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ABBREVIATIONS: 

ADF, actin depolymerizing factor; BCA, bicinchoninic acid assay; FDR, false discovery 

rate; FASP, filter-aided sample preparation; KOG, eukaryotic clusters of orthologous 

groups; LPI, leaf plastichronic index; LTQ, linear ion trap mass spectrometer; MudPIT, 

multidimensional protein identification technology; nSpC, normalized spectra counts; 

2PG, 2-phosphoglycolate; 3PG, 3-phosphoglycerate; PR, photorespiration; PV, 

prevalence value; RP, reversed phase; RuBisCO, ribulose-1, 5-bisphosphate 

carboxylase/oxygenase; SCX, strong cation exchange; 2D-LC-MS/MS, two-

dimensional-liquid chromatography-tandem mass spectrometry;  UGPase, UDP-glucose 

pyrophosphorylase; UGDH, UDP-glucose dehydrogenase 

ABSTRACT 

High-performance mass spectrometry (MS)-based proteomics enabled the construction 

of a detailed proteome atlas for Populus, a woody perennial plant model organism. 

Optimization of experimental procedures and implementation of current state-of-the-art 

instrumentation afforded the most detailed look into the predicted proteome space of 

Populus, offering varying proteome perspectives: 1) network-wide, 2) pathway-specific, 

and 3) protein-level viewpoints. Together, enhanced protein retrieval through a 

detergent-based lysis approach and maximized peptide sampling via the dual-pressure 

linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 

63,056 tryptic peptides. The technological advancements, specifically spectral-

acquisition and sequencing speed, afforded the deepest look into the Populus

proteome, with peptide abundances spanning 6 orders of magnitude and mapping to 
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~25% of the predicted proteome space. In total, tryptic peptides mapped to 13,574 

protein assignments across four organ-types: mature (fully expanded, leaf plastichronic 

index (LPI) 10-12) leaf, young (juvenile, LPI 4-6) leaf, root, and stem. To resolve protein 

ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby 

reducing the protein assignments into 7,538 protein groups. In addition, this large-scale 

data set features the first systems-wide survey of protein expression across different 

Populus organs. As a demonstration of the precision and comprehensiveness of the 

semi-quantitative analysis, we were able to contrast two stages of leaf development, 

mature versus young leaf. Statistical comparison through ANOVA analysis revealed 

1,432 protein groups that exhibited statistically significant (p≤0.01) differences in protein 

abundance. Experimental validation of the metabolic circuitry expected in mature leaf 

(characterized by photosynthesis and carbon fixation) compared to young leaf 

(characterized by rapid growth and moderate photosynthetic activities) strongly testifies 

to the credibility of the approach. Instead of quantitatively comparing a few proteins, a 

systems view of all the changes associated with a given cellular perturbation could be

made. 

1. INTRODUCTION

Mass spectrometry (MS)-based proteomics has experienced tremendous growth in 

recent years, leading to the establishment of numerous protocols, platforms, and 

workflows for the characterization of protein expression at the genome level1. While 

these advancements have facilitated comprehensive proteomic investigations of simple 

bacterial isolates and microbial communities, the application of MS-based proteomics 

for plants and other higher eukaryotes remains underdeveloped. Recently, large-scale 
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proteomic studies have been directed at characterization of Populus, a woody perennial 

model organism. With the recent release and subsequent curation of the P. trichocarpa

genome2, these large-scale MS-based proteomic investigations offer the potential to 

introduce new biological insights into woody perennial plant biology3,4,5. For example, 

we have recently demonstrated the ability to measure ~17% of the Populus proteome 

by coupling multi-dimensional liquid chromatography (MudPIT) with nano-electrospray 

tandem mass spectrometry (2D-LC-MS/MS)6. Relative to the two-dimensional gel-based 

approaches7, MudPIT provides enhanced separation and when used in conjunction with 

MS/MS, surpasses the throughput and number of identifiable proteins detected in 

complex mixtures8. Although we have demonstrated the general effectiveness of this 

approach, the identification and quantitation of the proteins expressed in a plant cell or 

tissue are still notoriously complicated by a number of factors, including the size and 

complexity of plant genomes, abundance of protein variants, as well as the dynamic 

range of protein identification. To overcome these challenges, improvements are 

needed in sample preparation, MS instrumentation, and data interpretation. 

The architecture of plant cell walls provides resistance to chemical and biological 

degradation, thus requiring mechanical and detergent-based lysis for optimal proteome 

analysis. However, this criterion presents a major challenge for plant proteomic 

research using electrospray mass spectrometry, as detergent-containing solutions can 

impede enzymatic digestion and cause significant analyte suppression9. Therefore, 

most plant proteomic studies using the ‘MudPIT’ strategy apply mechanical disruption in 

conjunction with a detergent-free preparation method10. Typically, strong chaotropic 
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agents such as urea and guanidine hydrochloride are used for the extraction, 

denaturation, and digestion of proteins. In a recent study, Mann et al. (2009) introduced 

a filter-aided sample preparation (FASP) method that utilizes and effectively removes 

sodium dodecyl sulfate (SDS) prior to enzymatic digestion and electrospray analysis11.

This study demonstrated enhanced retrieval of peptides from biological materials,

yielding a more accurate representation of the proteome. We developed a similar 

experimental approach for extraction of proteins from plant tissue in order to obtain a 

more comprehensive, unbiased proteome characterization well beyond that achievable 

with currently available methods. Similar to the FASP method, we demonstrate the 

power of SDS for proteomic sample preparation, not only in its ability to more-

thoroughly lyse cells, but also its ability to better solubilize both hydrophilic and 

hydrophobic proteins. This powerful attribute gives proteolytic enzymes maximum 

opportunity to generate peptides specific to their cleavage potential so that at least a 

few representative peptides can be obtained for proteins that would have otherwise 

been discarded or lost due to insolubility, e.g., membrane-bound proteins. Rather than 

performing a buffer exchange with urea, depletion of SDS is achieved by precipitating 

proteins out of solution using trichloroacetic acid.  

Characterization of protein expression in plants is further complicated by the 

heterogeneous mixture of various cell types, each with a unique proteome signature 

and individualized response to environmental chemical or physical signals. This 

inherent complexity of plant proteomes and the large dynamic range in protein 

abundance overwhelms current analytical platforms12. Moreover, biochemical regulatory 
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networks in plants are more elaborate and dynamic than in microbial species; 

consequently, many biological components are left undiscovered, including modified 

peptides and low-abundance proteins13,14,15. Recent developments in ion-trap MS 

instrumentation, namely the dual-pressure linear ion trap mass spectrometer (LTQ 

Velos), have demonstrated improved ability to comprehensively characterize complex 

proteomics samples16. Featuring a newly designed ion source and a two-chamber ion 

trap mass analyzer, the LTQ Velos achieves greater dynamic range, sensitivity, and

speed of spectral acquisition when applied to complex proteomic samples. 

