have been found as endophytes in rice
(49) and sugarcane (15, 50). Despite the abundance of Bradyrhi-
zobium bacteria associated with switchgrass, however, the paucity
of Bradyrhizobium-like nifH sequences derived from root RNA
suggests that these bacteria fix little or no nitrogen in association
with native switchgrass.

Evidence was obtained for nifH gene expression in a variety of
bacterial genera associated with switchgrass, including affiliates of
Rhizobium/S. meliloti (OTU-14), Methylobacterium (OTU-12),
Desulfuromonas (OTU-21), Burkholderia (OTU-5 and OTU-6),

Azoarcus (OTU-20), Geobacter (OTU-25), Bradyrhizobium
(OTU-2, OTU-24, and OTU-27), Rubrivivax (OTU-11), Pseu-
domonas (OTU-18), Methylocystis (OTU-4), Azospirillum (OTU-
16), and Amorphomonas (OTU-13), in descending order of prev-
alence based on numbers of sequenced clones. Half of these genera
belong to the alphaproteobacteria, while the remainder parti-
tioned into the beta-, gamma-, and deltaproteobacteria. Rhizobium
helanshanense/S. meliloti (ADP37388/CCH40450)-affiliated se-
quences (alphaproteobacteria) were prominent among root nifH
RNA, accounting for 36% of all root RNA-derived sequences (Ta-
ble 1). However, only one sequence was detected from root DNA,
and many (44 sequences) were identified from shoot DNA.
OTU-14 showed over 97% identity with sequences from S. meliloti
and various Rhizobium species, such as Rhizobium sp. strain CCN-
WSX0878 (accession no. AEB96238), R. yanglingense
(AFD62623), and R. undicola (AEP04095). These results indicate
active nifH gene expression in a very small population of specific
rhizobia, a conclusion that warrants confirmation in future work
designed to identify the best potential nitrogen-fixing bacteria for
switchgrass.

Practical application of nitrogen-fixing bacteria for N supply to
switchgrass will depend not only on active nitrogenase genes but
also on the ability of the plant to host a sufficiently large popula-
tion of the bacteria. Given the low number of rhizobial nifH DNA
sequences that match nifH RNA sequences from switchgrass
roots, the latter would seem to be an impediment to the develop-
ment of effective nitrogen fixation in the roots of switchgrass.

A large number of nifH clones (38 in OTU-12) derived from
root RNA were affiliated with Methylobacterium nodulans ORS
2060 (AAQ82902), another alphaproteobacteria able to form ni-
trogen-fixing nodules on legumes (51), as well as Desulfuromonas
acetoxidans (32 in OTU-21) and Azoarcus sp. strain BH72 (21 in
OTU-20). Here, nifH expression for these three bacteria out-
weighed their DNA abundance in the samples investigated.

Within the betaproteobacterial group, Burkholderia species ap-

FIG 2 Class-level composition of nifH clone libraries. Percent abundances per clone library from root RNA (242 sequences), root DNA (451 sequences), shoot
DNA (397 sequences), and overall sequences (1,060) are shown.
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peared to be the source of some nifH sequences. Burkholderia
species have been found to nodulate and fix nitrogen in mimosoid
legumes like Mimosa pigra (52), and some are known to associate
with maize and sugarcane (53, 54). Expressed nifH sequences also
affiliated with the betaproteobacterium Azoarcus sp. strain BH72

(YP_932042), which was isolated from Kallar grass and can colo-
nize rice roots and express high levels of nifH transcripts there
(55, 56).

Finally, the deltaproteobacteria nifH transcripts identified in
switchgrass roots were affiliated with Geobacter sp. strain M21 and

FIG 3 Phylogeny and composition of nifH phylotypes representing four or more sequences. OTUs from this study are represented by OTU number and the
associated protein accession number. The evolutionary history was inferred by using the maximum likelihood method based on the Poisson correction model.
The bootstrap consensus tree was inferred from 1,000 replicates. There were a total of 113 positions in the final data set, and analyses were conducted in MEGA5.
Sequences from known bacteria are indicated by name and NCBI protein accession numbers. This tree was rooted with the nifH gene from the archaeon
Methanothermococcus okinawensis.
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D. acetoxidans (ZP_01312343). Geobacter nifH transcripts have
been found previously in roots and stems of rice (22, 57).

We are aware that taxonomic inferences based on single genes,
such as nifH, can be complicated by horizontal gene transfer. For
this reason, the tentative assignments of bacterial genus and spe-
cies associated with switchgrass made here should be substanti-
ated by further work with isolated, cultured bacteria in the future.
However, an independent, 16S rRNA gene-based metagenomic
study of bacteria associated with switchgrass from the same sites in
Oklahoma, harvested at different times of year, identified 14 of the
19 genera found in the present study (S. R. Chaluvadi and J. L.
Bennetzen, personal communication).

In summary, we have identified some of the natural diversity of
diazotrophic bacteria associated with switchgrass from the Okla-
homa prairie. Evidence was presented that nifH genes of many
bacterial species from the alpha-, beta-, gamma-, and deltaproteo-
bacterial groups are expressed in switchgrass roots. Prominent
among these were Rhizobium and Methylobacterium species of the
alphaproteobacteria, Burkholderia and Azoarcus species of the be-
taproteobacteria, and Desulfuromonas and Geobacter species of
the deltaproteobacteria. This work provides a basis for future
work on the isolation, culture, and functional characterization of
nitrogen-fixing endophytes of switchgrass and their possible use
as nitrogen sources for cultivated switchgrass.
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