Cumulatively, the technological advancements afford substantial increases in the 

detection and identification of both proteins and unique peptides when compared to 

existing state-of-the-art technologies. Therefore, to satisfy the need for depth of 

proteome characterization in plants, we apply the newly developed LTQ Velos for mass 

spectrometry measurements of the Populus proteome. 

For most terrestrial plants, life begins and ends in the same physical location. For 

woody perennial plants, this sedentary lifestyle may last thousands of years. One 

consequence of this lifestyle is that each plant typically experiences dramatic changes 

in its ambient environment throughout its lifetime and, at any given time, equilibrium 

between endogenous growth processes and exogenous constraints exerted by the 

environment must be tightly controlled. To survive under varying environmental 

conditions, temporal plastic responses evoke patterns of protein expression that 

progressively influence morphological, anatomical and functional traits of three principal 

organs -- leaf, root and stem. Collectively and individually, these organs operate to 
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perceive and respond to periodic and chronic environment conditions. Currently, a 

comprehensive understanding of the spatial variation in protein expression patterns 

across the organ types is lacking for woody perennial plants, where most large-scale 

proteome analyses with Populus were performed on isolated organs, tissues, 

organelles, or subcellular structures. For this reason, we combined the state-of-the-art 

LTQ-Velos platform with the SDS/TCA sample preparation methodology to generate a

high-coverage proteome atlas of the principal organ types from Populus.

2. EXPERIMENTAL PROCEDURES 

2.1 Plant Material. The Populus tremula x alba clone, ‘717’, was grown under standard 

greenhouse conditions outlined in Kalluri et al. (2009). From these trees, mature fully 

expanded leaf including the petiole and midrib (leaf plastichronic index (LPI) 10-12) and 

young leaf including the petiole and midrib (LPI 4-6) samples, fine roots less than 2 mm 

in diameter and young photosynthetically active stem segments less than 5 mm in 

diameter were collected, immediately frozen in liquid nitrogen and stored at -80°C until 

use. Harvesting tissue samples from 6 month old trees afforded little biomass and thus 

confined the experimental design to only a single biological replicate per organ type. To

reduce the effects of biological variation, tissues across 6 individual trees were pooled 

together for each organ type. 

2.2 Protein Extraction and Quantification. Leaf, root and stem tissues were ground 

under liquid nitrogen using a mortar and pestle. For each organ-type, a 1.5 g sample of 

ground tissue was suspended in SDS lysis buffer (4% SDS in 100 mM of Tris-HCl), 

boiled for 5 min, sonically disrupted (40% amplitude, 10 s pulse with 10 s rest, 2 min 
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total pulse time), and boiled for an additional 5 min. Crude protein extract was pre-

cleared via centrifugation at 4500 x g for 10 min, quantified by BCA assay (Pierce 

Biotechnology), and reduced with 25 mM dithiothreitol (DTT). Three milligrams of crude 

protein extract were then precipitated by trichloroacetic acid (TCA), pelleted by 

centrifugation, and washed with ice-cold acetone to remove lipids and excess SDS as 

previously described17.

2.3 Protein Digestion. As previously described, pelleted proteins were then 

resuspended in 250 µL of 8 M urea, 100 mM Tris-HCl, pH 8.0 (denaturant) using sonic 

disruption to fully solubilize the protein pellet and incubated at room temperature for 30 

min17. Denatured proteins were reduced with DTT (5 mM) and cysteines were blocked 

with iodoacetamide (20 mM) to prevent reformation of disulfide linkages. Samples were 

digested via two aliquots of sequencing-grade trypsin (Promega, 1:75 [w/w]) at two 

different sample dilutions, 4 M urea (overnight) and 2 M urea (4 hr). Following digestion, 

samples were adjusted to 200 mM NaCl, 0.1% formic acid and filtered through a 10 kDa 

cutoff spin column filter (Vivaspin 2, GE Health) to remove underdigested proteins. The 

peptide-enriched flow through was then quantified by BCA assay, aliquoted, and stored 

at −80°C until analysis. 

2.4 LC-MS/MS. Peptide analysis was performed using online two-dimensional liquid 

chromatography interfaced with a linear ion trap mass spectrometer (LTQ Velos by 

Thermo Scientific). Peptides from each of the 4 organ-types were analyzed over 5-6

technical replicates per sample for a total of 23 MS runs. For each sample, 100 µg of 
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peptides were bomb-loaded onto a biphasic MudPIT back column packed with ~5 cm 

strong cation exchange (SCX) resin for charge-based separation of peptides followed

by ~3 cm C18 reversed phase (RP) for online desalting (Luna and Aqua respectively, 

Phenomenex). Each peptide-loaded column was first washed off-line to remove residual 

urea and NaCl and then placed in-line with an in-house pulled nanospray emitter (100 

micron ID) packed with 15 cm of C18 RP material and analyzed via 24-hr MudPIT 2D-

LC-MS/MS as previously described6. Data-dependent acquisition of tandem mass 

spectra employed the following parameters: collision-activated dissociation (35% 

energy) of 10 parent ions (MS/MS, 2 µscans) following every full scan (2 µscans) with a 

3 m/z isolation width, and a dynamic exclusion repeat of 1 with duration of 60 second 

(XCalibur version 2.1).

2.5 Database Searching and Peptide Identification. Experimental MS/MS spectra 

were compared to theoretical tryptic peptide sequences generated from a FASTA 

database containing (1) the full protein complement of P. trichocarpa (v2.2, released in 

2011, available at http://www.phytozome.net/cgi-bin/gbrowse/poplar/, containing 45,778 

proteins), (2) mitochondria and chloroplast proteins2, and (3) common contaminant 

proteins (i.e., bovine trypsin and human keratin). A decoy database, consisting of the 

reversed sequences of the target database, was appended in order to discern the false-

discovery rate (FDR) at the peptide level. Using this protein database of 93,330 entries,

peptide fragmentation spectra (MS/MS) were assigned peptide sequences with the 

SEQUEST algorithm v.2718, employing the following parameters: ≤ 4 missed tryptic 

cleavages allowed, a parent ion mass tolerance of 3.0 m/z units, a fragment mass 
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tolerance of 0.5 m/z units, and a static modification on cysteine (iodoacetamide; +57 

Da). Resulting peptide identifications from SEQUEST were filtered and organized into 

protein identifications using DTASelect v.1.919 with each peptide identification requiring 

XCorr values of at least 1.8 (+1), 2.5 (+2), or 3.5 (+3) and a DeltaCN ≥ 0.08. 

2.6 Protein Inference / Normalization for Semi-quantitative Analysis. In order to 

deal with the redundancy associated with the Populus genome, all proteins in the 

FASTA database (includes P. trichocarpa v2.2, mitochondria, and chloroplast predicted 

proteomes) were grouped by sequence similarity (≥ 90%) using the UCLUST 

component of the USEARCH v. 5.0 software platform20. As described by Abraham et 

al., grouping proteins by this very conservative level of sequence identity serves to 

maintain biologically-relevant peptide information that would have otherwise been lost 

due to proteomic redundancy6. Once identified proteins were consolidated into the 

predefined protein groups, spectra counts were balanced and converted to normalized 

spectra counts (nSpC)17, which are derived from normalized spectral abundance 

factors21, values that are commonly used for semi-quantitative proteomic analyses. To 

assess differences between organ types, only those proteins with substantive nSpC, as 

determined by prevalence value (PV)22, were carried on to subsequent analyses. 

Briefly, each protein identified is given a PV, which is determined by averaging the 

nSpC values across all samples. Next, PVs were plotted as a histogram to graphically 

capture the distribution of assigned spectra, such that one could assess the cumulative 

spectra assigned at varying PV cut-offs. Through iterative removal of proteins below 
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each PV cut-off, only proteins considered to be highly representative or reproducible 

remained. Using this approach, an ideal PV cut-off of 2.0 was determined. 

2.7 Hierarchical Clustering, ANOVA, and Pathway Analysis. Protein groups passing 

the PV filter were log2-transformed to obtain a normal distribution of data that could be 

subsequently analyzed by the hierarchical clustering and ANOVA analysis packages of 

JMP Genomics v.4.1 (SAS Institute). For hierarchical clustering, transformed data 

across all organ types were compared via the Fast Ward clustering algorithm using the 

STD option to standardize protein abundance values across all organs on a protein-by-

protein basis, which essentially converts abundance values to standard deviations 

above or below the row mean. Proteins exhibiting similar trends across all organs were 

grouped into clusters and visualized by heat map to ascertain organ-specific protein 

representation.  

Though difficult to assess semi-quantitative differences in protein abundance across all 

organs, due in part to the distinct proteomes expressed by spatially distant organs, a 

semi-quantitative comparison between a single organ at two different developmental 

stages is perhaps a more robust and intuitive measurement. As follows, log2-

transformed nSpC values collected across both young and mature leaves were 

analyzed for statistically significant differences in protein abundance using JMP 

Genomics’ ANOVA feature. Protein groups exhibiting significant (p≤0.01) abundance 

differences were identified and represented in both tabular and graphical format, the 

latter of which utilized KEGG pathway mapping software iPATH2.023 to visualize 
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differences between both developmental stages on a more global, metabolic pathway-

centric level. Proteins exhibiting increased abundance in mature leaf were represented 

as red edges on the KEGG maps while those increased in young leaf were represented 

as green edges. Edges were further color-coded based on fold change, with the color 

intensity correlated to those proteins with larger fold changes. 

3. RESULTS AND DISCUSSION 

3.1 Global Protein Identification in Populus

A protein sample derived from plant tissue is likely to consist of over 10,000 different 

protein species present at any time and thus the complexity far exceeds an analogous 

sample derived from any prokaryotic species. The first step in accurate and deep 

proteome characterization in these mixtures must consist of an optimal cell lysis and

protein solubilization strategy. For plant tissue, we devised a shotgun proteomics 

workflow that combines the advantages of extensive proteome solubilization in SDS 

with the benefits of in-solution digestion.  

In an effort to generate a high-density proteomic atlas that accurately captures the 

predicted Populus proteome, individual proteome maps of the four major organ-types 

were integrated. In total, we performed multiple (5-6 each) LTQ Velos ion-trap mass 

spectrometry measurements on proteome extracts from root, stem and both mature 

(fully expanded, leaf plastichronic index (LPI) 10-12) and young leaf (LPI 4-6) samples. 

The resulting tandem mass spectra (MS/MS) were searched (SEQUEST) against the 

most recent protein database of P. trichocarpa, containing 45,778 predicted proteins 

and supplemented with the chloroplast and mitochondrial proteomes. 
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In plants, the task of assigning identified peptides to their respective proteins is not

trivial. Due to the peptide-centric nature of shotgun proteomics, peptides that map to 

multiple proteins in a reference database can lead to ambiguous identifications. Within 

higher eukaryotes, this imposes a considerable challenge because shared or 

degenerate peptides, which result from segmental duplications, homologous proteins or 

splicing variants and comprise a large fraction of total extracted peptide library24,25. To 

date, there are different methods for aggregating MS evidence for protein assembly26. In 

a previous study, we proposed that the most advantageous framework to classify and

validate protein identifications in higher eukaryotes should include the following: 1) a

means to report the minimum of proteins implicated by at least one unique peptide and

2) the ability to account for database redundancies by clustering similar proteins into 

groups by sequence homology6. 

Using the principle of parsimony with Occam’s razor constraints27,26, 7,720 Populus

proteins were confidently identified (classified as distinct or differentiable), and 4,520 

proteins were categorized as indistinguishable (Supplemental Table 1). Although widely 

used, the guidelines in the suggested nomenclature make data interpretation more 

complicated and less accurate, especially in highly redundant proteome databases like 

Populus6. 

For this reason, we propose a strategy that incorporates additional supporting 

information (i.e., sequence homology) to better infer the existence of proteins. While this 
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approach can be applied to shotgun proteomic studies of plants in general, it confers 

demonstrable advantages for Populus specifically (see Experimental). Proteins sharing 

90% or more sequence identity within the Populus database were clustered into groups. 

Each protein group was defined by a single representative protein sequence called a 

seed, where each seed shares �90% sequence identity with all other members of that 

group. Observed peptides from the originally searched protein entries were then directly 

referenced back to the clustered database. For the current data set that included 63,056 

tryptic peptides, ~25% were previously shared within the original Populus database 

(non-unique/degenerate) but were reclassified as unique to a particular protein group in 

the newly constructed database. This illustrates the advantage of implementing a 

“protein group-centric” approach, such that including information about sequence 

homology allows the interpreter to readily assess the relatedness between shared 

peptides of indistinguishable proteins derived from gene duplication and splice variants. 

Moreover, as clustered proteins are ≥90% similar to one another, members of a 

particular group likely exhibit similar functional roles which, when applied to semi-

quantitative proteomics, allows for a more robust analysis of functional signatures 

across conditions, time points or organ types. In other words, this strategy effectively 

reduces the complexity of the functional analysis and biological interpretation of plant 

data. 

Based on this approach, a total of 11,692 protein assignments (Supplemental Table 2) 

across all organ-types were reduced into 7,538 protein groups at an average false-

discovery rates of <1% at the peptide level (Supplemental Table 3). Protein groups were 
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populated by as many as 21 members, with one-membered groups (i.e., singletons) 

representing only 36% of the total. In total, we were able to measure 25% of the 

predicted proteins for Populus. Generating complete proteome maps of higher 

organisms is a difficult task as it is unlikely the entire ensemble of polypeptide species 

encoded by a genome will be expressed at any given time. Nevertheless, this integrated 

data set provides an “information backbone” that captures baseline protein expression 

across spatially and functionally distinct pathways. This holistic view of plant-wide 

protein expression will provide a better understanding of the detected components (i.e., 

proteins, pathways, etc.) in the context of relationships between organs. 

3.2 Depth of Analysis of the Populus Proteome 

Having established robust peptide/protein identification criteria, we sought to assess the 

depth of our data set by two critical figures of merit, proteome sequence coverage and 

dynamic range. Despite differences in organ background, similar total protein sequence 

coverage (median=19%) was achieved (Supplemental Fig. 1), a value comparable to 

recent work employing a similar approach to analyze yeast30. Of the four organ-types, 

the mature leaf proteome consisted of proteins with lower total sequence coverage.

Concomitantly, there were fewer proteins with high sequence coverage. We speculate 

that the heterogeneity of the expected protein population expressed in mature leaf (i.e., 

membrane-related proteins, post-translational modifications, etc.) is perhaps less suited 

for the current trypsin-based schema. Transmembrane prediction using Hidden Markov 

Models (TMHMM)31 analysis revealed similar identification rates of proteins with 

transmembrane domains (6-7% across all organs), suggesting that the systematic 
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decrease in protein sequence coverage is more likely due to changes in the frequency 

of post-translational modifications or some other phenomena related to the types of 

proteins being expressed. 

Electrospray ionization presents the mass spectrometer with a dynamic population of 

peptides, of which only a fraction is selected for sequencing32. Consequently, highly 

abundant peptides limit the sampling and identification of low abundant peptides. 

Because the LTQ Velos platform includes advances that benefit the analysis of low-

abundant and low signal-to-noise precursors, we sought to quantitatively assess the 

capabilities of the instrument. By comparing our current data set against our previous in-

depth Populus study6, which used the LTQ XL platform, we examined the achievable 

depth of proteome characterization. When examining the distribution of the identified 

precursor ions versus local signal-to-noise ratios, the LTQ Velos platform increased the 

identification of low signal-to-noise precursor ions compared to the LTQ XL 

(Supplemental Fig. 2). Furthermore, peptide populations created from complex mixtures 

often tax the sequencing speed of MS instruments such that the mass spectrometer is 

incapable of targeting every eluting peptide and thus misses “sequenceable” peptides. 

As anticipated, the faster acquisition speed facilitated a 2-fold increase in the number of 

scans collected and assigned as well as the total number of proteins identified (Fig. 1A 

and 1B). Given these improvements provided by the Velos platform, we anticipated a 

sizeable increase in the analytical dynamic range. Indeed, protein dynamic range 

spanned 5-6 orders of magnitude, representing a 1-2 order of magnitude increase when 

compared to the LTQ XL platform (Fig. 1B). Together, these increases in sensitivity and 
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speed augment the Velos’ analytical dynamic range, providing demonstrably better 

depth of proteome characterization. 

Similar experimental strategies directed towards deep proteome coverage in higher 

eukaryotes, like yeast, have measured a remarkably large dynamic range of protein 

expression33. Unlike yeast34, there is no available information regarding known cellular 

concentrations (copies/cell) for proteins spanning the entire abundance range in 

Populus. Therefore, it is a challenge to accurately assess the biological dynamic range 

achieved by this approach. Nevertheless, the dual-pressure ion trap design includes 

substantial improvements that benefit the analysis of complex protein mixtures. 

3.3 Spatial Proteomics: Profiling Organ-Specific Proteomes 

A function-level view of the different Populus organ proteomes was generated by sorting 

protein groups into functional categories as defined in the eukaryotic clusters of 

orthologous groups (KOG) database and weighting by normalized spectral count 

(nSpC)17 (Fig. 2). KOG categories of “unknown function” and “post-translational 

modification and chaperone” had the highest representation in all organs. With regard to 

specific organs, “signal transduction mechanisms” and “chloroplast components” were 

the most abundant functional categories in mature leaves, “translation and RNA 

processing” in young leaves, “cytoskeleton” in stem and “unknown function” in roots. 

We next identified protein groups from our data set that overlapped different organs, as 

well as those that were only found in one organ (Fig. 3A). In the current study, a “core” 
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proteome shared among the four different Populus organs was identified, consisting of 

2,060 protein groups. The spatial distance between organs appeared to influence the 

degree of overlap between the different proteomes. For two organs that have a distal 

relationship, such as root and mature leaf, the overlap between proteomes decreases.  

Protein groups found in only one organ may be linked to specialized, organ-specific 

processes. In total, we identified 688 protein groups unique to root, 831 to stem, 370 to 

mature leaf, and 629 to young leaf. For a more detailed comparison of the different 

organ proteomes, a Pearson correlation matrix assessed the correlation between the 

different organ proteomes (Fig. 3B). The pairwise comparisons resulted in Pearson 

correlation values that range from 0.06 (mature leaf vs. root) to 0.72 (young leaf vs. 

stem). The correlation coefficients support the results in Figure 3A and together 

corroborate the hypothesis that the degree of proteomic overlap between different 

Populus organs is reflected by their shared function. 

For a network-wide perspective of Populus metabolism, we employed the use of 

iPath2.023 (http://pathways.embl.de) to navigate and explore the predicted KEGG 

metabolic pathways (Supplemental Figure 3). Using the entire data set (7,538 protein 

groups), a metabolic pathway diagram was constructed to highlight the core proteome 

relative to all protein groups measured (Supplemental Fig. 3A). Overall, the core 

molecular network spanned every major functional category belonging to central 

metabolism. These protein groups likely belong to catalytic and regulatory interactions 

that govern the life of a plant cell, and may include signaling networks that choreograph 
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cross talk between plant cells in response to environmental perturbations. Supplemental 

Figures 3B-E depict metabolic grids of individual organ proteomes. Even though similar 

coverage of the metabolic network was observed for each organ, the most revealing 

feature of these maps is the existence of molecular networks and the protein groups 

that are characteristic of a specific organ. For each organ proteome, a number of unique 

protein groups were identified and, rather than mapping ubiquitously, they generally 

assembled into discrete pathways. Although beyond the scope of this study, future work 

could integrate metabolomics to measure net fluxes of material into and out of 

pathways, capturing the relationship of enzymes and their substrates/products35. 

3.4 Quantitative Analysis of Populus Organ Proteomes 

In order to generate a quantitative proteome map of the different Populus organs, we 

first filtered the data to account for the stochastic nature of the peptide sampling 

process36. That is, a significant proportion of the data consists of low-abundant proteins 

and because accurate label-free quantitation is difficult to perform on low-abundant 

proteins, we applied a threshold filter for their subsequent removal. Rather than 

choosing an arbitrary abundance value to eliminate low abundance proteins, an

empirical prevalence value was identified to obtain a “cut-off” criterion that distinguishes 

changes in protein expression from background noise and false positives22. Applying 

this filter to the entire data set reduced the number of quantifiable protein groups from 

7,538 to 3,242 (see Experimental). Notably, while only ~43% of the data set remains, 

we retained ~98% of the total assigned nSpC values for quantitative analysis.  
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Using these parameters, we sought to identify the distribution of protein expression 

across the different organs. Hierarchical cluster analysis was applied to the 3,242 

protein groups, resulting in 14 clusters that can be visualized in Figure 4. Across all

clusters, the number of protein groups ranged from 395 (cluster 7) to 74 (cluster 12)

(Supplemental Table 4). While cluster membership reflects the relative diversity of 

protein function, the overall activity of each cluster is revealed through the relative 

percentages of the total assigned spectra (Fig. 5A). With such values, the quantitative 

representation of each organ within a cluster can be defined. 

To interpret the biological significance of each cluster, cluster membership was plotted 

against KOG category (Fig. 5B). First, we examined the protein groups that were 

predominately expressed in only one organ: cluster 1 (root), cluster 2 (mature leaf), 

cluster 8 (stem), and cluster 14 (young leaf). For the set of protein groups that were 

predominantly expressed in roots, the three most abundant functional categories 

observed were “unknown function”, “post-translation modification and chaperones”, and 

“amino acid transport and metabolism”. For those protein groups whose function 

remains unknown, an attempt to elucidate a biological role was dependent on whether a 

protein could be associated with a particular protein family in the Pfam database37.

Although functional annotations based solely on family membership must be interpreted 

with caution, high-quality association with a protein family would, in fact, indicate what 

functional units are present and thus suggest a biological role. By investigating protein 

family membership, a functional role for the two most abundant proteins 

(POPTR_0013s10350.1 and POPTR_0013s10380.1) in the unknown category could be 
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hypothesized. When searched against the Pfam database, both proteins matched with 

high confidence to a phosphorylase superfamily that includes 5'-methylthioadenosine 

phosphorylase. A previous publication38 suggests that the ortholog represented in A. 

thaliana responds to changes in the level of cytokinin production in various cell types.

Within plants, the phytohormone-related cytokinin is an important regulator of plant 

growth and, notably, 5'-methylthioadenosine, the substrate for the above-mentioned 

protein, has been linked to cytokinin metabolism39. For another set of proteins 

(POPTR_0008s13030.1 and POPTR_0008s13040.1), which are also among the 

highest expressed in the unknown category, A. thaliana orthologs have been shown to 

correlate with cytokinin levels in roots40. A search against the Pfam database resulted in 

high confident annotations for both proteins, matching against the Bet v I allergen 

protein family. In fact, members of the Bet v I allergen protein family are storage 

proteins that occur across dicotyledonous plants41 and have been shown to be 

cytokinin-binding proteins42. Together, the expression patterns observed, as well as 

annotations provided through protein family memberships, suggest biological roles 

impacting multiple aspects of plant development, including cell growth and sink/source 

relationships. 

Within the set of protein groups that were predominately expressed in stem (cluster 8),

the three most abundant KOG functional categories observed were “unknown function”,

“cytoskeleton”, and “amino acid transport and metabolism”. A set of the most abundant 

proteins shared a common biological thread; they all are involved in cell wall formation. 

Among this set, UDP-glucose pyrophosphorylase (UGPase; POPTR_0004s07280.1) 
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and UDP-glucose dehydrogenase (UGDH; POPTR_0004s11760.1) were identified at 

similar abundance values. In plants, the enzyme UGPase is metabolically positioned at 

the point of sucrose synthesis/breakdown and, at this important carbon flow junction, 

produces UDP-glucose, which is required for sucrose synthesis or other 

polysaccharides, such as hemicellulose or pectin43. Because actively growing stem 

tissues (i.e., phloem and xylem) do not serve a nutritional storage role, we hypothesize 

that the enzyme UGDH utilizes the UDP-glucose produced by UGPase to form UDP-

glucuronate, which is a precursor for hemicellulose and pectin formation, two xylem-

related polymers. Lastly, the protein with the largest abundance value is an actin 

depolymerizing factor (ADF; POPTR_0009s03320.1) that perhaps plays a role in control 

of woody tissue development. In Populus, ADF activity is thought to be essential for the 

development of phloem and xylem44. 

The three most abundant KOG functional categories observed in mature leaf (cluster 2) 

were “unknown function”, “chloroplast”, and “carbohydrate transport and metabolism”. A

mature leaf harbors a highly active network of chloroplasts, an organelle where light 

energy is collected and converted into stored chemical energy that ultimately fixes

atmospheric carbon dioxide to carbohydrates. Hence, fully developed leaves possess 

the highest photosynthetic rate, chlorophyll accumulation and respiration levels45.

Indeed, the three most abundant proteins (ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RuBisCO) large subunit; Chloroplast 11241, PSAD 

photosystem I reaction center subunit; POPTR_0008s15100.1 and glyceraldehyde 3-

phosphate dehydrogenase; POPTR_0014s13660.1) observed in the data set reflect the 
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main purpose of this specialized organ and substantiates its characteristic role in 

photosynthesis and carbohydrate metabolism. 

The three most abundant KOG functional categories observed in young leaf (cluster 14) 

were “unknown function”, “translation”, and “RNA processing and modification”. Unlike 

mature, fully expanded leaves, the more juvenile leaves appear to be ontogenetically 

closer to the shoot apical meristem. Rather, they appear to utilize most of their 

resources in active growth and development. The two most abundant proteins in young 

leaf were of unknown function but by investigating protein family membership with 

Pfam, both proteins (POPTR_0124s00210.1 and POPTR_0018s09610.1) matched with 

high confidence to members of the GDSL-like Lipase/Acylhydrolase family. In general, 

the GDSL-like lipase superfamily is thought to play an important role in the regulation of 

plant development and, recently, in the metabolism of cutin and wax46,47. In plants, cutin 

biosynthesis is a crucial component in the formation of outermost epidermal cell wall 

surface, the cuticle. Within expanding young leaves, the enzymatic mechanisms 

involved in the production of cutin monomers have been well-studied48,49. However, little 

progress has been made in identifying the enzymes involved in the transportation and 

building of the cutin matrix within the epidermal cell extracellular matrix. Lipase-type 

enzymes have been suggested to be involved in the cutin polymerization step within the 

extracellular matrix50. The results here, in correlation with the ANOVA analysis below, 

suggest that these abundant lipase proteins are involved in the formation of the plant 

cuticle. 
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3.5 Quantitative Analysis of Populus Leaf Development 

The semi-quantitative power of LC-MS/MS-based proteomics was employed to detail 

the proteomic differences between Populus leaf at two different developmental stages --

young (YL) and fully expanded, mature leaf (ML). To accomplish this task, protein group 

normalized spectral counts (nSpC) collected across all replicates of each leaf-type were 

analyzed by one-way ANOVA (see Experimental). Protein groups represented in the 

analysis include only those with significant sample-to-sample representation, as 

assessed by prevalence value (PV; see above). In total, 2881 protein groups from both 

young and mature leaves were statistically compared (Supplemental Table 5). Roughly 

half (1432 protein groups) were found to exhibit statistically significant (p≤0.01) 

differential abundance patterns, with 395 groups showing increased abundance in 

mature leaf compared to 1037 in young leaf (Fig. 6A and B). These values support the 

proposition above that mature leaf has “settled” into its organ-specific function 

(photosynthesis) and thus requires a reduced complement of proteins, relative to young 

leaf. In contrast, young leaves are still developing, as evidenced by the up-regulation of 

general biosynthetic pathways (i.e., DNA synthesis, transcription, translation, etc.). 

In order to better visualize the functional differences between young and mature leaves, 

differentially abundant protein groups from the ANOVA analysis (Supplementary Table 

4) were mapped to KEGG-derived metabolic pathways using iPath2.0. Only those 

Populus protein groups with assigned function (i.e., KEGG KO or Enzyme EC number) 

could be mapped, leaving out several highly abundant, differentially expressed proteins 

of unknown function. Despite this limitation, developmentally responsive protein groups 
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matched to 1444 metabolic map elements (392 in mature leaf vs. 1052 in young leaf, 

redundant entries included) and allow for a more pathway-centric view of the functional 

reactions specific to leaf developmental stage (Fig. 7A and B).

Functional enzymes exhibiting differential abundance patterns are highlighted on the 

pathway maps as varying degrees of either red (up-regulated in mature leaf, Fig. 7A) or 

green (up-regulated in young leaf, Fig. 7B), depending on their fold change. Protein 

expression that differs by a factor of 10 or more in either direction is represented by the 

brightest of either color. As a testimony to the power and accuracy of semi-quantitative 

proteomics, LC-MS/MS-derived protein abundance patterns highlight several 

contiguous pathway components, a majority of which respond in an appropriate, 

concerted fashion specific to leaf developmental stage. This pathway-centric view thus 

expands upon a general list of up- and down-regulated proteins, allowing for more 

complete synthesis of systems biological information. However, this is not to suggest 

that the latter is unnecessary, especially as only a subset of leaf stage-responsive 

proteins could be effectively mapped to a particular metabolic pathway. 

3.5.1 Metabolic Pathway Mapping of Mature Leaf Highlights a Primary Focus on 

Energy Harvesting 

Protein groups exhibiting increased abundance in mature leaf, relative to young leaf, 

substantiate the general view of a leaf as a specialized energy harvesting organ. As 

highlighted in box “PS” (Fig. 7A), all major components of photosynthesis (KEGG 

pathway KO00195) show significant increased protein abundance in mature leaf relative 
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to young leaf. In fact, photosynthesis is one of the most up-regulated systems present in 

mature leaf, an observation further evidenced by totaling the nSpC of each of the four

sub-complexes: 1) Photosystem II – 5324 nSpC in mature leaf compared to 907 in 

young leaf (5.87x up-regulated), 2) Photosystem I – 7801 to 624 nSpC (12.50x up-

regulated), 3) Cytochrome b6/f complex – 1873 to 370 nSpC (5.06x up-regulated) and

4) ATP synthase – 5435 to 762 nSpC (7.13x up-regulated). Furthermore, photosynthetic 

antenna proteins, the chlorophyll-binding components of light harvesting complexes 1 

and 2 (KEGG pathway KO00196), also showed a 4.6x increase in abundance 

compared to young leaf (2469 vs. 534 nSpC). Taken together, mature leaf 

photosynthetic function was up-regulated by a factor of 7.2x relative to young leaf 

(22,902 vs. 3,197 nSpC). 

Photosynthesis is inextricably linked to carbon fixation, a process by which photonic 

energy harnessed from sunlight is used to replenish supplies of NADPH and ATP, both 

of which power the redox-based reduction of atmospheric carbon dioxide to sugar 

molecules. Thus, the observed increase in proteins related to photosynthesis in mature 

leaf must correspond to an increase in the rate of carbon fixation. As follows, enzymes 

relevant to the carbon fixation pathway (KO00710), which are highlighted in box “CF” 

(Fig. 7A), exhibit increased abundance in mature leaf relative to young leaf. By totaling 

the nSpC of the proteins involved in Calvin cycle, C3-based carbon fixation activity is 

up-regulated by a factor of roughly 6x (16,982 vs. 2818 nSpC in mature and young leaf, 

respectively), a value that is in line with the degree of photosynthesis up-regulation 

reported above. Furthermore, RuBisCO, the key enzyme in carbon fixation, accounted 
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for 9,397 nSpC across both mature and young leaves, but was enriched over 4.6x in 

mature leaf (7,721 vs. 1,676 nSpC). 

Though the primary function of RuBisCO is to fix atmospheric CO2 to ribulose 1,5-

bisphosphate (RuBP) through its carboxylase activity, this enzyme can also function as 

an oxygenase in a process termed photorespiration (PR). In this regard, O2 rather than 

CO2 is assimilated, leading to the production of 3-phosphoglycerate (3PG) and 2-

phosphoglycolate (2PG), the latter of which must be metabolized to 3PG for re-entry 

into the Calvin Cycle. This complicated, multi-organelle pathway, however, equates to 

an expenditure of metabolic energy to both convert 2PG to 3PG and to recapture 

carbon (CO2) and nitrogen (NH4
+) lost in the process. Although the rate of 

photorespiration is exacerbated under hot/dry conditions, it occurs at substantial rates 

(~25%) even under moderate growth conditions51. As highlighted in box “PR” (Fig. 7A),

there was up-regulation of the photorespiration pathway (glyoxylate and dicarboxylate 

metabolism, KO00630), starting with RuBisCO’s oxygenase-dependent production of 

2PG through its conversion to glycerate (2PG � glycolate � glyoxylate � glycine �

serine � hydroxypyruvate � glycerate) and involving the necessary accessories 

pathways/enzymes (catalase, glutamine/glutamate cycle and tetrahydrofolate cycle) to 

complete the process. The only enzyme within the pathway not identified to be up-

regulated was glycerate kinase. In total, PR in mature leaf was up-regulated by a factor 

of 5x (11,230 vs. 2251 nSpC) relative to young leaf. 



Abraham et al. 27 

These three major mature leaf-enriched metabolic pathways constitute a proof-of-

concept with regard to the LC-MS/MS platform described in this paper. As mentioned 

above, and further corroborated by these proteomic data, mature leaf appears to have 

“settled” into its primary function. Other less complete pathways were also found to be 

up-regulated, with a portion of them seemingly involved in reacting to oxygenic stress, 

most likely induced by the photosynthetic process itself. For example, L-ascorbate

peroxidase (EC:1.11.1.11, KO00434) was up-regulated in mature leaf by 3.9x (223 vs. 

57 nSpC) while a 2-cysteine peroxiredoxin (EC: 1.11.1.15, KO03386) was up-regulated 

by a factor of 2.6x (631 vs. 240 nSpC). Both enzymes are known to detoxify reactive 

oxygen species, with the latter previously shown to be targeted to chloroplasts to 

provide prevent photooxidative damage to the photosynthetic membrane52,53.

Furthermore, three enzymes in the pathway for carotenoid and xanthophyll biosynthesis 

were also slightly up-regulated in mature leaf (lycopene beta-cyclase [KO06443],

zeaxanthin epoxidase [KO09838] & 9-cis-epoxycarotenoid dioxygenase [KO9840]) with 

modest nSpC differences. In fact, the spectral counts from mature to young leaf totaled 

26 vs. 0, supporting the premise that the mature leaf has enhanced photosynthetic 

capabilities, including pigments that modulate harvested photonic energy in periods of 

high light and act as antioxidants, playing lipid-protective roles in periods of high 

photosynthetic/oxygen generating activity54,55. 

  

3.5.2 Metabolic Pathway Mapping of Young Leaf Highlights a Primary Focus on 

Growth and Development
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Young leaf engages in most, if not all, of the photosynthetic-dependent pathways 

detailed above, albeit with reduced abundance relative to mature leaf. The reduced 

level of photosynthetic-related proteins is countered by a systematic increase in protein 

abundance in several major general biosynthetic pathways, consistent with the fact that 

a young leaf is primarily actively growing and secondarily photosynthesizing. This 

perhaps intuitive observation is apparent upon viewing the pathway map in Figure 7B.

Relative to mature leaf, young leaf shows increases in several metabolic pathways 

including terpenoid biosynthesis (“TB” | KO00900 | ~2.3x | 177 vs. 78 nSpC), flavonoid 

biosynthesis (“FB” | KO00941 | ~1.5x | 58 vs. 39 nSpC), pyruvate metabolism (“PM” | 

KO00620 | ~1.6x | 1443 vs. 888 nSpC), TCA cycle flux (“TCA” | KO00020 | ~2.0x | 1282 

vs. 630 nSpC), fatty-acid metabolism (“FA” | KO00061, KO00062, KO00071 | ~3.3x | 

321 vs. 98 nSpC) and nucleotide metabolism (“NM” | KO00230, KO00240 | ~3.3x | 735 

vs. 221 nSpC). 

Although each of these pathways, comprised of their respective pools of differentially 

expressed proteins, were found to be up-regulated in young leaf, their spectral 

representation is less abundant relative to observation for regulatory pathways, 

including transcription (KO03020, KO03022, KO03040), translation (KO03010, 

KO00970, KO03013, KO03015, KO03008) and protein folding/sorting/degradation 

(KO03050, KO03018, KO03060, KO04120, KO04141, KO04130, KO04122). Proteins 

involved in the Populus translational apparatus were by far the most abundant in young 

leaf, exhibiting a ~3.6x increase in abundance (15,691 vs. 4,342 nSpC) relative to 

mature leaf. This increase was corroborated by significant increases in both 
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transcription (~3.0x, 1,875 vs. 630 nSpC) and protein folding/processing (~3.6x, 6,327 

vs. 1,731 nSpC). Taken together, and including a modest increase observed in DNA 

metabolism (96 vs. 4 nSpC), young leaf regulatory pathways were up-regulated by a 

factor of roughly 3.6x (23,989 vs. 6,707 nSpC). The measured increase in protein 

abundance observed for members of these specific regulatory pathways solidify the 

general observation that young leaf’s primary function is growth that is fueled by 

moderate levels of photosynthesis and carbon fixation. 

CONCLUSIONS 

Since the release of the Populus genome in 2006, a question remains unanswered, i.e., 

what is the achievable depth and coverage of the predicted proteome space of Populus

using high-throughput mass spectrometry? Although the application of shotgun 

proteomics to measure global molecular responses is successful for many proteomic 

samples of low complexity, the depth of coverage required for a similar inquiry in higher 

eukaryotes requires more sophisticated sample preparation and advanced 

instrumentation. Therefore, we sought to address these issues by implementing a 

myriad of optimizations for nearly every step of the experimental process. These 

optimizations, while beneficial to plant proteomics in general, are broadly applicable to 

other organisms of similar complexity such as humans and other higher eukaryotes. 

The enormous biological dynamic range inherent to a eukaryotic system demanded 

incorporation of a detergent-based sample preparation strategy that enhances plant cell 

lysis and protein extraction, both crucial enablers for in-depth analyses of complex 



Abraham et al. 30 

proteomes. Without the appropriate instrumentation, this complexity inevitably leads to a 

sub-optimal identification of all detectable peptide species. Although a longstanding 

general challenge in shotgun proteomic experiments, recent technological 

improvements to the LTQ platform, mainly through enhancements to sequencing speed 

and sensitivity, doubles the identification rate of these dense peptide populations and 

enhances the identification of low-abundant protein species. Taken together, the 

enhanced sample preparation method and the state-of-the-art instrumentation enabled 

us to achieve one of the deepest proteome analyses in plant organisms to date, 

spanning six orders of magnitude in protein abundance and requiring only modest levels 

of sampling (i.e., 5-6 sample replicates per organ). 

As demonstrated, the depth of coverage achieved in this study was sufficient for 

comprehensive characterization of different plant organs that, at the cellular level, have 

vastly different chemical backgrounds (expressed genes, proteins and metabolites). The 

streamlined approach applied here affords an unprecedented view of Populus protein 

expression across several major organ-types, with each offering unique proteomic 

perspectives. This not only facilitates the identification of functional processes unique to 

a particular organ but also allowed us to define a Populus core proteome. Furthermore, 

in addition to identifying proteins with a known biological function, a large percentage of 

each proteome consisted of proteins with no known function. Though specific biological 

roles were not determined for these proteins in this present study, general observations 

(i.e., organ location, differential regulation, etc.) outlined here provide hypotheses for 

further interrogation. 
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In addition to providing qualitative data describing the protein complement of each 

organ, the collected data also contains semi-quantitative information, reflecting the 

underlying functional processes and mechanisms in each organ-type as weighted by a 

conservative estimate of protein abundance. To our knowledge, a systems-wide survey 

of protein abundances across different Populus organs has not been reported. By 

unveiling several perspectives of protein richness: 1) network-wide 2) discrete pathways 

and 3) individual proteins, this quantifiable, holistic view of the protein network enables 

reliable predictions to be made regarding the response of the cellular system to 

environmental perturbations and experimental manipulations. To demonstrate the 

precision and comprehensiveness of this approach, we explored proteomic differences 

between the same organ-type during two growth stages, young and mature leaf. As 

detailed above, mature leaf appears to function primarily in an autotrophic role 

consisting of energy generation via its photosynthetic apparatus and reduction of CO2 to 

sugar via its carbon fixation pathway. Though other photosynthesis-related pathways 

were up-regulated in mature leaf (i.e., photorespiration and defense against 

photosynthetically-derived reactive-oxygen species), proteins involved in photosynthesis 

and carbon fixation constitute the majority of the quantitative signal. On the other hand, 

biosynthetic and regulatory functions were relatively up-regulated in young leaf. Even 

though proteins/pathways for photosynthesis, carbon fixation and photorespiration were 

detected in young leaf, they were less represented relative to mature leaf. This 

information suggests that young leaves partition resources between growth and energy 

production. These observations and data provide a “proof-of-concept” with regard to our 
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2D-LC-MS/MS platform and suggest the biological validity of these pathway-centric 

comparisons, opening the door for future hypothesis-driven inquiries into Populus and 

other complex organisms. Obviously caution must be exercised when interpreting these 

semi-quantitative results, as only one biological replicate was available for statistical 

assessment.  Clearly the inclusion of more biological replicates (3-5) would improve the 

statistical framework of this discovery-based approach. Nevertheless, the workflow 

discussed here provides an intellectual springboard for future targeted, quantitative 

approaches.  
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Figure Legends: 

Figure 1: Peptide and protein dynamic range. Dynamic range of measurement was 

assessed for each identified peptide and protein across three replicate runs for all four 

organ types. (A) Maximum ion intensity values obtained for each peptide’s extracted ion 

chromatogram (y-axis) were ranked by intensity and plotted against cumulative number 

of assigned MS/MS spectra (x-axis). Curves represent individual replicates per organ to 

identify run-to-run differences in dynamic range. (B) Assembled protein intensity (y-

axis), calculated by summing constituent peptide intensities across all replicates, was 

plotted against the cumulative number of identified proteins (x-axis) to identify the 

overall protein dynamic range achieved per individual organ. Dynamic range values, 

represented as magnitudes (base 10), are listed in the figure legend. Light blue: LTQ 

stem; blue: LTQ-Velos mature leaf; red: LTQ-Velos young leaf; purple: LTQ-Velos root; 

green: LTQ-Velos stem. 

Figure 2: Quantitative distribution of detected protein groups by their functional 

classification. Proteins identified in each tissue type were assigned KOG categories to 

identify functional trends relevant to each organ type. Category representation was 

weighted by the sum total of the normalized spectral counts (nSpC) contributed by each 

protein in the classification. Notable trends include a high proportion of nSpC in mature 

leaf attributed to chloroplast-based proteins, enrichment of cytoskeletal components in 

stem, and an increase in translation in young leaf compared to the other tissues. Also 

noted is the large degree of nSpC representation falling into the unknown category,

suggesting a need for improved protein annotation as a whole. 
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Figure 3: Global proteomic view across all four organs. Numbers of identified 

protein groups, as represented by a 4-tiered Venn diagram (A), indicate the level of 

proteomic overlap between organ types. Notable regions include protein groups specific 

to only one organ-type (solid blue, yellow, green and red) as well as groups identified 

across all organs (central brown region). (B) Degree of proteomic overlap as visualized 

by Pearson’s correlation analysis of all protein nSpC values averaged across all 

replicates for each particular organ. The degree of correlation increases as a function of 

organ proximity. 

Figure 4: Hierarchical clustering classifies protein groups by distinct localization 

trends. Identified protein groups above the determined prevalence value were clustered 

into groups based on nSpC abundance patterns across all organ types. Abundance 

values, ranging from -1.56 to +1.56, were calculated by converting nSpC for each 

protein group, averaged across all replicates, to a value representing the number of 

standard deviations away from the row mean. Protein groups sharing similar 

standardized abundance trends were then clustered into distinct families (listed top to 

bottom - 1, 12, 4, 8, 7, 2, 13, 10, 3, 11, 6, 14, 9 and 5) and denoted in alternate colors.

Columns representing each organ-type were then clustered (bottom) based on global 

data set similarities.

Figure 5: Quantitative distribution of detected protein groups by their functional 

classification for each hierarchical cluster. Protein group clusters were deconvoluted 

by organ-type (A) to show each organ’s nSpC contribution relative to the total nSpC 

populating each cluster (across all organs). Table cells are color-coded based on 
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percent contribution (green:red::low:high) in order to quickly visualize each organ’s 

share of the total nSpC. (B) To view the functional signature of each cluster (z-axis), 

cluster members were classified into their respective KOG categories (x-axis), with each 

category’s representation weighted, based on the sum of nSpC of contributing protein 

group members (y-axis). 

Figure 6: Differential proteomic analysis of young versus mature leaf by ANOVA. 

Protein groups identified in young and/or mature leaf above the determined prevalence 

value were analyzed by ANOVA to compare the functional signature between two 

distinct developmental stages of leaf. (A) Protein group abundances (nSpC), averaged 

across all replicates (n=6) per stage, were compared between young leaf (YL, x-axis) 

and mature leaf (ML, y-axis) and visualized as a scatterplot. Protein groups that showed 

a significant (p≤0.01) difference in abundance are colored red. Dotted lines separate 

“effectively zero” sub-distributions from the main distribution in the top right quadrant. 

Proteins groups in this main distribution were identified in both developmental stages 

while proteins in the sub-distributions were likely found in only one stage. To further 

visualize the statistical metrics of the main distribution, a volcano plot (B) was 

constructed, comparing the LOG2(nSpC)-based difference between both developmental 

stages (x-axis) to the level of statistical significance, represented as -LOG10(p-value) 

(y-axis). As in (A), protein groups that showed a significant (p≤0.01) difference in 

abundance are colored red. 

Figure 7: Up-regulated metabolic pathways as dictated by Populus leaf 

developmental stage. Proteins exhibiting differential abundance patterns (ANOVA; p ≤ 
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0.01) across both young and mature leaf were mapped to KEGG pathways using iPath 

v.2.0 and color-coded to indicate the degree of protein abundance differences between 

each developmental stage. (A) Proteins with significantly increased abundance in 

mature leaf are labeled in red with brighter shades indicative of larger differences. 

Highlighted pathways (dashed boxes) include photosynthesis (PS), carbon fixation (CF), 

and photorespiration (PR). (B) Proteins with significantly increased abundance in young 

leaf are labeled in green with brighter shades indicative of larger differences. 

Highlighted pathways include nucleotide metabolism (NM), flavonoid biosynthesis (FB), 

fatty acid metabolism (FA), pyruvate metabolism (PM), terpenoid biosynthesis (TB), and 

TCA cycle (TCA). 
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